1
|
Wang C, Qiao C, Tian F, Guo L, Wang R, Li J, Pang T, Pang R, Xie H. N-Doped Carbon Dots for Selective Detection of Fe 3+ and Degradation of Fe 3+/Basic Red 9 Complexes in Water Samples. J Fluoresc 2024:10.1007/s10895-024-03894-4. [PMID: 39153167 DOI: 10.1007/s10895-024-03894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
In this work, the eco-friendly N-doped carbon dots KF-CDs and A-CDs were derived from kiwifruit by a simple one-step hydrothermal strategy at 180 °C for 6 h. KF-CDs have a high fluorescence quantum yield (27.85%), it is obviously rapid quenched by Fe3+, and have a good linear relationship from 1 to 8.26 µM (the detection limit was 0.077 µM). Basic red 9 is extensively used in biological, environmental and industry. Although it makes a great contribution to the economy, its toxicity should be taken seriously, especially with harmful metal ions. Within 2 h, A-CDs could degrade basic red 9 with degradation efficiency 89.6%, even though there was a stable compound formed with Fe3+ that the degradation efficiency was up to 88.3%. The results complement the research blank of carbon dots in catalytic degradation of basic red 9.
Collapse
Affiliation(s)
- Caixia Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| | - Chengkui Qiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Fajun Tian
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Linlin Guo
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Ruiping Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Jun Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Tao Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Rongli Pang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Hanzhong Xie
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
2
|
Selva Sharma A, Lee NY. Comprehensive review on fluorescent carbon dots and their applications in nucleic acid detection, nucleolus targeted imaging and gene delivery. Analyst 2024; 149:4095-4115. [PMID: 39007289 DOI: 10.1039/d4an00630e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Carbon dots (CDs), including carbon quantum dots, graphene quantum dots, carbon nanodots, and polymer dots, have gained significant attention due to their unique structural and fluorescence characteristics. This review provides a comprehensive overview of the classification, structural characteristics, and fluorescence properties of CDs, followed by an exploration of various fluorescence sensing mechanisms and their applications in gene detection, nucleolus imaging, and gene delivery. Furthermore, the functionalization of CDs with diverse surface ligand molecules, including dye molecules, nucleic acid probes, and metal derivatives, for sensitive nucleic acid detection is systematically examined. Fluorescence imaging of the cell nucleolus plays a vital role in examining intracellular processes and the dynamics of subcellular structures. By analyzing the mechanism of fluorescence and structure-function relationships inherent in CDs, the nucleolus targeting abilities of CDs in various cell lines have been discussed. Additionally, challenges such as the insufficient organelle specificity of CDs and the inconsistent mechanisms underlying nucleolus targeting have also been highlighted. The unique physical and chemical properties of CDs, particularly their strong affinity toward deoxyribonucleic acid (DNA), have spurred interest in gene delivery applications. The use of nuclear-targeting peptides, polymers, and ligands in conjunction with CDs for improved gene delivery applications have been systematically reviewed. Through a comprehensive analysis, the review aims to contribute to a deeper understanding of the potential and challenges associated with CDs in biomedical applications.
Collapse
Affiliation(s)
- Arumugam Selva Sharma
- Department of Nanoscience and Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea.
| |
Collapse
|
3
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
4
|
Mohebbi S, Zoughi S, Faridbod F, Moradi S. Early fetal sex determination using a fluorescent DNA nanosensing platform capable of simultaneous detection of SRY and DYS14 sequences in cell-free fetal DNA. Heliyon 2024; 10:e33131. [PMID: 39022100 PMCID: PMC11252956 DOI: 10.1016/j.heliyon.2024.e33131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Early fetal sex determination is of crucial importance in the management of prenatal diagnosis of X-linked genetic abnormalities and congenital adrenal hyperplasia. The development of an efficient and simple method for high-sensitivity, affordable, and rapid screening of cell-free fetal DNA (cffDNA) is crucial for fetal sex determination in early pregnancy. In this study, single- and dual-fluorophore DNA biosensors based on multi-walled carbon nanotubes (MWCNT) were fabricated for the individual and simultaneous detection of the SRY gene and DYS14 marker in cffDNA obtained from maternal plasma samples. This nanosensing platform is based on the immobilization of single-stranded DNA (ssDNA) probes, labeled with ROX or FAM fluorophores, on MWCNT, resulting in the quenching of fluorescence emission in the absence of the targets. Upon the addition of the complementary target DNA (ctDNA) to the hybridization reaction, the fluorescence emission of fluorophore-labeled probes was significantly recovered to 79.5 % for ROX-labeled probes (i.e. SRY-specific probes), 81.5 % for FAM-labeled probes (i.e. DYS14-specific probes), and 65.9 % for dual-fluorophore biosensor compared to the quenching mode. The limit of detection (LOD) for ROX, and FAM was determined to be 4.5 nM, and 7.6 nM, respectively. For dual-color probes, LOD was found to be 5.4 (ROX) and 9.2 nM (FAM). Finally, the clinical applicability of the proposed method was confirmed through the detection of both biomarkers in maternal plasma samples, suggesting that the proposed nanosensing platform may be useful for the early detection of fetal sex using cffDNA.
Collapse
Affiliation(s)
- Saeed Mohebbi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sheida Zoughi
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- miRas Biotech, Tehran, Iran
| |
Collapse
|
5
|
Hoang Huy VP, Bark CW. A self-powered photodetector through facile processing using polyethyleneimine/carbon quantum dots for highly sensitive UVC detection. RSC Adv 2024; 14:12360-12371. [PMID: 38633486 PMCID: PMC11022040 DOI: 10.1039/d3ra08538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/16/2024] [Indexed: 04/19/2024] Open
Abstract
Ultraviolet C (UVC) photodetectors have garnered considerable attention recently because the detection of UVC is critical for preventing skin damage in humans, monitoring environmental conditions, detecting power aging in facilities, and military applications. As UVC detectors are "solar-blind", they encounter less interference than other environmental signals, resulting in low disturbance levels. This study employed a natural precursor (glucose) and a one-step ultrasonic reaction procedure to prepare carbon quantum dots (CQDs), which served as a convenient and environmentally friendly material to combine with polyethyleneimine (PEI). The prepared materials were used to develop a self-powered, high-performance UVC photodetector. The thickness of the constitutive film was investigated in detail based on the conditions of the electron transport pathway and trap positions to further improve the performance of the PEI/CQD photodetectors. Under the optimized conditions, the photodetector could generate a strong signal (1.5 mA W-1 at 254 nm) and exhibit high detectability (1.8 × 1010 Jones at 254 nm), an ultrafast response, and long-term stability during the power supply sequence. The developed solar-blind UVC photodetector can be applied in various ways to monitor UVC in an affordable, straightforward, and precise manner.
Collapse
Affiliation(s)
- Vo Pham Hoang Huy
- Department of Electrical Engineering, Gachon University Seongnam Gyeonggi 13120 Republic of Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University Seongnam Gyeonggi 13120 Republic of Korea
| |
Collapse
|
6
|
Wang H, Yang S, Chen L, Li Y, He P, Wang G, Dong H, Ma P, Ding G. Tumor diagnosis using carbon-based quantum dots: Detection based on the hallmarks of cancer. Bioact Mater 2024; 33:174-222. [PMID: 38034499 PMCID: PMC10684566 DOI: 10.1016/j.bioactmat.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 12/02/2023] Open
Abstract
Carbon-based quantum dots (CQDs) have been shown to have promising application value in tumor diagnosis. Their use, however, is severely hindered by the complicated nature of the nanostructures in the CQDs. Furthermore, it seems impossible to formulate the mechanisms involved using the inadequate theoretical frameworks that are currently available for CQDs. In this review, we re-consider the structure-property relationships of CQDs and summarize the current state of development of CQDs-based tumor diagnosis based on biological theories that are fully developed. The advantages and deficiencies of recent research on CQDs-based tumor diagnosis are thus explained in terms of the manifestation of nine essential changes in cell physiology. This review makes significant progress in addressing related problems encountered with other nanomaterials.
