1
|
Lei Z, Chen S, Liao Y, Liu W, Zhou L, Fu B, Tao P, Shang W, Liu J, Hou C, Song C, Deng T. Magnetic Induction Heating in a Conducting Polymer for Biomedical Applications. ACS NANO 2024; 18:26600-26613. [PMID: 39284003 DOI: 10.1021/acsnano.4c04717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
In this study, we investigate the magnetic induction heating induced in a conducting polymer (CP) under alternative magnetic fields (AMFs). Experimental results and numerical simulations have proved that the magneto-thermal conversion of the CP is caused by the induced eddy current, which is related to the shape and intensity of the applied external AMF, and the intrinsic electrical conductivity, macrostructure and microstructure of the CP. By employing various fabrication methods, specific temperature distribution and control of thermal field within conducting polymer films and aerogels could be achieved. To exploit the potential of magnetic induction heating in CP for biomedical applications, we designed a conducting polymer aerogel-based self-adaptive heat patch and demonstrated its AMF-enabled localized heating of skin. In addition to the thermal ablation of tumor cells via magneto-thermal conversion of the CP, the promotion of neuronal differentiation at mild temperature by noninvasive magneto-electrical stimulation has also been demonstrated to be an effective strategy for tissue engineering.
Collapse
Affiliation(s)
- Zhihui Lei
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Shun Chen
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, P. R. China
| | - Yu Liao
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, P. R. China
| | - Wendong Liu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Lian Zhou
- Zhiyuan Innovative Research Center of Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Benwei Fu
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, 10 Hengshan Road, Shanghai 200030, P. R. China
| | - Peng Tao
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, 10 Hengshan Road, Shanghai 200030, P. R. China
| | - Wen Shang
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
| | - Jie Liu
- QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, 1158 Park Road (E), Qingpu, Shanghai 201799, P. R. China
| | - Cuilan Hou
- Department of Cardiology, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200062, P. R. China
| | - Chengyi Song
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, 10 Hengshan Road, Shanghai 200030, P. R. China
| | - Tao Deng
- The State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, P. R. China
- Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- National Engineering Research Center of Special Equipment and Power System for Ship and Marine Engineering, 10 Hengshan Road, Shanghai 200030, P. R. China
| |
Collapse
|
2
|
Li X, Ding W, Wang S, Yang L, Yu Q, Xiao C, Chen G, Zhang L, Guan S, Sun D. Three-Dimensional Sulfated Bacterial Cellulose/Gelatin Composite Scaffolds for Culturing Hepatocytes. CYBORG AND BIONIC SYSTEMS 2023; 4:0021. [PMID: 37223548 PMCID: PMC10202184 DOI: 10.34133/cbsystems.0021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/18/2023] [Indexed: 05/25/2023] Open
Abstract
The liver is the hub of human metabolism and involves many diseases. To better work on the mechanism and treatment of liver diseases, it is of particular interest to design 3-dimensional scaffolds suitable for culturing hepatocytes in vitro to simulate their metabolic and regenerative abilities. In this study, sulfated bacterial cellulose (SBC) was prepared as the building block of cell scaffolds, motivated by the anionic nature and 3-dimensional structure of hepatic extracellular matrix, and its reaction condition for sulfate esterification was optimized by changing the reaction time. The analysis and study of the microscopic morphology, structure, and cytocompatibility of SBCs showed that they possess good biocompatibility and meet the requirements for tissue engineering. Next, SBC was mixed with gelatin for composite scaffolds (SBC/Gel) for culturing hepatocytes by homogenization and freeze-drying methods, whose physical properties such as pore size, porosity, and compression properties were compared with gelatin (Gel) scaffolds as the control group, and the cytological activity and hemocompatibility of the composite scaffolds were investigated. The results showed that the SBC/Gel composite has better porosity and compression properties, as well as good cytocompatibility and hemocompatibility, and could be applied to 3-dimensional culture of hepatocytes for drug screening or liver tissue engineering.
Collapse
Affiliation(s)
- Xinmeng Li
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Shujun Wang
- Department of Blood Transfusion, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210002, China
| | - Luyu Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Qingqing Yu
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Changji Xiao
- Obstetrics and Gynaecology Department, Peking University First Hospital, Peking University, Beijing 100034, China
| | - Guangbo Chen
- Center for Advancing Electronics Dresden (Cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, China
| |
Collapse
|
3
|
Conductive and Adhesive Granular Alginate Hydrogels for On-Tissue Writable Bioelectronics. Gels 2023; 9:gels9020167. [PMID: 36826337 PMCID: PMC9957464 DOI: 10.3390/gels9020167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Conductive hydrogels are promising materials in bioelectronics that ensure a tissue-like soft modulus and re-enact the electrophysiological function of damaged tissues. However, recent approaches to fabricating conductive hydrogels have proved difficult: fixing of the conductive hydrogels on the target tissues hydrogels requires the aids from other medical glues because of their weak tissue-adhesiveness. In this study, an intrinsically conductive and tissue-adhesive granular hydrogel consisting of a PEDOT:PSS conducting polymer and an adhesive catechol-conjugated alginate polymer was fabricated via an electrohydrodynamic spraying method. Because alginate-based polymers can be crosslinked by calcium ions, alginate-catechol polymers mixed with PEDOT:PSS granular hydrogels (ACP) were easily fabricated. The fabricated ACP exhibited not only adhesive and shear-thinning properties but also conductivity similar to that of muscle tissue. Additionally, the granular structure makes the hydrogel injectable through a syringe, enabling on-tissue printing. This multifunctional granular hydrogel can be applied to soft and flexible electronics to connect humans and machines.
