1
|
Liu T, Liu J, Zhu Q, Mu W, Chen L, Weng L, Kong G, Chen X. NIR responsive scaffold with multistep shape memory and photothermal-chemodynamic properties for complex tissue defects repair and antibacterial therapy. Biomaterials 2025; 313:122794. [PMID: 39241552 DOI: 10.1016/j.biomaterials.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Complex tissue damage accompanying with bacterial infection challenges healthcare systems globally. Conventional tissue engineering scaffolds normally generate secondary implantation trauma, mismatched regeneration and infection risks. Herein, we developed an easily implanted scaffold with multistep shape memory and photothermal-chemodynamic properties to exactly match repair requirements of each part from the tissue defect by adjusting its morphology as needed meanwhile inhibiting bacterial infection on demand. Specifically, a thermal-induced shape memory scaffold was prepared using hydroxyethyl methacrylate and polyethylene glycol diacrylate, which was further combined with the photothermal agent iron tannate (FeTA) to produce NIR light-induced shape memory property. By varying ingredients ratios in each segment, this scaffold could perform a stepwise recovery under different NIR periods. This process facilitated implantation after shape fixing to avoid trauma caused by conventional methods and gradually filled irregular defects under NIR to perform suitable tissue regeneration. Moreover, FeTA also catalyzed Fenton reaction at bacterial infections with abundant H2O2, which produced excess ROS for chemodynamic antibacterial therapy. As expected, bacteriostatic rate was further enhanced by additional photothermal therapy under NIR. The in vitro and vivo results showed that our scaffold was able to perform high efficacy in both antibiosis, inflammation reduction and wound healing acceleration, indicating a promising candidate for the regeneration of complex tissue damage with bacterial infection.
Collapse
Affiliation(s)
- Tao Liu
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Jie Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Qixuan Zhu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Wenyun Mu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Li Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Guangyao Kong
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China
| | - Xin Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, PR China; School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
2
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
3
|
Aldana AA, Kuhnt T, Marroquin Garcia R, Moroni L, Baker MB. Digital Light Processing Resins with Programmable Shape Memory for Biomedical Applications. Biomacromolecules 2024; 25:4677-4685. [PMID: 39074194 PMCID: PMC11322996 DOI: 10.1021/acs.biomac.3c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The creation of biodegradable and biocompatible shape memory polymers amenable to biofabrication techniques remains a challenge. The ability to create shape-changing biodegradable objects that are triggered at body temperature opens up possibilities in tissue engineering, minimally invasive surgery, and actuating bioimplants. Merging Digital Light Processing (DLP) printing with shape memory polymers brings us closer to new smart biomedical outcomes. Previously, we developed a poly(caprolactone-co-trimethylenecarbonate) urethane acrylate resin for the DLP fabrication of biodegradable 3D objects. In further studies, we observed that some of these resins possessed shape memory properties, triggered by body temperature (37 °C). In this subsequent study, we explored the shape memory properties and tunability of this resin family via changes in copolymer composition, molecular weight, and identity of the acrylate end-capping unit. We found that we could create a library of shape memory resins, amenable to DLP printing, which allowed the creation of shape-actuating structures with some tunability over the speed of shape memory and mechanical properties. We observed that increased mole fraction of caprolactone in the copolymer and increased molecular weight of the polymer led to a decrease in speed of the shape memory switch. Furthermore, we observed a trade-off between the composition and the end-capping moiety on the mechanical properties of the polymers. These polymeric resins were able to be processed into shapes that were able to perform work, including the release of cargo and grabbing/lifting of an object. This platform now provides a way to tune the speed and mechanical properties of a shape memory DLP object created from common and scalable polymerization techniques. This work ultimately provides a new platform to develop customizable and biodegradable devices capable of actuating and delivery devices for numerous biomedical applications.
Collapse
Affiliation(s)
- Ana A. Aldana
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Tobias Kuhnt
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Ramiro Marroquin Garcia
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Lorenzo Moroni
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| | - Matthew B. Baker
- Department
of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
- Department
of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired
Regenerative Medicine, Maastricht University, P.O. Box 616, Maastricht 6200 MD, The Netherlands
| |
Collapse
|
4
|
Jia S, Yang B, Du J, Xie Y, Yu L, Zhang Y, Tao T, Tang W, Gong J. Uncovering the Recent Progress of CNC-Derived Chirality Nanomaterials: Structure and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401664. [PMID: 38651220 DOI: 10.1002/smll.202401664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Indexed: 04/25/2024]
Abstract
Cellulose nanocrystal (CNC), as a renewable resource, with excellent mechanical performance, low thermal expansion coefficient, and unique optical performance, is becoming a novel candidate for the development of smart material. Herein, the recent progress of CNC-based chirality nanomaterials is uncovered, mainly covering structure regulations and function design. Undergoing a simple evaporation process, the cellulose nanorods can spontaneously assemble into chiral nematic films, accompanied by a vivid structural color. Various film structure-controlling strategies, including assembly means, physical modulation, additive engineering, surface modification, geometric structure regulation, and external field optimization, are summarized in this work. The intrinsic correlation between structure and performance is emphasized. Next, the applications of CNC-based nanomaterials is systematically reviewed. Layer-by-layer stacking structure and unique optical activity endow the nanomaterials with wide applications in the mineralization, bone regeneration, and synthesis of mesoporous materials. Besides, the vivid structural color broadens the functions in anti-counterfeiting engineering, synthesis of the shape-memory and self-healing materials. Finally, the challenges for the CNC-based nanomaterials are proposed.
Collapse
Affiliation(s)
- Shengzhe Jia
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingbing Yang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jing Du
- Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Yujiang Xie
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liuyang Yu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuan Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tiantian Tao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Weiwei Tang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin, 300072, China
| |
Collapse
|
5
|
da Silva MM, Proença MP, Covas JA, Paiva MC. Shape-Memory Polymers Based on Carbon Nanotube Composites. MICROMACHINES 2024; 15:748. [PMID: 38930718 PMCID: PMC11205355 DOI: 10.3390/mi15060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024]
Abstract
For the past two decades, researchers have been exploring the potential benefits of combining shape-memory polymers (SMP) with carbon nanotubes (CNT). By incorporating CNT as reinforcement in SMP, they have aimed to enhance the mechanical properties and improve shape fixity. However, the remarkable intrinsic properties of CNT have also opened up new paths for actuation mechanisms, including electro- and photo-thermal responses. This opens up possibilities for developing soft actuators that could lead to technological advancements in areas such as tissue engineering and soft robotics. SMP/CNT composites offer numerous advantages, including fast actuation, remote control, performance in challenging environments, complex shape deformations, and multifunctionality. This review provides an in-depth overview of the research conducted over the past few years on the production of SMP/CNT composites with both thermoset and thermoplastic matrices, with a focus on the unique contributions of CNT to the nanocomposite's response to external stimuli.
