1
|
Li H, Li Y, Lv X, Liu C, Zhang N, Zang J, Yue P, Gao Y, Liu C, Li Y. A Covalent Organic Framework as Photocatalyst for Smart Conversion Between Photooxidation and Photoreduction and H 2O 2 Production in Full pH Environment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415126. [PMID: 39916543 DOI: 10.1002/adma.202415126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/21/2025] [Indexed: 03/21/2025]
Abstract
Developing multifunctional photocatalysts with intelligent self-adjusting is of great significance in the photocatalytic process. Herein, a smart covalent organic framework (Por-HQ-COF) with a phenol-quinone conversion structure with pH changes is constructed for photooxidation, photoreduction, and H2O2 production. As a smart photocatalyst, Por-HQ-COF can convert into Por-BQ-COF intelligently with a trigger including solution pH, and vice versa. The reconstruction of phenol-quinone conversion not only significantly alters the morphologies and the specific surface areas of the COF, but also leads to an entirely change in the band energy and charge distribution to influence photoelectric properties. As a result, under acidic conditions, Por-BQ-COF converts into Por-HQ-COF automatically and can photoreduce high concentration Cr(VI) to Cr(III) efficiently. Under neutral conditions, the superoxide anions (·O2 -) initiate the Por-HQ-COF reconstruction into Por-BQ-COF to accelerate photooxidation to degrade high-concentration TC. Under alkaline conditions, Por-HQ-COF converts into Por-BQ-COF, can effectively photosynthesize H2O2 (1525 µmol h-1 g-1 at λ > 420 nm) in the absence of any sacrificial reagents, and reveal the strong alkalinity lower the energy barrier of hydrogen extraction from H2O and clarify active sites for H2O2 production. This work provides a new strategy for developing smart photocatalysts and fulfill the application across the full pH environment.
Collapse
Affiliation(s)
- Hao Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Yanwei Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiaoling Lv
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Chong Liu
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Nazhen Zhang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jing Zang
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Penghan Yue
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yue Gao
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
| | - Cong Liu
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yanhui Li
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022, China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
2
|
Kuo CH, Su CK. Fully 4D-Printed Near-Infrared-Actuated Lab-on-Valve Solid-Phase Extraction Devices. Anal Chem 2025; 97:1281-1290. [PMID: 39722172 PMCID: PMC11755401 DOI: 10.1021/acs.analchem.4c05363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024]
Abstract
Four-dimensional printing (4DP) technologies can expand the functionality of stimuli-responsive devices to enable the integration of multiple stimuli-responsive parts into a compact device. Herein, we used digital light processing three-dimensional printing technique, flexible photocurable resins, and photocurable resins of the temperature-responsive hydrogels comprising N-isopropylacrylamide (NIPAM), N,N'-methylenebis(acrylamide) (MBA), and graphene for 4DP of a lab-on-valve (LOV) solid-phase extraction (SPE) device. This device featured flow manifolds and a monolithic packing connected by four near-infrared (NIR)-actuated temperature-responsive switching valves composed of a poly(NIPAM/MBA) (PNM) ball pushing a flexible membrane. NIR irradiation caused the deswelling of the PNM ball [temperature > volume phase transition temperature (VPTT) of the hydrogel], and the valve was opened to switch the flow direction. The termination of this irradiation caused the swelling of the PNM ball (temperature < VPTT of the hydrogel) to close the valve and thus recover the original flow direction to achieve the automatic NIR-actuated fluid control. The optimized 4D-printed NIR-actuated LOV-SPE device enabled a fully automatic SPE scheme coupled with inductively coupled plasma mass spectrometry for the determination of Mn, Co, Ni, Cu, Zn, Cd, and Pb ions (detection limits = 0.1,6.8 ng L-1). The reliability of this analytical method was validated by determining the metal ions in the four reference materials (CASS-6, SLRS-5, 1643f, and Trace Elements Urine L-2) and environmental water and human urine samples. Our results demonstrated the capability and applicability of 4DP technologies for advancing the automation of LOV-SPE schemes and related analytical methods.
Collapse
Affiliation(s)
- Chia-Hsun Kuo
- Department of Chemistry, National Chung Hsing University, Taichung City 402202, Taiwan, ROC
| | - Cheng-Kuan Su
- Department of Chemistry, National Chung Hsing University, Taichung City 402202, Taiwan, ROC
| |
Collapse
|
3
|
Tootoonchian P, Bahçeci L, Budnyk A, Okur HI, Baytekin B. Lyotropic "Salty" Tuning for Straightforward Diversification and Anisotropy in Hydrogel Actuators. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:162-171. [PMID: 39743324 PMCID: PMC11736847 DOI: 10.1021/acs.langmuir.4c03291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 01/04/2025]
Abstract
The specific ion effect (SIE), the control of polymer solubility in aqueous solutions by the added ions, has been a phenomenon known for more than a century. The seemingly simple nature of the ion-polymer-water interactions can lead to complex behaviors, which have also been exploited in many applications in biochemistry, electrochemistry, and energy harvesting. Here, we show an emerging diversification of actuation behaviors in "salty" hydrogel and hydrogel-paper actuators. SIE controls not only the dehydration speeds but also the water diffusion and mechanical properties of the gels, leading to composite actuation behavior. Most reported thermally activated hydrogel actuators suffer from expensive precursors or complex fabrication processes. This work addresses these issues by using a physicochemical effect displayed within an inexpensive gel with common salts. SIE-controlled anisotropic actuation in geometrically different systems provides a demonstration of how such physicochemical effects can lead to higher complexity in basic soft material design and hydrogel soft robotics.
Collapse
Affiliation(s)
| | - Levent Bahçeci
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
| | - Andriy Budnyk
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Halil I. Okur
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Bilge Baytekin
- Chemistry
Department, Bilkent University, Ankara 06800, Turkey
- UNAM
− National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Castilla-Casadiego DA, Loh DH, Pineda-Hernandez A, Rosales AM. Stimuli-Responsive Substrates to Control the Immunomodulatory Potential of Stromal Cells. Biomacromolecules 2024; 25:6319-6337. [PMID: 39283807 PMCID: PMC11506505 DOI: 10.1021/acs.biomac.4c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Mesenchymal stromal cells (MSCs) have broad immunomodulatory properties that range from regulation, proliferation, differentiation, and immune cell activation to secreting bioactive molecules that inhibit inflammation and regulate immune response. These properties provide MSCs with high therapeutic potency that has been shown to be relevant to tissue engineering and regenerative medicine. Hence, researchers have explored diverse strategies to control the immunomodulatory potential of stromal cells using polymeric substrates or scaffolds. These substrates alter the immunomodulatory response of MSCs, especially through biophysical cues such as matrix mechanical properties. To leverage these cell-matrix interactions as a strategy for priming MSCs, emerging studies have explored the use of stimuli-responsive substrates to enhance the therapeutic value of stromal cells. This review highlights how stimuli-responsive materials, including chemo-responsive, microenvironment-responsive, magneto-responsive, mechano-responsive, and photo-responsive substrates, have specifically been used to promote the immunomodulatory potential of stromal cells by controlling their secretory activity.
Collapse
Affiliation(s)
- David A Castilla-Casadiego
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Darren H Loh
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Aldaly Pineda-Hernandez
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Adrianne M Rosales
- Mcketta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Wang Y, Fang LP, Zhang HY, Ren JJ, Liang T, Lv XB, Cheng CJ, Yu HR. Efficient adsorption of cationic dyes by a novel honeycomb-like porous hydrogel with ultrahigh mechanical property. Int J Biol Macromol 2024; 278:134457. [PMID: 39111487 DOI: 10.1016/j.ijbiomac.2024.134457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/17/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
The optimization of hydrogel structure is crucial for adsorption capacity, mechanical stability, and reusability. Herein, a chitosan and laponite-XLS co-doped poly(acrylic acid-co-acrylamide) hydrogel (CXAA) with honeycomb-like porous structures is synthesized by cooperative cross-linking of 2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC) and laponite-XLS in reticular frameworks of acrylic acid (AAc) and acrylamide (AM). The CXAA exhibits extraordinary mechanical performances including tough tensile strength (3.36 MPa) and elasticity (2756 %), which facilitates recycling in practical adsorption treatment and broadens potential applications. Since the regular porous structures can fully expose numerous adsorption sites and electronegative natures within polymer materials, CXAA displays efficient and selective adsorption properties for cationic dyes like methylene blue (MB) and malachite green (MG) from mixed pollutants and can reach record-high values (MB = 6886 mg g-1, MG = 11,381 mg g-1) compared with previously reported adsorbents. Therefore, CXAA exhibits promising potential for separating cationic and anionic dyes by their charge disparities. Mechanism studies show that the synergistic effects of HACC, laponite-XLS, and functional groups in monomers promote highly efficient adsorption. Besides, the adsorption capacity of CXAA remains stable even after undergoing five cycles of regeneration. The results confirm that CXAA is a promising adsorbent for effectively removing organic dyes in wastewater.