Collapse
|
4
|
Zhou Z, Zheng J, Meng X, Wang F. Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering. Int J Mol Sci 2023; 24:ijms24031836. [PMID: 36768157 PMCID: PMC9915254 DOI: 10.3390/ijms24031836] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence that chondrocytes within articular cartilage are affected by endogenous force-related electrical potentials. Furthermore, electrical stimulation (ES) promotes the proliferation of chondrocytes and the synthesis of extracellular matrix (ECM) molecules, which accelerate the healing of cartilage defects. These findings suggest the potential application of ES in cartilage repair. In this review, we summarize the pathogenesis of articular cartilage injuries and the current clinical strategies for the treatment of articular cartilage injuries. We then focus on the application of ES in the repair of articular cartilage in vivo. The ES-induced chondrogenic differentiation of mesenchymal stem cells (MSCs) and its potential regulatory mechanism are discussed in detail. In addition, we discuss the potential of applying piezoelectric materials in the process of constructing engineering articular cartilage, highlighting the important advances in the unique field of tissue engineering.
Collapse
Affiliation(s)
- Zhengjie Zhou
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingtong Zheng
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Xiaoting Meng
- Department of Histology & Embryology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (X.M.); (F.W.); Tel.: +86-0431-8561-9486 (X.M. & F.W.)
| | - Fang Wang
- The Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
- Correspondence: (X.M.); (F.W.); Tel.: +86-0431-8561-9486 (X.M. & F.W.)
| |
Collapse
|
5
|
Cheng H, Huang Y, Qian J, Meng F, Fan Y. Organic photovoltaic device enhances the neural differentiation of rat bone marrow-derived mesenchymal stem cells. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
6
|
Brooke R, Lay M, Jain K, Francon H, Say MG, Belaineh D, Wang X, Håkansson KMO, Wågberg L, Engquist I, Edberg J, Berggren M. Nanocellulose and PEDOT:PSS composites and their applications. POLYM REV 2022. [DOI: 10.1080/15583724.2022.2106491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Robert Brooke
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Makara Lay
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- INM- Leibniz Institute for New Materials, Saarbrücken, Germany
| | - Karishma Jain
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Hugo Francon
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mehmet Girayhan Say
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
| | - Dagmawi Belaineh
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Xin Wang
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | | | - Lars Wågberg
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Fibre and Polymer Technology, Wallenberg Wood Science Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Isak Engquist
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| | - Jesper Edberg
- Digital Systems, Smart Hardware, Bio- and Organic Electronics, RISE Research Institutes of Sweden, Norrköping, Sweden
| | - Magnus Berggren
- Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, Norrköping, Sweden
- Wallenberg Wood Science Center, Linköping University, Norrköping, Sweden
| |
Collapse
|
7
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Liu G, Ma M, Meng H, Liu J, Zheng Y, Peng J, Wei S, Sun Y, Wang Y, Xie Y, Li J. In-situ self-assembly of bacterial cellulose/poly(3,4-ethylenedioxythiophene)-sulfonated nanofibers for peripheral nerve repair. Carbohydr Polym 2022; 281:119044. [DOI: 10.1016/j.carbpol.2021.119044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 12/21/2022]
|
9
|
Chen C, Ding W, Zhang H, Zhang L, Huang Y, Fan M, Yang J, Sun D. Bacterial cellulose-based biomaterials: From fabrication to application. Carbohydr Polym 2022; 278:118995. [PMID: 34973797 DOI: 10.1016/j.carbpol.2021.118995] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/17/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
Driven by its excellent physical and chemical properties, BC (bacterial cellulose) has achieved significant progress in the last decade, rendering with many novel applications. Due to its resemblance to the structure of extracellular matrix, BC-based biomaterials have been widely explored for biomedical applications such as tissue engineering and drug delivery. The recent advances in nanotechnology endow further modifications on BC and generate BC-based composites for different applications. This article presents a review on the research advancement on BC-based biomaterials from fabrication methods to biomedical applications, including wound dressing, artificial skin, vascular tissue engineering, bone tissue regeneration, drug delivery, and other applications. The preparation of these materials and their potential applications are reviewed and summarized. Important factors for the applications of BC in biomedical applications including degradation and pore structure characteristic are discussed in detail. Finally, the challenges in future development and potential advances of these materials are also discussed.
Collapse
Affiliation(s)
- Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Weixiao Ding
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Heng Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Lei Zhang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Yang Huang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Mengmeng Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu Province 210037, China
| | - Jiazhi Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China.
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China.
| |
Collapse
|
10
|
Zeng Q, Wu T. Enhanced electrochemical performance of neural electrodes based on
PEDOT
:
PSS
hydrogel. J Appl Polym Sci 2021. [DOI: 10.1002/app.51804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qi Zeng
- College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen Guangdong China
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| | - Tianzhun Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| |
Collapse
|
11
|
Electrical Stimulation Promotes Stem Cell Neural Differentiation in Tissue Engineering. Stem Cells Int 2021; 2021:6697574. [PMID: 33968150 PMCID: PMC8081629 DOI: 10.1155/2021/6697574] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 02/06/2023] Open
Abstract
Nerve injuries and neurodegenerative disorders remain serious challenges, owing to the poor treatment outcomes of in situ neural stem cell regeneration. The most promising treatment for such injuries and disorders is stem cell-based therapies, but there remain obstacles in controlling the differentiation of stem cells into fully functional neuronal cells. Various biochemical and physical approaches have been explored to improve stem cell-based neural tissue engineering, among which electrical stimulation has been validated as a promising one both in vitro and in vivo. Here, we summarize the most basic waveforms of electrical stimulation and the conductive materials used for the fabrication of electroactive substrates or scaffolds in neural tissue engineering. Various intensities and patterns of electrical current result in different biological effects, such as enhancing the proliferation, migration, and differentiation of stem cells into neural cells. Moreover, conductive materials can be used in delivering electrical stimulation to manipulate the migration and differentiation of stem cells and the outgrowth of neurites on two- and three-dimensional scaffolds. Finally, we also discuss the possible mechanisms in enhancing stem cell neural differentiation using electrical stimulation. We believe that stem cell-based therapies using biocompatible conductive scaffolds under electrical stimulation and biochemical induction are promising for neural regeneration.