Collapse
Affiliation(s)
- Hang Wang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Siwei Yang
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Liangfeng Chen
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Yongqiang Li
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peng He
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, PR China
| | - Hui Dong
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, PR China
| | - Guqiao Ding
- National Key Laboratory of Materials for Integrated Circuit, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, PR China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, PR China
| |
Collapse
|
7
|
Li L, Wang T, Zhong Y, Li R, Deng W, Xiao X, Xu Y, Zhang J, Hu X, Wang Y. A review of nanomaterials for biosensing applications. J Mater Chem B 2024; 12:1168-1193. [PMID: 38193143 DOI: 10.1039/d3tb02648e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.
Collapse
Affiliation(s)
- Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Tianshu Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ruyi Li
- Rotex Co., Ltd, Chengdu, Sichuan, 610043, China
| | - Wei Deng
- Department of Orthopedics, Pidu District People's Hospital, the Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 611730, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
8
|
Heidarian S, Takbiri Osgoei L, Zare Karizi S, Amani J, Arbabian S. Signal-On Fluorescence Biosensor for Detection of miRNA-21 Based on ROX labeled Specific Stem-Loop Probe. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2024; 23:e144368. [PMID: 39005737 PMCID: PMC11246647 DOI: 10.5812/ijpr-144368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 07/16/2024]
Abstract
Background The abnormal expression of microRNA (miRNA) influences RNA transcription and protein translation, leading to tumor progression and metastasis. Today, reliably identifying aberrant miRNA expression remains challenging, especially when employing quick, simple, and portable detection methods. Objectives This study aimed to diagnose and detect the miR-21 biomarker with high sensitivity and specificity. Methods Our detection approach involves immobilizing ROX dye-labeled single-stranded DNA probes (ROX-labeled ssDNA) onto MWCNTs to detect target miRNA-21. Initially, adsorbing ROX-labeled ssDNA onto MWCNTs causes fluorescence quenching of ROX. Subsequently, introducing its complementary DNA (cDNA) forms double-stranded DNA (dsDNA), which results in the desorption and release from MWCNTs, thus restoring ROX fluorescence. Results The study examined changes in fluorescence intensities before and after hybridization with miRNA-21. The fluorescence emission intensities responded linearly to increases in miR-21 concentration from 10-9 to 3.2 × 10-6 M. The developed fluorescence sensor exhibited a detection limit of 1.12 × 10-9 M. Conclusions This work demonstrates that using a nano-biosensor based on carbon nanotubes offers a highly sensitive method for the early detection of colorectal cancer (CRC), supplementing existing techniques.
Collapse
Affiliation(s)
- Somayeh Heidarian
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Laya Takbiri Osgoei
- Department of Microbiology, Faculty of Biological Science, North Tehran Branch. Islamic Azad University, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva, Branch, Islamic Azad University Pishva, Varamin, Iran
| | - Jafar Amani
- Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sedigheh Arbabian
- Department of Biology, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
9
|
Jyoti, Muñoz J, Pumera M. Quantum Material-Based Self-Propelled Microrobots for the Optical "On-the-Fly" Monitoring of DNA. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58548-58555. [PMID: 38078399 PMCID: PMC10750807 DOI: 10.1021/acsami.3c09920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/26/2023] [Accepted: 11/21/2023] [Indexed: 12/22/2023]
Abstract
Quantum dot-based materials have been found to be excellent platforms for biosensing and bioimaging applications. Herein, self-propelled microrobots made of graphene quantum dots (GQD-MRs) have been synthesized and explored as unconventional dynamic biocarriers toward the optical "on-the-fly" monitoring of DNA. As a first demonstration of applicability, GQD-MRs have been first biofunctionalized with a DNA biomarker (i.e., fluorescein amidite-labeled, FAM-L) via hydrophobic π-stacking interactions and subsequently exposed toward different concentrations of a DNA target. The biomarker-target hybridization process leads to a biomarker release from the GQD-MR surface, resulting in a linear alteration in the fluorescence intensity of the dynamic biocarrier at the nM range (1-100 nM, R2 = 0.99), also demonstrating excellent selectivity and sensitivity, with a detection limit as low as 0.05 nM. Consequently, the developed dynamic biocarriers, which combine the appealing features of GQDs (e.g., water solubility, fluorescent activity, and supramolecular π-stacking interactions) with the autonomous mobility of MRs, present themselves as potential autonomous micromachines to be exploited as highly efficient and sensitive "on-the-fly" biosensing systems. This method is general and can be simply customized by tailoring the biomarker anchored to the GQD-MR's surface.
Collapse
Affiliation(s)
- Jyoti
- Future
Energy and Innovation Laboratory, Central
European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200 Brno, Czech Republic
| | - Jose Muñoz
- Future
Energy and Innovation Laboratory, Central
European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200 Brno, Czech Republic
| | - Martin Pumera
- Future
Energy and Innovation Laboratory, Central
European Institute of Technology, Brno University of Technology (CEITEC-BUT), 61200 Brno, Czech Republic
- Faculty
of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech
Republic
- Department
of Medical Research, China Medical University
Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 4040, Taiwan
| |
Collapse
|
10
|
Garg R, Prasad D. Carbon dots and their interactions with recognition molecules for enhanced nucleic acid detection. Biochem Biophys Res Commun 2023; 680:93-107. [PMID: 37738905 DOI: 10.1016/j.bbrc.2023.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Carbon Dots (C-dots) have exceptional fluorescence and incident wavelength alteration capabilities because of their π-π* electron transitions between the surface-trapped charges. They have clear, considerate and cost-effective applications in the domain of bio-sensing, optical imaging, medical diagnostics, fluorescence chemotherapy, forensics, and environmentology. Advances in the production process of C-dots can change their optical and chemical characteristics, allowing them to interact with a variety of chemicals and ions that can be exploited for the DNA detection in point-of-care devices. In the current scenario of pathogenic disease prevention, metagenomics and industrial processes, alternative genetic material identification is critical. This review focuses on the existing carbon dots-based DNA detection technologies and their interactions with other components such as metallic salts, dyes, and biological chemicals based on their surface charge distribution (positive or negative) employed in the DNA diagnostic devices and biosensors with their operating mechanism regarding their target component. These intriguing scientific discoveries and technologies will be extensively examined to translate them into real-world solutions which will have a significant societal and economic impact on overall well-being and innovation.
Collapse
Affiliation(s)
- Rishabh Garg
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Dinesh Prasad
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India.
| |
Collapse
|
11
|
Liu G, Lv Z, Batool S, Li MZ, Zhao P, Guo L, Wang Y, Zhou Y, Han ST. Biocompatible Material-Based Flexible Biosensors: From Materials Design to Wearable/Implantable Devices and Integrated Sensing Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207879. [PMID: 37009995 DOI: 10.1002/smll.202207879] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Indexed: 06/19/2023]
Abstract
Human beings have a greater need to pursue life and manage personal or family health in the context of the rapid growth of artificial intelligence, big data, the Internet of Things, and 5G/6G technologies. The application of micro biosensing devices is crucial in connecting technology and personalized medicine. Here, the progress and current status from biocompatible inorganic materials to organic materials and composites are reviewed and the material-to-device processing is described. Next, the operating principles of pressure, chemical, optical, and temperature sensors are dissected and the application of these flexible biosensors in wearable/implantable devices is discussed. Different biosensing systems acting in vivo and in vitro, including signal communication and energy supply are then illustrated. The potential of in-sensor computing for applications in sensing systems is also discussed. Finally, some essential needs for commercial translation are highlighted and future opportunities for flexible biosensors are considered.
