1
|
Peng R, Zhang T, Wang S, Liu Z, Pan P, Xu X, Song Y, Liu X, Yan S, Wang J. Self-Assembly of Strain-Adaptable Surface-Enhanced Raman Scattering Substrate on Polydimethylsiloxane Nanowrinkles. Anal Chem 2024; 96:10620-10629. [PMID: 38888085 PMCID: PMC11223597 DOI: 10.1021/acs.analchem.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024]
Abstract
Flexible surface-enhanced Raman scattering (SERS) substrates adaptable to strains enable effective sampling from irregular surfaces, but the preparation of highly stable and sensitive flexible SERS substrates is still challenging. This paper reports a method to fabricate a high-performance strain-adaptable SERS substrate by self-assembly of Au nanoparticles (AuNPs) on polydimethylsiloxane (PDMS) nanowrinkles. Nanowrinkles are created on prestrained PDMS slabs by plasma-induced oxidation followed by the release of the prestrain, and self-assembled AuNPs are transferred onto the nanowrinkles to construct the high-performance SERS substrate. The results show that the nanowrinkled structure can improve the surface roughness and enhance the SERS signals by ∼4 times compared to that of the SERS substrate prepared on flat PDMS substrates. The proposed SERS substrate also shows good adaptability to dynamic bending up to ∼|0.4| 1/cm with excellent testing reproducibility. Phenolic pollutants, including aniline and catechol, were quantitatively tested by the SERS substrate. The self-assembled flexible SERS substrate proposed here provides a powerful tool for chemical analysis in the fields of environmental monitoring and food safety inspection.
Collapse
Affiliation(s)
- Ran Peng
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Tingting Zhang
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Shiyao Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| | - Zhijian Liu
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Peng Pan
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Xiaotong Xu
- Key
Laboratory of Coastal Ecology and Environment of State Oceanic Administration, National Marine Environmental Monitoring Center, Linghe Road 42, Dalian 116023, China
| | - Yongxin Song
- College
of Marine Engineering, Dalian Maritime University, Lingshui Road, Dalian 116026, China
| | - Xinyu Liu
- Department
of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Sheng Yan
- Institute
for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Junsheng Wang
- Department
of Information Science and Technology, Dalian
Maritime University, Dalian 116026, China
- Liaoning
Key Laboratory of Marine Sensing and Intelligent Detection, Dalian Maritime University, Dalian 116026, China
| |
Collapse
|
2
|
Lee H, Liu KH, Yang YH, Liao JD, Lin BS, Wu ZZ, Chang AC, Tseng CC, Wang MC, Tsai YS. Advances in uremic toxin detection and monitoring in the management of chronic kidney disease progression to end-stage renal disease. Analyst 2024; 149:2784-2795. [PMID: 38647233 DOI: 10.1039/d4an00057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Patients with end-stage kidney disease (ESKD) rely on dialysis to remove toxins and stay alive. However, hemodialysis alone is insufficient to completely remove all/major uremic toxins, resulting in the accumulation of specific toxins over time. The complexity of uremic toxins and their varying clearance rates across different dialysis modalities poses significant challenges, and innovative approaches such as microfluidics, biomarker discovery, and point-of-care testing are being investigated. This review explores recent advances in the qualitative and quantitative analysis of uremic toxins and highlights the use of innovative methods, particularly label-mediated and label-free surface-enhanced Raman spectroscopy, primarily for qualitative detection. The ability to analyze uremic toxins can optimize hemodialysis settings for more efficient toxin removal. Integration of multiple omics disciplines will also help identify biomarkers and understand the pathogenesis of ESKD, provide deeper understanding of uremic toxin profiling, and offer insights for improving hemodialysis programs. This review also highlights the importance of early detection and improved understanding of chronic kidney disease to improve patient outcomes.
Collapse
Affiliation(s)
- Han Lee
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Kuan-Hung Liu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Yu-Hsuan Yang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Jiunn-Der Liao
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Bo-Shen Lin
- Laboratory of Engineered Materials for Biomedical Applications, Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 701, Taiwan.
| | - Zheng-Zhe Wu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Alice Chinghsuan Chang
- Center for Measurement Standards, Industrial Technology Research Institute, No. 321, Kuang Fu Road, Section 2, Hsinchu 300, Taiwan.
| | - Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| | - Yau-Sheng Tsai
- Center for Clinical Medicine Research, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan.
| |
Collapse
|
3
|
Wu Z, Zheng C, Lin Q, Fu Q, Zhao H, Lei Y. Unique gap-related SERS behaviors of p-aminothiophenol molecules absorbed on TiO 2surface in periodic TiO 2/Ni nanopillar arrays. NANOTECHNOLOGY 2024; 35:215501. [PMID: 38368630 DOI: 10.1088/1361-6528/ad2a5a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/18/2024] [Indexed: 02/20/2024]
Abstract
We observed a unique interpillar gap-related surface-enhanced Raman scattering (SERS) behavior ofp-aminothiophenol (PATP) molecules from periodic TiO2nanopillar arrays with three gap sizes of 191, 297 and 401 nm, which is completely different from that on Ag and Ni nanopillar arrays. Especially, the gap-size-dependent charge-transfer (CT) resonance enhancement from TiO2/Ni has been indicated through comparisons of variation trend of SERS intensities with inter-pillar gap size between TiO2/Ni and Ag/TiO2/Ni as well as Ni nanoarrays, and been confirmed by spectra of ultraviolet-visible absorption and photoluminescence. Results demonstrate that the CT resonance enhancement is more susceptible to the change of the gap size compared with the surface plasmon resonance (SPR) enhancement in TiO2/Ni nanoarrays. Hence, SPR and CT enhancement showing different variation trend and rate with the gap size that leads to a different relative contribution of CT resonance to the overall SERS enhancement as gap size changes, and consequently results in a unique gap-related SERS behavior for TiO2/Ni nanoarrays. The present study is not only helpful for investigating SERS mechanism for semiconductors but also providing a method to design and optimize periodic metal/semiconductor SERS substrates in a controllable way.
Collapse
Affiliation(s)
- Zhijun Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chunfang Zheng
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qi Lin
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Qun Fu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, D-98693 Ilmenau, Germany
| |
Collapse
|
4
|
Sun M, Zhang H, Li H, Hao X, Wang C, Li L, Yang Z, Tian C. Ag microlabyrinth/nanoparticles coated large-area thin PDMS films as flexible and transparent SERS substrates for in situ detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123153. [PMID: 37473663 DOI: 10.1016/j.saa.2023.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/28/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Flexible and transparent surface-enhanced Raman scattering (SERS) substrates haveattractedmuchattention as a fast, sensitive and in situ detection platform for practical applications. However, the large-area fabrication of flexible and transparent SERS substrates with high performance is still challenging. Here, a flexible and transparent SERS substrate based on large-area thin PDMS film decorated with Ag microlabyrinth/nanoparticles hierarchical structures (denoted as ALNHS@PDMS) is fabricated by using the floating-on-water method and magnetron sputtering technology. By optimizing the sputtering time, the ALNHS with multiple hot spots are uniformly distributed on the PDMS surface. Based on characterizing the rhodamine 6G (R6G) with a portable Raman spectrometer, the optimal ALNHS@PDMS film exhibits a high enhancement factor (5.2 × 106), excellent uniformity and reproducibility, as well as superior mechanical stability. In addition, thanks to the good sticky feature and bi-directional activation property of the thin ALNHS@PDMS film, the prepared flexible and transparent SERS substrate can achieve in situ detection of malachite green residues (10-6 M) on apple and tomato skins. This large-area, thin, mechanically robust, flexible and transparent ALNHS@PDMS film, integrated with a portable Raman spectrometer, shows great potential for point-of-care testing (POCT)in practical applications.
Collapse
Affiliation(s)
- Meng Sun
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Houjia Zhang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Hefu Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Xuehui Hao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Changzheng Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252000, China
| | - Lijun Li
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Zhenshan Yang
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China
| | - Cunwei Tian
- School of Physical Science and Information Technology, Key Laboratory of Optical Communication Science and Technology of Shandong Province, Liaocheng University, Liaocheng, 252000, China.
| |
Collapse
|
5
|
Nie C, Shaw I, Chen C. Application of microfluidic technology based on surface-enhanced Raman scattering in cancer biomarker detection: A review. J Pharm Anal 2023; 13:1429-1451. [PMID: 38223444 PMCID: PMC10785256 DOI: 10.1016/j.jpha.2023.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 01/16/2024] Open
Abstract
With the continuous discovery and research of predictive cancer-related biomarkers, liquid biopsy shows great potential in cancer diagnosis. Surface-enhanced Raman scattering (SERS) and microfluidic technology have received much attention among the various cancer biomarker detection methods. The former has ultrahigh detection sensitivity and can provide a unique fingerprint. In contrast, the latter has the characteristics of miniaturization and integration, which can realize accurate control of the detection samples and high-throughput detection through design. Both have the potential for point-of-care testing (POCT), and their combination (lab-on-a-chip SERS (LoC-SERS)) shows good compatibility. In this paper, the basic situation of circulating proteins, circulating tumor cells, exosomes, circulating tumor DNA (ctDNA), and microRNA (miRNA) in the diagnosis of various cancers is reviewed, and the detection research of these biomarkers by the LoC-SERS platform in recent years is described in detail. At the same time, the challenges and future development of the platform are discussed at the end of the review. Summarizing the current technology is expected to provide a reference for scholars engaged in related work and interested in this field.