Collapse
|
12
|
Kwon G, Kim SH, Kim D, Lee K, Jeon Y, Park CS, You J. Vapor phase polymerization for electronically conductive nanopaper based on bacterial cellulose/poly(3,4-ethylenedioxythiophene). Carbohydr Polym 2021; 257:117658. [PMID: 33541667 DOI: 10.1016/j.carbpol.2021.117658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 10/22/2022]
Abstract
Eco-friendly conductive polymer nanocomposites have garnered attention as an effective alternative for conventional conductive nanocomposites. Here, we report the fabrication and optimization of flexible, self-standing, and conductive bacterial cellulose/poly(3,4-ethylene dioxythiophene) (BC/PEDOT) nanocomposites using the vapor phase polymerization (VPP) method. Eco-friendly bacterial cellulose (BC) is used as a flexible matrix, and the highly conductive PEDOT polymer is introduced into the BC matrix to achieve electronic conductivity. We demonstrate that vapor phase polymerized BC/PEDOT composites exhibit more than 10 times lower sheet resistance (18 Ω/square) compared to solution polymerized BC/PEDOT (188 Ω/square). The resultant BC/PEDOT fabricated could be bent up to 100 times and completely rolled up without a notable decrease in electronic performance. Moreover, bent BC/PEDOT films enable operation of a green light-emitting diode (LED) light, indicating the flexibility and stability of conductive BC/PEDOT films. Overall, this study suggests a strategy for the development of eco-friendly, flexible, and conductive nanocomposite films.
Collapse
Affiliation(s)
- Goomin Kwon
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Se-Hyun Kim
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dabum Kim
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Kangyun Lee
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Youngho Jeon
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Cheon-Seok Park
- Department of Food Science and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Jungmok You
- Department of Plant & Environmental New Resources and Biotechnology and Institute of Life Science and Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea.
| |
Collapse
|
13
|
Zhuang A, Pan Q, Qian Y, Fan S, Yao X, Song L, Zhu B, Zhang Y. Transparent Conductive Silk Film with a PEDOT-OH Nano Layer as an Electroactive Cell Interface. ACS Biomater Sci Eng 2021; 7:1202-1215. [PMID: 33599501 DOI: 10.1021/acsbiomaterials.0c01665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bioelectronics based on biomaterial substrates are advancing toward biomedical applications. As excellent conductors, poly(3,4-ethylenedioxythiophene) (PEDOT) and its derivatives have been widely developed in this field. However, it is still a big challenge to obtain a functional layer with a good electroconductive property, transparency, and strong adhesion on the biosubstrate. In this work, poly(hydroxymethyl-3,4-ethylenedioxythiophene) (PEDOT-OH) was chemically polymerized and deposited on the surface of a regenerated silk fibroin (RSF) film in an aqueous system. Sodium dodecyl sulfate (SDS) was used as the surfactant to form micelles which are beneficial to the polymer structure. To overcome the trade-off between transparency and the electroconductive property of the PEDOT-OH coating, a composite oxidant recipe of FeCl3 and ammonium persulfate (APS) was developed. Through electrostatic interaction of oppositely charged doping ions, a well-organized conductive nanoscale coating formed and a transparent conductive RSF/PEDOT-OH film was produced, which can hardly be achieved in a traditional single oxidant system. The produced film had a sheet resistance (Rs) of 5.12 × 104 Ω/square corresponding to a conductivity of 8.9 × 10-2 S/cm and a maximum transmittance above 73% in the visible range. In addition, strong adhesion between PEDOT-OH and RSF and favorable electrochemical stability of the film were demonstrated. Desirable transparency of the film allowed real-time observation of live cells. Furthermore, the PEDOT-OH layer provided an improved environment for adhesion and differentiation of PC12 cells compared to the RSF surface alone. Finally, the feasibility of using the RSF/PEDOT-OH film to electrically stimulate PC12 cells was demonstrated.
Collapse
Affiliation(s)
- Ao Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Qichao Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Ying Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, People's Republic of China
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, People's Republic of China
| |
Collapse
|
14
|
Krukiewicz K, Britton J, Więcławska D, Skorupa M, Fernandez J, Sarasua JR, Biggs MJP. Electrical percolation in extrinsically conducting, poly(ε-decalactone) composite neural interface materials. Sci Rep 2021; 11:1295. [PMID: 33446813 PMCID: PMC7809477 DOI: 10.1038/s41598-020-80361-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022] Open
Abstract
By providing a bidirectional communication channel between neural tissues and a biomedical device, it is envisaged that neural interfaces will be fundamental in the future diagnosis and treatment of neurological disorders. Due to the mechanical mismatch between neural tissue and metallic neural electrodes, soft electrically conducting materials are of great benefit in promoting chronic device functionality. In this study, carbon nanotubes (CNT), silver nanowires (AgNW) and poly(hydroxymethyl 3,4-ethylenedioxythiophene) microspheres (MSP) were employed as conducting fillers within a poly(ε-decalactone) (EDL) matrix, to form a soft and electrically conducting composite. The effect of a filler type on the electrical percolation threshold, and composite biocompatibility was investigated in vitro. EDL-based composites exhibited favourable electrochemical characteristics: EDL/CNT-the lowest film resistance (1.2 ± 0.3 kΩ), EDL/AgNW-the highest charge storage capacity (10.7 ± 0.3 mC cm- 2), and EDL/MSP-the highest interphase capacitance (1478.4 ± 92.4 µF cm-2). All investigated composite surfaces were found to be biocompatible, and to reduce the presence of reactive astrocytes relative to control electrodes. The results of this work clearly demonstrated the ability of high aspect ratio structures to form an extended percolation network within a polyester matrix, resulting in the formulation of composites with advantageous mechanical, electrochemical and biocompatibility properties.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Centre for Research in Medical Devices, National University of Ireland, Newcastle Road, Galway, H91 W2TY, Ireland.