Collapse
Affiliation(s)
- Mariana Martins da Silva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Mariana Paiva Proença
- ISOM and Departamento de Electrónica Física, Universidad Politécnica de Madrid, Ava. Complutense 30, E-28040 Madrid, Spain;
| | - José António Covas
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| | - Maria C. Paiva
- Institute for Polymers and Composites, University of Minho, Campus of Azurém, 4800-058 Guimarães, Portugal; (M.M.d.S.); (J.A.C.)
| |
Collapse
|
6
|
Tang J, Wen Z, Zhai M, Zhang J, Zhang S, Cui Y, Guo Q, Zhu K, Wang J, Liu Q. Environmental-friendly, flexible silk fibroin-based film as dual-responsive shape memory material. Int J Biol Macromol 2024; 269:131748. [PMID: 38670194 DOI: 10.1016/j.ijbiomac.2024.131748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Bio-based shape memory materials have attracted wide attention due to their biocompatibility, degradability and safety. However, designing and manufacturing wearable bio-based shape memory films with excellent flexibility and toughness is still a challenge. In this work, silk fibroin substrate with a β-sheet structure was combined with a tri-block shape memory copolymer to prepare a transparent composited shape memory film. The silk fibroin-based film showed a dual-responsive shape memory function, which can respond to both temperature and water stimuli. This film has a sensitive water-responsive shape memory, which starts deforming after exposure to water for 3 s and fully recovers in 30 s. In addition, the composite film shows highly stretchable (>300 %) and could maintain its high tensile properties after 5 cycles of regeneration. The films also exhibited rapid degradation ability. This study provides new insights for the design of dual-responsive shape memory materials by combining biocompatible matrix and multi-block SMP to simultaneously enhance the mechanical properties, which can be used for intelligent packaging, medical supplies, soft actuators and wearable devices.
Collapse
Affiliation(s)
- Jingzhi Tang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Zhongyuan Wen
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Maomao Zhai
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinming Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Yongming Cui
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qingfeng Guo
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Kunkun Zhu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Qingtao Liu
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China.
| |
Collapse
|
7
|
Liu Y, Li Y, Ji J, Fan Y, Hong J, Wang L. A Shape Memory Polymeric Shield for Protecting Corneal Endothelium During Phacoemulsification. Transl Vis Sci Technol 2024; 13:11. [PMID: 38578634 PMCID: PMC11005075 DOI: 10.1167/tvst.13.4.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/16/2024] [Indexed: 04/06/2024] Open
Abstract
Background The purpose of this study was to explore the protective effect of a shape memory polymeric shield on corneal endothelium during phacoemulsification in rabbits. Methods Poly-(glycerol dodecanedioate) (PGD) with a transition temperature of 24.416°C was prepared to make a shape memory shield with a thickness of 100 µm, an arc length of 14 mm, and a radius of curvature of 8.8 mm. In the control group, a phaco-tip with bevel-down was used to simulate injury to the corneal endothelium by phacoemulsification in rabbits. In the experimental group, the pre-cooled and curled shape memory shield was injected into and removed from the anterior chamber before and after phaco-power release. Anterior segment optical coherence tomography (AS-OCT), confocal microscope, trypan blue/alizarin red staining, and scanning electron microscope were performed to measure endothelial damage after surgery. Results One day postoperatively, the lost cell ratio of the control group and the experimental group were 28.08 ± 5.21% and 3.50 ± 1.43%, respectively (P < 0.0001), the damaged cell ratios were 11.83 ± 2.30% and 2.55 ± 0.52%, respectively (P < 0.0001), and the central corneal thicknesses (CCT) were 406.75 ± 16.74 µm and 340. 5 ±13.48 µm, respectively (P < 0.0001). Seven days postoperatively, the endothelial cell density (ECD) of the control group and the experimental group were 1674 ± 285/mm2 and 2561 ± 554/mm2, respectively (P < 0.05). The above differences were all statistically significant. Conclusions This PGD based shape memory shield has a protective effect on corneal endothelium during phacoemulsification. It reduces postoperative corneal edema and ECD decrease in the short term after surgery. Translational Relevance The shape memory PGD "shield" in this study may have a use in certain human patients with vulnerable corneas of low endothelial cell count or shallow anterior chambers.
Collapse
Affiliation(s)
- Yinan Liu
- Department of Ophthalmology, Peking University Third Hospital, 49th North Garden Road, Haidian District, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49th North Garden Road, Haidian District, Beijing, China
| | - Yuqi Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, 49th North Garden Road, Haidian District, Beijing, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, 49th North Garden Road, Haidian District, Beijing, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
8
|
Dong X, Dai GW, Xie L, Li DL, Sun Z, Liu S. Heat-triggered shape recovery, EMI shielding and flame retardant: A novel cellulose/M(OH)(OCH 3)@dopamine@Ag (M=Co, Ni) nanopaper for early fire alarm. Int J Biol Macromol 2024; 264:130270. [PMID: 38423423 DOI: 10.1016/j.ijbiomac.2024.130270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/02/2024]
Abstract
Fire alarm systems are essential for protecting lives and properties from fire hazards. However, most of the existing fire alarm nanopapers rely on the resistance reduction after heating, which requires direct contact with the flame. In this study, we present a novel fire alarm nanopaper (CMPA) based on heat-triggered shape recovery. The CMPA is composed of hydroxypropyl methyl cellulose (HPMC) as the matrix and 2D nanomaterials M(OH)(OCH3) as fillers. When the temperature of CMPA exceeded the glass transition, the thrice-folded CMPA-1.0 flattened in 30s and connected to the alarm circuit based on its conductive surface. According to the results, the CMPA-1.0 with a thickness of about 0.2 mm had an efficient electromagnetic shielding of 42.1 dB. Moreover, the CMPA-1.0 self-extinguished rapidly after being ignited with its original shape preserved. The peak heat release rate of CMPA-1.0 was 108.9 W/g, which was 61.9 % lower than that of HPMC. Furthermore, the thermal conductivity of CMPA-1.0 reached to 0.317 W m-1 K-1, which was 40.8 % higher than that of HPMC, reducing the heat accumulation effectively. This work shows that CMPA is an ideal material for sensitive and safe early fire alarm, and the strategy based on heat-triggered shape recovery is promising in fire alarm application.
Collapse
Affiliation(s)
- Xiang Dong
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Guo-Wei Dai
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Le Xie
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - De-Long Li
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Zhiyu Sun
- School of Safety Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Song Liu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
9
|
Mirzababaei S, Towery LAK, Kozminsky M. 3D and 4D assembly of functional structures using shape-morphing materials for biological applications. Front Bioeng Biotechnol 2024; 12:1347666. [PMID: 38605991 PMCID: PMC11008679 DOI: 10.3389/fbioe.2024.1347666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 04/13/2024] Open
Abstract
3D structures are crucial to biological function in the human body, driving interest in their in vitro fabrication. Advances in shape-morphing materials allow the assembly of 3D functional materials with the ability to modulate the architecture, flexibility, functionality, and other properties of the final product that suit the desired application. The principles of these techniques correspond to the principles of origami and kirigami, which enable the transformation of planar materials into 3D structures by folding, cutting, and twisting the 2D structure. In these approaches, materials responding to a certain stimulus will be used to manufacture a preliminary structure. Upon applying the stimuli, the architecture changes, which could be considered the fourth dimension in the manufacturing process. Here, we briefly summarize manufacturing techniques, such as lithography and 3D printing, that can be used in fabricating complex structures based on the aforementioned principles. We then discuss the common architectures that have been developed using these methods, which include but are not limited to gripping, rolling, and folding structures. Then, we describe the biomedical applications of these structures, such as sensors, scaffolds, and minimally invasive medical devices. Finally, we discuss challenges and future directions in using shape-morphing materials to develop biomimetic and bioinspired designs.