Collapse
Affiliation(s)
- Gang Liu
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ziyu Lv
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Saima Batool
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | | | - Pengfei Zhao
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Liangchao Guo
- College of Mechanical Engineering, Yangzhou University, Yangzhou, 225127, P. R. China
| | - Yan Wang
- School of Microelectronics, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Institute of Microscale Optoelectronics and College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
12
|
Qiu J, Zeng D, Lin Y, Ye W, Chen C, Xu Z, Hu G, Liu Y. Carbon-polymer dot-based UV absorption and fluorescence performances for heavy metal ion detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121913. [PMID: 36198239 DOI: 10.1016/j.saa.2022.121913] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/14/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
In previous reports, carbon dots (CDs) were customarily used as fluorescent probes to detect heavy metal ions. However, scientists neglected to take advantage of the excellent UV absorption properties of CDs to detect heavy metal ions. Herein, we synthesized nitrogen-containing carbon polymer dots (N-CPDs) for the determination of Co2+ ions in water samples by a one-step hydrothermal method using l-histidine and ethylene imine polymer as raw materials. The N-CPDs were characterized by ultraviolet-visible spectrum (UV-vis), infrared spectrum (FT-IR), X-ray photoelectron spectrum (XPS) and transmission electron microscopy (TEM) techniques. They possess superior full-band UV absorption performance and the surface is rich in multifunctional groups such as -COOH, -CN-, -OH, etc. When Co2+ was added to N-CPDs solution, the color of the solution rapidly changed from colorless to yellow-brown, which was visible to the naked eye. The UV absorption intensity of N-CPDs changed, and the fluorescence was instantly quenched, due to the formation of chelate between Co2+ and N-CPDs, and the FRET process occurred. The detection of Co2+ showed good linearity for both fluorescence and UV absorption spectroscopy modes in the range of 0-200 μM, and the limit of detection were 1.0023 μM and 0.75 μM, respectively. These two methods have the advantages of simple operation, remarkable selectivity and small sample size, which can be applied to the field detection of Co2+ in water samples. It is possible to develop the UV absorption properties of CDs to detect the ions.
Collapse
Affiliation(s)
- Jiemin Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Danhong Zeng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yichun Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weihao Ye
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Congcong Chen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqiang Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Guangqi Hu
- College of Photoelectric Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China.
| | - Yingliang Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education/Guangdong Provincial Engineering Technology Research Center for Optical Agriculture, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
13
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2023. [DOI: 10.1007/978-981-16-8984-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
14
|
Pourmadadi M, Rahmani E, Rajabzadeh-Khosroshahi M, Samadi A, Behzadmehr R, Rahdar A, Ferreira LFR. Properties and application of carbon quantum dots (CQDs) in biosensors for disease detection: A comprehensive review. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
15
|
Chai Y, Feng Y, Zhang K, Li J. Preparation of Fluorescent Carbon Dots Composites and Their Potential Applications in Biomedicine and Drug Delivery-A Review. Pharmaceutics 2022; 14:pharmaceutics14112482. [PMID: 36432673 PMCID: PMC9697445 DOI: 10.3390/pharmaceutics14112482] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Carbon dots (CDs), a new member of carbon nanostructures, rely on surface modification and functionalization for their good fluorescence phosphorescence and excellent physical and chemical properties, including small size (<10 nm), high chemical stability, biocompatibility, non-toxicity, low cost, and easy synthesis. In the field of medical research on cancer (IARC), CDs, a new material with unique optical properties as a photosensitizer, are being applied to heating local apoptosis induction of cancer cells. In addition, imaging tools can also be combined with a drug to form the nanometer complex compound, the imaging guidance for multi-function dosage, so as to improve the efficiency of drug delivery, which also plays a big role in genetic diagnosis. This paper mainly includes three parts: The first part briefly introduces the synthesis and preparation of carbon dots, and summarizes the advantages and disadvantages of different preparation methods; The second part introduces the preparation methods of carbon dot composites. Finally, the application status of carbon dot composites in biomedicine, cancer theranostics, drug delivery, electrochemistry, and photocatalysis is summarized.
Collapse
Affiliation(s)
- Yaru Chai
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
| | - Yashan Feng
- Advanced Functional Materials Laboratory, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450000, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450000, China
- Correspondence: (K.Z.); (J.L.); Tel.: +86-185-3995-6211 (J.L.)
| |
Collapse
|
16
|
Deng X, Wu S, Zang S, Liu X, Ma Y. PDA-PEI-Copolymerized Nanodots with Tailorable Fluorescence Emission and Quenching Properties for the Sensitive Ratiometric Fluorescence Sensing of miRNA in Serum. Anal Chem 2022; 94:14546-14553. [PMID: 36215706 DOI: 10.1021/acs.analchem.2c02156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopamine and polyethyleneimine (PEI) copolymerized nanodots (PDA-PEI nanodots) with both fluorescence emission and quenching features were synthesized by a simple one-step reaction at room temperature. By adjusting the dopamine and PEI ratio as well as the chain length of PEI, the fluorescence emission and quenching properties of PDA-PEI nanodots can be controlled well. Under optimal conditions, the nanodots showed strong green fluorescence emission with an absolute quantum yield of 1-2% and a quenching efficiency of more than 99% to several fluorophores with emission wavelengths ranging from blue to red light regions. The nanodots with a large number of functional groups also showed strong affinity to nucleic acid strands, excellent solubility in aqueous solution, long-term stability, and uniform size distribution. Integrating these attractive features with the specific enzymatic digestion reaction of the DSN enzyme, a highly sensitive ratiometric fluorescence nanoprobe for miRNA analysis was developed. Aminomethylcoumarin acetate (AMCA), which possesses the same excitation wavelength but a well-resolved blue fluorescence emission with PDA-PEI nanodots, was selected as the signal-reporting unit for capture probe labeling, while the inherent green fluorescence of PDA-PEI nanodots served as the reference. According to the ratiometric fluorescence signal, the ratiometric fluorescence nanoprobes showed high sensitivity and good accuracy for the miRNA assay. Because of the high and universal quenching efficiency, stable fluorescence emission, easily assembled interface, and uniform morphology, the nanodots may have great application prospects to serve as a universal nanoplatform for the fabrication of ratiometric fluorescence nanoprobes.
Collapse
Affiliation(s)
- Xunxun Deng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shuo Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Shiyu Zang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Xiaobo Liu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| | - Yingyan Ma
- School of Chemical Engineering, Dalian University of Technology, Dalian 116023, P. R. China
| |
Collapse
|
17
|
Qiu J, Ye W, Chen C, Xu Z, Hu C, Zhuang J, Dong H, Lei B, Hu G, Liu Y. Toward efficient broad-spectrum UV absorption of carbon dots: facile preparation, performance characterization and its application as UV absorbers. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Ratiometric fluorescent detection of miRNA-21 via pH-regulated adsorption of DNA on polymer dots and exonuclease III-assisted amplification. Anal Chim Acta 2022; 1232:340450. [DOI: 10.1016/j.aca.2022.340450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 11/01/2022]
|
19
|
de Almeida JPB, Dos Santos VB, do Nascimento GA, Suarez WT, de Azevedo WM, Ferreira AF, Maia MV. A fluorescence digital image-based method using carbon quantum dots to evaluate the compliance of a biocidal agent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2631-2641. [PMID: 35736378 DOI: 10.1039/d2ay00678b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, a simple, low-cost and easy-to-handle analytical procedure based on carbon quantum dots (CQDs) is proposed to check commercially available formulated microbicides that are used to mitigate the transmission of viruses, such as SARS-COV-2, or bacterial diseases. For this purpose, CQDs were synthesized via pyrolysis using citric acid and ethylenediamine as precursors to produce an intense fluorescence that is used to measure the concentration of hypochlorite, an important biocidal agent present in sanitizing mats, by quenching mechanisms. The characterization of the CQDs was performed using IR spectrophotometry, UV-Vis spectrophotometry, spectrofluorometry, thermogravimetric analysis, scanning electron microscopy, dynamic light scattering, X-ray diffraction, energy-dispersive spectroscopy, and zeta potential measurements. For analytical purposes, fluorescence was measured in a UV chamber irradiated using an LED with the maximum emission at 350 nm. A smartphone was coupled to the UV chamber to measure the fluorescence quenching due to the presence of hypochlorite, and further the digital images were decomposed by RGB data using free software. Tests of pH, CQD concentration and stability of the fluorescence emitted were performed. The stability study of the fluorescence emitted by the CQD solution showed a relative standard deviation lower than 5.0%. The fluorescence digital image-based (FDIB) method resulted in a linear range from 17.44 μmol L-1 to 90.0 μmol L-1 with an LOD of 3.30 μmol L-1 for the determination of hypochlorite using a microplate made of PLA (polylactic acid) customized using a 3D printer. Furthermore, the hypochlorite concentration was tested in situ for its compliance in a sanitizing mat, in a real use situation (daily, a group of four people, each one kept their feet on the mat for 30 s). After 2.5 h, the monitored concentration of hypochlorite was 0.04953% (w/v) or 7.63 mmol L-1, and therefore, it was inefficient to act as a sanitizing agent. Thus, for the first time in the literature, an FDIB method with CQDs is used to verify in situ microbicide practices with a fast and low-cost analytical procedure.