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100, Gliwice, Poland.
| | - James Britton
- Centre for Research in Medical Devices, National University of Ireland, Newcastle Road, Galway, H91 W2TY, Ireland
| | - Daria Więcławska
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100, Gliwice, Poland
| | - Małgorzata Skorupa
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100, Gliwice, Poland
| | - Jorge Fernandez
- Department of Mining-Metallurgy Engineering and Materials Science, School of Engineering, POLYMAT, University of the Basque Country (UPV/EHU), Alameda de Urquijo s/n, 48013, Bilbao, Spain
- Polimerbio, S.L, Paseo Mikeletegi 83, 20009, Donostia-San Sebastian, Spain
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science, School of Engineering, POLYMAT, University of the Basque Country (UPV/EHU), Alameda de Urquijo s/n, 48013, Bilbao, Spain
| | - Manus J P Biggs
- Centre for Research in Medical Devices, National University of Ireland, Newcastle Road, Galway, H91 W2TY, Ireland
| |
Collapse
|
15
|
Zhang L, Wei F, Bai Q, Song D, Zheng Z, Wang Y, Liu X, Abdulrahman AA, Bian Y, Xu X, Chen C, Zhang H, Sun D. Oscillating Magnetic Field Regulates Cell Adherence and Endothelialization Based on Magnetic Nanoparticle-Modified Bacterial Cellulose. ACS APPLIED MATERIALS & INTERFACES 2020; 12:52467-52478. [PMID: 33170636 DOI: 10.1021/acsami.0c17213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the widely explored biomaterial scaffolds in vascular tissue engineering applications lately, no ideal platform has been provided for small diameter synthetic vascular grafts mainly due to the thrombosis issue. Endothelium is the only known completely non-thrombogenic material; so, functional endothelialization onto vascular biomaterials is critical in maintaining the patency of vascular networks. Bacterial cellulose (BC) is a natural biomaterial with superior biocompatibility and appropriate hydrophilicity as potential vascular grafts. In previous studies, surface modification of active peptides such as Arg-Gly-Asp (RGD) sequences onto biomaterials has been proven to achieve accelerated and selective endothelial cell (EC) adhesion. In our study, we demonstrated a new strategy to remotely regulate the adhesion of endothelial cells based on an oscillating magnetic field and achieve successful endothelialization on the modified BC membranes. In details, we synthesized bacterial cellulose (BC), magnetic BC (MBC), and RGD peptide-grafted magnetic BC (RMBC), modified with the HOOC-PEG-COOH-coated iron oxide nanoparticles (PEG-IONs). The endothelial cells were cultured on the three materials under different frequencies of an oscillating magnetic field, including "stationary" (0 Hz), "slow" (0.1 Hz), and "fast" (2 Hz) groups. Compared to BC and MBC membranes, the cells on RMBC membranes generally show better adhesion and proliferation. Meanwhile, the "slow" frequency of a magnetic field promotes this phenomenon on RMBC and achieves endothelialization after culture for 4 days, whereas "fast" inhibits the cellular attachment. Overall, we demonstrate a non-invasive and convenient method to regulate the endothelialization process, with promising applications in vascular tissue engineering.
Collapse
Affiliation(s)
- Lei Zhang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Feng Wei
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Qianqian Bai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong SAR, P.R. China
| | - Danhong Song
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Zhuofan Zheng
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yafei Wang
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xin Liu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Al-Ammari Abdulrahman
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Yingxin Bian
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Xuran Xu
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Chuntao Chen
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| | - Hongsong Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210029, P.R. China
| | - Dongping Sun
- Chemicobiology and Functional Materials Institute, School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R. China
| |
Collapse
|
16
|
Puiggalí-Jou A, Wedepohl S, Theune LE, Alemán C, Calderón M. Effect of conducting/thermoresponsive polymer ratio on multitasking nanogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111598. [PMID: 33321642 DOI: 10.1016/j.msec.2020.111598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/02/2023]
Abstract
Semi-interpenetrated nanogels (NGs) able to release and sense diclofenac (DIC) have been designed to act as photothermal agents with the possibility to ablate cancer cells using mild-temperatures (<45 °C). Combining mild heat treatments with simultaneous chemotherapy appears as a very promising therapeutic strategy to avoid heat resistance or damaging the surrounding tissues. Particularly, NGs consisted on a poly(N-isopropylacrylamide) (PNIPAM) and dendritic polyglycerol (dPG) mesh containing a semi-interpenetrating network (SIPN) of poly(hydroxymethyl 3,4-ethylenedioxythiophene) (PHMeEDOT). The PHMeEDOT acted as photothermal and conducting agent, while PNIPAM-dPG NG provided thermoresponsivity and acted as stabilizer. We studied how semi-interpenetration modified the physicochemical characteristics of the thermoresponsive SIPN NGs and selected the best condition to generate a multifunctional photothermal agent. The thermoswitchable conductiveness of the multifunctional NGs and the redox activity of DIC could be utilized for its electrochemical detection. Besides, as proof of the therapeutic concept, we investigated the combinatorial effect of photothermal therapy (PTT) and DIC treatment using the HeLa cancer cell line in vitro. Within 15 min NIR irradiation without surpassing 45 °C we were able to kill 95% of the cells, demonstrating the potential of SIPN NGs as drug carriers, sensors and agents for mild PTT.