Collapse
Affiliation(s)
- Soheyl Mirzababaei
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Lily Alyssa Kera Towery
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
| | - Molly Kozminsky
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, United States
- Nanovaccine Institute, Iowa State University, Ames, IA, United States
| |
Collapse
|
10
|
Yan Y, Han M, Jiang Y, Ng ELL, Zhang Y, Owh C, Song Q, Li P, Loh XJ, Chan BQY, Chan SY. Electrically Conductive Polymers for Additive Manufacturing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5337-5354. [PMID: 38284988 DOI: 10.1021/acsami.3c13258] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
The use of electrically conductive polymers (CPs) in the development of electronic devices has attracted significant interest due to their unique intrinsic properties, which result from the synergistic combination of physicochemical properties in conventional polymers with the electronic properties of metals or semiconductors. Most conventional methods adopted for the fabrication of devices with nonplanar morphologies are still challenged by the poor ionic/electronic mobility of end products. Additive manufacturing (AM) brings about exciting prospects to the realm of CPs by enabling greater design freedom, more elaborate structures, quicker prototyping, relatively low cost, and more environmentally friendly electronic device creation. A growing variety of AM technologies are becoming available for three-dimensional (3D) printing of conductive devices, i.e., vat photopolymerization (VP), material extrusion (ME), powder bed fusion (PBF), material jetting (MJ), and lamination object manufacturing (LOM). In this review, we provide an overview of the recent research progress in the area of CPs developed for AM, which advances the design and development of future electronic devices. We consider different AM techniques, vis-à-vis, their development progress and respective challenges in printing CPs. We also discuss the material requirements and notable advances in 3D printing of CPs, as well as their potential electronic applications including wearable electronics, sensors, energy storage and conversion devices, etc. This review concludes with an outlook on AM of CPs.
Collapse
Affiliation(s)
- Yinjia Yan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Miao Han
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yanni Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Cally Owh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Siew Yin Chan
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
11
|
Suga K, Yamakado T, Saito S. Dual Ratiometric Fluorescence Monitoring of Mechanical Polymer Chain Stretching and Subsequent Strain-Induced Crystallization. J Am Chem Soc 2023. [PMID: 38051032 DOI: 10.1021/jacs.3c09175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Tracking the behavior of mechanochromic molecules provides valuable insights into force transmission and associated microstructural changes in soft materials under load. Herein, we report a dual ratiometric fluorescence (FL) analysis for monitoring both mechanical polymer chain stretching and strain-induced crystallization (SIC) of polymers. SIC has recently attracted renewed attention as an effective mechanism for improving the mechanical properties of polymers. A polyurethane (PU) film incorporating a trace of a dual-emissive flapping force probe (N-FLAP, 0.008 wt %) exhibited a blue-to-green FL spectral change in a low-stress region (<20 MPa), resulting from conformational planarization of the probe in mechanically stretched polymer chains. More importantly, at higher probe concentrations (∼0.65 wt %), the PU film showed a second spectral change from green to yellow during the SIC growth (20-65 MPa) due to self-absorption of scattered FL in a short wavelength region. The reversibility of these spectral changes was demonstrated by load-unload cycles. With these results in hand, the degrees of the polymer chain stretching and the SIC were quantitatively mapped and monitored by dual ratiometric imaging based on different FL ratios (I525/I470 and I525/I600). Simultaneous analysis of these two mappings revealed a spatiotemporal gap in the distribution of the polymer chain stretching and the SIC. The combinational use of the dual-emissive force probe and the ratiometric FL imaging is a universal approach for the development of soft matter physics.
Collapse
Affiliation(s)
- Kensuke Suga
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takuya Yamakado
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shohei Saito
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
12
|
Han X, Wang Z, Zhou Z, Peng Y, Zhang T, Chen H, Wang S, Pu J. Aldehyde modified cellulose-based dual stimuli responsive multiple cross-linked network ionic hydrogel toward ionic skin and aquatic environment communication sensors. Int J Biol Macromol 2023; 252:126533. [PMID: 37634784 DOI: 10.1016/j.ijbiomac.2023.126533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/12/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Recently, materials with complicated environmentally-sensitive abilities, high stretchability and excellent conductive sensitivity are interesting actuators in future applications. Herein, we fabricated a versatile and facile polyvinyl alcohol/polyacrylic acid/dialdehyde cellulose nanofibrils-Fe3+ hydrogel integrated with programmable dual-shape memory properties, high mechanical strength, good recoverability, and heat-induced self-healing capability. Benefiting from the synergistic effect of hydrogen bonds and dual metal coordination bonds of cellulose-based dialdehyde and carboxyl with Fe3+and then heating-freeze-thawing cycle treatment, the obtained hydrogel exhibited dual shape memory abilities, high tensile strain (up to 600 %), good self-recovery, and anti-fatigue properties. Moreover, the resultant hydrogel sensors showed revealed high strain sensitivity (gauge factor = 2.95) and satisfactory electrochemical performance; and such hydrogel-based sensor could be used as ionic skin to detect various human motions in real-time and barrier-free communication in the aquatic environment. The composite hydrogel with superior and versatile performances reported in this study could offer a great promise to be applied under extreme conditions as multifunctional sensors.
Collapse
Affiliation(s)
- Xuewen Han
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Zhenxing Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Zijing Zhou
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Yukang Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Tao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China
| | - Heyu Chen
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sijie Wang
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China.
| | - Junwen Pu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, College of Materials Science and Technology, Beijing 100083, China.
| |
Collapse
|
13
|
Chen Z, Gao B, Li P, Zhao X, Yan Q, Liu Z, Xu L, Zheng H, Xue F, Ding R, Xiong J, Tang Z, Peng Q, Hu Y, He X. Multistimuli-Responsive Actuators Derived from Natural Materials for Entirely Biodegradable and Programmable Untethered Soft Robots. ACS NANO 2023; 17:23032-23045. [PMID: 37939309 DOI: 10.1021/acsnano.3c08665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Untethered soft robots have attracted growing attention due to their safe interaction with living organisms, good flexibility, and accurate remote control. However, the materials involved are often nonbiodegradable or are derived from nonrenewable resources, leading to serious environmental problems. Here, we report a biomass-based multistimuli-responsive actuator based on cuttlefish ink nanoparticles (CINPs), wood-derived cellulose nanofiber (CNF), and bioderived polylactic acid (PLA). Taking advantage of the good photothermal conversion performance and exceptionally hygroscopic sensitivity of the CINPs/CNF composite (CICC) layer and the opposite thermally induced deformation behavior between the CICC layer and PLA layer, the soft actuator exhibits reversible deformation behaviors under near-infrared (NIR) light, humidity, and temperature stimuli, respectively. By introducing patterned or alignment structures and combining them with a macroscopic reassembly strategy, diverse programmable shape-morphing from 2D to 3D such as letter-shape, coiling, self-folding, and more sophisticated 3D deformations have been demonstrated. All of these deformations can be successfully predicted by finite element analysis (FEA) . Furthermore, this actuator has been further applied as an untethered grasping robot, weightlifting robot, and climbing robot capable of climbing a vertical pole. Such actuators consisting entirely of biodegradable materials will offer a sustainable future for untethered soft robots.
Collapse
Affiliation(s)
- Zhong Chen
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Bo Gao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Pengyang Li
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xu Zhao
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Qian Yan
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zonglin Liu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Liangliang Xu
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Haowen Zheng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Fuhua Xue
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Renjie Ding
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Jinhua Xiong
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Zhigong Tang
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
- Frontiers Science Center for Matter Behave in Space Environment, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Ying Hu
- Institute of Industry & Equipment Technology, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Xiaodong He
- National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| |
Collapse
|
14
|
Jiang Y, Ng ELL, Han DX, Yan Y, Chan SY, Wang J, Chan BQY. Self-Healing Polymeric Materials and Composites for Additive Manufacturing. Polymers (Basel) 2023; 15:4206. [PMID: 37959886 PMCID: PMC10649664 DOI: 10.3390/polym15214206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Self-healing polymers have received widespread attention due to their ability to repair damage autonomously and increase material stability, reliability, and economy. However, the processability of self-healing materials has yet to be studied, limiting the application of rich self-healing mechanisms. Additive manufacturing effectively improves the shortcomings of conventional processing while increasing production speed, accuracy, and complexity, offering great promise for self-healing polymer applications. This article summarizes the current self-healing mechanisms of self-healing polymers and their corresponding additive manufacturing methods, and provides an outlook on future developments in the field.