Collapse
Affiliation(s)
- Yun Wang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Li-Ping Fang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Hui-Yao Zhang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jun-Jie Ren
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Ting Liang
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Xing-Bin Lv
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Chang-Jing Cheng
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Hai-Rong Yu
- School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China; Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
6
|
Jiang Z, Tran BH, Jolfaei MA, Abbasi BBA, Spinks GM. Crack-Resistant and Tissue-Like Artificial Muscles with Low Temperature Activation and High Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402278. [PMID: 38657958 DOI: 10.1002/adma.202402278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bach H Tran
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
7
|
Li X, Guan Z, Zhao J, Bae J. 3D Printable Active Hydrogels with Supramolecular Additive-Driven Adaptiveness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311164. [PMID: 38295083 DOI: 10.1002/smll.202311164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Smart hydrogels are a promising candidate for the development of next-generation soft materials due to their stimuli-responsiveness, deformability, and biocompatibility. However, it remains challenging to enable hydrogels to actively adapt to various environmental conditions like living organisms. In this work, supramolecular additives are introduced to the hydrogel matrix to confer environmental adaptiveness. Specifically, their microstructures, swelling behaviors, mechanical properties, and transparency can adapt to external environmental conditions. Moreover, the presence of hydrogen bonding provides the hydrogel with applicable rheological properties for 3D extrusion printing, thus allowing for the facile preparation of thickness-dependent camouflage and multistimuli responsive complex. The environmentally adaptive hydrogel developed in this study offers new approaches for manipulating supramolecular interactions and broadens the capability of smart hydrogels in information security and multifunctional integrated actuation.
Collapse
Affiliation(s)
- Xiao Li
- Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhecun Guan
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jinhye Bae
- Materials Science & Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Chen J, Huang J, Hu Y. An optoionic hydrogel with UV-regulated ion conductivity for reprogrammable iontronics: Logic processing and image sensing. SCIENCE ADVANCES 2024; 10:eadn0439. [PMID: 38865467 PMCID: PMC11168472 DOI: 10.1126/sciadv.adn0439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
The development of smart hydrogels capable of actively controlling ion conductivity is of paramount importance for iontronics. Most current work in this field focuses on enhancing the hydrogels' ion conductivity. Few successes have been seen in achieving spatial regulation of ion flow through external control. Among various controls, light gives the best spatial and temporal resolution for practical iontronic applications. However, developing hydrogels that can generate drastic ion concentration change upon photoirradiation for tunable conductivity is challenging. Very few molecules can enable photoion generation, and most of them are hydrophobic and low quantum yield. Here, we present an optoionic hydrogel that uses triphenylmethane leuconitrile (TPMLN) for ultraviolet-regulated ion conductivity. Through postpolymerization TPMLN synthesizing, we can incorporate high concentration of the hydrophobic TPMLN in hydrogels without compromising the hydrogel's mechanical integrity. Upon light irradiation, the hydrogel's local conductivity can change an unprecedented 10-fold. We also demonstrated soft optoionic devices that are capable of logic processing and photo imaging.
Collapse
Affiliation(s)
- Jiehao Chen
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jiahe Huang
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yuhang Hu
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Chen X, Zou M, Liu S, Cheng W, Guo W, Feng X. Applications of Graphene Family Nanomaterials in Regenerative Medicine: Recent Advances, Challenges, and Future Perspectives. Int J Nanomedicine 2024; 19:5459-5478. [PMID: 38863648 PMCID: PMC11166159 DOI: 10.2147/ijn.s464025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Graphene family nanomaterials (GFNs) have attracted considerable attention in diverse fields from engineering and electronics to biomedical applications because of their distinctive physicochemical properties such as large specific surface area, high mechanical strength, and favorable hydrophilic nature. Moreover, GFNs have demonstrated the ability to create an anti-inflammatory environment and exhibit antibacterial effects. Consequently, these materials hold immense potential in facilitating cell adhesion, proliferation, and differentiation, further promoting the repair and regeneration of various tissues, including bone, nerve, oral, myocardial, and vascular tissues. Note that challenges still persist in current applications, including concerns regarding biosecurity risks, inadequate adhesion performance, and unsuitable degradability as matrix materials. This review provides a comprehensive overview of current advancements in the utilization of GFNs in regenerative medicine, as well as their molecular mechanism and signaling targets in facilitating tissue repair and regeneration. Future research prospects for GFNs, such as potential in promoting ocular tissue regeneration, are also discussed in details. We hope to offer a valuable reference for the clinical application of GFNs in the treatment of bone defects, nerve damage, periodontitis, and atherosclerosis.
Collapse
Affiliation(s)
- Xiuwen Chen
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Meiyan Zou
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Siquan Liu
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weilin Cheng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| | - Weihong Guo
- Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaoli Feng
- Stomatology Hospital, School of Stomatology, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Wu Y, Bei Y, Li W, Lu W, Zhu J, Zhang Z, Zhang T, Liu S, Chen K, Jin H, Li L, Li M, Gao J, Pan X. Advanced Multifunctional Hydrogels for Enhanced Wound Healing through Ultra-Fast Selenol-S NAr Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400898. [PMID: 38647422 DOI: 10.1002/advs.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
Fabrication of versatile hydrogels in a facile and effective manner represents a pivotal challenge in the field of biomaterials. Herein, a novel strategy is presented for preparing on-demand degradable hydrogels with multilevel responsiveness. By employing selenol-dichlorotetrazine nucleophilic aromatic substitution (SNAr) to synthesize hydrogels under mild conditions in a buffer solution, the necessity of additives or posttreatments can be obviated. The nucleophilic and redox reactions between selenol and tetrazine culminate in the formation of three degradable chemical bonds-diselenide, aryl selenide, and dearomatized selenide-in a single, expeditious step. The resultant hydrogel manifests exceptional adaptability to intricate environments in conjunction with self-healing and on-demand degradation properties. Furthermore, the resulting material demonstrated light-triggered antibacterial activity. Animal studies further underscore the potential of integrating metformin into Se-Tz hydrogels under green light irradiation, as it effectively stimulates angiogenesis and collagen deposition, thereby fostering efficient wound healing. In comparison to previously documented hydrogels, Se-Tz hydrogels exhibit controlled degradation and drug release, outstanding antibacterial activity, mechanical robustness, and bioactivity, all without the need for costly and intricate preparation procedures. These findings underscore Se-Tz hydrogels as a safe and effective therapeutic option for diabetic wound dressings.