Collapse
Affiliation(s)
- Anna Puiggalí-Jou
- Department d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain.
| | - Stefanie Wedepohl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Loryn E Theune
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany
| | - Carlos Alemán
- Department d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Ed. I2, 08019 Barcelona, Spain; Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Eduard Maristany, 10-14, 08019 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain.
| | - Marcelo Calderón
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195 Berlin, Germany; POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain; IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
17
|
|
18
|
Krishnamurthy M, Lobo NP, Samanta D. Improved Hydrophobicity of a Bacterial Cellulose Surface: Click Chemistry in Action. ACS Biomater Sci Eng 2020; 6:879-888. [PMID: 33464860 DOI: 10.1021/acsbiomaterials.9b01571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The vast application potentials of bacterial cellulose (BC)-based materials for developing leather-like materials, wound-healing materials and electronic materials have been realized very recently. Surface functionalization of these materials can help in improvement of certain properties such as water repellency, mechanical strength, and so forth. In this paper, we reported functionalization of BC surfaces using "click" polymerization for the first time. By this methodology, dense aromatic groups have been incorporated for the improvement of hydrophobicity. For comparative studies, various fluorine-based compounds have been introduced using conventional click reactions. The surface-modified BC materials have been confirmed by various spectroscopic methods. Particularly, the chemical structures of the materials were studied by solid-state 13C NMR spectroscopy and attenuated total reflection-infrared spectroscopy. X-ray photoelectron spectroscopy was used to study the elemental composition of the materials. Moreover, the crystallite changes of modified BC surfaces were investigated by X-ray diffraction. Further, the changes in the morphology of the material after functionalization were evaluated by scanning electron microscopy and atomic force microscopy. Finally, water contact angle measurement revealed manyfold increase in hydrophobicity after click polymerization. A video is also provided in the Supporting Information to show the application potential of this material for developing leather-like materials.
Collapse
Affiliation(s)
- Munusamy Krishnamurthy
- Polymer Science &Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Nitin Prakash Lobo
- NMR Laboratory, Inorganic & Physical Chemistry, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Debasis Samanta
- Polymer Science &Technology Department, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
19
|
Chimpibul W, Nakaji-Hirabayashi T, Yuan X, Matsumura K. Controlling the degradation of cellulose scaffolds with Malaprade oxidation for tissue engineering. J Mater Chem B 2020; 8:7904-7913. [DOI: 10.1039/d0tb01015d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cellulose scaffolds, whose biodegradation can be controlled through the reaction with amine compounds in the human body, were developed for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Xida Yuan
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa
- Japan
| | - Kazuaki Matsumura
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa
- Japan
| |
Collapse
|
20
|
Shin M, Song KH, Burrell JC, Cullen DK, Burdick JA. Injectable and Conductive Granular Hydrogels for 3D Printing and Electroactive Tissue Support. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901229. [PMID: 31637164 PMCID: PMC6794627 DOI: 10.1002/advs.201901229] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/27/2019] [Indexed: 05/17/2023]
Abstract
Conductive hydrogels are attractive to mimic electrophysiological environments of biological tissues and toward therapeutic applications. Injectable and conductive hydrogels are of particular interest for applications in 3D printing or for direct injection into tissues; however, current approaches to add conductivity to hydrogels are insufficient, leading to poor gelation, brittle properties, or insufficient conductivity. Here, an approach is developed using the jamming of microgels to form injectable granular hydrogels, where i) hydrogel microparticles (i.e., microgels) are formed with water-in-oil emulsions on microfluidics, ii) microgels are modified via an in situ metal reduction process, and iii) the microgels are jammed into a solid, permitting easy extrusion from a syringe. Due to the presence of metal nanoparticles at the jammed interface with high surface area in this unique design, the granular hydrogels have greater conductivity than non-particle (i.e., bulk) hydrogels treated similarly or granular hydrogels either without metal nanoparticles or containing encapsulated nanoparticles. The conductivity of the granular hydrogels is easily modified through mixing conductive and non-conductive microgels during fabrication and they can be applied to the 3D printing of lattices and to bridge muscle defects. The versatility of this conductive granular hydrogel will permit numerous applications where conductive materials are needed.
Collapse
Affiliation(s)
- Mikyung Shin
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Kwang Hoon Song
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Justin C. Burrell
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegeneration and RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
| | - D. Kacy Cullen
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Department of NeurosurgeryPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPA19104USA
- Center for NeurotraumaNeurodegeneration and RestorationCorporal Michael J. Crescenz Veterans Affairs Medical CenterPhiladelphiaPA19104USA
| | - Jason A. Burdick
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| |
Collapse
|
21
|
Xu J, Rong J, Qiu F, Zhu Y, Mao K, Fang Y, Yang D, Zhang T. Highly dispersive NiCo 2S 4 nanoparticles anchored on nitrogen-doped carbon nanofibers for efficient hydrogen evolution reaction. J Colloid Interface Sci 2019; 555:294-303. [PMID: 31394316 DOI: 10.1016/j.jcis.2019.07.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 10/26/2022]
Abstract
To solve the energy crisis problem, many efforts have been devoted to develop clean and sustainable alternatives to fossil fuels. Among varieties of pathways to obtain clean energy, electrochemical water splitting is a promising approach. Herein, we had successfully synthesized the NiCo2S4@porous nitrogen-doped carbon nanofibers (NiCo2S4@NCNF) nanocomposite via three successive steps consisted of in-situ oxidative polymerization, calcination, and solvothermal sulfuration reaction processes. The effect of controlled molar ratios to electrocatalytic performance was studied in detail. The optimized NiCo2S4@NCNF nanocomposite exhibits superior electrocatalytic activity for hydrogen evolution reaction with a small overpotential of 117 mV to drive a current density of 10 mA cm-2. More importantly, it exhibits similar electrocatalytic activity to the initial state even after successive cyclic voltammetry scan for 3000 cycles, indicating its excellent long-term stability. The superior electrochemical performance is attributed to the developed three-dimensional (3D) network nanostructure derived from bacterial cellulose nanofibers, the highly conductive porous nitrogen-doped carbon nanofibers, and the synergistic effect between metal Ni and Co of NiCo2S4. This study permits a new pathway to design efficient electrocatalysts based on eco-friendly materials for the production of clean hydrogen energy.