Collapse
Affiliation(s)
- Yixue Jiang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Evelyn Ling Ling Ng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Danielle Xinyun Han
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Yinjia Yan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi’an Institute of Flexible Electronics (IFE), Xi’an Institute of Biomedical Materials and Engineering (IBME), and Ningbo Institute, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - John Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Benjamin Qi Yu Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
15
|
Nishimura SN, Sato D, Koga T. Mechanically Tunable Hydrogels with Self-Healing and Shape Memory Capabilities from Thermo-Responsive Amino Acid-Derived Vinyl Polymers. Gels 2023; 9:829. [PMID: 37888402 PMCID: PMC10606565 DOI: 10.3390/gels9100829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
In this study, we report the fabrication and characterization of self-healing and shape-memorable hydrogels, the mechanical properties of which can be tuned via post-polymerization crosslinking. These hydrogels were constructed from a thermo-responsive poly(N-acryloyl glycinamide) (NAGAm) copolymer containing N-acryloyl serine methyl ester (NASMe) units (5 mol%) that were readily synthesized via conventional radical copolymerization. This transparent and free-standing hydrogel is produced via multiple hydrogen bonds between PNAGAm chains by simply dissolving the polymer in water at a high temperature (~90 °C) and then cooling it. This hydrogel exhibited moldability and self-healing properties. The post-polymerization crosslinking of the amino acid-derived vinyl copolymer network with glutaraldehyde, which acts as a crosslinker between the hydroxy groups of the NASMe units, tuned mechanical properties such as viscoelasticity and tensile strength. The optimal crosslinker concentration efficiently improved the viscoelasticity. Moreover, these hydrogels exhibited shape fixation (~60%)/memory (~100%) behavior owing to the reversible thermo-responsiveness (upper critical solution temperature-type) of the PNAGAm units. Our multifunctional hydrogel, with moldable, self-healing, mechanical tunability via post-polymerization crosslinking, and shape-memorable properties, has considerable potential for applications in engineering and biomedical materials.
Collapse
Affiliation(s)
- Shin-nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| | | | - Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe 610-0321, Kyoto, Japan;
| |
Collapse
|
16
|
Bai X, Cao R, Wu D, Zhang H, Yang F, Wang L. Dental Pulp Stem Cells for Bone Tissue Engineering: A Literature Review. Stem Cells Int 2023; 2023:7357179. [PMID: 37868704 PMCID: PMC10586346 DOI: 10.1155/2023/7357179] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/03/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Bone tissue engineering (BTE) is a promising approach for repairing and regenerating damaged bone tissue, using stem cells and scaffold structures. Among various stem cell sources, dental pulp stem cells (DPSCs) have emerged as a potential candidate due to their multipotential capabilities, ability to undergo osteogenic differentiation, low immunogenicity, and ease of isolation. This article reviews the biological characteristics of DPSCs, their potential for BTE, and the underlying transcription factors and signaling pathways involved in osteogenic differentiation; it also highlights the application of DPSCs in inducing scaffold tissues for bone regeneration and summarizes animal and clinical studies conducted in this field. This review demonstrates the potential of DPSC-based BTE for effective bone repair and regeneration, with implications for clinical translation.
Collapse
Affiliation(s)
- Xiaolei Bai
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Ruijue Cao
- Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Danni Wu
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Huicong Zhang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Fan Yang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| | - Linhong Wang
- Center for Plastic & Reconstructive Surgery, Department of Stomatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou 310018, Zhejiang, China
| |
Collapse
|
17
|
Liu Y, Liu X, Zhang Z, Lu J, Wang Y, Xu K, Zhu H, Wang B, Lin L, Xue W. Experimental and fluid flow simulation studies of laser-electrochemical hybrid manufacturing of micro-nano symbiotic superamphiphobic surfaces. J Chem Phys 2023; 159:114702. [PMID: 37712795 DOI: 10.1063/5.0166375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
Micro-nano symbiotic superamphiphobic surfaces can prevent liquids from adhering to metal surfaces and, as a result, improve their corrosion resistance, self-cleaning performance, pollution resistance, and ice resistance. However, the fabrication of stable and controllable micro-nano symbiotic superamphiphobic structures on metal surfaces commonly used in industry remains a significant challenge. In this study, a laser-electrochemical hybrid subtractive-additive manufacturing method was proposed and developed for preparing copper superamphiphobic surfaces. Both experimental and fluid simulation studies were carried out. Utilizing this novel hybrid method, the controllable preparation of superamphiphobic micro-nano symbiotic structures was realized. The experimental results showed that the prepared surfaces had excellent superamphiphobic properties following subsequent modification with low surface energy substances. The contact angles of water droplets and oil droplets on the surface following electrodeposition treatment reached values of 161 ± 4° and 151 ± 4°, respectively, which showed that the prepared surface possessed perfect superamphiphobicity. Both the fabrication method and the test results provided useful insights for the preparation of stable and controllable superamphiphobic structures on metal surfaces in the future.
Collapse
Affiliation(s)
- Yang Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyu Liu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhaoyang Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jinzhong Lu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yufeng Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Kun Xu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hao Zhu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bo Wang
- Department of Materials Science and Engineering, Saarland University, Saarbrucken 66123, German
| | - Liqu Lin
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| | - Wei Xue
- Institute of Laser and Optoelectronics Intelligent Manufacturing, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
18
|
Tadge T, Garje S, Saxena V, Raichur AM. Application of Shape Memory and Self-Healable Polymers/Composites in the Biomedical Field: A Review. ACS OMEGA 2023; 8:32294-32310. [PMID: 37720748 PMCID: PMC10500588 DOI: 10.1021/acsomega.3c04569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Shape memory-assisted self-healing polymers have drawn attention over the past few years owing to their interdisciplinary and wide range of applications. Self-healing and shape memory are two approaches used to improve the applicability of polymers in the biomedical field. Combining both these approaches in a polymer composite opens new possibilities for its use in biomedical applications, such as the "close then heal" concept, which uses the shape memory capabilities of polymers to bring injured sections together to promote autonomous healing. This review focuses on using shape memory-assisted self-healing approaches along with their respective affecting factors for biomedical applications such as tissue engineering, drug delivery, biomaterial-inks, and 4D printed scaffolds, soft actuators, wearable electronics, etc. In addition, quantification of self-healing and shape memory efficiency is also discussed. The challenges and prospects of these polymers for biomedical applications have been summarized.
Collapse
Affiliation(s)
| | | | - Varun Saxena
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Ashok M. Raichur
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
19
|
Heunis CM, Wang Z, de Vente G, Misra S, Venkiteswaran VK. A Magnetic Bio-Inspired Soft Carrier as a Temperature-Controlled Gastrointestinal Drug Delivery System. Macromol Biosci 2023; 23:e2200559. [PMID: 36945731 DOI: 10.1002/mabi.202200559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/14/2023] [Indexed: 03/23/2023]
Abstract
Currently, gastrointestinal bleeding in the colon wall and the small bowel is diagnosed and treated with endoscopes. However, the locations of this condition are often problematic to treat using traditional flexible and tethered tools. New studies commonly consider untethered devices for solving this problem. However, there still exists a gap in the extant literature, and more research is needed to diagnose and deliver drugs in the lower gastrointestinal tract using soft robotic carriers. This paper discusses the development of an untethered, magnetically-responsive bio-inspired soft carrier. A molding process is utilized to produce prototypes from Diisopropylidene-1,6-diphenyl-1,6-hexanediol-based Polymer with Ethylene Glycol Dimethacrylate (DiAPLEX) MP-3510 - a shape memory polymer with a low transition temperature to enable the fabrication of these carriers. The soft carrier design is validated through simulation results of deformation caused by magnetic elements embedded in the carrier in response to an external field. The thermal responsiveness of the fabricated prototype carriers is assessed ex vivo and in a phantom. The results indicate a feasible design capable of administering drugs to a target inside a phantom of a large intestine. The soft carrier introduces a method for the controlled release of drugs by utilizing the rubbery modulus of the polymer and increasing the recovery force through magnetic actuation.