Collapse
Affiliation(s)
- Yan Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Ying Bei
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
- Hainan Academy of Medical Sciences, Hainan Medical University, Hainan, 571199, China
| | - Wenjing Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weihong Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Sen Liu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Kaiyuan Chen
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hong Jin
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Meng Li
- Department of Dermatology Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200010, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
- Shanghai Key Laboratory of Nautical Medicine and Translation of Drugs and Medical Devices, Shanghai, 200433, China
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
11
|
Wu J, Xue W, Yun Z, Liu Q, Sun X. Biomedical applications of stimuli-responsive "smart" interpenetrating polymer network hydrogels. Mater Today Bio 2024; 25:100998. [PMID: 38390342 PMCID: PMC10882133 DOI: 10.1016/j.mtbio.2024.100998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
In recent years, owing to the ongoing advancements in polymer materials, hydrogels have found increasing applications in the biomedical domain, notably in the realm of stimuli-responsive "smart" hydrogels. Nonetheless, conventional single-network stimuli-responsive "smart" hydrogels frequently exhibit deficiencies, including low mechanical strength, limited biocompatibility, and extended response times. In response, researchers have addressed these challenges by introducing a second network to create stimuli-responsive "smart" Interpenetrating Polymer Network (IPN) hydrogels. The mechanical strength of the material can be significantly improved due to the topological entanglement and physical interactions within the interpenetrating structure. Simultaneously, combining different network structures enhances the biocompatibility and stimulus responsiveness of the gel, endowing it with unique properties such as cell adhesion, conductivity, hemostasis/antioxidation, and color-changing capabilities. This article primarily aims to elucidate the stimulus-inducing factors in stimuli-responsive "smart" IPN hydrogels, the impact of the gels on cell behaviors and their biomedical application range. Additionally, we also offer an in-depth exposition of their categorization, mechanisms, performance characteristics, and related aspects. This review furnishes a comprehensive assessment and outlook for the advancement of stimuli-responsive "smart" IPN hydrogels within the biomedical arena. We believe that, as the biomedical field increasingly demands novel materials featuring improved mechanical properties, robust biocompatibility, and heightened stimulus responsiveness, stimuli-responsive "smart" IPN hydrogels will hold substantial promise for wide-ranging applications in this domain.
Collapse
Affiliation(s)
- Jiuping Wu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Wu Xue
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Zhihe Yun
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Qinyi Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xinzhi Sun
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
12
|
Yao X, Chen H, Qin H, Cong HP. Nanocomposite Hydrogel Actuators with Ordered Structures: From Nanoscale Control to Macroscale Deformations. SMALL METHODS 2024; 8:e2300414. [PMID: 37365950 DOI: 10.1002/smtd.202300414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Indexed: 06/28/2023]
Abstract
Flexible intelligent actuators with the characteristics of flexibility, safety and scalability, are highly promising in industrial production, biomedical fields, environmental monitoring, and soft robots. Nanocomposite hydrogels are attractive candidates for soft actuators due to their high pliability, intelligent responsiveness, and capability to execute large-scale rapid reversible deformations under external stimuli. Here, the recent advances of nanocomposite hydrogels as soft actuators are reviewed and focus is on the construction of elaborate and programmable structures by the assembly of nano-objects in the hydrogel matrix. With the help of inducing the gradient or oriented distributions of the nanounits during the gelation process by the external forces or molecular interactions, nanocomposite hydrogels with ordered structures are achieved, which can perform bending, spiraling, patterned deformations, and biomimetic complex shape changes. Given great advantages of these intricate yet programmable shape-morphing, nanocomposite hydrogel actuators have presented high potentials in the fields of moving robots, energy collectors, and biomedicines. In the end, the challenges and future perspectives of this emerging field of nanocomposite hydrogel actuators are proposed.
Collapse
Affiliation(s)
- Xin Yao
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hong Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haili Qin
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Huai-Ping Cong
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
13
|
Yang K, Bai Y, Ma J, Sun J, Liu Y, Lang Y. Functional Gels and Chemicals Used in Oil and Gas Drilling Engineering: A Status and Prospective. Gels 2024; 10:47. [PMID: 38247770 PMCID: PMC10815433 DOI: 10.3390/gels10010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Research into functional gels and chemicals and their applications represents a cutting-edge international field of study. For example, investigating how they can be applied in oil and gas drilling (and extraction engineering) and developing novel functional chemical materials for the oil field could provide innovative solutions and technological methods for oil and gas drilling and extraction operations. Through a literature analysis, this paper presents a review of the current research status and application scenarios of different types of functional gels and chemicals, both domestically and internationally. The classification and preparation principles of various functional materials are systematically outlined and the current applications of functional gels and chemicals in oil and gas drilling and extraction engineering are introduced. These applications include drilling and plugging, enhanced oil recovery, water plugging, and profile control. The formation mechanisms and application scenarios of different types of gels and chemicals are also analyzed and summarized, with a discussion of their prospects in oil and gas drilling and extraction engineering. We broaden the scope of functional gels and chemicals by exploring new application fields and promoting the development of different types of gels and chemicals in a more intelligent direction.
Collapse
Affiliation(s)
| | - Yingrui Bai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China; (K.Y.); (J.M.); (J.S.); (Y.L.); (Y.L.)
| | | | | | | | | |
Collapse
|
14
|
Kuroki S, Kubota M, Haraguchi R, Oishi Y, Narita T. Additive-Free Method for Enhancing the Volume Phase Transition Rate in Light-Responsive Hydrogels: A Study of Micro-Nano Bubble Water on PNIPAM-co-AAc Hydrogels. Gels 2023; 9:880. [PMID: 37998970 PMCID: PMC10671373 DOI: 10.3390/gels9110880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/27/2023] [Accepted: 11/04/2023] [Indexed: 11/25/2023] Open
Abstract
Light-responsive hydrogels containing light-thermal convertible pigments have received interest for their possible applications in light-responsive shutters, valves, drug delivery systems, etc. However, their utility is limited by the slow response time. In this study, we investigated the use of micro-nano bubble water as a preparation solvent to accelerate the volume phase transition kinetics of poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-co-AAc) hydrogels. The hydrogels were characterized by dynamic light scattering (DLS) and dissolved oxygen (DO) measurements. The mechanical properties, surface morphology, and chemical composition of the hydrogels were analyzed by Young's modulus measurements, scanning electron microscopy (SEM), and Fourier transform infrared (FT-IR) spectroscopy, respectively. The results showed that hydrogels prepared with bubble water changed the volume transition rate by more than two orders of magnitude by simply changing the standing time of the bubble water for only a few hours. The cooperative diffusion coefficients obtained from the light-induced volume transition kinetics correlated linearly with Young's modulus and metastable state swelling ratio. Our results suggest that bubbles act as efficient water channels, thereby modulating the response rate and providing a simple, additive-free method for preparing hydrogels with a wide range of response rates.
Collapse
Affiliation(s)
| | | | | | | | - Takayuki Narita
- Department of Chemistry and Applied Chemistry, Saga University, 1 Honjo, Saga 840-8502, Japan
| |
Collapse
|
15
|
Hauck M, Saure LM, Zeller-Plumhoff B, Kaps S, Hammel J, Mohr C, Rieck L, Nia AS, Feng X, Pugno NM, Adelung R, Schütt F. Overcoming Water Diffusion Limitations in Hydrogels via Microtubular Graphene Networks for Soft Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302816. [PMID: 37369361 DOI: 10.1002/adma.202302816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Hydrogel-based soft actuators can operate in sensitive environments, bridging the gap of rigid machines interacting with soft matter. However, while stimuli-responsive hydrogels can undergo extreme reversible volume changes of up to ≈90%, water transport in hydrogel actuators is in general limited by their poroelastic behavior. For poly(N-isopropylacrylamide) (PNIPAM) the actuation performance is even further compromised by the formation of a dense skin layer. Here it is shown, that incorporating a bioinspired microtube graphene network into a PNIPAM matrix with a total porosity of only 5.4% dramatically enhances actuation dynamics by up to ≈400% and actuation stress by ≈4000% without sacrificing the mechanical stability, overcoming the water transport limitations. The graphene network provides both untethered light-controlled and electrically powered actuation. It is anticipated that the concept provides a versatile platform for enhancing the functionality of soft matter by combining responsive and 2D materials, paving the way toward designing soft intelligent matter.