Collapse
Affiliation(s)
- Jinchao Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Jian Rong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Yao Zhu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kaili Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| |
Collapse
|
22
|
Hickey RJ, Pelling AE. Cellulose Biomaterials for Tissue Engineering. Front Bioeng Biotechnol 2019; 7:45. [PMID: 30968018 PMCID: PMC6438900 DOI: 10.3389/fbioe.2019.00045] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
In this review, we highlight the importance of nanostructure of cellulose-based biomaterials to allow cellular adhesion, the contribution of nanostructure to macroscale mechanical properties, and several key applications of these materials for fundamental scientific research and biomedical engineering. Different features on the nanoscale can have macroscale impacts on tissue function. Cellulose is a diverse material with tunable properties and is a promising platform for biomaterial development and tissue engineering. Cellulose-based biomaterials offer some important advantages over conventional synthetic materials. Here we provide an up-to-date summary of the status of the field of cellulose-based biomaterials in the context of bottom-up approaches for tissue engineering. We anticipate that cellulose-based material research will continue to expand because of the diversity and versatility of biochemical and biophysical characteristics highlighted in this review.
Collapse
Affiliation(s)
- Ryan J. Hickey
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, ON, Canada
| | - Andrew E. Pelling
- Department of Physics, STEM Complex, University of Ottawa, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Institute for Science Society and Policy, University of Ottawa, Ottawa, ON, Canada
- SymbioticA, School of Human Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
23
|
Jing W, Zhang Y, Cai Q, Chen G, Wang L, Yang X, Zhong W. Study of Electrical Stimulation with Different Electric-Field Intensities in the Regulation of the Differentiation of PC12 Cells. ACS Chem Neurosci 2019; 10:348-357. [PMID: 30212623 DOI: 10.1021/acschemneuro.8b00286] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The strategy of using electrical stimulation (ES) to promote the neural differentiation and regeneration of injured nerves is proven feasible. Study of the possible molecular mechanisms in relation to this ES promotion effect should be helpful for understanding the phenomenon. In this study, it was identified that the neuronal differentiation of PC12 cells was enhanced when the electric field intensity was in the range of 30-80 mV/mm, and a lower or higher electric-field intensity displayed inferior effects. Under ES, however, levels of intracellular reactive oxygen species (ROS), intracellular Ca2+ dynamics, and expression of TREK-1 were measured as being gradually increasing alongside higher electric-field intensity. In trying to understand the relationship between the ES enhancement on differentiation and these variations in cell activities, parallel experiments were conducted by introducing exogeneous H2O2 into culture systems at different concentrations. Similarly, the effects of H2O2 concentration on the neuronal differentiation of PC12 cells, intracellular ROS and Ca2+ levels, and TREK-1 expression were systematically characterized. In comparative studies, it was found in two cases that ES of 50 mV/mm for 2 h/day and H2O2 of 5 μM in culture medium shared comparable results for intracellular ROS and Ca2+ levels and TREK-1 expression. Higher H2O2 concentrations (e.g., 10 and 20 μM) demonstrated adverse effects on cell differentiation and caused DNA damage. A stronger ES (e.g., 100 mV/mm), being associated with a higher intracellular ROS level, also resulted in weaker enhancement of the neuronal differentiation of PC12 cells. These facts suggested that the intracellular ROS generated under ES might be an intermediate signal transducer involved in cascade reactions relative to cell differentiation.
Collapse
Affiliation(s)
- Wei Jing
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yifan Zhang
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qing Cai
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Guoqiang Chen
- Department of Neurosurgery, Aviation General Hospital of China Medical University, Beijing 100012, PR China
| | - Lin Wang
- Department of Neurosurgery, Aviation General Hospital of China Medical University, Beijing 100012, PR China
| | - Xiaoping Yang
- State Key Laboratory of Organic−Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Weihong Zhong
- School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
24
|
Ramar P, Jana S, Chatterjee S, Jaisankar SN, Samanta D. Immobilization of quaternized polymers on bacterial cellulose by different grafting techniques. NEW J CHEM 2019. [DOI: 10.1039/c9nj02199j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Different polymers were immobilized on bacterial cellulose surfaces using grafting techniques to improve their mechanical properties and surface hydrophobicity.
Collapse
Affiliation(s)
- P. Ramar
- Polymer Science & Technology Department
- CSIR-Central Leather Research Institute (CSIR-CLRI)
- Chennai 600020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Sourita Jana
- Polymer Science & Technology Department
- CSIR-Central Leather Research Institute (CSIR-CLRI)
- Chennai 600020
- India
- University of Madras
| | | | - Sellamuthu N. Jaisankar
- Polymer Science & Technology Department
- CSIR-Central Leather Research Institute (CSIR-CLRI)
- Chennai 600020
- India
| | - Debasis Samanta
- Polymer Science & Technology Department
- CSIR-Central Leather Research Institute (CSIR-CLRI)
- Chennai 600020
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
25
|
3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:890-901. [DOI: 10.1016/j.msec.2018.08.054] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 07/05/2018] [Accepted: 08/27/2018] [Indexed: 11/22/2022]
|
26
|
Yang J, Du M, Wang L, Li S, Wang G, Yang X, Zhang L, Fang Y, Zheng W, Yang G, Jiang X. Bacterial Cellulose as a Supersoft Neural Interfacing Substrate. ACS APPLIED MATERIALS & INTERFACES 2018; 10:33049-33059. [PMID: 30208275 DOI: 10.1021/acsami.8b12083] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biocompatible neural interfaces hold great promise for treating neurological disorders and enhancing the mental and physical ability of human beings. Most of the currently available neural interfaces are made from rigid, dense inorganic materials that cause tissue damage. We present supersoft multichannel electrodes by depositing gold layers on thin bacterial cellulose (BC) (Au-BC electrodes). The Young's modulus of BC ( EBC = 120 kPa) is between those of the brain tissue ( Ebrain = 2.7-3.1 kPa) and the peripheral neural tissues ( Eperipheral nerve = 580-840 kPa). The bending stiffness of the Au-BC electrodes corresponds to 1/5200 of Au-polyimide electrodes with the same layout. Furthermore, the Au-BC electrodes are highly durable (conductivity >95% after 100 cycles of 180° bending). In vivo recording of brain electric activity demonstrates the great potential of the Au-BC electrodes for neural interfacing applications.