Collapse
Affiliation(s)
- Christoff M Heunis
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Zhuoyue Wang
- Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, Groningen, 9713 GZ, The Netherlands
| | - Gerko de Vente
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Sarthak Misra
- Surgical Robotics Laboratory, Department of Biomechanical Engineering, University of Twente, Enschede, 7500 AE, The Netherlands
- Department of Biomedical Engineering, University of Groningen and University Medical Centre Groningen, Groningen, 9713 GZ, The Netherlands
| | | |
Collapse
|
20
|
Li Z, Guo Z, Yang Y. Development of cyanate
ester‐based
shape memory composite reinforced by
multi‐walled
carbon nanotube modified with silicon dioxide. J Appl Polym Sci 2023. [DOI: 10.1002/app.53749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- Zhihua Li
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education Central South University Changsha China
- School of Materials Science and Engineering Central South University Changsha China
| | - Ziteng Guo
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education Central South University Changsha China
- School of Materials Science and Engineering Central South University Changsha China
| | - Yu Yang
- Key Laboratory of Nonferrous Metal Materials Science and Engineering of Ministry of Education Central South University Changsha China
- School of Materials Science and Engineering Central South University Changsha China
| |
Collapse
|
21
|
Pan B, Park SM, Ying WB, Yoon DK, Lee KJ. Azo-Functionalized Thermoplastic Polyurethane for Light-Driven Shape Memory Materials. Macromol Rapid Commun 2023; 44:e2200650. [PMID: 36350231 DOI: 10.1002/marc.202200650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/24/2022] [Indexed: 11/11/2022]
Abstract
Shape memory polymers have great potential in the fields of soft robotics, injectable medical devices, and as essential materials for advanced electronic devices. Herein, light-triggered shape-memory thermoplastic polyurethane (TPU) is reported using azido TPU grafted by the photoswitchable azo compound. The trans-cis transitions of the azobenzene on the side chain of the TPU induce the recoiling of the main chain, leading to shaping memory behavior. Under UV irradiation, cis-azo allows the oriented main chain to recoil to release residual stress and realize light-triggered shape memory behavior. The facile method proposed here for the preparation of azo-functionalized TPU can provide viable opportunities for soft robotics and smart TPU applications.
Collapse
Affiliation(s)
- Baohai Pan
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Soon Mo Park
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Wu Bin Ying
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Dong Ki Yoon
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemical Engineering and Applied Chemistry, College of Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
22
|
Li Z, Mei S, Luo L, Li S, Chen X, Zhang Y, Zhao W, Zhang X, Shi G, He Y, Cui Z, Fu P, Pang X, Liu M. Multiple/Two-Way Shape Memory Poly(urethane-urea-amide) Elastomers. Macromol Rapid Commun 2023; 44:e2200693. [PMID: 36250510 DOI: 10.1002/marc.202200693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Indexed: 11/07/2022]
Abstract
Multiple and two-way reversible shape memory polymers (M/2W-SMPs) are highly promising for many fields due to large deformation, lightweight, strong recovery stress, and fast response rates. Herein, a semi-crystalline block poly(urethane-urea-amide) elastomers (PUUAs) are prepared by the copolymerization of isocyanate-terminated polyurethane (OPU) and amino-terminated oligomeric polyamide-1212 (OPA). PUUAs, composed of OPA as stationary phase and PTMEG as reversible phase, exhibit excellent rigidity, flexibility, and resilience, and cPUUA-C7 -S25 exhibits the best tensile property with strength of 10.3 MPa and elongation at break of 360.2%. Besides, all the PUUAs possess two crystallization/melting temperatures and a glass transition temperature, which endow PUUAs with multiple and reversible two-way shape memory effect (M/2W-SME). Physically crosslinked PUUA-C0 -S25 exhibits excellent dual and triple shape memory, and micro chemically crosslinked cPUUA-C7 -S25 further shows quadruple shape memory behavior. Additionally, both PUUA-C0 -S25 and cPUUA-C7 -S25 have 2W-SME. Intriguingly, cPUUA-C7 -S25 can achieve a higher temperature (up to 165 °C) SME, which makes it suitable for more complex and changeable applications. Based on the advantages of M/2W-SME, a temperature-responsive application scenario where PUUAs can transform spontaneously among different shapes is designed. These unique M/2W-SME and high-temperature SME will enable the applications of high-temperature sensors, actuators, and aerospace equipment.
Collapse
Affiliation(s)
- Zhen Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuxiang Mei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Lu Luo
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siyuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyin Chen
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuancheng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Wei Zhao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xiaomeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Ge Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Yanjie He
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Zhe Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Peng Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Xinchang Pang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| | - Minying Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou, 450001, China
- Engineering Laboratory of High Performance Nylon Engineering Plastics of China Petroleum and Chemical Industry, Zhengzhou, 450052, China
| |
Collapse
|
23
|
Synthesizing Polyurethane Using Isosorbide in Primary Alcohol Form, and Its Biocompatibility Properties. Polymers (Basel) 2023; 15:polym15020418. [PMID: 36679298 PMCID: PMC9866209 DOI: 10.3390/polym15020418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
Isosorbide is a bio-based renewable resource that has been utilized as a stiffness component in the synthesis of novel polymers. Modified isosorbide-based bis(2-hydroxyethyl)isosorbide (BHIS) has favorable structural features, such as fused bicyclic rings and a primary hydroxyl function with improved reactivity to polymerization when compared to isosorbide itself. Polyurethane series (PBH PU series) using polycarbonate diol (PCD) and bis(2-hydroxyethyl)isosorbide (BHIS) were polymerized through a simple, one-shot polymerization without a catalyst using various ratios of BHIS, PCD, and hexamethylene diisocyanate (HDI). The synthesized BHIS and PUs were characterized using proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), and mechanical testing. To determine the feasibility of using these PUs as biomedical materials, we investigated the effects of their BHIS content on PBH PU series physical and mechanical properties. The PBH PU series has excellent elasticity, with a breaking strain ranging from 686.55 to 984.69% at a 33.26 to 63.87 MPa tensile stress. The material showed superb biocompatibility with its high adhesion and proliferation in the bone marrow cells. Given their outstanding mechanical properties and biocompatibility, the polymerized bio-based PUs can contribute toward various applications in the medical field.
Collapse
|
24
|
Sheikh A, Abourehab MAS, Kesharwani P. The clinical significance of 4D printing. Drug Discov Today 2023; 28:103391. [PMID: 36195204 DOI: 10.1016/j.drudis.2022.103391] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 02/02/2023]
Abstract
4D printing is the next step on from 3D printing involving the fourth dimension of 'time'. The programmed 4D-printed objects are capable of changing their shape in response to external stimuli, such as light, heat, or water, differentiating them from 3D-printed static objects. This technique promises new possibilities for cancer treatment, drug delivery, stent development, and tissue engineering. In this review, we focus on the development of 4D-printed objects, their clinical use, and the possibility of 5D printing, which could revolutionize the fields of biomedical engineering and drug delivery.