Collapse
Affiliation(s)
- Margarethe Hauck
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Lena M Saure
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Berit Zeller-Plumhoff
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118, Kiel, Germany
| | - Sören Kaps
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Jörg Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Caprice Mohr
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
| | - Lena Rieck
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502, Geesthacht, Germany
| | - Ali Shaygan Nia
- Department of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Xinliang Feng
- Department of Chemistry and Food Chemistry, Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Nicola M Pugno
- Laboratory for Bioinspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, Trento, I-38123, Italy
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Rainer Adelung
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118, Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Department of Materials Science, Kiel University, 24143, Kiel, Germany
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, 24118, Kiel, Germany
| |
Collapse
|
16
|
Kondo S, Nishimura T, Nishina Y, Sano K. Countercation Engineering of Graphene-Oxide Nanosheets for Imparting a Thermoresponsive Ability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37837-37844. [PMID: 37486061 DOI: 10.1021/acsami.3c07820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Graphene-oxide (GO) nanosheets, which are oxidized derivatives of graphene, are regarded as promising building blocks for functional soft materials. Especially, thermoresponsive GO nanosheets have been widely employed to develop smart membranes/surfaces, hydrogel actuators, recyclable systems, and biomedical applications. However, current synthetic strategies to generate such thermoresponsive GO nanosheets have exclusively relied on the covalent or non-covalent modification of their surfaces with thermoresponsive polymers, such as poly(N-isopropylacrylamide). To impart a thermoresponsive ability to GO nanosheets themselves, we focused on the countercations of the carboxy and acidic hydroxy groups on the GO nanosheets. In this study, we established a general and reliable method to synthesize GO nanosheets with target countercations and systematically investigated their effects on thermoresponsive behaviors of GO nanosheets. As a result, we discovered that GO nanosheets with Bu4N+ countercations became thermoresponsive in water without the use of any thermoresponsive polymers, inducing a reversible sol-gel transition via their self-assembly and disassembly processes. Owing to the sol-gel transition capability, the resultant dispersion can be used as a direct writing ink for constructing a three-dimensionally designable gel architecture of the GO nanosheets. Our concept of "countercation engineering" can become a new strategy for imparting a stimuli-responsive ability to various charged nanomaterials for the development of next-generation smart materials.
Collapse
Affiliation(s)
- Shoma Kondo
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Koki Sano
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
17
|
Chen X, Zhang L, Wang X, Xu L, Sun J, Liu Y, Liu X, Kalvakolanu DV, Guo B. Stat3 shRNA delivery with folate receptor-modified multi-functionalized graphene oxide particles for combined infrared radiation and gene therapy in hepatocellular carcinoma. Anticancer Drugs 2023; 34:715-724. [PMID: 36729998 DOI: 10.1097/cad.0000000000001461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
As a vital oncogene, a variety of inhibitors targeting Stat3 and its various upstream signaling pathways has been explored. Since small molecules, peptidomimetics and other peptide inhibitors usually lead to side effects and difficult administration, gene therapeutics that have characteristics of low toxicity and high targeting, make them an attractive alternative for targeting Stat3. A major challenge to this approach is the lack of safe delivery systems for in-vivo applications. Among the various siRNA delivery systems, nanoparticles emerge as a new tool for gene delivery with high biocompatibility, low cost, and minimal toxicity. In this study, we developed a graphene oxide (GO)-based nanocarrier, GO-polyethyleneimine (PEI)-polyethylene glycol (PEG)-folic acid (FA), as a tool targeting for Stat3-specific shRNA to mouse hepatoma cells in vitro and in vivo . Infrared photothermal therapy was combined in vivo since GO has the characteristic of infrared absorbability. Our results suggest a significant tumor growth inhibition after treatment with GO-PEI-PEG-FA- sh-Stat3 combined with infrared photothermal therapy. Thus, GO-PEI-PEG-FA appears to be a novel nano-transformer that could be used in the clinics in future.
Collapse
Affiliation(s)
- Xuyang Chen
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
- Department of Pathophysiology, Basic Medical College, Jilin University, Changchun 130021, China
| | - Ling Zhang
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, Maryland, USA
| | - Xiaoqin Wang
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Libo Xu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Jicheng Sun
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Yiran Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Xiaorui Liu
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| | - Dhan V Kalvakolanu
- Greenebaum NCI Comprehensive Cancer Center, Department of Microbiology and Immunology University of Maryland School Medicine, Baltimore, Maryland, USA
| | - Baofeng Guo
- Department of Plastic Surgery, China-Japan Union Hospital, Jilin University, Changchun 130033, China
| |
Collapse
|
18
|
Bin Asghar Abbasi B, Gigliotti M, Aloko S, Jolfaei MA, Spinks GM, Jiang Z. Designing strong, fast, high-performance hydrogel actuators. Chem Commun (Camb) 2023; 59:7141-7150. [PMID: 37194593 DOI: 10.1039/d3cc01545a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Hydrogel actuators displaying programmable shape transformations are particularly attractive for integration into future soft robotics with safe human-machine interactions. However, these materials are still in their infancy, and many significant challenges remain presenting impediments to their practical implementation, including poor mechanical properties, slow actuation speed and limited actuation performance. In this review, we discuss the recent advances in hydrogel designs to address these critical limitations. First, the material design concepts to improve mechanical properties of hydrogel actuators will be introduced. Examples are also included to highlight strategies to realize fast actuation speed. In addition, recent progress about creating strong and fast hydrogel actuators are sumarized. Finally, a discussion of different methods to realize high values in several aspects of actuation performance metrics for this class of materials is provided. The advances and challenges discussed in this highlight could provide useful guidelines for rational design to manipulate the properties of hydrogel actuators toward widespread real-world applications.
Collapse
Affiliation(s)
- Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Matthew Gigliotti
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Sinmisola Aloko
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
19
|
Wei R, Xiang H, Xie M, Chen G, Zhang X, Zhao C. Programming a Dual-Responsive Switch in Both the Surface and Interior of an Asymmetric Separation Membrane. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
20
|
Liang H, Wei Y, Ji Y. Magnetic-responsive Covalent Adaptable Networks. Chem Asian J 2023; 18:e202201177. [PMID: 36645376 DOI: 10.1002/asia.202201177] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/07/2023] [Accepted: 01/16/2023] [Indexed: 01/17/2023]
Abstract
Covalent adaptable networks (CANs) are reprocessable polymers whose structural arrangement is based on the recombination of dynamic covalent bonds. Composite materials prepared by incorporating magnetic particles into CANs attract much attention due to their remote and precise control, fast response speed, high biological safety and strong penetration of magnetic stimuli. These properties often involve magnetothermal effect and direct magnetic-field guidance. Besides, some of them can also respond to light, electricity or pH values. Thus, they are favorable for soft actuators since various functions are achieved such as magnetic-assisted self-healing (heating or at ambient temperature), welding (on land or under water), shape-morphing, and so on. Although magnetic CANs just start to be studied in recent two years, their advances are promised to expand the practical applications in both cutting-edge academic and engineering fields. This review aims to summarize recent progress in magnetic-responsive CANs, including their design, synthesis and application.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University Chung-Li, 32023, Taiwan, P. R. China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
21
|
Rizwan A, Gulfam M, Jo SH, Seo JW, Ali I, Thang Vu T, Joo SB, Park SH, Taek Lim K. Gelatin-based NIR and reduction-responsive injectable hydrogels cross-linked through IEDDA click chemistry for drug delivery application. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
22
|
Howard E, Li M, Kozma M, Zhao J, Bae J. Self-strengthening stimuli-responsive nanocomposite hydrogels. NANOSCALE 2022; 14:17887-17894. [PMID: 36448666 DOI: 10.1039/d2nr05408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Stimuli-responsive hydrogels with self-strengthening properties are promising for the use of autonomous growth and adaptation systems to the surrounding environments by mimicking biological materials. However, conventional stimuli-responsive hydrogels require structural destruction to initiate mechanochemical reactions to grow new polymeric networks and strengthen themselves. Here we report continuous self-strengthening of a nanocomposite hydrogel composed of poly(N-isopropylacrylamide) (PNIPAM) and nanoclay (NC) by using external stimuli such as heat and ionic strength. The internal structures of the NC-PNIPAM hydrogel are rearranged through the swelling-deswelling cycles or immersing in a salt solution, thus its mechanical properties are significantly improved. The effects of concentration of NC in hydrogels, number of swelling-deswelling cycles, and presence of salt in the surrounding environment on the mechanical properties of hydrogels are characterized by nanoindentation and tensile tests. The self-strengthening mechanical performance of the hydrogels is demonstrated by the loading ability. This work may offer promise for applications such as artificial muscles and soft robotics.