Collapse
Affiliation(s)
- Changhong Nie
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ibrahim Shaw
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chuanpin Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| |
Collapse
|
6
|
Cheng HW, Tsai HM, Wang YL. Exploiting Purine as an Internal Standard for SERS Quantification of Purine Derivative Molecules Released by Bacteria. Anal Chem 2023; 95:16967-16975. [PMID: 37931018 PMCID: PMC10666080 DOI: 10.1021/acs.analchem.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a highly sensitive technique used in diverse biomedical applications including rapid antibiotic susceptibility testing (AST). However, signal fluctuation in SERS, particularly the widespread of signals measured from different batches of SERS substrates, compromises its reliability and introduces potential errors in SERS-AST. In this study, we investigate the use of purine as an internal standard (IS) to recalibrate SERS signals and quantify the concentrations of two important purine derivatives, adenine and hypoxanthine, which are the most important biomarkers used in SERS-AST. Our findings demonstrate that purine IS effectively mitigates SERS signal fluctuations and enables accurate prediction of adenine and hypoxanthine concentrations across a wide range (5 orders of magnitude). Calibrations with purine as an IS outperform those without, exhibiting a 10-fold increase in predictive accuracy. Additionally, the calibration curve obtained from the first batch of SERS substrates remains effective for 64 additional substrates fabricated over a half-year period. Measurements of adenine and hypoxanthine concentrations in bacterial supernatants using SERS with purine IS closely align with the liquid chromatography-mass spectrometry results. The use of purine as an IS offers a simple and robust platform to enhance the speed and accuracy of SERS-AST, while also paving the way for in situ SERS quantification of purine derivatives released by bacteria under various stress conditions.
Collapse
Affiliation(s)
- Ho-Wen Cheng
- Molecular
Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 106319, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 106319, Taiwan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Hsin-Mei Tsai
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| | - Yuh-Lin Wang
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106319, Taiwan
| |
Collapse
|
7
|
Li Y, Liao H, Wu S, Weng X, Wang Y, Liu L, Qu J, Song J, Ye S, Yu X, Chen Y. ReS 2 Nanoflowers-Assisted Confined Growth of Gold Nanoparticles for Ultrasensitive and Reliable SERS Sensing. Molecules 2023; 28:molecules28114288. [PMID: 37298764 DOI: 10.3390/molecules28114288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
ReS2, as a new member of transition metal dichalcogenides (TMDCs), has emerged as a promising substrate for semiconductor surface-enhanced Raman spectroscopy (SERS) due to its unique optoelectronic properties. Nevertheless, the sensitivity of the ReS2 SERS substrate poses a significant challenge to its widespread application in trace detection. In this work, we present a reliable approach for constructing a novel ReS2/AuNPs SERS composite substrate, enabling ultrasensitive detection of trace amounts of organic pesticides. We demonstrate that the porous structures of ReS2 nanoflowers can effectively confine the growth of AuNPs. By precisely controlling the size and distribution of AuNPs, numerous efficient and densely packed "hot spots" were created on the surface of ReS2 nanoflowers. As a result of the synergistic enhancement of the chemical and electromagnetic mechanisms, the ReS2/AuNPs SERS substrate demonstrates high sensitivity, good reproducibility, and superior stability in detecting typical organic dyes such as rhodamine 6G and crystalline violet. The ReS2/AuNPs SERS substrate shows an ultralow detection limit of 10-10 M and a linear detection of organic pesticide molecules within 10-6-10-10 M, which is significantly lower than the EU Environmental Protection Agency regulation standards. The strategy of constructing ReS2/AuNPs composites would contribute to the development of highly sensitive and reliable SERS sensing platforms for food safety monitoring.
Collapse
Affiliation(s)
- Yongping Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Haohui Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shaobing Wu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiaoyu Weng
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yiping Wang
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Liwei Liu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Junle Qu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Jun Song
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Shuai Ye
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Xiantong Yu
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| | - Yu Chen
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
8
|
Liu C, Yuan X, Wu J, Wang S, Fang J. Rapid fabrication of the Au hexagonal cone arrays for SERS applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121969. [PMID: 36323080 DOI: 10.1016/j.saa.2022.121969] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/17/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study performed trace detection using surface-enhanced Raman scattering (SERS) on Au hexagonal cone arrays (Au-HCAs). Uniform porous anodized aluminum oxide (AAO) templates were used, and an Ag film with a cone cavity was prepared using a thermal deposition technique. Next, a series of homogeneous Au-HCAs were prepared controllably via electrodeposition growth technology. The prepared Au-HCAs were used as SERS substrates, and according to the experimental results, the optimal electrodeposition time is 600 s. At this time, Au-HCAs had the highest SERS activity. The detection limit of R6G was 10-9 M, exhibiting high reproducibility and high uniformity at 10-6 M, indicating that Au-HCAs had good stability. Moreover, a good linear correlation between the Raman intensity and the molecular concentration endowed Au-HCAs with good quantitative analysis ability. Therefore, the Au-HCAs exhibited great potential for qualitative and quantitative detection.
Collapse
Affiliation(s)
- Chuang Liu
- School of Science, Nantong University, No.9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Xiaotong Yuan
- School of Science, Nantong University, No.9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Jing Wu
- School of Science, Nantong University, No.9, Seyuan Road, Nantong, Jiangsu 226019, PR China
| | - Su Wang
- School of Science, Nantong University, No.9, Seyuan Road, Nantong, Jiangsu 226019, PR China.
| | - Jinghuai Fang
- School of Science, Nantong University, No.9, Seyuan Road, Nantong, Jiangsu 226019, PR China.
| |
Collapse
|
9
|
Sinha R, Das SK, Ghosh M, Chowdhury J. Fabrication of gold nanoparticles tethered in heat-cooled calf thymus-deoxyribonucleic acid Langmuir-Blodgett film as effective surface-enhanced Raman scattering sensing platform. Front Chem 2022; 10:1034060. [DOI: 10.3389/fchem.2022.1034060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
SERS active substrate fabricated through self-assembly of Gold nanoparticles on the disjointed networks of Heat-cooled Calf Thymus DNA (HC-Ct DNA) Langmuir-Blodgett (LB) film has been reported. Adsorption kinetics of HC-Ct DNA molecules at the air-water interface has been studied explicitly. The UV-Vis electronic absorption spectra in conjunction with the FESEM images collectively suggest the presence of H- type aggregated domains most likely owing to plane-to-plane self-association of the HC-Ct DNA molecules aligned vertically on the surface of the LB film. Elemental composition and the morphological features of the as-prepared substrate (APS) are explored from XPS analysis and the FESEM, AFM images respectively. The SERS efficacy of the APS has been tested with trace concentrations of 4-Mercaptopyridine molecule. Finally, this SERS active substrate has also been used for the detection of malathion at ultrasensitive concentrations.
Collapse
|
10
|
Wen Y, Wang X, Li D, Zhang Q, Deng B, Chen Y. Rapid detection of phenytoin sodium by partial-least squares and linear regression models combined with surface-enhanced Raman spectroscopy. J Pharm Biomed Anal 2022; 223:115160. [DOI: 10.1016/j.jpba.2022.115160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
11
|
Lin Y, Zhang J, Zhang Y, Yan S, Nan F, Yu Y. Multi-Effect Enhanced Raman Scattering Based on Au/ZnO Nanorods Structures. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3785. [PMID: 36364559 PMCID: PMC9655003 DOI: 10.3390/nano12213785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Surface-enhanced Raman scattering (SERS) was considered a potential spectroscopic technique for applications of molecular detection and has drawn great research interest during the past decade. So far, fabrications of cost-effective SERS substrates with high sensitivity and stability and the corresponding enhanced mechanisms are always among the list of research topics, although great progress has been made. In this work, Au particles were decorated on Si, ZnO film and ZnO nanorod arrays simultaneously by an economical method of ion sputtering, generating three kinds of SERS substrates for R6G detection. The morphology difference of Au particles on different samples and the consequent influence on Raman scattering were studied. The experiment results exhibited that substrates with Au particles decorated on ZnO nanorods had the highest Raman enhancement factor. Furthermore, multi-effect enhanced mechanisms summarized as localized surface plasmon resonance (LSPR) filed coupling, electron transferring induced by LSPR of Au particles and whispering gallery mode (WGM) effect of the ZnO cavity were presented. This work provides a convenient and efficient method of fabricating SERS substrates and indicates that such proper metal/semiconductor composite structures are promising candidates for SERS applications.