Collapse
Affiliation(s)
- Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Minia University, Minia 61519, Egypt
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
25
|
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Indexed: 12/23/2022]
Abstract
As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Chengbin Yue
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin, 150080, P. R. China
| |
Collapse
|
26
|
Yang S, Chen T, Bu Z, Tuo X, Gong Y, Guo J. Thermal responsive photopolymerization
3D
printed shape memory polymers enhanced by heat transfer media. J Appl Polym Sci 2022. [DOI: 10.1002/app.53514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuochen Yang
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Tingjun Chen
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Zesen Bu
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Xiaohang Tuo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Yumei Gong
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| | - Jing Guo
- School of Textile and Material Engineering Dalian Polytechnic University Dalian People's Republic of China
| |
Collapse
|
27
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
28
|
Fulati A, Uto K, Ebara M. Influences of Crystallinity and Crosslinking Density on the Shape Recovery Force in Poly(ε-Caprolactone)-Based Shape-Memory Polymer Blends. Polymers (Basel) 2022; 14:4740. [PMID: 36365733 PMCID: PMC9658307 DOI: 10.3390/polym14214740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 09/19/2023] Open
Abstract
Shape-memory polymers (SMPs) show great potential in various emerging applications, such as artificial muscles, soft actuators, and biomedical devices, owing to their unique shape recovery-induced contraction force. However, the factors influencing this force remain unclear. Herein, we designed a simple polymer blending system using a series of tetra-branched poly(ε-caprolactone)-based SMPs with long and short branch-chain lengths that demonstrate decreased crystallinity and increased crosslinking density gradients. The resultant polymer blends possessed mechanical properties manipulable across a wide range in accordance with the crystallinity gradient, such as stretchability (50.5-1419.5%) and toughness (0.62-130.4 MJ m-3), while maintaining excellent shape-memory properties. The experimental results show that crosslinking density affected the shape recovery force, which correlates to the SMPs' energy storage capacity. Such a polymer blending system could provide new insights on how crystallinity and crosslinking density affect macroscopic thermal and mechanical properties as well as the shape recovery force of SMP networks, improving design capability for future applications.
Collapse
Affiliation(s)
- Ailifeire Fulati
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 3050044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 3058577, Japan
| | - Koichiro Uto
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 3050044, Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 3050044, Japan
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 3058577, Japan
- Graduate School of Advanced Engineering, Tokyo University of Science, Tokyo 1258585, Japan
| |
Collapse
|
29
|
Zhang Y, Li J, Habibovic P. Magnetically responsive nanofibrous ceramic scaffolds for on-demand motion and drug delivery. Bioact Mater 2022; 15:372-381. [PMID: 35386339 PMCID: PMC8958423 DOI: 10.1016/j.bioactmat.2022.02.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/04/2022] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Smart biomaterials, featuring not only bioactivity, but also dynamic responsiveness to external stimuli, are desired for biomedical applications, such as regenerative medicine, and hold great potential to expand the boundaries of the modern clinical practice. Herein, a magnetically responsive three-dimensional scaffold with sandwich structure is developed by using hydroxyapatite (HA) nanowires and ferrosoferric oxide (Fe3O4) nanoparticles as building blocks. The magnetic HA/Fe3O4 scaffold is fully inorganic in nature, but shows polymeric hydrogel-like characteristics including a 3D fibrous network that is highly porous (>99.7% free volume), deformable (50% deformation) and elastic, and tunable stiffness. The magnetic HA/Fe3O4 scaffold has been shown to execute multimodal motion upon exposure to an external magnetic field including shape transformation, rolling and somersault. In addition, we have demonstrated that the magnetic scaffold can serve as a smart carrier for remotely controlled, on-demand delivery of compounds including an organic dye and a protein. Finally, the magnetic scaffold has exhibited good biocompatibility, supporting the attachment and proliferation of human mesenchymal stromal cells, thereby showing great potential as smart biomaterials for a variety of biomedical applications.
Collapse
Affiliation(s)
- Yonggang Zhang
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Jiaping Li
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
- Department of Complex Tissue Regeneration, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, Maastricht University, MERLN Institute for Technology-Inspired Regenerative Medicine, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
30
|
Zhang Z, Wang Y, Wang Q, Shang L. Smart Film Actuators for Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105116. [PMID: 35038215 DOI: 10.1002/smll.202105116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Taking inspiration from the extremely flexible motion abilities in natural organisms, soft actuators have emerged in the past few decades. Particularly, smart film actuators (SFAs) demonstrate unique superiority in easy fabrication, tailorable geometric configurations, and programmable 3D deformations. Thus, they are promising in many biomedical applications, such as soft robotics, tissue engineering, delivery system, and organ-on-a-chip. In this review, the latest achievements of SFAs applied in biomedical fields are summarized. The authors start by introducing the fabrication techniques of SFAs, then shift to the topology design of SFAs, followed by their material selections and distinct actuating mechanisms. After that, their biomedical applications are categorized in practical aspects. The challenges and prospects of this field are finally discussed. The authors believe that this review can boost the development of soft robotics, biomimetics, and human healthcare.
Collapse
Affiliation(s)
- Zhuohao Zhang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Qiao Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
31
|
Wang Y, Lv L, Ren H, Zhao Q. Thermadapt Shape Memory Polymers Enabling Spatially Regulated Plasticity. ACS Macro Lett 2022; 11:1112-1116. [PMID: 36006777 DOI: 10.1021/acsmacrolett.2c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Converting planar polymer films into sophisticated 3D structures with a facile and effective method is highly challenging yet desirable for device applications in the real world. Dynamic covalent polymer networks enable permanent shape transformations from 2D sheets to 3D structures, but either sophisticated molecular design or a complex fabrication method is required. Here, we report a shape memory polymer cross-linked by ester bonds, which can be activated upon heating after photoexposure to release the catalyst for the transesterification. The region that is activated via the bond exchange can be patterned due to the spatial-temporal selectivity of the photoexposure. Accordingly, the material presents a localized heterogeneity in stress relaxation upon stretching. The exposed and the unexposed regions show respectively plastic deformation and elastic recovery after removal of the external force, which finally make the 2D sheet transform into a 3D structure. The decoupling of the activated region (photoexposure) and activated condition (heating) enables facile chemical design and fabrication for 2D-to-3D shape morphing.