Collapse
Affiliation(s)
- Elizabeth Howard
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Michael Kozma
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jiayu Zhao
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Jinhye Bae
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA 92093, USA
- Chemical Engineering Program, Department of Nanoengineering, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
23
|
Wang W, Li PF, Xie R, Ju XJ, Liu Z, Chu LY. Designable Micro-/Nano-Structured Smart Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107877. [PMID: 34897843 DOI: 10.1002/adma.202107877] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Smart polymeric materials with dynamically tunable physico-chemical characteristics in response to changes of environmental stimuli, have received considerable attention in myriad fields. The diverse combination of their micro-/nano-structural and molecular designs creates promising and exciting opportunities for exploiting advanced smart polymeric materials. Engineering micro-/nano-structures into smart polymeric materials with elaborate molecular design enables intricate coordination between their structures and molecular-level response to cooperatively realize smart functions for practical applications. In this review, recent progresses of smart polymeric materials that combine micro-/nano-structures and molecular design to achieve designed advanced functions are highlighted. Smart hydrogels, gating membranes, gratings, milli-particles, micro-particles and microvalves are employed as typical examples to introduce their design and fabrication strategies. Meanwhile, the key roles of interplay between their micro-/nano-structures and responsive properties to realize the desired functions for their applications are emphasized. Finally, perspectives on the current challenges and opportunities of micro-/nano-structured smart polymeric materials for their future development are presented.
Collapse
Affiliation(s)
- Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Ping-Fan Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, China
| |
Collapse
|
24
|
Photomotion of Hydrogels with Covalently Attached Azo Dye Moieties—Thermoresponsive and Non-Thermoresponsive Gels. Gels 2022; 8:gels8090541. [PMID: 36135253 PMCID: PMC9498539 DOI: 10.3390/gels8090541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
The unique photomotion of azo materials under irradiation has been in the focus of research for decades and has been expanded to different classes of solids such as polymeric glasses, liquid crystalline materials, and elastomers. In this communication, azo dye-containing gels are obtained by photocrosslinking of non-thermoresponsive and lower critical solution temperature type thermoresponsive copolymers. These are analysed with light microscopy regarding their actuation behaviour under laser irradiation. The influences of the cloud-point temperature and of the laser power are investigated in a series of comparative experiments. The thermoresponsive hydrogels show more intense photoactuation when the cloud-point temperature of the non-crosslinked polymer is above, but closer to, room temperature, while higher laser powers lead to stronger motion, indicating a photothermal mechanism. In non-thermoresponsive gels, considerably weaker photoactuation occurs, signifying a secondary mechanism that is a direct consequence of the optical field-azo dye interaction.
Collapse
|
25
|
Poly(N-isopropylacrylamide) Based Electrically Conductive Hydrogels and Their Applications. Gels 2022; 8:gels8050280. [PMID: 35621578 PMCID: PMC9142127 DOI: 10.3390/gels8050280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) based electrically conductive hydrogels (PNIPAM-ECHs) have been extensively studied in recent decades due to their thermal-responsive (leading to the volume change of hydrogels) and electrically conductive performance. The incorporation of conductive components into the PNIPAM hydrogel network makes it become conductive hydrogel, and as a result, the PNIPAM hydrogel could become sensitive to an electrical signal, greatly expanding its application. In addition, conductive components usually bring new stimuli-responsive properties of PNIPAM-based hydrogels, such as near-infrared light and stress/strain responsive properties. PNIPAM-ECHs display a wide range of applications in human motion detection, actuators, controlled drug release, wound dressings, etc. To summarize recent research advances and achievements related to PNIPAM-ECHs, this manuscript first reviews the design and structure of representative PNIPAM-ECHs according to their conductive components. Then, the applications of PNIPAM-ECHs have been classified and discussed. Finally, the remaining problems related to PNIPAM-ECHs have been summarized and a future research direction is proposed which is to fabricate PNIPAM-ECHs with integrated multifunctionality.
Collapse
|
26
|
Jiang Y, Wang J, Wang J, Zhuang Y, Qi L, Feng G, Zhang L. Fabrication of novel
PNIPAM
@
GO
microspheres loaded with dual drugs featuring on‐demand drug release capability. J Appl Polym Sci 2022. [DOI: 10.1002/app.52444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yulin Jiang
- Analytical & Testing Center and Department of Orthopedic Surgery Sichuan University Chengdu China
| | - Jing Wang
- Analytical & Testing Center and Department of Orthopedic Surgery Sichuan University Chengdu China
| | - Juehan Wang
- Analytical & Testing Center and Department of Orthopedic Surgery Sichuan University Chengdu China
| | - Yi Zhuang
- Analytical & Testing Center and Department of Orthopedic Surgery Sichuan University Chengdu China
| | - Lin Qi
- Analytical & Testing Center and Department of Orthopedic Surgery Sichuan University Chengdu China
| | - Ganjun Feng
- Analytical & Testing Center and Department of Orthopedic Surgery Sichuan University Chengdu China
| | - Li Zhang
- Analytical & Testing Center and Department of Orthopedic Surgery Sichuan University Chengdu China
| |
Collapse
|
27
|
Hamedi H, Moradi S, Hudson SM, Tonelli AE, King MW. Chitosan based bioadhesives for biomedical applications: A review. Carbohydr Polym 2022; 282:119100. [DOI: 10.1016/j.carbpol.2022.119100] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/21/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022]
|
28
|
Zheng N, Fitzpatrick V, Cheng R, Shi L, Kaplan DL, Yang C. Photoacoustic Carbon Nanotubes Embedded Silk Scaffolds for Neural Stimulation and Regeneration. ACS NANO 2022; 16:2292-2305. [PMID: 35098714 DOI: 10.1021/acsnano.1c08491] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Neural interfaces using biocompatible scaffolds provide crucial properties, such as cell adhesion, structural support, and mass transport, for the functional repair of nerve injuries and neurodegenerative diseases. Neural stimulation has also been found to be effective in promoting neural regeneration. This work provides a generalized strategy to integrate photoacoustic (PA) neural stimulation into hydrogel scaffolds using a nanocomposite hydrogel approach. Specifically, polyethylene glycol (PEG)-functionalized carbon nanotubes (CNT), highly efficient photoacoustic agents, are embedded into silk fibroin to form biocompatible and soft photoacoustic materials. We show that these photoacoustic functional scaffolds enable nongenetic activation of neurons with a spatial precision defined by the area of light illumination, promoting neuron regeneration. These CNT/silk scaffolds offered reliable and repeatable photoacoustic neural stimulation, and 94% of photoacoustic-stimulated neurons exhibit a fluorescence change larger than 10% in calcium imaging in the light-illuminated area. The on-demand photoacoustic stimulation increased neurite outgrowth by 1.74-fold in a rat dorsal root ganglion model, when compared to the unstimulated group. We also confirmed that promoted neurite outgrowth by photoacoustic stimulation is associated with an increased concentration of neurotrophic factor (BDNF). As a multifunctional neural scaffold, CNT/silk scaffolds demonstrated nongenetic PA neural stimulation functions and promoted neurite outgrowth, providing an additional method for nonpharmacological neural regeneration.
Collapse
Affiliation(s)
| | - Vincent Fitzpatrick
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | | |
Collapse
|
29
|
Peng K, Zheng L, Zhou T, Zhang C, Li H. Light manipulation for fabrication of hydrogels and their biological applications. Acta Biomater 2022; 137:20-43. [PMID: 34637933 DOI: 10.1016/j.actbio.2021.10.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/11/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
The development of biocompatible materials with desired functions is essential for tissue engineering and biomedical applications. Hydrogels prepared from these materials represent an important class of soft matter for mimicking extracellular environments. In particular, dynamic hydrogels with responsiveness to environments are quite appealing because they can match the dynamics of biological processes. Among the external stimuli that can trigger responsive hydrogels, light is considered as a clean stimulus with high spatiotemporal resolution, complete bioorthogonality, and fine tunability regarding its wavelength and intensity. Therefore, photoresponsiveness has been broadly encoded in hydrogels for biological applications. Moreover, light can be used to initiate gelation during the fabrication of biocompatible hydrogels. Here, we present a critical review of light manipulation tools for the fabrication of hydrogels and for the regulation of physicochemical properties and functions of photoresponsive hydrogels. The materials, photo-initiated chemical reactions, and new prospects for light-induced gelation are introduced in the former part, while mechanisms to render hydrogels photoresponsive and their biological applications are discussed in the latter part. Subsequently, the challenges and potential research directions in this area are discussed, followed by a brief conclusion. STATEMENT OF SIGNIFICANCE: Hydrogels play a vital role in the field of biomaterials owing to their water retention ability and biocompatibility. However, static hydrogels cannot meet the dynamic requirements of the biomedical field. As a stimulus with high spatiotemporal resolution, light is an ideal tool for both the fabrication and operation of hydrogels. In this review, light-induced hydrogelation and photoresponsive hydrogels are discussed in detail, and new prospects and emerging biological applications are described. To inspire more research studies in this promising area, the challenges and possible solutions are also presented.