Collapse
|
12
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
13
|
Satish S, Dey A, Tharmavaram M, Khatri N, Rawtani D. Risk assessment of selected pharmaceuticals on wildlife with nanomaterials based aptasensors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155622. [PMID: 35508236 DOI: 10.1016/j.scitotenv.2022.155622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals have improved human and veterinary health tremendously over the years. But the implications of the presence of pharmaceuticals in the environment on terrestrial, avian, and aquatic organisms are still not fully comprehended. The bioaccumulation and biomagnifications of these chemicals through the food chain have long-term effects on the wildlife. The detection and quantification of such pharmaceutical residues in the environment is a tedious process and quicker methods are needed. Aptasensors are one such quick and reliable method for the identification of pharmaceutical residues in the wildlife. Aptasensors are a class of biosensors that work on the principles of biological recognition of elements. The aptamers are unique biological recognition elements with high specificity and affinity to various targets. Their efficiency makes them a very promising candidate for such sensitive research. In this review, the pharmaceutical threats to wildlife and their detection techniques using aptasensors have been discussed.
Collapse
Affiliation(s)
- Swathi Satish
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Aayush Dey
- School of Doctoral Studies & Research (SDSR), National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Maithri Tharmavaram
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India
| | - Nitasha Khatri
- Gujarat Environment Management Institute, Department of Forest and Environment, Sector 10B, Jivraj Mehta Bhavan, Gandhinagar, Gujarat, India
| | - Deepak Rawtani
- School of Pharmacy, National Forensic Sciences University, Sector 9, Near Police Bhawan, Gandhinagar, Gujarat, India.
| |
Collapse
|
14
|
Formation of Gold Nanoparticle Self-Assembling Films in Various Polymer Matrices for SERS Substrates. MATERIALS 2022; 15:ma15155197. [PMID: 35897629 PMCID: PMC9332835 DOI: 10.3390/ma15155197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is regarded as a versatile tool for studying the composition and structure of matter. This work has studied the preparation of a SERS substrate based on a self-assembling plasmonic nanoparticle film (SPF) in a polymer matrix. Several synthesis parameters for the SPF are investigated, including the size of the particles making up the film and the concentration and type of the self-assembling agent. The result of testing systems with different characteristics is discussed using a model substance (pseudoisocyanin iodide). These models can be useful in the study of biology and chemistry. Research results contain the optimal parameters for SPF synthesis, maximizing the SERS signal. The optimal procedure for SPF assembly is determined and used for the synthesis of composite SPFs within different polymer matrices. SPF in a polymer matrix is necessary for the routine use of the SERS substrate for various types of analytes, including solid samples or those sensitive to contamination. Polystyrene, polyvinyl alcohol (PVA), and polyethylene are investigated to obtain a polymer matrix for SPF, and various methods of incorporating SPF into a polymer matrix are being explored. It is found that films with the best signal enhancement and reproducibility were obtained in polystyrene. The minimum detectable concentration for the SERS substrate obtained is equal to 10−10 M. We prepared a SERS substrate with an analytical enhancement factor of 2.7 × 104, allowing an increase in the detection sensitivity of analyte solutions of five orders of magnitude.
Collapse
|
15
|
Liu C, Wu J, Wang S, Fang J. Directional controllable electrodeposition growth of homogeneous Au nano-rampart arrays and its reliable SERS applications. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
16
|
Zhang J, Zhang Y, Shi G. Interface engineering with self-assembling Au@Ag@β-cyclodextrin bimetal nanoparticles to fabricate a ring-like arrayed SERS substrate for sensitive recognition of phthalate esters based on a host-guest interaction and the coffee ring effect. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:259-268. [PMID: 34985059 DOI: 10.1039/d1ay01636a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Herein, Au@Ag@β-cyclodextrin (β-CD) nanoparticles with a relatively uniform shape and size of ∼13 nm in diameter have been successfully synthesized, and the surfaces of the synthesized nanoparticles are successful modified by β-CD. A highly efficient synthetic approach was developed for the preparation of a surface-enhanced Raman spectroscopy (SERS) substrate, which self-assembles Au@Ag@β-CD nanoparticles and analytes into a coffee ring pattern via the coffee ring effect. The coffee ring effect can make phthalates (PAEs) aggregate to the edge together with the Au@Ag@β-CD nanoparticles and concentration enrichment can be achieved. In addition, the surface of the core-shell Au@Ag@β-CD is modified with β-CD with a cavity structure, which can enrich analyte concentration by adsorbing the analytes into the hydrophobic cavity using host-guest recognition. This enrichment process not only improves the concentration of the surface of the analyte but also effectively distinguishes it from other substances in the analyte solution. The mechanism of enrichment and host-guest recognition is verified by subsequent molecular docking simulation. Thus, a ring-like arrayed SERS substrate with dual-strategy enrichment is used to detect PAEs. The experiments using the ring-like arrayed SERS substrate, gave a limit of detection of 0.2 nM for DOP detection, the recovery rate of the spiked samples ranged from 92.3% to 106.6%, and an RSD of less than 6% for PAE detection is obtained. This work provided a simple, rapid, low-cost, highly sensitive and stable method for PAE detection in life and the environment.
Collapse
Affiliation(s)
- Jingfei Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Yu Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, PR China.
| |
Collapse
|
17
|
Park S, Lee J, Khan S, Wahab A, Kim M. Machine Learning-Based Heavy Metal Ion Detection Using Surface-Enhanced Raman Spectroscopy. SENSORS (BASEL, SWITZERLAND) 2022; 22:596. [PMID: 35062556 PMCID: PMC8778908 DOI: 10.3390/s22020596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Surface-Enhanced Raman Spectroscopy (SERS) is often used for heavy metal ion detection. However, large variations in signal strength, spectral profile, and nonlinearity of measurements often cause problems that produce varying results. It raises concerns about the reproducibility of the results. Consequently, the manual classification of the SERS spectrum requires carefully controlled experimentation that further hinders the large-scale adaptation. Recent advances in machine learning offer decent opportunities to address these issues. However, well-documented procedures for model development and evaluation, as well as benchmark datasets, are missing. Towards this end, we provide the SERS spectral benchmark dataset of lead(II) nitride (Pb(NO3)2) for a heavy metal ion detection task and evaluate the classification performance of several machine learning models. We also perform a comparative study to find the best combination between the preprocessing methods and the machine learning models. The proposed model can successfully identify the Pb(NO3)2 molecule from SERS measurements of independent test experiments. In particular, the proposed model shows an 84.6% balanced accuracy for the cross-batch testing task.
Collapse
Affiliation(s)
- Seongyong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.P.); (S.K.)
| | - Jaeseok Lee
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| | - Shujaat Khan
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (S.P.); (S.K.)
| | - Abdul Wahab
- Department of Mathematics, Nazarbayev University, Nur-Sultan 010000, Kazakhstan;
| | - Minseok Kim
- Department of Mechanical System Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea;
- Department of Aeronautics, Mechanical and Electronic Convergence Engineering, Kumoh National Institute of Technology, Gumi 39177, Korea
| |
Collapse
|
18
|
Tahir MA, Dina NE, Cheng H, Valev VK, Zhang L. Surface-enhanced Raman spectroscopy for bioanalysis and diagnosis. NANOSCALE 2021; 13:11593-11634. [PMID: 34231627 DOI: 10.1039/d1nr00708d] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years, bioanalytical surface-enhanced Raman spectroscopy (SERS) has blossomed into a fast-growing research area. Owing to its high sensitivity and outstanding multiplexing ability, SERS is an effective analytical technique that has excellent potential in bioanalysis and diagnosis, as demonstrated by its increasing applications in vivo. SERS allows the rapid detection of molecular species based on direct and indirect strategies. Because it benefits from the tunable surface properties of nanostructures, it finds a broad range of applications with clinical relevance, such as biological sensing, drug delivery and live cell imaging assays. Of particular interest are early-stage-cancer detection and the fast detection of pathogens. Here, we present a comprehensive survey of SERS-based assays, from basic considerations to bioanalytical applications. Our main focus is on SERS-based pathogen detection methods as point-of-care solutions for early bacterial infection detection and chronic disease diagnosis. Additionally, various promising in vivo applications of SERS are surveyed. Furthermore, we provide a brief outlook of recent endeavours and we discuss future prospects and limitations for SERS, as a reliable approach for rapid and sensitive bioanalysis and diagnosis.