Collapse
Affiliation(s)
- João Paulo Barbosa de Almeida
- Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife, PE, 50740-560, Brazil.
- LIA3 (Laboratório de Instrumentação e Automação em Analítica Aplicada), Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Vagner Bezerra Dos Santos
- Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife, PE, 50740-560, Brazil.
- LIA3 (Laboratório de Instrumentação e Automação em Analítica Aplicada), Universidade Federal de Pernambuco - UFPE, Recife, PE, Brazil
| | - Gustavo Alves do Nascimento
- Núcleo de Ciências da Vida, Centro Acadêmico do Agreste, Universidade Federal de Pernambuco - UFPE, Caruaru, PE, Brazil
| | - Willian Toito Suarez
- Departamento de Química, Universidade Federal de Viçosa - UFV, Centro de Ciências Exatas e Tecnologia, Viçosa, MG, Brazil
| | - Walter Mendes de Azevedo
- Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife, PE, 50740-560, Brazil.
| | - Aldebarã Fausto Ferreira
- Departamento de Química Fundamental, Universidade Federal de Pernambuco - UFPE, Av. Jornalista Anibal Fernandes, s/n, Cidade Universitária, Recife, PE, 50740-560, Brazil.
| | - Matheus Valentin Maia
- Departamento de Química, Universidade Federal de Viçosa - UFV, Centro de Ciências Exatas e Tecnologia, Viçosa, MG, Brazil
| |
Collapse
|
20
|
Dhas N, Pastagia M, Sharma A, Khera A, Kudarha R, Kulkarni S, Soman S, Mutalik S, Barnwal RP, Singh G, Patel M. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J Control Release 2022; 348:798-824. [PMID: 35752250 DOI: 10.1016/j.jconrel.2022.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/19/2022] [Indexed: 12/19/2022]
Abstract
Tumours are the second leading cause of death globally, generating alterations in biological interactions and, as a result, malfunctioning of crucial genetic traits. Technological advancements have made it possible to identify tumours at the cellular level, making transcriptional gene variations and other genetic variables more easily investigated. Standard chemotherapy is seen as a non-specific treatment that has the potential to destroy healthy cells while also causing systemic toxicity in individuals. As a result, developing new technologies has become a pressing necessity. QDs are semiconductor particles with diameters ranging from 2 to 10 nanometers. QDs have grabbed the interest of many researchers due to their unique characteristics, including compact size, large surface area, surface charges, and precise targeting. QD-based drug carriers are well known among the many nanocarriers. Using QDs as a delivery approach enhances solubility, lengthens retention time, and reduces the harmful effects of loaded medicines. Several varieties of quantum dots used in drug administration are discussed in this article, along with their chemical and physical characteristics and manufacturing methods. Furthermore, it discusses the role of QDs in biological, medicinal, and theranostic applications.
Collapse
Affiliation(s)
- Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Monarch Pastagia
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Akanksha Sharma
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Alisha Khera
- Department of Biophysics, Panjab University, Chandigarh 160014, India
| | - Ritu Kudarha
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education (MAHE), Manipal 576104, Karnataka, India
| | | | - Gurpal Singh
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
21
|
Folic Acid-Modified Cerium-Doped Carbon Dots as Photoluminescence Sensors for Cancer Cells Identification and Fe(III) Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10060219] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDs) are a new class of carbon-based luminescence materials with fascinating properties. They have been given great expectations on superseding traditional semiconductor quantum dots due to their good dispersity and stability, relatively low toxicity, superior resistance to photobleaching, and excellent biocompatibility. The diversified luminescence properties of CDs are largely due to the synthetic strategies and precursors. In view of those described above, this study has explored the possibility to establish a facile one-step hydrothermal method for the one-pot synthesis of folic acid-modified cerium-doped CDs (Ce-CDs-FA), which could be further utilized as a sensitive fluorescent nanoprobe for biosensing. This investigation demonstrates that the Ce-CDs-FA nanocomposites have nice biocompatibility and bright fluorescent properties, which can be readily utilized to detect cancer cells through recognizing overexpressing folate receptors by virtue of folic acid. Meanwhile, it is noted that the Fe3+ ion can actualize a specific and hypersensitive quenching effect for these Ce-CDs-FA nanocomposites, which can be further explored for special ion recognition, including iron ions. It raises the possibility that the as-prepared Ce-CDs-FA nanocomposites could be extended as a dual fluorescence sensor for targeted cell imaging and Fe3+ ion detection.
Collapse
|
22
|
Ornelas-Hernández LF, Garduno-Robles A, Zepeda-Moreno A. A Brief Review of Carbon Dots-Silica Nanoparticles Synthesis and their Potential Use as Biosensing and Theragnostic Applications. NANOSCALE RESEARCH LETTERS 2022; 17:56. [PMID: 35661270 PMCID: PMC9167377 DOI: 10.1186/s11671-022-03691-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Carbon dots (CDs) are carbon nanoparticles with sizes below 10 nm and have attracted attention due to their relatively low toxicity, great biocompatibility, water solubility, facile synthesis, and exceptional photoluminescence properties. Accordingly, CDs have been widely exploited in different sensing and biomedical applications, for example, metal sensing, catalysis, biosensing, bioimaging, drug and gene delivery, and theragnostic applications. Similarly, the well-known properties of silica, such as facile surface functionalization, good biocompatibility, high surface area, and tunable pore volume, have allowed the loading of diverse inorganic and organic moieties and nanoparticles, creating complex hybrid nanostructures that exploit distinct properties (optical, magnetic, metallic, mesoporous, etc.) for sensing, biosensing, bioimaging, diagnosis, and gene and drug delivery. In this context, CDs have been successfully grafted into diverse silica nanostructures through various synthesis methods (e.g., solgel chemistry, inverse microemulsion, surfactant templating, and molecular imprinting technology (MIT)), imparting hybrid nanostructures with multimodal properties for distinct objectives. This review discusses the recently employed synthesis methods for CDs and silica nanoparticles and their typical applications. Then, we focus on combined synthesis techniques of CD-silica nanostructures and their promising biosensing operations. Finally, we overview the most recent potential applications of these materials as innovative smart hybrid nanocarriers and theragnostic agents for the nanomedical field.
Collapse
Affiliation(s)
- Luis Fernando Ornelas-Hernández
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Angeles Garduno-Robles
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México
| | - Abraham Zepeda-Moreno
- Onkogenetik/Mexicana de Investigación Y Biotectogía SA. de C.V., Av. Miguel Hidalgo y Costilla 1966, Guadalajara, Jalisco, México.
- Unidad de Biología Molecular, Investigación Y Diagnóstico SA de CV, Hospital San Javier, Pablo Casals 640, Guadalajara, Jalisco, México.