Collapse
Affiliation(s)
- Yongwei Wang
- Ningbo Research Institute of Zhejiang University, Zhejiang University, Ningbo 315807, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.,State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Liying Lv
- Anhui Shanfu New Material Technology Inc. Co., Ltd., Huangshan 245200, P. R. China
| | - Hua Ren
- Ningbo Research Institute of Zhejiang University, Zhejiang University, Ningbo 315807, P. R. China
| | - Qian Zhao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China.,State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
32
|
Zhao SQ, Feng JC. Reversible Plasticity Shape Memory Effect in SEBS/Crystallizable Paraffin: Influence of Paraffin Content. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Paula CT, Madeira AB, Pereira P, Branco R, Morais PV, Coelho JF, Fonseca AC, Serra AC. ROS-degradable PEG-based wound dressing films with drug release and antibacterial properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
34
|
Yang R, Liu W, Song N, Li X, Li Z, Luo F, Li J, Tan H. NIR Photothermal-Responsive Shape Memory Polyurethane with Protein-Inspired Aggregated Chymotrypsin-Sensitive Degradable Domains. Macromol Rapid Commun 2022; 43:e2200490. [PMID: 35836315 DOI: 10.1002/marc.202200490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/27/2022] [Indexed: 11/05/2022]
Abstract
Biodegradable shape memory polymers are promising biomaterials for stents used in minimally invasive surgical procedures such as intestinal stents. Herein, a series of biodegradable shape memory polyurethanes (SMPUs) containing a novel phenylalanine-derived chain extender PHP were synthesized. Inspired by the fact that the function of biomacromolecules such as proteins is rich and varied because of the multiple combinations of the amino acid in highly evolved biosystems, we found that the sequence distribution of PHP in SMPU would also have a great influence on the phase structure and degradation behavior, especially the difference of surface morphology caused by degradation. Considering that the transition temperature (Ttrans ) of SMPU we obtained is higher than physiological temperature, oxidized carbon black (OCB) with the ability of photothermal conversion was introduced into SMPU, which can not only endow SMPU with near-infrared response shape recovery characteristics, but also enhance phase separation degree and mechanical properties of them. SMPU/OCB composites show excellent shape memory effect and rapid photothermal response, and they can be degraded by chymotrypsin with an adjustable degradation rate. These SMPU/OCB composites show broad potential for application as intestinal stents. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ruibo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenkai Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Nijia Song
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Xin Li
- Zhengzhou Research Institute for Abrasives & Grinding Co., Ltd., Zhengzhou, 450001, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
35
|
Koga T, Oatari Y, Motoda H, Nishimura SN, Sasaki Y, Okamoto Y, Yamamoto D, Shioi A, Higashi N. Star-Shaped Peptide-Polymer Hybrids as Fast pH-Responsive Supramolecular Hydrogels. Biomacromolecules 2022; 23:2941-2950. [PMID: 35714282 DOI: 10.1021/acs.biomac.2c00411] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant challenges have gone into the design of smart hydrogels, with numerous potential applications in the industrial, cosmetic, and biomedical fields. Herein, we report the synthesis of novel 4-arm self-assembling peptide-polyethylene glycol (PEG) hybrid star-shaped polymers and their comprehensive hydrogel properties. β-sheet-forming oligopeptides with alternating hydrophobic Leu/ionizable Glu repeats and Cys residues were successfully conjugated to 4-arm PEG via a thiol-maleimide click reaction. The hybrid star-shaped polymers demonstrated good cytocompatibility and reversible β-sheet (lightly acidic pH)-to-random coil (neutral and basic pH) transition in dilute aqueous solutions. At increasing polymer concentrations up to 0.5 wt %, the star-shaped polymers formed transparent hydrogels with shear-thinning and self-healing behaviors via β-sheet self-assembly, as well as a conformation-dependent gel-sol transition. Interestingly, the star-shaped polymers responded rapidly to pH changes, causing gelation to occur rapidly within a few seconds from the change in pH. Hydrogel characteristics could be modulated by manipulating the length and net charge of the peptide blocks. Furthermore, these star-shaped polymers served as satisfactory network scaffolds that could respond to dynamic environmental changes in the pH-oscillation system, owing to their excellent gelation capability and pH sensitivity. As such, they are highly favorable for diverse applications, such as pH-responsive controlled release.
Collapse
Affiliation(s)
- Tomoyuki Koga
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yuta Oatari
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Hideki Motoda
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Shin-Nosuke Nishimura
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yoko Sasaki
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Yasunao Okamoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Daigo Yamamoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Akihisa Shioi
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| | - Nobuyuki Higashi
- Department of Molecular Chemistry and Biochemistry, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
| |
Collapse
|
36
|
Song X, Li C, Wu H, Guo S, Qiu J. In Situ Constructed Nanocrystal Structure and Its Contribution in Shape Memory Performance of Pure Polylactide. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xudong Song
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Chunhai Li
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hong Wu
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Shaoyun Guo
- The State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jianhui Qiu
- Department of Mechanical Engineering, Faculty of Systems Science and Technology, Akita Prefectural University, Akita 015-0055, Japan
| |
Collapse
|
37
|
Wang Q, Li Y, Zhang B, Ding X, Zheng A. Shape memory performances of homogeneous poly(L-lactide-co-ε-caprolactone)/polytrimethylene carbonate-grafted functionalized graphene oxide nanocomposites. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Ding Q, Wu Z, Tao K, Wei Y, Wang W, Yang BR, Xie X, Wu J. Environment tolerant, adaptable and stretchable organohydrogels: preparation, optimization, and applications. MATERIALS HORIZONS 2022; 9:1356-1386. [PMID: 35156986 DOI: 10.1039/d1mh01871j] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiple stretchable materials have been successively developed and applied to wearable devices, soft robotics, and tissue engineering. Organohydrogels are currently being widely studied and formed by dispersing immiscible hydrophilic/hydrophobic polymer networks or only hydrophilic polymer networks in an organic/water solvent system. In particular, they can not only inherit and carry forward the merits of hydrogels, but also have some unique advantageous features, such as anti-freezing and water retention abilities, solvent resistance, adjustable surface wettability, and shape memory effect, which are conducive to the wide environmental adaptability and intelligent applications. This review first summarizes the structure, preparation strategy, and unique advantages of the reported organohydrogels. Furthermore, organohydrogels can be optimized for electro-mechanical properties or endowed with various functionalities by adding or modifying various functional components owing to their modifiability. Correspondingly, different optimization strategies, mechanisms, and advanced developments are described in detail, mainly involving the mechanical properties, conductivity, adhesion, self-healing properties, and antibacterial properties of organohydrogels. Moreover, the applications of organohydrogels in flexible sensors, energy storage devices, nanogenerators, and biomedicine have been summarized, confirming their unlimited potential in future development. Finally, the existing challenges and future prospects of organohydrogels are provided.
Collapse
Affiliation(s)
- Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Weiyan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
39
|
He W, Ming X, Xiang Y, Zhang C, Zhu H, Zhang Q, Zhu S. Bioinspired Semicrystalline Dynamic Ionogels with Adaptive Mechanics and Tactile Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20132-20138. [PMID: 35470664 DOI: 10.1021/acsami.2c04510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A biological system shows dynamical shapes and tunable mechanical states while working as an actuator and/or sensor. To simulate this, we prepared semicrystalline dynamic ionogels (SDIGs) via a facile process by introducing crystallized polymer domains for phase change and amorphous domains for ionic liquid loading into ionogels. The obtained SDIGs offered tunable mechanical properties upon temperature switching with a change in modulus up to 2 orders of magnitude. It also showed an excellent shape memory effect, shape programmability, and melting accelerated conductivity increase. Enabled by ionic Joule heating technique, the ionogel provided an electrical triggered actuating process to mimic flower blossoming. Moreover, it was demonstrated as a touch sensor with various working shape states, indicating cyclic and green utilization. This work provides insights into the design of semicrystalline electronics and is believed to promote the development of biomimetic actuators and sensors.
Collapse
Affiliation(s)
- Wenqing He
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Xiaoqing Ming
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Yang Xiang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Changgeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - He Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Qi Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| | - Shiping Zhu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, P.R. China
| |
Collapse
|
40
|
Costa DCS, Costa PC, Gomes MC, Chandrakar A, Wieringa PA, Moroni L, Mano JF. Universal Strategy for Designing Shape Memory Hydrogels. ACS MATERIALS LETTERS 2022; 4:701-706. [PMID: 36568348 PMCID: PMC9777886 DOI: 10.1021/acsmaterialslett.2c00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Smart polymeric biomaterials have been the focus of many recent biomedical studies, especially those with adaptability to defects and potential to be implanted in the human body. Herein we report a versatile and straightforward method to convert non-thermoresponsive hydrogels into thermoresponsive systems with shape memory ability. As a proof of concept, a thermoresponsive polyurethane mesh was embedded within a methacrylated chitosan (CHTMA), gelatin (GELMA), laminarin (LAMMA) or hyaluronic acid (HAMA) hydrogel network, which afforded hydrogel composites with shape memory ability. With this system, we achieved good to excellent shape fixity ratios (50-90%) and excellent shape recovery ratios (∼100%, almost instantaneously) at body temperature (37 °C). Cytocompatibility tests demonstrated good viability either with cells on top or encapsulated during all shape memory processes. This straightforward approach opens a broad range of possibilities to convey shape memory properties to virtually any synthetic or natural-based hydrogel for several biological and nonbiological applications.