Collapse
|
30
|
Shi K, Xu Z, Huang M, Zou L, Zheng D, Yang Z, Zhang W. Solid-state polymer electrolytes with polypropylene separator-reinforced sandwich structure for room-temperature lithium ion batteries. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Dong Y, Ramey-Ward AN, Salaita K. Programmable Mechanically Active Hydrogel-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006600. [PMID: 34309076 PMCID: PMC8595730 DOI: 10.1002/adma.202006600] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Indexed: 05/14/2023]
Abstract
Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel-based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost-efficiency. First, the composition of hydrogel MAMs along with the top-down and bottom-up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel-based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| | - Allison N. Ramey-Ward
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| |
Collapse
|
32
|
Luo P, Xiang S, Li C, Zhu M. Photomechanical polymer hydrogels based on molecular photoswitches. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Peng‐Fei Luo
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Shi‐Li Xiang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| | - Ming‐Qiang Zhu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optics and Electronic Information Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
33
|
Robust and rapid responsive organic-inorganic hybrid bilayer hydrogel actuators with silicon nanoparticles as the cross-linker. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Zheng Q, Xu C, Jiang Z, Zhu M, Chen C, Fu F. Smart Actuators Based on External Stimulus Response. Front Chem 2021; 9:650358. [PMID: 34136462 PMCID: PMC8200850 DOI: 10.3389/fchem.2021.650358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Smart actuators refer to integrated devices that are composed of smart and artificial materials, and can provide actuation and dampening capabilities in response to single/multi external stimuli (such as light, heat, magnetism, electricity, humidity, and chemical reactions). Due to their capability of dynamically sensing and interaction with complex surroundings, smart actuators have attracted increasing attention in different application fields, such as artificial muscles, smart textiles, smart sensors, and soft robots. Among these intelligent material, functional hydrogels with fiber structure are of great value in the manufacture of smart actuators. In this review, we summarized the recent advances in stimuli-responsive actuators based on functional materials. We emphasized the important role of functional nano-material-based additives in the preparation of the stimulus response materials, then analyzed the driving response medium, the preparation method, and the performance of different stimuli responses in detail. In addition, some challenges and future prospects of smart actuators are reported.
Collapse
Affiliation(s)
- Qinchao Zheng
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chenxue Xu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Zhenlin Jiang
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China.,Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, National University of Defense Technology, Changsha, China
| | - Min Zhu
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Chen Chen
- College of Chemistry and Chemical Engineering, Research Center for Advanced Mirco- and Nano-Fabrication Materials, Shanghai University of Engineering Science, Shanghai, China
| | - Fanfan Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
35
|
Cao Y, Cheng Y, Zhao G. Near-Infrared Light-, Magneto-, and pH-Responsive GO-Fe 3O 4/Poly( N-isopropylacrylamide)/alginate Nanocomposite Hydrogel Microcapsules for Controlled Drug Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5522-5530. [PMID: 33929865 DOI: 10.1021/acs.langmuir.1c00207] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Responsive hydrogels have found widespread applications in biomedical science and engineering fields, especially for drug delivery. Despite the superior performance of responsive hydrogels, challenges still exist in drug-delivery efficiency when environmental stimuli are weak. Recently, the demand in the design of hydrogel-based drug delivery systems has stimulated considerable interest in the search for new strategies, for instance, the application of nanocomposite hydrogels for reinforcing the versatility and flexibility in controlled drug delivery. In this study, a novel and effective nanocomposite hydrogel microcapsule drug delivery system, which is composed of poly(N-isopropylacrylamide) (PNIPAM) and alginate interpenetrating polymer and GO-Fe3O4 nanomaterials, is developed to achieve NIR light-, magneto-, and pH-responsive drug release. The GO-Fe3O4 nanomaterials embedded in the interpenetrating polymer enable the PNIPAM hydrogel deswelling by raising temperature above the lower critical solution temperature under NIR light and alternating magnetic field, thus accelerating the release of doxorubicin. In addition, the introduction of alginate into PNIPAM hydrogels endows nanocomposite hydrogels (NCHs) with quick gelation property, enhanced mechanical property, and pH-responsive performance. The in vitro cytotoxicity assay confirmed that the NCH platform can effectively kill the cancer cells. This novel multiresponsive drug delivery system holds great promise for the treatment of diseases.
Collapse
Affiliation(s)
- Yuan Cao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yue Cheng
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Gang Zhao
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
36
|
Zheng X, Liu X, Zha L. Fabrication of ultrafast temperature‐responsive nanofibrous hydrogel with superelasticity and its 'on–off' switchable drug releasing capacity. J Appl Polym Sci 2021. [DOI: 10.1002/app.50280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xie Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Materials Science and Engineering Donghua University Shanghai China
| | - Xiaoyun Liu
- Research Center for Analysis and Measurement Donghua University Shanghai China
| | - Liusheng Zha
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials and College of Materials Science and Engineering Donghua University Shanghai China
| |
Collapse
|
37
|
Chen T, Yang Y, Peng H, Whittaker AK, Li Y, Zhao Q, Wang Y, Zhu S, Wang Z. Cellulose nanocrystals reinforced highly stretchable thermal-sensitive hydrogel with ultra-high drug loading. Carbohydr Polym 2021; 266:118122. [PMID: 34044938 DOI: 10.1016/j.carbpol.2021.118122] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Hydrogels often have poor mechanical properties which limit their application in load-bearing tissues such as muscle and cartilage. In this work, a near-infrared light-triggered stretchable thermal-sensitive hydrogel with ultra-high drug loading was developed by a combination of natural polymeric nanocrystals, a network of synthetic thermo-responsive polymer, and magnetic Fe3O4 nanoparticles. The hydrogels comprise cellulose nanocrystals (CNCs) decorated with Fe3O4 nanoparticles (Fe3O4/CNCs) dispersed homogeneously in poly(N-isopropylacrylamide) (PNIPAm) networks. The composite hydrogels exhibit an extensibility of 2200%. Drug loading of vancomycin (VCM) reached a high value of 10.18 g g-1 due to the dispersion of Fe3O4/CNCs and the interactions between the CNCs and the PNIPAm network. Importantly, the hydrogels demonstrated a thermo-response triggered by NIR, with the temperature increasing from 26 to 41 °C within 60 s. The hydrogels have high biocompatibility evidenced by cell proliferation tests, illustrating that these hydrogels are promising as dressings for wound closure, and wound healing.
Collapse
Affiliation(s)
- Tianxing Chen
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yuan Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Qinglan Zhao
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yu Wang
- Shanghai Yuking Water Soluble Material Tech., ltd., Shanghai 201318, People's Republic of China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Zhaoyang Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
38
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
39
|
Yang J, Zhang X, Zhang X, Wang L, Feng W, Li Q. Beyond the Visible: Bioinspired Infrared Adaptive Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004754. [PMID: 33624900 DOI: 10.1002/adma.202004754] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Indexed: 05/24/2023]
Abstract
Infrared (IR) adaptation phenomena are ubiquitous in nature and biological systems. Taking inspiration from natural creatures, researchers have devoted extensive efforts for developing advanced IR adaptive materials and exploring their applications in areas of smart camouflage, thermal energy management, biomedical science, and many other IR-related technological fields. Herein, an up-to-date review is provided on the recent advancements of bioinspired IR adaptive materials and their promising applications. First an overview of IR adaptation in nature and advanced artificial IR technologies is presented. Recent endeavors are then introduced toward developing bioinspired adaptive materials for IR camouflage and IR radiative cooling. According to the Stefan-Boltzmann law, IR camouflage can be realized by either emissivity engineering or thermal cloaks. IR radiative cooling can maximize the thermal radiation of an object through an IR atmospheric transparency window, and thus holds great potential for use in energy-efficient green buildings and smart personal thermal management systems. Recent advances in bioinspired adaptive materials for emerging near-IR (NIR) applications are also discussed, including NIR-triggered biological technologies, NIR light-fueled soft robotics, and NIR light-driven supramolecular nanosystems. This review concludes with a perspective on the challenges and opportunities for the future development of bioinspired IR adaptive materials.