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de La Salud, Universidad de Guadalajara, Sierra Mojada 950, Guadalajara, Jalisco, México.
| |
Collapse
|
23
|
Quantum dots for electrochemiluminescence bioanalysis - A review. Anal Chim Acta 2022; 1209:339140. [PMID: 35569860 DOI: 10.1016/j.aca.2021.339140] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/04/2021] [Indexed: 11/21/2022]
Abstract
Electrochemiluminescence (ECL) bioanalysis has become increasingly important in various fields from bioanalysis to clinical diagnosis due to its outstanding merits, including low background signal, high sensitivity, and simple instrumentation. Quantum dots (QDs) are a significant theme in ECL bioanalysis since their excellent optical, electrochemical properties, and ease of functionalization endow them with versatile roles and new mechanisms of signal transduction in ECL. Herein, this review details recent advances of QDs-based ECL bioanalysis by using QDs as ECL emitters, coreactants, or ECL resonance energy transfer donors/acceptors, mainly focused on their optical and electrochemical properties and ECL reaction mechanism. In the end, we will discuss the current limitations and future developments in QDs ECL bioanalysis to address the requirement about selectivity, sensitivity, toxicity, and emerging applications.
Collapse
|
24
|
Rawat P, Nain P, Sharma S, Sharma PK, Malik V, Majumder S, Verma VP, Rawat V, Rhyee JS. An Overview of Synthetic Methods and Applications of Photoluminescent Properties of Carbon Quantum Dots. LUMINESCENCE 2022. [PMID: 35419945 DOI: 10.1002/bio.4255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/08/2022]
Abstract
Carbon quantum dots (CQDs) are promising carbonaceous nanomaterials fortuitously discovered in 2004. CQDs are the rising stars in the nanotechnology ensemble because of their unique properties and widespread applications in sensing, imaging, medicine, catalysis, and optoelectronics. CQDs are notable for their excellent solubility and effective luminescence, and as a result, they are also known as carbon nanolights. Many strategies are used for the efficient and economical preparation of CQDs; however, CQDs prepared from waste or green sustainable methods have greater requirements due to their safety and ease of synthesis. Sustainable chemical strategies for CQDs have been developed, emphasizing green synthetic methodologies based on "top-down" and "bottom-up" approaches. This review summarizes many such studies relevant to the development of sustainable methods for photoluminescent CQDs. Furthermore, we have emphasized recent advances in CQDs' photoluminescent applications in chemical and biological fields. Finally, a brief overview of synthetic processes utilizing the green source and their associated applications are tabulated, providing a clear understanding of the new optoelectronic materials.
Collapse
Affiliation(s)
- Pooja Rawat
- Amity School of Applied Sciences, Amity University, Haryana, India.,Department of Applied Physics and Institute of Natural Sciences, Kyung Hyee University, Yong-in, Republic of Korea
| | - Parul Nain
- Amity School of Applied Sciences, Amity University, Haryana, India
| | - Shaveta Sharma
- Amity School of Applied Sciences, Amity University, Haryana, India
| | - Parshant Kumar Sharma
- Department of Biotechnology, S.D. College of Engineering & Technology, Muzaffarnagar, U.P, India
| | - Vidhu Malik
- Department of Chemistry, DCRUST Murthal, Sonipat
| | - Sudip Majumder
- Amity School of Applied Sciences, Amity University, Haryana, India
| | - Ved Prakash Verma
- Department of Chemistry, Banasthali , Banasthali Newai University, Rajasthan, India
| | - Varun Rawat
- Amity School of Applied Sciences, Amity University, Haryana, India.,School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Jong Soo Rhyee
- Department of Applied Physics and Institute of Natural Sciences, Kyung Hyee University, Yong-in, Republic of Korea
| |
Collapse
|
25
|
Nešić MD, Dučić T, Gonçalves M, Stepić M, Algarra M, Soto J, Gemović B, Bandosz TJ, Petković M. Biochemical changes in cancer cells induced by photoactive nanosystem based on carbon dots loaded with Ru complex. Chem Biol Interact 2022; 360:109950. [DOI: 10.1016/j.cbi.2022.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/01/2022] [Accepted: 04/11/2022] [Indexed: 12/01/2022]
|
26
|
Deng M, Li J, Xiao B, Ren Z, Li Z, Yu H, Li J, Wang J, Chen Z, Wang X. Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Anal Chem 2022; 94:3320-3327. [PMID: 35147418 DOI: 10.1021/acs.analchem.1c05309] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developing highly sensitive, reliable, cost-effective label-free DNA biosensors is challenging with traditional fluorescence, electrochemical, and other techniques. Most conventional methods require labeling fluorescence, enzymes, or other complex modification. Herein, we fabricate carbon quantum dot (CQD)-functionalized solution-gated graphene transistors for highly sensitive label-free DNA detection. The CQDs are immobilized on the surface of the gate electrode through mercaptoacetic acid with the thiol group. A single-stranded DNA (ssDNA) probe is immobilized on CQDs by strong π-π interactions. The ssDNA probe can hybridize with the ssDNA target and form double-stranded DNA, which led to a shift of Dirac voltage and the channel current response. The limit of detection can reach 1 aM which is 2-5 orders of magnitude lower than those of other methods reported previously. The sensor also exhibits a good linear range from 1 aM to 0.1 nM and has good specificity. It can effectively distinguish one-base mismatched target DNA. The response time is about 326 s for the 1 aM target DNA molecules. This work provides good perspectives on the applications in biosensors.
Collapse
Affiliation(s)
- Minghua Deng
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Jinhua Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Bichen Xiao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhanpeng Ren
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Ziqin Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Haiyang Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China.,State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jianying Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Xianbao Wang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
27
|
Azizi S, Gholivand MB, Amiri M, Manouchehri I, Moradian R. Carbon dots-thionine modified aptamer-based biosensor for highly sensitive cocaine detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
28
|
Wang Y, Li L, Li H, Peng Y, Fu L. A fluorometric sandwich biosensor based on rationally imprinted magnetic particles and aptamer modified carbon dots for the detection of tropomyosin in seafood products. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108552] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Tang X, Wang L, Ye H, Zhao H, Zhao L. Biological matrix-derived carbon quantum dots: Highly selective detection of tetracyclines. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
30
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advancements in the synthesis of carbon dot composites and their applications in biomedical fields (bioimaging, drug delivery and biosensing) have been carefully summarized. The current challenges and future trends of CD composites in this field have also been discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|
31
|
Shrestha B, Tang L, Hood RL. Nanotechnology for Personalized Medicine. Nanomedicine (Lond) 2022. [DOI: 10.1007/978-981-13-9374-7_18-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
32
|
Liang Z, Khawar MB, Liang J, Sun H. Bio-Conjugated Quantum Dots for Cancer Research: Detection and Imaging. Front Oncol 2021; 11:749970. [PMID: 34745974 PMCID: PMC8569511 DOI: 10.3389/fonc.2021.749970] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/30/2021] [Indexed: 12/20/2022] Open
Abstract
Ultrasound, computed tomography, magnetic resonance, and gamma scintigraphy-based detection and bio-imaging technologies have achieved outstanding breakthroughs in recent years. However, these technologies still encounter several limitations such as insufficient sensitivity, specificity and security that limit their applications in cancer detection and bio-imaging. The semiconductor quantum dots (QDs) are a kind of newly developed fluorescent nanoparticles that have superior fluorescence intensity, strong resistance to photo-bleaching, size-tunable light emission and could produce multiple fluorescent colors under single-source excitation. Furthermore, QDs have optimal surface to link with multiple targets such as antibodies, peptides, and several other small molecules. Thus, QDs might serve as potential, more sensitive and specific methods of detection than conventional methods applied in cancer molecular targeting and bio-imaging. However, many challenges such as cytotoxicity and nonspecific uptake still exist limiting their wider applications. In the present review, we aim to summarize the current applications and challenges of QDs in cancer research mainly focusing on tumor detection, bio-imaging, and provides opinions on how to address these challenges.