Collapse
Affiliation(s)
- Muhammad Ali Tahir
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai, 200433, Peoples' Republic of China.
| | | | | | | | | |
Collapse
|
19
|
Xu D, Duan L, Jia W, Yang G, Gu Y. Fabrication of Ag@Fe2O3 hybrid materials as ultrasensitive SERS substrates for the detection of organic dyes and bilirubin in human blood. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Akinoglu GE, Mir SH, Gatensby R, Rydzek G, Mokarian-Tabari P. Block Copolymer Derived Vertically Coupled Plasmonic Arrays for Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23410-23416. [PMID: 32374582 DOI: 10.1021/acsami.0c03300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A surface-enhanced Raman spectroscopy sensing template consisting of gold-covered nanopillars is developed. The plasmonic slab consists of a perforated gold film at the base of the nanopillars and a Babinet complementary dot array on top of the pillars. The nanopillars were fabricated by the incorporation of an iron salt precursor into a self-assembled block copolymer thin film and subsequent reactive ion etching. The preparation is easy, scalable, and cost-effective. We report on the increase in surface-enhanced Raman scattering efficiency for smaller pillar heights and stronger coupling between the dot array and perforated gold film with average enhancement factors as high as 107. In addition, the block copolymer-derived templates show an excellent relative standard deviation of 8% in the measurement of the Raman intensity. Finite difference time domain simulations were performed to investigate the nature of the electromagnetic near-field enhancement and to identify plasmonic hot spots.
Collapse
Affiliation(s)
- Goekalp Engin Akinoglu
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- Freie Universität Berlin, Department of Physics, 14195 Berlin, Germany
| | - Sajjad Husain Mir
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Riley Gatensby
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Gaulthier Rydzek
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Parvaneh Mokarian-Tabari
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
- The School of Chemistry, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|
21
|
Yuan N, Zhao H, Zheng C, Zheng X, Fu Q, Wu M, Lei Y. An efficient nanopatterning strategy for controllably fabricating ultra-small gaps as a highly sensitive surface-enhanced Raman scattering platform. NANOTECHNOLOGY 2020; 31:045301. [PMID: 31574491 DOI: 10.1088/1361-6528/ab49ac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The realization of large-scale and high-density gaps with sizes as small as possible is crucial for designing ultra-sensitive surface-enhanced Raman scattering (SERS) substrates. As known, the ultrathin alumina mask (UTAM) surface nanopatterning technique allows the fabrication of periodic nanoparticle (NP) arrays with 5 nm gaps among the NPs, however, it still faces a significant challenge in realizing the reliable distribution of nanogaps over a large area, because of the unavoidable collapse of the UTAM pore wall during the traditional one-step homothermal pore-widening process. Herein, an efficient two-step poikilothermal pore-widening process was developed to precisely control the pore wall etching of a UTAM, enabling effectively avoiding the fragmentation of the UTAM and finally obtaining a large-scale UTAM with a pore wall thickness of about 5 nm. As a result, large-scale NP arrays with high-density sub-5 nm and even smaller gaps between the neighboring NPs have been realized through applying the as-prepared UTAM as the nanopatterning template. These NP arrays with sub-5 nm gaps show ultrahigh SERS sensitivity (signal enhancement improved by an order of magnitude compared with NP arrays with 5 nm gaps) and good reproducibility, which demonstrates the practical feasibility of this promising two-step pore-widening UTAM technique for the fabrication of high-performance active SERS substrates with large-scale ultra-small nanogaps.
Collapse
Affiliation(s)
- Ning Yuan
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
22
|
Mao P, Liu C, Chen Q, Han M, Maier SA, Zhang S. Broadband SERS detection with disordered plasmonic hybrid aggregates. NANOSCALE 2020; 12:93-102. [PMID: 31674618 DOI: 10.1039/c9nr08118f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Plasmonic nanostructures possessing broadband intense field enhancement over a large area are highly desirable for nanophotonic and plasmonic device applications. In this study, 3D Ag hybrid nanoaggregates (3D-Ag-HNAs) are achieved via a highly efficient oblique angle gas-phase cluster beam deposition method. Not only can such structures produce a high density of plasmonic hot-spots to improve Raman sensitivity, but more importantly they generate kissing point-geometric singularities with a broadband optical response. We succeed in obtaining an experimental SERS enhancement factor beyond 4 × 107 in the visible range, providing an optimal sensing platform for different analytes. Combined with good uniformity, reproducibility and ease of fabrication, our 3D-Ag-HNA offers a candidate for new generations of SERS systems.
Collapse
Affiliation(s)
- Peng Mao
- College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China and School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
| | - Changxu Liu
- School of Physics and Astronomy, University of Birmingham, B15 2TT, UK. and Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig Maximilians-Universität München, 80539 München, Germany.
| | - Qiang Chen
- Key Laboratory of Intelligent Optical Sensing and Integration, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Min Han
- Key Laboratory of Intelligent Optical Sensing and Integration, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China.
| | - Stefan A Maier
- Chair in Hybrid Nanosystems, Nanoinstitut München, Fakultät für Physik, Ludwig Maximilians-Universität München, 80539 München, Germany.
| | - Shuang Zhang
- School of Physics and Astronomy, University of Birmingham, B15 2TT, UK.
| |
Collapse
|
23
|
Mandrile L, Giovannozzi AM, Sacco A, Martra G, Rossi AM. Flexible and Transparent Substrates Based on Gold Nanoparticles and TiO 2 for in Situ Bioanalysis by Surface-Enhanced Raman Spectroscopy. BIOSENSORS 2019; 9:E145. [PMID: 31861199 PMCID: PMC6955768 DOI: 10.3390/bios9040145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/06/2019] [Accepted: 12/13/2019] [Indexed: 11/28/2022]
Abstract
Flexible and transparent substrates are emerging as low cost and easy-to-operate support for surface-enhanced Raman spectroscopy (SERS). In particular, in situ SERS detection approach for surface characterization in transmission modality can be efficiently employed for non-invasive analysis of non-planar surfaces. Here we propose a new methodology to fabricate a homogenous, transparent, and flexible SERS membrane by the assistance of a thin TiO2 porous layer deposited on the PDMS surface, which supports the uniform loading of gold nanoparticles over large area. The substrate was first characterized for homogeneity, sensitivity and repeatability using a model molecule for SERS, i.e., 7-mercapto-4-methylcoumarin. Satisfactory intra-substrate uniformity and inter-substrates repeatability was achieved, showing an RSD of 10%, and an analytical sensitivity down to 10 nM was determined with an EF of 3.4 × 105 ± 0.4 × 105. Furthermore, SERS detection of pyrimethanil (PMT), a commonly employed pesticide in crops for human consumption, was performed in situ, exploiting the optical transparency of the device, using both model surfaces and non-flat bio-samples. PMT contamination at the phytochemical concentration levels corresponding to commonly used infield doses was successfully detected on the surface of the yellow Ficus benjiamina leaves, supporting the use of this substrate for food safety in-field application.
Collapse
Affiliation(s)
- Luisa Mandrile
- Physical Chemistry and Nanotechnologies Group, National Institute of Metrological Research, Strada delle Cacce 91, 10135 Turin, Italy; (L.M.); (A.M.G.); (A.S.); (G.M.)
| | - Andrea Mario Giovannozzi
- Physical Chemistry and Nanotechnologies Group, National Institute of Metrological Research, Strada delle Cacce 91, 10135 Turin, Italy; (L.M.); (A.M.G.); (A.S.); (G.M.)
| | - Alessio Sacco
- Physical Chemistry and Nanotechnologies Group, National Institute of Metrological Research, Strada delle Cacce 91, 10135 Turin, Italy; (L.M.); (A.M.G.); (A.S.); (G.M.)
| | - Gianmario Martra
- Physical Chemistry and Nanotechnologies Group, National Institute of Metrological Research, Strada delle Cacce 91, 10135 Turin, Italy; (L.M.); (A.M.G.); (A.S.); (G.M.)