Collapse
Affiliation(s)
- Jiajia Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Xinfang Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| | - Xuan Zhang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ling Wang
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Wei Feng
- School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
- Key Laboratory of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin, 300350, China
| | - Quan Li
- Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|
40
|
Han D, Wang Y, Yang C, Lee H. Multimaterial Printing for Cephalopod-Inspired Light-Responsive Artificial Chromatophores. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12735-12745. [PMID: 33390008 DOI: 10.1021/acsami.0c17623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cephalopods use chromatophores distributed on their soft skin to change skin color and its pattern. Each chromatophore consists of a central sac containing pigment granules and radial muscles surrounding the sac. The contraction of the radial muscle causes the central sac to expand in area, making the color of the pigment more visible. With the chromatophores actuating individually, cephalopods can create extremely complex skin color patterns, which they utilize for exquisite functions including camouflage and communication. Inspired by this mechanism, we present an artificial chromatophore that can modulate its color pattern in response to light. Multimaterial projection microstereolithography is used to integrate three functional components including a photoactive hydrogel composite with polydopamine nanoparticles (PDA-NPs), acrylic acid hydrogel, and poly(ethylene glycol) diacrylate. In order to generate light-driven actuation of the artificial chromatophore, the photothermal effect of the PDA-NPs, light-responsive deformation of the photoactive hydrogel composite, and the produced mechanical stresses are studied. Mechanical properties and interfacial bonding strengths between different materials are also investigated to ensure structural integrity during actuation. We demonstrate pattern modulation of the light-responsive artificial chromatophores (LACs) with the projection of different light patterns. The LAC may suggest a new concept for various engineering applications such as the camouflage interface, biophotonic device, and flexible display.
Collapse
Affiliation(s)
- Daehoon Han
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Yueping Wang
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Chen Yang
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| | - Howon Lee
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08854, United States
| |
Collapse
|
41
|
Chen P, Huang Y, Bo Y, Liang H, Xiao A, Guan BO. 3D nanointerface enhanced optical microfiber for real-time detection and sizing of single nanoparticles. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 407:127143. [PMID: 33013189 PMCID: PMC7524536 DOI: 10.1016/j.cej.2020.127143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Portable devices, which can detect and characterize the individual nanoparticles in real time, are of insignificant interest for early diagnosis, homeland security, semiconductor manufacturing and environmental monitoring. Optical microfibers present a good potential in this field, however, are restricted by the sensitivity limit. This study reports the development of a 3D plasmonic nanointerface, which is made of a Cu-BTC framework supporting Cu3-xP nanocrystals, enhancing the optical microfiber for real-time detection and sizing of single nanoparticles. The Cu3-xP nanocrystals are successfully embedded in the 3D Cu-BTC framework. The localized-surface plasmon resonance is tuned to coincide with the evanescent field of the optical microfiber. The 3D Cu-BTC framework, as the scaffold of nanocrystals, confines the local resonance field on the microfiber with three dimensions, at which the binding of target nanoparticles occurs. Based on the evanescent field confinement and surface enhancement by the nanointerface, the optical microfiber sensor overcomes its sensitivity limit, and enables the detection and sizing of the individual nanoparticles. The compact size and low optical power supply of the sensor confirm its suitability as a portable device for the real-time single-nanoparticle characterization, especially for the convenient evaluation of the ultrafine particles in the environment. This work opens up an approach to overcome the sensitivity limit of the optical microfibers, as long with stimulating the portable real-time single-nanoparticle detection and sizing.
Collapse
Affiliation(s)
- Pengwei Chen
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Yunyun Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Ye Bo
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - He Liang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Aoxiang Xiao
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 511143, China
| |
Collapse
|
42
|
Sun X, Huang C, Wang L, Liang L, Cheng Y, Fei W, Li Y. Recent Progress in Graphene/Polymer Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001105. [PMID: 32893409 DOI: 10.1002/adma.202001105] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 06/17/2020] [Indexed: 06/11/2023]
Abstract
Nanocomposites, multiphase solid materials with at least one nanoscaled component, have been attracting ever-increasing attention because of their unique properties. Graphene is an ideal filler for high-performance multifunctional nanocomposites in light of its superior mechanical, electrical, thermal, and optical properties. However, the 2D nature of graphene usually gives rise to highly anisotropic features, which brings new opportunities to tailor nanocomposites by making full use of its excellent in-plane properties. Here, recent progress on graphene/polymer nanocomposites is summarized with emphasis on strengthening/toughening, electrical conduction, thermal transportation, and photothermal energy conversion. The influence of the graphene configuration, including layer number, defects, and lateral size, on its intrinsic properties and the properties of graphene/polymer nanocomposites is systematically analyzed. Meanwhile, the role of the interfacial interaction between graphene and polymer in affecting the properties of nanocomposites is also explored. The correlation between the graphene distribution in the matrix and the properties of the nanocomposite is discussed in detail. The key challenges and possible solutions are also addressed. This review may provide a constructive guidance for preparing high-performance graphene/polymer nanocomposite in the future.
Collapse
Affiliation(s)
- Xianxian Sun
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Center for Composite Materials and Structures, School of Astronautics, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Chuanjin Huang
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Lidong Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Lei Liang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Center for Composite Materials and Structures, School of Astronautics, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Yuanjing Cheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Center for Composite Materials and Structures, School of Astronautics, Harbin Institute of Technology, Harbin, 150080, P. R. China
| | - Weidong Fei
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Yibin Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin, 150080, P. R. China
- Center for Composite Materials and Structures, School of Astronautics, Harbin Institute of Technology, Harbin, 150080, P. R. China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, P. R. China
- Shenzhen STRONG Advanced Materials Institute Ltd. Corp, Shenzhen, 518000, P. R. China
| |
Collapse
|
43
|
Okada S, Sato E. Thermo- and Photoresponsive Behaviors of Dual-Stimuli-Responsive Organogels Consisting of Homopolymers of Coumarin-Containing Methacrylate. Polymers (Basel) 2021; 13:polym13030329. [PMID: 33494152 PMCID: PMC7864332 DOI: 10.3390/polym13030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
Coumarin-containing vinyl homopolymers, such as poly(7-methacryloyloxycoumarin) (P1a) and poly(7-(2'-methacryloyloxyethoxy)coumarin) (P1b), show a lower critical solution temperature (LCST) in chloroform, which can be controlled by the [2 + 2] photochemical cycloaddition of the coumarin moiety, and they are recognized as monofunctional dual-stimuli-responsive polymers. A single functional group of monofunctional dual-stimuli-responsive polymers responds to dual stimuli and can be introduced more uniformly and densely than those of dual-functional dual-stimuli-responsive polymers. In this study, considering a wide range of applications, organogels consisting of P1a and P1b, i.e., P1a-gel and P1b-gel, respectively, were synthesized, and their thermo- and photoresponsive behaviors in chloroform were investigated in detail. P1a-gel and P1b-gel in a swollen state (transparent) exhibited phase separation (turbid) through a temperature jump and reached a shrunken state (transparent), i.e., an equilibrium state, over time. Moreover, the equilibrium degree of swelling decreased non-linearly with increasing temperature. Furthermore, different thermoresponsive sites were photopatterned on the organogel through the photodimerization of the coumarin unit. The organogels consisting of homopolymers of coumarin-containing methacrylate exhibited unique thermo- and photoresponsivities and behaved as monofunctional dual-stimuli-responsive organogels.
Collapse
Affiliation(s)
| | - Eriko Sato
- Correspondence: ; Tel./Fax: +81-6-6605-2982
| |
Collapse
|
44
|
Zhang H, Yue M, Wang T, Wang J, Wu X, Yang S. Conductive hydrogel-based flexible strain sensors with superior chemical stability and stretchability for mechanical sensing in corrosive solvents. NEW J CHEM 2021. [DOI: 10.1039/d0nj05880g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Wearable flexible sensors face many harsh environments in practical applications.