Collapse
Affiliation(s)
- Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Muhammad Babar Khawar
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China.,Molecular Medicine and Cancer Therapeutics Lab, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore, Pakistan
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou, China
| |
Collapse
|
33
|
Ahmed HM, Ghali M, Zahra W, Ayad MM. Preparation of carbon quantum dots/polyaniline nanocomposite: Towards highly sensitive detection of picric acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119967. [PMID: 34082352 DOI: 10.1016/j.saa.2021.119967] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Carbon quantum dots/polyaniline (CQDs/PANI) nanocomposite was successfully prepared by in-situ polymerization of aniline. CQDs were synthesized hydrothermally from gelatin with a diameter size of 4.2 nm and a 17% quantum yield. FTIR, UV-vis absorption, fluorescence spectrophotometer, XRD, TEM, XPS and lifetime decay were used to characterize the obtained nanocomposite. The formation of PANI revealed a high quenching effect on CQDs where the TEM images showed that the formed CQDs were greatly embedded in PANI matrix. In this study, CQDs/PANI nanocomposite was used for the detection of picric acid (PA) in the range 0.37-1.42 μM with a low detection limit (LOD) of 0.056 μM. The prepared sensor showed good enhancement and sensitivity towards PA in comparison to pristine CQDs and other nanostructured materials. The mechanism of PA detection has been studied where it was observed that PA is electrostatically interacted to the nanocomposite through - OH group of PA and the protonated PANI salt formed in CQDs/PANI nanocomposite by fluorescence resonance energy transfer applications. The proposed CQDs/PANI sensor was then utilized in real water samples and successfully determined the different amounts of PA spiked into tap water.
Collapse
Affiliation(s)
- Heba M Ahmed
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Mohsen Ghali
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Department of Physics, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Waheed Zahra
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Department of Physics and Engineering Mathematics, Faculty of Engineering, Tanta University, Tanta 31527, Egypt
| | - Mohamad M Ayad
- Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt; Chemistry Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
34
|
Calabrese G, De Luca G, Nocito G, Rizzo MG, Lombardo SP, Chisari G, Forte S, Sciuto EL, Conoci S. Carbon Dots: An Innovative Tool for Drug Delivery in Brain Tumors. Int J Mol Sci 2021; 22:11783. [PMID: 34769212 PMCID: PMC8583729 DOI: 10.3390/ijms222111783] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/16/2023] Open
Abstract
Brain tumors are particularly aggressive and represent a significant cause of morbidity and mortality in adults and children, affecting the global population and being responsible for 2.6% of all cancer deaths (as well as 30% of those in children and 20% in young adults). The blood-brain barrier (BBB) excludes almost 100% of the drugs targeting brain neoplasms, representing one of the most significant challenges to current brain cancer therapy. In the last decades, carbon dots have increasingly played the role of drug delivery systems with theranostic applications against cancer, thanks to their bright photoluminescence, solubility in bodily fluids, chemical stability, and biocompatibility. After a summary outlining brain tumors and the current drug delivery strategies devised in their therapeutic management, this review explores the most recent literature about the advances and open challenges in the employment of carbon dots as both diagnostic and therapeutic agents in the treatment of brain cancers, together with the strategies devised to allow them to cross the BBB effectively.
Collapse
Affiliation(s)
- Giovanna Calabrese
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Giovanna De Luca
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Giuseppe Nocito
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Maria Giovanna Rizzo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| | - Sofia Paola Lombardo
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (S.P.L.); (G.C.)
| | - Giulia Chisari
- Istituto Oncologico del Mediterraneo, Via Penninazzo 7, 95029 Viagrande, Italy; (S.P.L.); (G.C.)
| | - Stefano Forte
- IOM Ricerca, Via Penninazzo 11, 95029 Viagrande, Italy;
| | - Emanuele Luigi Sciuto
- A.O.-Universitaria Policlinico “G. Rodolico–San Marco”, Via Santa Sofia 78, 95123 Catania, Italy;
| | - Sabrina Conoci
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali—Università degli Studi di Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (G.N.); (M.G.R.); (S.C.)
| |
Collapse
|
35
|
A novel cationic surfactant synthesized from carbon quantum dots and the versatility. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
One-step synthesis of nitrogen-doped multi-emission carbon dots and their fluorescent sensing in HClO and cellular imaging. Mikrochim Acta 2021; 188:330. [PMID: 34498123 DOI: 10.1007/s00604-021-04973-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
Tunable multicolor carbon dots (CDs) with a quantum yield reach up to 35% were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. Transmission electron microscopy images reveal that the as-prepared CDs possess a small size distribution below 10 nm with bright blue, green, and yellow color emission, designated as b-CDs, g-CDs, and y-CDs, respectively. The in-depth investigations reveal that the multicolor emission CDs with different fraction displays fluorescence emission wavelength ranges from 398 nm (b-CDs), 525 nm (g-CDs), to 553 nm (y-CDs) which could be well modulated by controlling the amount of heteroatom nitrogen especially amino nitrogen onto their surface structures. Further experiments verify the important role of nitrogen content by using rhodamine solely or substituting urea with sulfur containing compounds as precursors to produce corresponding CDs since the performance is lower than that of urea incorporation. Theoretical calculation results also reveal that the increasing amount of amino nitrogen into their surface structures of b-CDs, g-CDs to y-CDs is responsible for reduced band gaps energy, which result in the redshifted wavelength. Benefiting from the excellent photoluminescence properties, wide pH variation range, high photo stability, and low toxicity, these CDs were employed for HClO sensing at 553 nm within the range 5 to 140 μM with a limit of detection (LOD) of 0.27 ± 0.025 μM (n = 3) and multicolor cellular imaging in HeLa cells. Tunable multicolor carbon dots (CDs) were generated directly from rhodamine and urea via one-step hydrothermal approach and purified through silica gel column chromatography. The as-prepared CDs exhibit bright blue, green, and yellow color emission which could be well modulated by controlling the increasing incorporation of heteroatom nitrogen especially amino nitrogen into their surface structures. These CDs were employed for HClO sensing and demonstrated to multicolor cellular imaging in HeLa cells.
Collapse
|
37
|
Jafari SM, Masoum S, Tafreshi SAH. A microlagal-based carbonaceous sensor for enzymatic determination of glucose in blood serum. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Pang X, Li L, Wang P, Zhang Y, Dong W, Mei Q. Adenine-derived carbon dots for the chemosensing of hypochlorite based on fluorescence enhancement. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Jagannathan M, Dhinasekaran D, Soundharraj P, Rajendran S, Vo DVN, Prakasarao A, Ganesan S. Green synthesis of white light emitting carbon quantum dots: Fabrication of white fluorescent film and optical sensor applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125091. [PMID: 33866289 DOI: 10.1016/j.jhazmat.2021.125091] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
In this work, we have reported on the facile synthesis of white light-emitting carbon quantum dots (CQD) from corncob by hydrothermal method. This CQD has a broad emission from 380 nm to 650 nm with high photoluminescence intensity even after three months of shelf-life and stable at variable pH conditions. The presence of Si and N impurities in the biomass gives a greater advantage in producing white light emission with high quantum yield (54%) and enhanced lifetime at ambient conditions. The CQD is highly sensitive towards DNA, paracetamol, Pb2+, Cu2+, Fe3+, and Cr3+ fluorescence sensing and signifies its application as a multi-modal fluorescence sensor. The results of optical sensitivity calculated from the linear range of 1-10 ng/mL, 0.10-0.30 mg/mL, 2.5446 ng/mL, 0.0694 mg/mL, 0.3103-1.5515 μM/mL, 0.4299-4.7293 μM/mL, 1.3010 μM/mL and 0.05-2.5 μM/mL. The limit of detection is 2.5446 ng/mL, 0.0694 mg/mL, 0.8641 μM/mL, 1.2454 μM/mL, 1.3010 μM/m, 0.8550 μM/mL and 2.8562 μM/mL, respectively. And also, the relative standard deviation values of 2.30%, 4.46%, 1.79%, 1.84%, 0.26%, 1.23% and 0.35% are evidences its possibility of development towards potential optical sensor applications. Flexible white light-emitting sheets were fabricated from the CQD, illuminates uniform brightness, and has good color reproducibility and higher stability under various UV light excitation.