- Department of Chemistry and Interdepartmental Centre NIS, University of Turin, Via Giuria 7, 10125 Turin, Italy
| | - Andrea Mario Rossi
- Physical Chemistry and Nanotechnologies Group, National Institute of Metrological Research, Strada delle Cacce 91, 10135 Turin, Italy; (L.M.); (A.M.G.); (A.S.); (G.M.)
| |
Collapse
|
24
|
Le-The H, Lozeman JJA, Lafuente M, Muñoz P, Bomer JG, Duy-Tong H, Berenschot E, van den Berg A, Tas NR, Odijk M, Eijkel JCT. Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering. NANOSCALE 2019; 11:12152-12160. [PMID: 31194202 DOI: 10.1039/c9nr02215e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We report a robust and high-yield fabrication method for wafer-scale patterning of high-quality arrays of dense gold nanogaps, combining displacement Talbot lithography based shrink-etching with dry etching, wet etching, and thin film deposition techniques. By using the self-sharpening of <111>-oriented silicon crystal planes during the wet etching process, silicon structures with extremely smooth nanogaps are obtained. Subsequent conformal deposition of a silicon nitride layer and a gold layer results in dense arrays of narrow gold nanogaps. Using this method, we successfully fabricate high-quality Au nanogaps down to 10 nm over full wafer areas. Moreover, the gap spacing can be tuned by changing the thickness of deposited Au layers. Since the roughness of the template is minimized by the crystallographic etching of silicon, the roughness of the gold nanogaps depends almost exclusively on the roughness of the sputtered gold layers. Additionally, our fabricated Au nanogaps show a significant enhancement of surface-enhanced Raman scattering (SERS) signals of benzenethiol molecules chemisorbed on the structure surface, at an average enhancement factor up to 1.5 × 106.
Collapse
Affiliation(s)
- Hai Le-The
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Jasper J A Lozeman
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Marta Lafuente
- Nanoscience Institute of Aragon, Department of Chemical & Environmental Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Pablo Muñoz
- Optical Sciences Group, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Johan G Bomer
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Hien Duy-Tong
- Faculty of Engineering, Vietnamese German University, Thu Dau Mot City, Binh Duong Province, Vietnam
| | - Erwin Berenschot
- Mesoscale Chemical Systems Group, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Niels R Tas
- Mesoscale Chemical Systems Group, MESA+ Institute, University of Twente, 7522 NB Enschede, The Netherlands
| | - Mathieu Odijk
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Jan C T Eijkel
- BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.
| |
Collapse
|
25
|
Xu Y, Zhao X, Li A, Yue Y, Jiang J, Zhang X. Plasmonic heating induced by Au nanoparticles for quasi-ballistic thermal transport in multi-walled carbon nanotubes. NANOSCALE 2019; 11:7572-7581. [PMID: 30951075 DOI: 10.1039/c9nr00901a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The plasmon resonances of nanostructures enable wide applications from highly sensitive sensing to high-resolution imaging, through the improvement of photogeneration rate stimulated by the local field enhancement. However, quantitative experimental studies on the localized heating and the thermal transport process in the vicinity of plasmonics are still lacking because of the diffraction limit in conventional optothermal methodologies. In this work, we demonstrate an approach based on Raman thermometry to probe the near-field heating caused by plasmonics. An array of Au nanoparticles (AuNPs) fabricated by the template-assisted method is used to generate the near field effect. Multi-walled carbon nanotubes (MWCNTs) dispersed on the AuNPs are employed to quantify the near-field heating from their Raman peak shifts. Results show that the temperature rise in MWCNTs on AuNPs is much higher than that in a control group under the same laser irradiation. Further analysis indicates that the enhanced photon absorption of MWCNTs attributed to plasmon resonances is partially responsible for the different heating effect. The nonuniform thermal hot spots at the nanoscale can result in the quasi-ballistic thermal transport of phonons in MWCNTs, which is another reason for the temperature rise. Our results can be used to understand plasmonic heating effects as well as to explore quasi-ballistic thermal transport in carbon-based low-dimensional materials by tailoring the geometry or size of plasmonic nanostructures.
Collapse
Affiliation(s)
- Yanru Xu
- Key Laboratory of Hydraulic Machinery Transients (MOE), School of Power and Mechanical Engineering, Wuhan University, Wuhan, Hubei 430072, China.
| | | | | | | | | | | |
Collapse
|
26
|
Yu J, Wei Y, Wang H, Zhang C, Wei Y, Wang M, Man B, Lei F. In situ detection of trace pollutants: a cost-effective SERS substrate of blackberry-like silver/graphene oxide nanoparticle cluster based on quick self-assembly technology. OPTICS EXPRESS 2019; 27:9879-9894. [PMID: 31045136 DOI: 10.1364/oe.27.009879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
To realize fast detection of trace hazardous chemicals, a SERS substrate with the structure of a blackberry-like silver/graphene oxide nanoparticle cluster (Ag/GO NPC) has been designed and prepared through a quick capillarity-assistant self-assembly technology in this paper. Benefitting from the abundant "hot spots" and active oxygen sites brought by this Ag/GO NPC, the substrate shows good Raman performance for malachite green (MG), a common abusive germicide in aquaculture, with lowest limit of detection below 0.1 µg/L (3.48 × 10-10 mol/L). Detailed analyses are taken on both the formation process and enhancement mechanism of this SERS substrate, and the finite-difference time-domain simulations are utilized as well to prove our hypotheses. Further constructing this structure on polyethylene terephthalate (PET) film, a translucent flexible SERS substrate can be obtained, realizing a fast in situ detection of trace MG in the fishpond subsequently. In consideration of the facile preparation process, good SERS enhancement and affordable materials (PET, Cu, Ag and GO, etc.), this substrate presents high cost performance and a promising application prospect.
Collapse
|
27
|
Cai Y, Huang L, Wang H, Dong W, Zhang Y, Zhang W, Liu Y, Li G, Shang F, Tong H. Facile fabrication of 2D hetero core-satellites patterned Ag nanoparticle arrays with tunable plasmonic bands for SERS detection. NANOTECHNOLOGY 2019; 30:125701. [PMID: 30572325 DOI: 10.1088/1361-6528/aafa26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A core-satellites metal nanostructure with high local electromagnetic (EM) intensity and density has shown great potential in ultrasensitive detection technologies, but complexity and uncontrollability of fabrication is a major obstacle for further application. Here, only by controlling the deposited Ag thickness, we facilely achieved 2D hetero core-satellites patterned Ag nanoparticle (NP) arrays for surface-enhanced Raman scattering (SERS) detection. The Ag nanoparticles were assembled by electron beam evaporation of Ag onto the anodized patterned aluminum template (APAlT) at a temperature above 0.24 times the melting point of Ag. The plasmonic bands can be continuously tuned from the visible to near-infrared region. The SERS enhancement factor (EF) and relative standard deviation (RSD) of as-prepared SERS active substrates for R6G molecules reached 107 and about 5%, respectively, and a SERS detection limit down to 10-9 M was obtained. Finite-difference time-domain (FDTD) simulations revealed that the high SERS activity originates mainly from the local electromagnetic (EM) enhancement in the gaps between the core and satellites. The simple and controllable fabrication strategy and superior SERS performance make the 2D hetero core-satellites patterned Ag NPs arrays promising candidates for SERS-based sensor applications and provide a new approach for developing an inexpensive, efficient, and mass-produced SERS active substrate.
Collapse
Affiliation(s)
- Yakun Cai
- Non-equilibrium Condensed Matter and Quantum Engineering Laboratory, The Key Laboratory of Ministry of Education, School of Science, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dutta SB, Shrivastava R, Krishna H, Khan KM, Gupta S, Majumder SK. Nanotrap-Enhanced Raman Spectroscopy: An Efficient Technique for Trace Detection of Bioanalytes. Anal Chem 2019; 91:3555-3560. [DOI: 10.1021/acs.analchem.8b05371] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Surjendu Bikash Dutta
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Rashmi Shrivastava
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
| | - Hemant Krishna
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Khan Mohammad Khan
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | | | - Shovan K. Majumder
- Laser Biomedical Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013, India
- Homi Bhabha National Institute (HBNI), Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
29
|
Lah NAC, Trigueros S. Synthesis and modelling of the mechanical properties of Ag, Au and Cu nanowires. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:225-261. [PMID: 30956731 PMCID: PMC6442207 DOI: 10.1080/14686996.2019.1585145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 05/04/2023]
Abstract
The recent interest to nanotechnology aims not only at device miniaturisation, but also at understanding the effects of quantised structure in materials of reduced dimensions, which exhibit different properties from their bulk counterparts. In particular, quantised metal nanowires made of silver, gold or copper have attracted much attention owing to their unique intrinsic and extrinsic length-dependent mechanical properties. Here we review the current state of art and developments in these nanowires from synthesis to mechanical properties, which make them leading contenders for next-generation nanoelectromechanical systems. We also present theories of interatomic interaction in metallic nanowires, as well as challenges in their synthesis and simulation.