Collapse
Affiliation(s)
- Junchuan Yang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Mingde Du
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Le Wang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Sixiang Li
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Guorui Wang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Xinglong Yang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| | - Lijuan Zhang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Ying Fang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Wenfu Zheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
| | - Guang Yang
- National Engineering Research Center for Nano-Medicine, Department of Biomedical Engineering, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan , 430074 , China
| | - Xingyu Jiang
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center of Excellence for Nanoscience , National Center for NanoScience and Technology , Beijing , 100190 , China
- University of Chinese Academy of Sciences , Beijing , 100049 , China
| |
Collapse
|
27
|
Chen X, Xu X, Li W, Sun B, Yan J, Chen C, Liu J, Qian J, Sun D. Effective Drug Carrier Based on Polyethylenimine-Functionalized Bacterial Cellulose with Controllable Release Properties. ACS APPLIED BIO MATERIALS 2018. [DOI: 10.1021/acsabm.8b00004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | | | - Jun Yan
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, China
| | | | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, China
| | | | | |
Collapse
|
28
|
Vacuum-assisted bilayer PEDOT:PSS/cellulose nanofiber composite film for self-standing, flexible, conductive electrodes. Carbohydr Polym 2017; 173:383-391. [DOI: 10.1016/j.carbpol.2017.05.096] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 05/24/2017] [Accepted: 05/31/2017] [Indexed: 12/25/2022]
|
29
|
Ersen A, Sahin M. A PDMS-based optical waveguide for transcutaneous powering of microelectrode arrays. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2016:4475-4478. [PMID: 28269272 DOI: 10.1109/embc.2016.7591721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Implantable microelectrode arrays (MEAs) usually have on-site electronics that need to be powered, both in neural recording and stimulation applications. Interconnecting wires between implanted electrodes and the outside world constitute a major source of complications. Our solution to this tethering problem is to design a light waveguide that can collect the optical power transcutaneously and transmit it to the microelectrode array where it is to be converted to an electric current. A polydimethylsiloxane (PDMS)-based waveguide was fabricated and its attenuation was measured in vitro and found to be 0.36 dB/cm. The skin flap of the thenar web space in the hand was used to test the photon collection efficiency of the waveguide in diffuse light. The efficiency of the waveguide alone was 44±11% (mean±std), excluding the attenuation within the thenar skin, as measured in 13 subjects with different skin pigmentations. These preliminary results suggest that a PDMS waveguide may collect and deliver optical power with sufficient efficiencies to deep structures inside the body. Optical powering scheme can solve the tethering and breakage problems associated with metal wire connections.
Collapse
|
30
|
Electrically-responsive core-shell hybrid microfibers for controlled drug release and cell culture. Acta Biomater 2017; 55:434-442. [PMID: 28392307 DOI: 10.1016/j.actbio.2017.04.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/28/2017] [Accepted: 04/05/2017] [Indexed: 11/23/2022]
Abstract
It is an active research field to develop fiber-shaped smart materials for biomedical applications. Here we report the development of the multifunctional core-shell hybrid microfibers with excellent mechanical and electrical performance as a new smart biomaterial. The microfibers were synthesized using a combination of co-axial spinning with a microfluidic device and subsequent dip-coating, containing a hydrogel core of bacterial cellulose (BC) and a conductive polymer shell layer of poly(3,4-ethylenedioxythiophene) (PEDOT). The hybrid microfibers were featured with a well-controlled microscopic morphology, exhibiting enhanced mechanic properties. A model drug, diclofenac sodium, can be loaded in the core layer of the microfibers in situ during the process of synthesis. Our experiments suggested that the releasing behaviors of the drug molecules from the microfibers were enhanced by external electrical stimulation. Interestingly, we demonstrated an excellent biocompatibility and electroactivity of the hybrid microfibers for PC12 cell culture, thus promising a flexible template for the reconstruction of electrically-responsive tissues mimicking muscle fibers or nerve networks. STATEMENT OF SIGNIFICANCE Fiber-shaped biomaterials are useful in creating various functional objects from one dimensional to three-dimensional. The fabrication of microfibers with integrated physicochemical properties and bio-performance has drawn an increasing attention on researchers from chemical to biomedical. This study combined biocompatible bacterial cellulose with electroconductive poly(3,4-ethylenedioxythiophene) and further reduced them to a highly electroactive BC/PEDOT core-shell microfiber electrode for electrochemical actuator design. The result showed that the microfibers were well fabricated and the release of drugs from the microfibers was enhanced and could be controlled under electrical stimulation externally. Considering the excellent biocompatibility and electroactive toward PC12 cells, these microfibers may find use as templates for the reconstruction of fiber-shaped functional tissues that mimic muscle fibers, blood vessels or nerve networks in vivo.