Collapse
Affiliation(s)
- Mohanraj Jagannathan
- Department of Medical Physics, CEG Campus, Anna University, Chennai 600025, India
| | | | - Prabha Soundharraj
- Department of Medical Physics, CEG Campus, Anna University, Chennai 600025, India
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam
| | - Aruna Prakasarao
- Department of Medical Physics, CEG Campus, Anna University, Chennai 600025, India
| | - Singaravelu Ganesan
- Department of Medical Physics, CEG Campus, Anna University, Chennai 600025, India
| |
Collapse
|
40
|
Sulfur-doped carbon dots@polydopamine-functionalized magnetic silver nanocubes for dual-modality detection of norovirus. Biosens Bioelectron 2021; 193:113540. [PMID: 34403935 DOI: 10.1016/j.bios.2021.113540] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/23/2021] [Accepted: 08/01/2021] [Indexed: 12/27/2022]
Abstract
Synergistic dual-mode optical platforms are up-and-coming detection tools in the diagnosis and management of infectious diseases. Here, novel dual-modality fluorescence (FL) and surface-enhanced Raman scattering (SERS) techniques have been integrated into a single probe for the rapid and ultrasensitive detection of norovirus (NoV). The developed FL-SER-based biosensor relies on the dual-signal enhancements of newly synthesized sulfur-doped agar-derived carbon dots (S-agCDs). The antigen-antibody immunoreaction results in forming a core-satellite immunocomplex between anti-NoV antibody-conjugated S-agCDs and polydopamine-functionalized magnetic silver nanocubes [poly (dop)-MNPs-Ag NCs]. By deploying an immunomagnetic enrichment protocol and performing the SERS modality on a single-layer graphene substrate, norovirus-like particles (NoV-LPs) were detected across a wide range of 1 fg mL-1 - 10 ng mL-1 with an excellent limit of detection of 0.1 fg mL-1. The combined advantage of the dual-signaling properties of the biosensor was demonstrated using FL confocal imaging for "hotspots" tracking prior to SERS detection of clinical NoV in fecal specimen down to ⁓10 RNA copies mL-1. The proposed dual-modality biosensor's performance increases the prospect of a rapid and low-cost sensitive NoV detection and surveillance option for public health.
Collapse
|
41
|
Blue-emitting carbon quantum dots: Ultrafast microwave synthesis, purification and strong fluorescence in organic solvents. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126673] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Ge G, Li L, Wang D, Chen M, Zeng Z, Xiong W, Wu X, Guo C. Carbon dots: synthesis, properties and biomedical applications. J Mater Chem B 2021; 9:6553-6575. [PMID: 34328147 DOI: 10.1039/d1tb01077h] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Carbon dots (CDs) are a new type of carbon nanomaterial that have unique physical and chemical properties, good biocompatibility, low toxicity, and easy surface functionalization, making them widely used in biological imaging, environmental monitoring, chemical analysis, targeted drug delivery, disease diagnosis, therapy, etc. In this review, our content is mainly divided into four parts. In the first part, we focused on the preparation methods of CDs, including arc discharge, laser ablation, electrochemical oxidation, chemical oxidation, combustion, hydrothermal/solvent thermal, microwave, template, method etc. Next, we summarized methods of CD modification, including heteroatom doping and surface functionalization. Then, we discussed the optical properties of CDs (ultraviolet absorption, photoluminescence, up-conversion fluorescence, etc.). Lastly, we reviewed the common applications of CDs in biomedicine from the aspects of in vivo and in vitro imaging, sensors, drug delivery, cancer theranostics, etc. Furthermore, we also discussed the existing problems and the future development direction of CDs.
Collapse
Affiliation(s)
- Guili Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Science, Central South University, Changsha 410008, China.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Khan WU, Qin L, Alam A, Zhou P, Peng Y, Wang Y. Fluorescent Carbon Dots an Effective Nano-Thermometer in Vitro Applications. ACS APPLIED BIO MATERIALS 2021; 4:5786-5796. [PMID: 35006753 DOI: 10.1021/acsabm.1c00528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fluorescent sensing of temperature in nanoscale regions has many advantages and applications in the biological field. Herein, blue emitting carbon dots (CDs) are designed and successfully developed using a one step hydrothermal method. As synthesized CDs exhibit temperature dependent photoluminescent (PL) intensity and PL decay lifetime over the physiological temperature ranging from room temperature (RT) to 70 °C. The PL intensity and PL decay lifetime of the obtained CDs correlate linearly to temperature (RT-70 °C) with correlation coefficient of 0.997 and 0.996, respectively. Additionally, dual mode thermal sensing (PL intensity/lifetime) make these CDs a promising optical nanothermometer over alternative semiconductors quantum dots and CD-based quantum dots. Moreover, the resultant aqueous CDs demonstrate excitation-independent blue emission, and the PL quantum yield (QY) is reached at 44.5%. The obtained CDs illustrate stable performance to high ionic environments and photobleaching even after keeping them for 2 h under continues UV irradiation. Furthermore, blue emitting CDs have low cytotoxicity for T-ca. cells and illuminate deep blue fluorescence under the excitation of 406 nm. As a result, high thermal sensitivity of these fluorescent CDs has potential to detect temperature in living cells in the range of 25-40 °C.
Collapse
Affiliation(s)
- Waheed Ullah Khan
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Liying Qin
- School of Stomotology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Abid Alam
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ping Zhou
- School of Stomotology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong Peng
- Key Laboratory of Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology and Electron Microscope Center of Lanzhou University, Lanzhou 730000, P.R. China
| | - Yuhua Wang
- National and Local Joint Engineering Laboratory of Optical-Conversion Materials and Technology, School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
44
|
An Overview of the Recent Developments in Carbon Quantum Dots—Promising Nanomaterials for Metal Ion Detection and (Bio)Molecule Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fluorescent carbon quantum dots (CQDs) represent an emerging subset of carbonaceous nanomaterials, recently becoming a powerful tool for biosensing, bioimaging, and drug and gene delivery. In general, carbon dots are defined as zero-dimensional (0D), spherical-like nanoparticles with <10 nm in size. Their unique chemical, optical, and electronic properties make CQDs versatile materials for a wide spectrum of applications, mainly for the sensing and biomedical purposes. Due to their good biocompatibility, water solubility, and relatively facile modification, these novel materials have attracted tremendous interest in recent years, which is especially important for nanotechnology and nanoscience expertise. The preparation of the biomass-derived CQDs has attracted growing interest recently due to their low-cost, renewable, and green biomass resources, presenting also the variability of possible modification for the enhancement of CQDs’ properties. This review is primarily focused on the recent developments in carbon dots and their application in the sensing of different chemical species within the last five years. Furthermore, special emphasis has been made regarding the green approaches for obtaining CQDs and nanomaterial characterization toward better understanding the mechanisms of photoluminescent behavior and sensing performance. In addition, some of the challenges and future outlooks in CQDs research have been briefly outlined.
Collapse
|
45
|
Patil TV, Patel DK, Dutta SD, Ganguly K, Lim KT. Graphene Oxide-Based Stimuli-Responsive Platforms for Biomedical Applications. Molecules 2021; 26:2797. [PMID: 34068529 PMCID: PMC8126026 DOI: 10.3390/molecules26092797] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 01/13/2023] Open
Abstract
Graphene is a two-dimensional sp2 hybridized carbon material that has attracted tremendous attention for its stimuli-responsive applications, owing to its high surface area and excellent electrical, optical, thermal, and mechanical properties. The physicochemical properties of graphene can be tuned by surface functionalization. The biomedical field pays special attention to stimuli-responsive materials due to their responsive abilities under different conditions. Stimuli-responsive materials exhibit great potential in changing their behavior upon exposure to external or internal factors, such as pH, light, electric field, magnetic field, and temperature. Graphene-based materials, particularly graphene oxide (GO), have been widely used in stimuli-responsive applications due to their superior biocompatibility compared to other forms of graphene. GO has been commonly utilized in tissue engineering, bioimaging, biosensing, cancer therapy, and drug delivery. GO-based stimuli-responsive platforms for wound healing applications have not yet been fully explored. This review describes the effects of different stimuli-responsive factors, such as pH, light, temperature, and magnetic and electric fields on GO-based materials and their applications. The wound healing applications of GO-based materials is extensively discussed with cancer therapy and drug delivery.