Collapse
Affiliation(s)
- Nurul Akmal Che Lah
- Innovative Manufacturing, Mechatronics and Sports Lab (iMAMS), Faculty of Manufacturing Engineering, Universiti Malaysia Pahang, Pekan, Malaysia
- CONTACT Nurul Akmal Che Lah
| | | |
Collapse
|
30
|
Cao J, Zhao D, Qin Y. Novel strategy for fabrication of sensing layer on thiol-functionalized fiber-optic tapers and their application as SERS probes. Talanta 2018; 194:895-902. [PMID: 30609621 DOI: 10.1016/j.talanta.2018.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/28/2018] [Accepted: 11/04/2018] [Indexed: 10/27/2022]
Abstract
This work presents a new strategy to fabricate optical fiber surface-enhanced Raman scattering (SERS) probes with high-performance remote sensing prepared by thiol functionalization of silica fiber taper, and further in situ nucleation and growth of silver nanoparticles (AgNPs). The prepared fiber probes can effectively identify the analyte 4-aminothiophenol (4-ATP) with a limit of detection (LOD) as low as 2.15 × 10-11 M using a portable commercial Raman spectrometer. Simultaneously, such fiber probes have shown a good reproducibility with the relative standard deviation (RSD) value of 7.6%, and possessed high signal stability at room temperature over one month. Furthermore, this approach provides new insight into the fabrication of fiber SERS probe integrated the advantages in terms of sensitivity, reproducibility and stability, which shows great potential for practical SERS applications.
Collapse
Affiliation(s)
- Jie Cao
- Anhui Provincial Key Lab of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China.
| | - Di Zhao
- Anhui Provincial Key Lab of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | - Yanyan Qin
- Anhui Provincial Key Lab of Photonics Devices and Materials, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
31
|
Zhao H, Liu L, Lei Y. A mini review: Functional nanostructuring with perfectly-ordered anodic aluminum oxide template for energy conversion and storage. Front Chem Sci Eng 2018. [DOI: 10.1007/s11705-018-1707-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Tong Q, Wang W, Fan Y, Dong L. Recent progressive preparations and applications of silver-based SERS substrates. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.06.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
Influence of the long-range ordering of gold-coated Si nanowires on SERS. Sci Rep 2018; 8:11305. [PMID: 30054503 PMCID: PMC6063917 DOI: 10.1038/s41598-018-29641-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Controlling the location and the distribution of hot spots is a crucial aspect in the fabrication of surface-enhanced Raman spectroscopy (SERS) substrates for bio-analytical applications. The choice of a suitable method to tailor the dimensions and the position of plasmonic nanostructures becomes fundamental to provide SERS substrates with significant signal enhancement, homogeneity and reproducibility. In the present work, we studied the influence of the long-range ordering of different flexible gold-coated Si nanowires arrays on the SERS activity. The substrates are made by nanosphere lithography and metal-assisted chemical etching. The degree of order is quantitatively evaluated through the correlation length (ξ) as a function of the nanosphere spin-coating speed. Our findings showed a linear increase of the SERS signal for increasing values of ξ, coherently with a more ordered and dense distribution of hot spots on the surface. The substrate with the largest ξ of 1100 nm showed an enhancement factor of 2.6 · 103 and remarkable homogeneity over square-millimetres area. The variability of the signal across the substrate was also investigated by means of a 2D chemical imaging approach and a standard methodology for its practical calculation is proposed for a coherent comparison among the data reported in literature.
Collapse
|
34
|
Geng F, Zhao H, Fu Q, Mi Y, Miao L, Li W, Dong Y, Wu M, Lei Y. Gold nanochestnut arrays as ultra-sensitive SERS substrate for detecting trace pesticide residue. NANOTECHNOLOGY 2018; 29:295502. [PMID: 29722294 DOI: 10.1088/1361-6528/aac22b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In comparison to conventional spectroscopic techniques based on chromatography, surface-enhanced Raman spectroscopy (SERS) enables the rapid identification and detection of trace pesticide residues present in trace amounts in the environment and foods. Herein, a facile approach to fabricate unique gold nanochestnuts (GNCs) as an ultra-sensitive SERS substrate for detecting trace pesticide residues has been developed based on anodic aluminum oxide (AAO) templates. The GNCs are synthesized through the galvanic replacement of Ag on the top of Ni nanorod arrays. The as-prepared GNCs have well-controlled structural parameters, and importantly have unique anisotropic morphologies that benefit the enhancement in SERS performance. As a result, rhodamine 6 G (R6G) can be efficiently detected with GNCs as the SERS substrate even with a concentration of only 10-12 M, and the Raman enhancement factor reaches up to 5.4 × 109 at this concentration. Further SERS measurement of thiram indicates a remarkable SERS-active sensitivity of the as-prepared GNCs with a detection limit of thiram up to 10-14 M. The GNCs also exhibit a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Fei Geng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Shi R, Liu X, Ying Y. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6525-6543. [PMID: 28920678 DOI: 10.1021/acs.jafc.7b03075] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.
Collapse
Affiliation(s)
- Ruyi Shi
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
- Zhejiang A&F University , 88 Huanchengdong Road , Hangzhou , Zhejiang 311300 , China
| |
Collapse
|
36
|
Raziman TV, Duenas JA, Milne WI, Martin OJF, Dawson P. Origin of enhancement in Raman scattering from Ag-dressed carbon-nanotube antennas: experiment and modelling. Phys Chem Chem Phys 2018; 20:5827-5840. [PMID: 29412206 DOI: 10.1039/c7cp06416k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The D- and G-band Raman signals from random arrays of vertically aligned, multi-walled carbon nanotubes are significantly enhanced (up to ∼14×) while the signal from the underlying Si substrate is simultaneously attenuated (up to ∼6×) when the nanotubes are dressed, either capped or coated, with Ag. These Ag-induced counter-changes originate with the difference in geometry of the nanotubes and planar Si substrate and contrast in the Ag depositions on the substrate (essentially thin film) and the nanotube (nano-particulate). The surface integral equation technique is used to perform detailed modelling of the electromagnetic response of the system in a computationally efficient manner. Within the modelling the overall antenna response of the Ag-dressed nanotubes is shown to underpin the main contribution to enhancement of the nanotube Raman signal with hot-spots between the Ag nanoparticles making a subsidiary contribution on account of their relatively weak penetration into the nanotube walls. Although additional hot-spot activity likely accounts for a shortfall in modelling relative to experiment it is nonetheless the case that the significant antenna-driven enhancement stands in marked contrast to the hot-spot dominated enhancement of the Raman spectra from molecules adsorbed on the same Ag-dressed structures. The Ag-dressing procedure for amplifying the nanotube Raman output not only allows for ready characterisation of individual nanotubes, but also evidences a small peak at ∼1150 cm-1 (not visible for the bare, undressed nanotube) which is suggested to be due to the presence of trans-polyacetylene in the structures.
Collapse
Affiliation(s)
- T V Raziman
- Nanophotonics and Metrology Laboratory, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
37
|
Liu P, Zhou Y, Guo M, Yang S, Félix O, Martel D, Qiu Y, Ma Y, Decher G. Fluorescence-enhanced bio-detection platforms obtained through controlled "step-by-step" clustering of silver nanoparticles. NANOSCALE 2018; 10:848-855. [PMID: 29261202 DOI: 10.1039/c7nr07486g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal nanoparticle coatings are widely employed as fluorescence-enhanced platforms for high-throughput biological detection; however, complex manufacturing technologies and stringent fabrication procedures hinder their development for use in bioassays. Here, we present the preparation of fluorescence-based bioassay platforms using spray-assisted step-by-step assembly of silver nanoparticles (Ag NPs) and poly(diallyldimethylammonium chloride) (PDDA). This approach allowed us to control the density and the degree of aggregation of Ag NPs on large surfaces which are prerequisites for the development of bioassay platforms with a substantial fluorescence enhancement. After one assembly cycle (1-Ag platform) the adsorbed particles are not forming aggregates or ones composed of very few particles which, as expected, led to poor fluorescence enhancement (1.1) for cyanine 5. Further assembly steps induce the clustering of Ag NPs by multiple electrostatic interactions between PDDA and Ag NPs and thus increase the number of nanoparticles per aggregate in a controlled way. We observed that the nanoparticle island growth takes place first mainly in the plane (2D) and then in the plane and in the third dimension and that the aggregate morphology (2D versus 3D) strongly affects the plasmonic fluorescence enhancement of the fluorescent dye. A substantial fluorescence enhancement (12.3) was measured for a Ag NP platform obtained after twelve assembly cycles. This result is within the ballpark of values reported in the literature for bioassay platforms using metal nanoparticles and opens the route towards the preparation of fluorescence-based bioassay platforms on the large scale.