Collapse
Affiliation(s)
- Hong Zhang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory for Utility of Environmental-Friendly Composite Materials and Biomass in University of Gansu Province
- Lanzhou 730030
- China
| | - Mingqiang Yue
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory for Utility of Environmental-Friendly Composite Materials and Biomass in University of Gansu Province
- Lanzhou 730030
- China
| | - Tingting Wang
- College of Chemical Engineering, Northwest Minzu University, Key Laboratory for Utility of Environmental-Friendly Composite Materials and Biomass in University of Gansu Province
- Lanzhou 730030
- China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Jinqing Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
| | - Xianzhang Wu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
| | - Shengrong Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences
| |
Collapse
|
45
|
Abstract
This review outlines progress in hydrogels with well-defined heterogeneity in structures and responsiveness by using sequential synthesis, photolithography, 3D/4D printing, and macroscopic assembling for programmable shape morphing or actuations.
Collapse
Affiliation(s)
- Feng-mei Cheng
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| | - Hong-xu Chen
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| | - Hai-dong Li
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University
- Jiaxing
- P. R. China
| |
Collapse
|
46
|
Cazin I, Rossegger E, Guedes de la Cruz G, Griesser T, Schlögl S. Recent Advances in Functional Polymers Containing Coumarin Chromophores. Polymers (Basel) 2020; 13:E56. [PMID: 33375724 PMCID: PMC7794725 DOI: 10.3390/polym13010056] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 11/17/2022] Open
Abstract
Natural and synthetic coumarin derivatives have gained increased attention in the design of functional polymers and polymer networks due to their unique optical, biological, and photochemical properties. This review provides a comprehensive overview over recent developments in macromolecular architecture and mainly covers examples from the literature published from 2004 to 2020. Along with a discussion on coumarin and its photochemical properties, we focus on polymers containing coumarin as a nonreactive moiety as well as polymer systems exploiting the dimerization and/or reversible nature of the [2πs + 2πs] cycloaddition reaction. Coumarin moieties undergo a reversible [2πs + 2πs] cycloaddition reaction upon irradiation with specific wavelengths in the UV region, which is applied to impart intrinsic healability, shape-memory, and reversible properties into polymers. In addition, coumarin chromophores are able to dimerize under the exposure to direct sunlight, which is a promising route for the synthesis and cross-linking of polymer systems under "green" and environment-friendly conditions. Along with the chemistry and design of coumarin functional polymers, we highlight various future application fields of coumarin containing polymers involving tissue engineering, drug delivery systems, soft robotics, or 4D printing applications.
Collapse
Affiliation(s)
- Ines Cazin
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| | - Elisabeth Rossegger
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| | - Gema Guedes de la Cruz
- Department Polymer Engineering and Science, Institute Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, 8700 Leoben, Austria; (G.G.d.l.C.); (T.G.)
| | - Thomas Griesser
- Department Polymer Engineering and Science, Institute Chemistry of Polymeric Materials, Montanuniversitaet Leoben, Otto Glöckel-Strasse 2, 8700 Leoben, Austria; (G.G.d.l.C.); (T.G.)
| | - Sandra Schlögl
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (I.C.); (E.R.)
| |
Collapse
|
47
|
Lee HP, Gaharwar AK. Light-Responsive Inorganic Biomaterials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000863. [PMID: 32995121 PMCID: PMC7507067 DOI: 10.1002/advs.202000863] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/24/2020] [Indexed: 05/19/2023]
Abstract
Light-responsive inorganic biomaterials are an emerging class of materials used for developing noninvasive, noncontact, precise, and controllable medical devices in a wide range of biomedical applications, including photothermal therapy, photodynamic therapy, drug delivery, and regenerative medicine. Herein, a range of biomaterials is discussed, including carbon-based nanomaterials, gold nanoparticles, graphite carbon nitride, transition metal dichalcogenides, and up-conversion nanoparticles that are used in the design of light-responsive medical devices. The importance of these light-responsive biomaterials is explored to design light-guided nanovehicle, modulate cellular behavior, as well as regulate extracellular microenvironments. Additionally, future perspectives on the clinical use of light-responsive biomaterials are highlighted.
Collapse
Affiliation(s)
- Hung Pang Lee
- Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
| | - Akhilesh K. Gaharwar
- Biomedical EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Material Science and EngineeringCollege of EngineeringTexas A&M UniversityCollege StationTX77843USA
- Center for Remote Health Technologies and SystemsTexas A&M UniversityCollege StationTX77843USA
| |
Collapse
|
48
|
Yu ZP, Dong LM, Song YY, Shi YJ, Liu Y. A controllable oil-triggered actuator with aligned microchannel design for implementing precise deformation. NANOSCALE 2020; 12:15426-15434. [PMID: 32661535 DOI: 10.1039/d0nr03157g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Soft actuators with the integration of facile preparation, rapid actuation rate, sophisticated motions, and precise control over deformation for application in complex devices are still highly desirable. Inspired by the aligned structures of moisture responsive pineal scales, an oil-triggered Janus actuator composed of a smooth hydrophobic surface and a superhydrophobic surface with aligned microchannels by simple laser etching was fabricated successfully, which can deform into various desirable shapes and recover to the original shape when triggered by oil and ethanol molecules. The aligned microchannel design causes different oil spread distances in the longitudinal and transverse directions, resulting in orientation-controlled bending and twisting with large-scale displacement. By changing the orientations of the patterned microchannels, one-dimensional folding deformation, twisting, rolling curling and object-inspired architectures can be facilely programmed. The reversible oil-triggered actuator will inspire more attractive applications such as in vivo surgery, biomimetic devices, energy harvesting systems and soft robotics.
Collapse
Affiliation(s)
- Zhao-Peng Yu
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China.
| | - Li-Ming Dong
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China.
| | - Yun-Yun Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Yuan-Ji Shi
- Department of Mechanical Engineering, Nanjing Institute of Industry Technology, Nanjing, Jiangsu 210046, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| |
Collapse
|
49
|
Eklund A, Zhang H, Zeng H, Priimagi A, Ikkala O. Fast Switching of Bright Whiteness in Channeled Hydrogel Networks. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2000754. [PMID: 32684907 PMCID: PMC7357574 DOI: 10.1002/adfm.202000754] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/15/2020] [Indexed: 05/22/2023]
Abstract
Beside pigment absorption and reflection by periodic photonic structures, natural species often use light scattering to achieve whiteness. Synthetic hydrogels offer opportunities in stimuli-responsive materials and devices; however, they are not conventionally considered as ideal materials to achieve high whiteness by scattering due to the ill-defined porosities and the low refractive index contrast between the polymer and water. Herein, a poly(N-isopropylacrylamide) hydrogel network with percolated empty channels (ch-PNIPAm) is demonstrated to possess switchable bright whiteness upon temperature changes, obtained by removing the physical agarose gel in a semi-interpenetrating network of agarose and PNIPAm. The hydrogel is highly transparent at room temperature and becomes brightly white above 35 °C. Compared to conventional PNIPAm, the ch-PNIPAm hydrogel exhibits 80% higher reflectance at 800 nm and 18 times faster phase transition kinetics. The nanoscopic channels in the ch-PNIPAm facilitate water diffusion upon phase transition, thus enabling the formation of smaller pores and enhanced whiteness in the gel. Furthermore, fast photothermally triggered response down to tens of milliseconds can be achieved. This unique property of the ch-PNIPAm hydrogel to efficiently scatter visible light can be potentially used for, e.g., smart windows, optical switches, and, as demonstrated in this report, thermoresponsive color displays.
Collapse
Affiliation(s)
- Amanda Eklund
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI 02150Finland
| | - Hang Zhang
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI 02150Finland
| | - Hao Zeng
- Smart Photonic MaterialsFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Arri Priimagi
- Smart Photonic MaterialsFaculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Applied PhysicsAalto UniversityP.O. Box 15100EspooFI 02150Finland
| |
Collapse
|
50
|
Chen Y, Wu W, Yu J, Wang Y, Zhu J, Hu Z. Mechanical strong stretchable conductive multi-stimuli-responsive nanocomposite double network hydrogel as biosensor and actuator. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1770-1792. [DOI: 10.1080/09205063.2020.1775760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Wenwen Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Junrong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Yan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Jing Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - Zuming Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|