Collapse
|
31
|
Inal S, Hama A, Ferro M, Pitsalidis C, Oziat J, Iandolo D, Pappa AM, Hadida M, Huerta M, Marchat D, Mailley P, Owens RM. Conducting Polymer Scaffolds for Hosting and Monitoring 3D Cell Culture. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700052] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sahika Inal
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
- Biological and Environmental Science and Engineering; King Abdullah University of Science and Technology (KAUST); Thuwal 23955-6900 Kingdom of Saudi Arabia
| | - Adel Hama
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Magali Ferro
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Charalampos Pitsalidis
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Julie Oziat
- CEA; LETI; MINATEC Campus; 38054 Grenoble France
| | - Donata Iandolo
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Anna-Maria Pappa
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| | - Mikhael Hadida
- Laboratoire Sainbiose; Ecole Nationale Supérieure des Mines; CIS-EMSE; St. Etienne 42023 France
| | - Miriam Huerta
- Department of Infectomics and Molecular Pathogenesis; Cinvestav 14-740, 070000 Mexico
| | - David Marchat
- Laboratoire Sainbiose; Ecole Nationale Supérieure des Mines; CIS-EMSE; St. Etienne 42023 France
| | | | - Róisín M. Owens
- Department of Bioelectronics; Ecole Nationale Supérieure des Mines; CMP-EMSE; Gardanne 13541 France
| |
Collapse
|
32
|
Loloei M, Rezaee A, Roohaghdam AS, Aliofkhazraei M. Conductive microbial cellulose as a novel biocathode for Cr (VI) bioreduction. Carbohydr Polym 2017; 162:56-61. [DOI: 10.1016/j.carbpol.2017.01.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 11/24/2022]
|
33
|
Improvement in mechanical properties and biocompatibility of biosynthetic bacterial cellulose/lotus root starch composites. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1903-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Vallejo-Giraldo C, Pugliese E, Larrañaga A, Fernandez-Yague MA, Britton JJ, Trotier A, Tadayyon G, Kelly A, Rago I, Sarasua JR, Dowd E, Quinlan LR, Pandit A, Biggs MJP. Polyhydroxyalkanoate/carbon nanotube nanocomposites: flexible electrically conducting elastomers for neural applications. Nanomedicine (Lond) 2016; 11:2547-63. [DOI: 10.2217/nnm-2016-0075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: Medium chain length-polyhydroxyalkanoate/multi-walled carbon nanotube (MWCNTs) nanocomposites with a range of mechanical and electrochemical properties were fabricated via assisted dispersion and solvent casting, and their suitability as neural interface biomaterials was investigated. Materials & methods: Mechanical and electrical properties of medium chain length-polyhydroxyalkanoate/MWCNTs nanocomposite films were evaluated by tensile test and electrical impedance spectroscopy, respectively. Primary rat mesencephalic cells were seeded on the composites and quantitative immunostaining of relevant neural biomarkers, and electrical stimulation studies were performed. Results: Incorporation of MWCNTs to the polymeric matrix modulated the mechanical and electrical properties of resulting composites, and promoted differential cell viability, morphology and function as a function of MWCNT concentration. Conclusion: This study demonstrates the feasibility of a green thermoplastic MWCNTs nanocomposite for potential use in neural interfacing applications.
Collapse
Affiliation(s)
- Catalina Vallejo-Giraldo
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Eugenia Pugliese
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Aitor Larrañaga
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Marc A Fernandez-Yague
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - James J Britton
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Alexandre Trotier
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Ghazal Tadayyon
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| | - Adriona Kelly
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Ilaria Rago
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering & Materials Science & POLYMAT, School of Engineering, University of the Basque Country (UPV/EHU) 480130 Bilbao, Spain
| | - Eilís Dowd
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Physics, University of Trieste, Via Valerio 2-34127, Trieste, Italy
| | - Leo R Quinlan
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Pharmacology, National University of Ireland, Galway, Ireland
| | - Abhay Pandit
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| | - Manus JP Biggs
- CÚRAM – Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
- Department of Biomedical Engineering, National University of Ireland, Galway, Ireland
| |
Collapse
|
35
|
Chen C, Zhang T, Zhang Q, Chen X, Zhu C, Xu Y, Yang J, Liu J, Sun D. Biointerface by Cell Growth on Graphene Oxide Doped Bacterial Cellulose/Poly(3,4-ethylenedioxythiophene) Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:10183-10192. [PMID: 27054801 DOI: 10.1021/acsami.6b01243] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Highly biocompatible advanced materials with excellent electroactivity are increasingly meaningful to biointerfaces and the development of biomedicine. Herein, bacterial cellulose/poly(3,4-ethylene dioxythiophene)/graphene oxide (BC/PEDOT/GO) composite nanofibers were synthesized through the in situ interfacial polymerization of PEDOT with the doping of GO. The abundant free carboxyl and hydroxy groups offer the BC/PEDOT/GO film active functional groups for surface modification. We demonstrate the use of this composite nanofiber for the electrical stimulation of PC12 neural cells as this resultant nanofiber scaffold could closely mimic the structure of the native extracellular matrix (ECM) with a promoting cell orientation and differentiation after electrical stimulation of PC12 cells. It is expected that this biocompatible BC/PEDOT/GO material will find potential applications in biological and regenerative medicine.
Collapse
Affiliation(s)
- Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Ting Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Qi Zhang
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Medical College of Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Xiao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Chunlin Zhu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Yunhua Xu
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
- Lianyungang Normal College , Lianyungang, Jiangsu, China
| | - Jiazhi Yang
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University , 199 Ren Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu Province, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemical Engineering, Nanjing University of Science and Technology , 200 Xiao Ling Wei Street, Nanjing, Jiangsu Province, China
| |
Collapse
|
36
|
Deb K, Bera A, Saha B. Tuning of electrical and optical properties of polyaniline incorporated functional paper for flexible circuits through oxidative chemical polymerization. RSC Adv 2016. [DOI: 10.1039/c6ra16079d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
An organic semiconductor polyaniline based material with outstanding physical properties was prepared on a flexible paper substrate.
Collapse
Affiliation(s)
- Krishna Deb
- Department of Physics
- National Institute of Technology Agartala
- Jirania
- India
| | - Arun Bera
- Department of Physics
- National Institute of Technology Agartala
- Jirania
- India
| | - Biswajit Saha
- Department of Physics
- National Institute of Technology Agartala
- Jirania
- India
| |
Collapse
|