Collapse
Affiliation(s)
- Tejal V. Patil
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| | - Dinesh K. Patel
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Sayan Deb Dutta
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Keya Ganguly
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
| | - Ki-Taek Lim
- Department of Biosystems Engineering, Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (T.V.P.); (D.K.P.); (S.D.D.); (K.G.)
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
46
|
Jain S, Santana W, Dolabella SS, Santos ALS, Souto EB, Severino P. Are Nanobiosensors an Improved Solution for Diagnosis of Leishmania? Pharmaceutics 2021; 13:491. [PMID: 33916812 PMCID: PMC8066167 DOI: 10.3390/pharmaceutics13040491] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is one of the deadliest neglected tropical diseases affecting 12-15 million people worldwide, especially in middle- and low-income countries. Rapid and accurate diagnosis of the disease is important for its adequate management and treatment. Several techniques are available for the diagnosis of leishmaniasis. Among these, parasitological and immunological tests are most widely used. However, in most cases, the utilized diagnostic techniques are not good enough, showing cross-reactivity and reduced accuracy. In recent years, many new methods have been reported with potential for improved diagnosis. This review focuses on the diagnosis of Leishmania exploring the biosensors and nanotechnology-based options for their detection. New developments including the use of nanomaterials as fluorophores, fluorescence quenchers as reducing agents and as dendrimers for signal improvement and amplification, together with the use of aptamers to replace antibodies are described. Future research opportunities to overcome the current limitations on the available diagnostic approaches are also discussed.
Collapse
Affiliation(s)
- Sona Jain
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| | - Wanessa Santana
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| | - Silvio S. Dolabella
- Department of Morphology, Federal University of Sergipe, São Cristóvão 49100-000, Brazil;
| | - André L. S. Santos
- Paulo de Góes Microbiology Institute, Departament of General Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Eliana B. Souto
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3004-531 Coimbra, Portugal
| | - Patrícia Severino
- Postgraduate Program in Industrial Biotechnology, Universidade Tiradentes, Aracaju 49032-490, Brazil; (W.S.); (P.S.)
| |
Collapse
|
47
|
Bag P, Maurya RK, Dadwal A, Sarkar M, Chawla PA, Narang RK, Kumar B. Recent Development in Synthesis of Carbon Dots from Natural Resources and Their Applications in Biomedicine and Multi‐Sensing Platform. ChemistrySelect 2021. [DOI: 10.1002/slct.202100468] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Puja Bag
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Rahul K. Maurya
- Amity Institute of Pharmacy Amity University Uttar Pradesh Lucknow Campus India
| | - Ankita Dadwal
- Department of Pharmaceutics ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Science and Technology Maharaja Ranjit Singh Punjab Technical University Bathinda 151001, Punjab India
| | - Mrinmoy Sarkar
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Pooja A. Chawla
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan, G.T Road Moga, Punjab India- 142001
| | - Raj K. Narang
- Department of Pharmaceutics ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
| | - Bhupinder Kumar
- Department of Pharmaceutical Analysis ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga Punjab India- 142001
- Department of Pharmaceutical Chemistry ISF College of Pharmacy, Ghal Kalan, G.T Road Moga, Punjab India- 142001
| |
Collapse
|
48
|
Saraf M, Tavakkoli Yaraki M, Prateek, Tan YN, Gupta RK. Insights and Perspectives Regarding Nanostructured Fluorescent Materials toward Tackling COVID-19 and Future Pandemics. ACS APPLIED NANO MATERIALS 2021; 4:911-948. [PMID: 37556236 PMCID: PMC7885806 DOI: 10.1021/acsanm.0c02945] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/26/2021] [Indexed: 07/28/2023]
Abstract
The COVID-19 outbreak has exposed the world's preparation to fight against unknown/unexplored infectious and life-threatening pathogens. The unavailability of vaccines, slow or sometimes unreliable real-time virus/bacteria detection techniques, insufficient personal protective equipment (PPE), and a shortage of ventilators and many other transportation equipments have further raised serious concerns. Material research has been playing a pivotal role in developing antimicrobial agents for water treatment and photodynamic therapy, fast and ultrasensitive biosensors for virus/biomarkers detection, as well as for relevant biomedical and environmental applications. It has been noticed that these research efforts nowadays primarily focus on the nanomaterials-based platforms owing to their simplicity, reliability, and feasibility. In particular, nanostructured fluorescent materials have shown key potential due to their fascinating optical and unique properties at the nanoscale to combat against a COVID-19 kind of pandemic. Keeping these points in mind, this review attempts to give a perspective on the four key fluorescent materials of different families, including carbon dots, metal nanoclusters, aggregation-induced-emission luminogens, and MXenes, which possess great potential for the development of ultrasensitive biosensors and infective antimicrobial agents to fight against various infections/diseases. Particular emphasis has been given to the biomedical and environmental applications that are linked directly or indirectly to the efforts in combating COVID-19 pandemics. This review also aims to raise the awareness of researchers and scientists across the world to utilize such powerful materials in tackling similar pandemics in future.
Collapse
Affiliation(s)
- Mohit Saraf
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering,
National University of Singapore, 4 Engineering Drive 4,
117585, Singapore
- Research and Development Department,
Nanofy Technologies Pte. Ltd., 048580,
Singapore
| | - Prateek
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| | - Yen Nee Tan
- Faculty of Science, Agriculture & Engineering,
Newcastle University, Newcastle upon Tyne NE1 7RU,
U.K.
- Newcastle Research & Innovation Institute,
Devan Nair Institute for Employment & Employability, 80
Jurong East Street 21, 609607, Singapore
| | - Raju Kumar Gupta
- Department of Chemical Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Centre for Environmental Science and Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
- Department of Sustanable Energy Engineering,
Indian Institute of Technology Kanpur, Kanpur 208016, Uttar
Pradesh, India
| |
Collapse
|
49
|
Christopoulou NM, Kalogianni DP, Christopoulos TK. Posidonia oceanica (Mediterranean tapeweed) leaf litter as a source of fluorescent carbon dot preparations. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105787] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Kaur K, Bindra P, Mondal S, Li WP, Sharma S, Sahu BK, Naidu BS, Yeh CS, Gautam UK, Shanmugam V. Upconversion Nanodevice-Assisted Healthy Molecular Photocorrection. ACS Biomater Sci Eng 2021; 7:291-298. [PMID: 33356144 DOI: 10.1021/acsbiomaterials.0c01244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mushrooms are rich in ergosterol, a precursor of ergocalciferol, which is a type of vitamin D2. The conversion of ergosterol to ergocalciferol takes place in the presence of UV radiation by the cleavage of the "B-ring" in the ergosterol. As the UV radiation cannot penetrate deep into the tissue, only minimal increase occurs in sunlight. In this study, upconversion nanoparticles with the property to convert deep-penetrating near-infrared radiation to UV radiation have been cast into a disk to use sunlight and emit UV radiation for vitamin D conversion. An engineered upconversion nanoparticle (UCNP) disk with maximum particles and limited clusters demonstrates ∼2.5 times enhanced vitamin D2 conversion.
Collapse
Affiliation(s)
- Kamaljit Kaur
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Pulkit Bindra
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Wei-Peng Li
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Sandeep Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Bandana Kumari Sahu
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Boddu S Naidu
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, SAS Nagar, Mohali 140306, Punjab, India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, Punjab, India
| |
Collapse
|