Collapse
Affiliation(s)
- Panpan Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang Y, Liu RJ, Ma X, Liu XY, Zhang YX, Zhang J. Ag nanoparticle decorated MnO2 flakes as flexible SERS substrates for rhodamine 6G detection. RSC Adv 2018; 8:37750-37756. [PMID: 35558625 PMCID: PMC9089333 DOI: 10.1039/c8ra07778a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/24/2018] [Indexed: 02/02/2023] Open
Abstract
In this work, we synthesized a new kind of AgNPs/MnO2@Al flexible substrate as a SERS substrate for the detection of analyte Rhodamine 6G (R6G), which displayed superior SERS performance with low detection concentration of 1 × 10–6 M for R6G.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Mechanical Transmissions
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Rui Jia Liu
- The Key Laboratory of Optoelectronic Technology & System
- Education Ministry of China
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xiaofei Ma
- China Academy of Space Technology (Xi'an)
- Xi'an 710000
- P. R. China
| | - Xiao Ying Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment of Ministry of Education
- College of Environment and Resources
- Chongqing Technology and Business University
- Chongqing 400067
- China
| | - Yu Xin Zhang
- State Key Laboratory of Mechanical Transmissions
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Jie Zhang
- The Key Laboratory of Optoelectronic Technology & System
- Education Ministry of China
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
39
|
Chen G, Perez-Garcia R, Danglad-Flores J, Riegler H. Capillary-Enhanced Immobilization of Nanoparticles. J Phys Chem Lett 2017; 8:6094-6098. [PMID: 29202239 DOI: 10.1021/acs.jpclett.7b02997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The contact between a spherical nanoparticle and a planar substrate is surrounded by an annular wedge cavity. In adsorption processes, this acts like a small pore. Interfacial/capillarity effects lead to an accumulation of adsorbate in this region ("capillary condensation"). This effectively increases the contact area between the particles and the substrate. Thus, capillary-enhanced adsorbate accumulation increases the adhesion between the nanoparticles and the planar surface, which effectively immobilizes the particles.
Collapse
Affiliation(s)
- Guoxiang Chen
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| | - Rodrigo Perez-Garcia
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
- Institut für Chemie, Technische Universität Berlin , 10623 Berlin, Germany
| | - José Danglad-Flores
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
- Institut für Chemie, Technische Universität Berlin , 10623 Berlin, Germany
| | - Hans Riegler
- Max Planck Institute of Colloids and Interfaces , 14476 Potsdam, Germany
| |
Collapse
|
40
|
Dawson P, Frey D, Kalathingal V, Mehfuz R, Mitra J. Novel routes to electromagnetic enhancement and its characterisation in surface- and tip-enhanced Raman scattering. Faraday Discuss 2017; 205:121-148. [PMID: 28884781 DOI: 10.1039/c7fd00128b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Quantitative understanding of the electromagnetic component in enhanced Raman spectroscopy is often difficult to achieve on account of the complex substrate structures utilised. We therefore turn to two structurally simple systems amenable to detailed modelling. The first is tip-enhanced Raman scattering under electron scanning tunnelling microscopy control (STM-TERS) where, appealing to understanding developed in the context of photon emission from STM, it is argued that the localised surface plasmon modes driving the Raman enhancement exist in the visible and near-infrared regime only by virtue of significant modification to the optical properties of the tip and sample metals (gold here). This is due to the strong dc field-induced (∼109 V m-1) non-linear corrections to the dielectric function of gold via the third order susceptibility term in the polarisation. Also, sub-5 nm spatial resolution is shown in the modelling. Secondly, we suggest a novel deployment of hybrid plasmonic waveguide modes in surface enhanced Raman scattering (HPWG-SERS). This delivers strong confinement of electromagnetic energy in a ∼10 nm oxide 'gap' between a high-index dielectric material of nanoscale width (a GaAs nanorod and a 100 nm Si slab are considered here) and a metal, yielding a monotonic variation in the Raman enhancement factor as a function of wavelength with no long-wavelength cut-off, both features that contrast with STM-TERS.
Collapse
Affiliation(s)
- P Dawson
- Centre for Nanostructured Media, School of Maths and Physics, Queen's University Belfast, Belfast BT7 1NN, UK.
| | | | | | | | | |
Collapse
|
41
|
Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy based silver nanodots array. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2017.07.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Li H, Men D, Sun Y, Liu D, Li X, Li L, Li C, Cai W, Li Y. Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
43
|
Liu X, Wu D, Chang Q, Zhou J, Zhang Y, Wang Z. Grooved nanoplate assembly for rapid detection of surface enhanced Raman scattering. NANOSCALE 2017; 9:15390-15396. [PMID: 28975951 DOI: 10.1039/c7nr05228f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Rapid detection of surface enhanced Raman scattering (SERS) signals is in great demand in the fields of biological medicine and environmental monitoring. Herein, a grooved silver nanoplate assembly (GSNA) with an abundance of multiscale gaps has been proposed for the first time and skillfully synthesized to act as an excellent platform for surface enhanced Raman spectroscopy with ultrafast and ultrasensitive detection. By effectively combining the hotspots effect of nanogaps and the trapping effect of gaps in the scale of subwavelength, the Raman signal was greatly enhanced by a factor of 1010 and the detection limit of Rhodamine 6G (R6G) could reach 5 × 10-13 M. Moreover, based on the perfect adsorption of the multiscale gaps, the probe molecule could be detected immediately after the analyte was mixed with the GSNA. In addition, the mixed analytes of R6G and crystal violet could be easily distinguished by Raman signal detection based on the fabricated basement. This study provides an effective SERS platform to achieve ultrafast Raman detection with ultrasensitivity in the fields of chemical analysis, biomedicine and environmental monitoring.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Physics, Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China.
| | | | | | | | | | | |
Collapse
|
44
|
Ma L, Li J, Zou S, Zhang Z. Ag Nanorods-Oxide Hybrid Array Substrates: Synthesis, Characterization, and Applications in Surface-Enhanced Raman Scattering. SENSORS 2017; 17:s17081895. [PMID: 28817107 PMCID: PMC5579474 DOI: 10.3390/s17081895] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/08/2017] [Accepted: 08/13/2017] [Indexed: 02/07/2023]
Abstract
Over the last few decades, benefitting from the sufficient sensitivity, high specificity, nondestructive, and rapid detection capability of the surface-enhanced Raman scattering (SERS) technique, numerous nanostructures have been elaborately designed and successfully synthesized as high-performance SERS substrates, which have been extensively exploited for the identification of chemical and biological analytes. Among these, Ag nanorods coated with thin metal oxide layers (AgNRs-oxide hybrid array substrates) featuring many outstanding advantages have been proposed as fascinating SERS substrates, and are of particular research interest. The present review provides a systematic overview towards the representative achievements of AgNRs-oxide hybrid array substrates for SERS applications from diverse perspectives, so as to promote the realization of real-world SERS sensors. First, various fabrication approaches of AgNRs-oxide nanostructures are introduced, which are followed by a discussion on the novel merits of AgNRs-oxide arrays, such as superior SERS sensitivity and reproducibility, high thermal stability, long-term activity in air, corrosion resistivity, and intense chemisorption of target molecules. Next, we present recent advances of AgNRs-oxide substrates in terms of practical applications. Intriguingly, the recyclability, qualitative and quantitative analyses, as well as vapor-phase molecule sensing have been achieved on these nanocomposites. We further discuss the major challenges and prospects of AgNRs-oxide substrates for future SERS developments, aiming to expand the versatility of SERS technique.
Collapse
Affiliation(s)
- Lingwei Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Jianghao Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Sumeng Zou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Li N, Feng L, Teng F, Lu N. Fabrication of plasmonic cavity arrays for SERS analysis. NANOTECHNOLOGY 2017; 28:185301. [PMID: 28345533 DOI: 10.1088/1361-6528/aa6952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The plasmonic cavity arrays are ideal substrates for surface enhanced Raman scattering analysis because they can provide hot spots with large volume for analyte molecules. The large area increases the probability to make more analyte molecules on hot spots and leads to a high reproducibility. Therefore, to develop a simple method for creating cavity arrays is important. Herein, we demonstrate how to fabricate a V and W shape cavity arrays by a simple method based on self-assembly. Briefly, the V and W shape cavity arrays are respectively fabricated by taking KOH etching on a nanohole and a nanoring array patterned silicon (Si) slides. The nanohole array is generated by taking a reactive ion etching on a Si slide assembled with monolayer of polystyrene (PS) spheres. The nanoring array is generated by taking a reactive ion etching on a Si slide covered with a monolayer of octadecyltrichlorosilane before self-assembling PS spheres. Both plasmonic V and W cavity arrays can provide large hot area, which increases the probability for analyte molecules to deposit on the hot spots. Taking 4-Mercaptopyridine as analyte probe, the enhancement factor can reach 2.99 × 105 and 9.97 × 105 for plasmonic V cavity and W cavity array, respectively. The relative standard deviations of the plasmonic V and W cavity arrays are 6.5% and 10.2% respectively according to the spectra collected on 20 random spots.
Collapse
Affiliation(s)
- Ning Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Yang G, Nanda J, Wang B, Chen G, Hallinan DT. Self-Assembly of Large Gold Nanoparticles for Surface-Enhanced Raman Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13457-13470. [PMID: 28328194 DOI: 10.1021/acsami.7b01121] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Performance of portable technologies from mobile phones to electric vehicles is currently limited by the energy density and lifetime of lithium batteries. Expanding the limits of battery technology requires in situ detection of trace components at electrode-electrolyte interphases. Surface-enhance Raman spectroscopy could satisfy this need if a robust and reproducible substrate were available. Gold nanoparticles (Au NPs) larger than 20 nm diameter are expected to greatly enhance Raman intensity if they can be assembled into ordered monolayers. A three-phase self-assembly method is presented that successfully results in ordered Au NP monolayers for particle diameters ranging from 13 to 90 nm. The monolayer structure and Raman enhancement factors (EFs) are reported for a model analyte, rhodamine, as well as the best performing polymer electrolyte salt, lithium bis(trifluoromethane)sulfonimide. Experimental EFs for the most part correlate with predictions based on monolayer geometry and with numerical simulations that identify local electromagnetic field enhancements. The EFs for the best performing Au NP monolayer are between 106 and 108 and give quantitative signal response when analyte concentration is changed.
Collapse
Affiliation(s)
- Guang Yang
- Aero-propulsion, Mechatronics, and Energy Center, Florida State University , Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| | - Jagjit Nanda
- Materials Science and Technology Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Boya Wang
- Aero-propulsion, Mechatronics, and Energy Center, Florida State University , Tallahassee, Florida 32310, United States
| | - Gang Chen
- Aero-propulsion, Mechatronics, and Energy Center, Florida State University , Tallahassee, Florida 32310, United States
| | - Daniel T Hallinan
- Aero-propulsion, Mechatronics, and Energy Center, Florida State University , Tallahassee, Florida 32310, United States
- The National High Magnetic Field Laboratory, Florida State University , Tallahassee, Florida 32310, United States
| |
Collapse
|
47
|
Zhao Y, Yang D, Li X, Liu Y, Hu X, Zhou D, Lu Y. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. NANOSCALE 2017; 9:1087-1096. [PMID: 27973628 DOI: 10.1039/c6nr06834k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report a novel graphene-metal hybrid system by introducing monolayer graphene between gold nanoparticles (Au NPs) and silver nanohole (Ag NH) arrays. The design incorporates three key advantages to promote the surface-enhanced Raman scattering (SERS) sensing capacity: (i) making full use of the single-atomic feature of graphene for generating uniform sub-nanometer spaces; (ii) maintaining the bottom layer of Ag nanoarrays with an ordered manner for facilitating the transfer of graphene films and assembly of the top layer of Au NPs; (iii) integrating the advantages of the strong plasmonic effect of Ag, the chemical stability of Au, as well as the mechanical flexibility and biological compatibility of graphene. In this configuration, the plasmonic properties can be fine-tuned by separately optimizing the horizontal or vertical gaps between the metal NPs. Exactly, sub-20 nm spaces between the horizontally patterned Ag tips constructed by adjacent Ag NHs, and sub-nanometer scale graphene gaps between the vertically distributed Au NP-Ag NH have been achieved. Finite element numerical simulations demonstrate that the multi-dimensional plasmonic couplings (including the Au NP-Au NP, Au NP-Ag NH and Ag NH-Ag NH couplings) promote for the hybrid platform an electric field enhancement up to 137 times. Impressively, the as-prepared 3D Au NP-graphene-Ag NH array hybrid structure manifests ultrahigh SERS sensitivity with a detection limit of 10-13 M for R6G molecules, as well as good reproducibility and stability. This work represents a step towards high-performance SERS substrate fabrication, and opens up a new route for graphene-plasmonic hybrids in SERS applications.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China. and School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Dong Yang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Xiyu Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Yu Liu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Xiang Hu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Dianfa Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Yalin Lu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China. and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China and Laser Optics Research Center, Physics Department, United States Air Force Academy, Colorado 80840, USA
| |
Collapse
|
48
|
Wang C, Wang G, Yang R, Sun X, Ma H, Sun S. Hydrophilicity Reinforced Adhesion of Anodic Alumina Oxide Template Films to Conducting Substrates for Facile Fabrication of Highly Ordered Nanorod Arrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:503-509. [PMID: 28009519 DOI: 10.1021/acs.langmuir.6b03999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Arrays of ordered nanorods are of special interest in many fields. However, it remains challenging to obtain such arrays on conducting substrates in a facile manner. In this article, we report the fabrication of highly ordered and vertically standing nanorod arrays of both metals and semiconductors on Au films and indium tin oxide glass substrates without an additional layering. In this approach, following the simple hydrophilic treatment of an anodic aluminum oxide (AAO) membrane and conducting substrates, the AAO membrane was transferred onto the modified substrates with excellent adhesion. Subsequently, nanorod arrays of various materials were electrodeposited on the conducting substrates directly. This method avoids any expensive and tedious lithographic and ion milling process, which provides a simple yet robust route to the fabrication of arrays of 1D materials with high aspect ratio on conducting substrates, which shall pave the way for many practical applications in a range of fields.
Collapse
Affiliation(s)
- Chuanju Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
- Department of Physics, Tsinghua University , Beijing 100084, China
| | - Guiqiang Wang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
- Department of Physics, Tsinghua University , Beijing 100084, China
| | - Rui Yang
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| | - Xiangyu Sun
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
- Department of Physics, Tsinghua University , Beijing 100084, China
| | - Hui Ma
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
- Department of Physics, Tsinghua University , Beijing 100084, China
| | - Shuqing Sun
- Shenzhen Key Laboratory for Minimal Invasive Medical Technologies, Graduate School at Shenzhen, Tsinghua University , Shenzhen 518055, China
| |
Collapse
|
49
|
Surface-Enhanced Raman Scattering-Based Immunoassay Technologies for Detection of Disease Biomarkers. BIOSENSORS-BASEL 2017; 7:bios7010007. [PMID: 28085088 PMCID: PMC5371780 DOI: 10.3390/bios7010007] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/02/2017] [Accepted: 01/03/2017] [Indexed: 01/01/2023]
Abstract
Detection of biomarkers is of vital importance in disease detection, management, and monitoring of therapeutic efficacy. Extensive efforts have been devoted to the development of novel diagnostic methods that detect and quantify biomarkers with higher sensitivity and reliability, contributing to better disease diagnosis and prognosis. When it comes to such devastating diseases as cancer, these novel powerful methods allow for disease staging as well as detection of cancer at very early stages. Over the past decade, there have been some advances in the development of platforms for biomarker detection of diseases. The main focus has recently shifted to the development of simple and reliable diagnostic tests that are inexpensive, accurate, and can follow a patient’s disease progression and therapy response. The individualized approach in biomarker detection has been also emphasized with detection of multiple biomarkers in body fluids such as blood and urine. This review article covers the developments in Surface-Enhanced Raman Scattering (SERS) and related technologies with the primary focus on immunoassays. Limitations and advantages of the SERS-based immunoassay platform are discussed. The article thoroughly describes all components of the SERS immunoassay and highlights the superior capabilities of SERS readout strategy such as high sensitivity and simultaneous detection of a multitude of biomarkers. Finally, it introduces recently developed strategies for in vivo biomarker detection using SERS.
Collapse
|
50
|
Sun H, Chen L, Wang Y, Hua Z, Liu Y, Zhang Y, Yang J. Increasing local field by interfacial coupling in nanobowl arrays. RSC Adv 2017. [DOI: 10.1039/c7ra09690a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An increased local field is crucial to create hotspots when applied in detections, which usually means the fabrication of nanostructure arrays with strong electromagnetic couplings.
Collapse
Affiliation(s)
- Huanhuan Sun
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Lei Chen
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Yaxin Wang
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Zhong Hua
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Yongjun Zhang
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry
- Ministry of Education
- College of Physics
- Jilin Normal University
- Changchun 130103
| |
Collapse
|