Collapse
Affiliation(s)
- Dora C. S. Costa
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Patrícia
D. C. Costa
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Maria C. Gomes
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Amit Chandrakar
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Department
of Complex Tissue Regeneration, Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Paul A. Wieringa
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Department
of Complex Tissue Regeneration, Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- MERLN
Institute for Technology-Inspired Regenerative Medicine, Department
of Complex Tissue Regeneration, Maastricht
University, 6229 ER Maastricht, The Netherlands
| | - João F. Mano
- Department
of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
41
|
Huang S, Zhang Y, Wang C, Xia Q, Saif Ur Rahman M, Chen H, Han C, Liu Y, Xu S. Mechanisms Affecting Physical Aging and Swelling by Blending an Amphiphilic Component. Int J Mol Sci 2022; 23:ijms23042185. [PMID: 35216296 PMCID: PMC8880760 DOI: 10.3390/ijms23042185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 11/23/2022] Open
Abstract
Polymer blending is a promising method to overcome stability obstacles induced by physical aging and swelling of implant scaffolds prepared from amorphous polymers in biomedical application, since it will not bring potential toxicity compared with chemical modification. However, the mechanism of polymer blending still remains unclearly explained in existing studies that fail to provide theoretical references in material R&D processes for stability improvement of the scaffold during ethylene oxide (EtO) sterilization, long-term storage, and clinical application. In this study, amphiphilic poly(ethylene glycol)-co-poly(lactic acid) (PELA) was blended with amorphous poly(lactic-co-glycolic acid) (PLGA) because of its good miscibility so as to adjust the glass transition temperature (Tg) and hydrophilicity of electrospun PLGA membranes. By characterizing the morphological stability and mechanical performance, the chain movement and the glass transition behavior of the polymer during the physical aging and swelling process were studied. This study revealed the modification mechanism of polymer blending at the molecular chain level, which will contribute to stability improvement and performance adjustment of implant scaffolds in biomedical application.
Collapse
Affiliation(s)
- Shifen Huang
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
| | - Chenhong Wang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- Correspondence: (C.W.); (Y.L.); (S.X.); Tel.: +86-10-8254-3785 (Y.L.); +86-755-2653-1165 (S.X.)
| | - Qinghua Xia
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
| | - Charles Han
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China;
- GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
- Correspondence: (C.W.); (Y.L.); (S.X.); Tel.: +86-10-8254-3785 (Y.L.); +86-755-2653-1165 (S.X.)
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; (S.H.); (M.S.U.R.); (H.C.); (C.H.)
- Correspondence: (C.W.); (Y.L.); (S.X.); Tel.: +86-10-8254-3785 (Y.L.); +86-755-2653-1165 (S.X.)
| |
Collapse
|
42
|
Nanocomposite electrospun fibers of poly(ε-caprolactone)/bioactive glass with shape memory properties. Bioact Mater 2022; 11:230-239. [PMID: 34977428 PMCID: PMC8668438 DOI: 10.1016/j.bioactmat.2021.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
Electrospun fibers of shape memory triethoxysilane-terminated poly(epsilon-caprolactone) (PCL-TES) loaded with bioactive glasses (BG) are here presented. Unloaded PCL-TES, as well as PCL/BG nanocomposite fibers, are also considered for comparison. It is proposed that hydrolysis and condensation reactions take place between triethoxysilane groups of the polymer and the silanol groups at the BG particle surface, thus generating additional crosslinking points with respect to those present in the PCL-TES system. The as-spun PCL-TES/BG fibers display excellent shape memory properties, in terms of shape fixity and shape recovery ratios, without the need of a thermal crosslinking treatment. BG particles confer in vitro bioactivity to PCL-based nanocomposite fibers and favor the precipitation of hydroxycarbonate apatite on the fiber surface. Preliminary cytocompatibility tests demonstrate that the addition of BG particles to PCL-based polymer does not inhibit ST-2 cell viability. This novel approach of using bioactive glasses not only for their biological properties, but also for the enhancement of shape memory properties of PCL-based polymers, widens the versatility and suitability of the obtained composite fibers for a huge portfolio of biomedical applications.
Collapse
|
43
|
ZHOU YUAN, Liu G, Guo S. Advances in Ultrasound-Responsive Hydrogels for Biomedical Applications. J Mater Chem B 2022; 10:3947-3958. [DOI: 10.1039/d2tb00541g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various intelligent hydrogels have been developed for biomedical applications because they can achieve multiple, variable, controllable and reversible changes in their shape and properties in a spatial and temporal manner,...
Collapse
|
44
|
Yan W, Ding Y, Zhang R, Luo X, Sheng P, Xue P, He J. Dual-functional polymer blends with rapid thermo-responsive shape memory and repeatable self-healing properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
45
|
Yang R, Liu W, Wang A, Deng X, Feng Y, Zhang Q, Li Z, Luo F, Li J, Tan H. Shape memory polyurethane potentially used for vascular stents with water-induced stiffening and improved hemocompatibility. J Mater Chem B 2022; 10:8918-8930. [DOI: 10.1039/d2tb01681h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We designed a shape memory polyurethane potentially used for vascular stents with water-induced stiffening in vivo and improved hemocompatibility.
Collapse
Affiliation(s)
- Ruibo Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Wenkai Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Ao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Xiaobo Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Yuan Feng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Qiao Zhang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610065, China
| |
Collapse
|
46
|
Experimental and modeling investigation on thermodynamic effect of graphene doped shape memory epoxy composites. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Paula CTB, Pereira P, Coelho JFJ, Fonseca AC, Serra AC. Development of light-degradable poly(urethane-urea) hydrogel films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 131:112520. [PMID: 34857299 DOI: 10.1016/j.msec.2021.112520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/19/2022]
Abstract
Biocompatible hydrogels are exciting platforms that have stood out in recent years for their outstanding potential for biomedical applications. For these applications, the ability of the material to respond to an external stimulus can be a relevant addition. This responsiveness allows the material to modify its physical properties in such a way that it can deliver molecules that support the healing process or allow easy removal of the films from the tissue. Among the polymers used to produce these systems, polyurethane (PU) and polyurethane-urea (PUU) are some of the most cited examples. In this work, a new hydrogel-sensitive PUU film is proposed. These films are prepared from polyethylene glycol (PEG) and contain a ROS-responsive telechelic β-aminoacrylate bond. The hydrogel films showed interesting mechanical and thermal properties, good water uptake and low cytotoxicity, which makes them suitable for biomedical applications. More importantly, the hydrogel films exhibited a light-degradable profile through an innovative ROS-mediated cleavage process, as indicated by the loss of mechanical properties.
Collapse
Affiliation(s)
- Carlos T B Paula
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Patrícia Pereira
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal; IPN, Instituto Pedro Nunes, Associação para a Inovação e Desenvolvimento em Ciência e Tecnologia, Rua Pedro Nunes, 3030-199 Coimbra, Portugal
| | - Jorge F J Coelho
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Ana C Fonseca
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal
| | - Arménio C Serra
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Pólo II, 3030-790 Coimbra, Portugal.
| |
Collapse
|
48
|
Shape memory function of trans-1,4-polyisoprene prepared by radiation crosslinking with a supercritical CO2 foaming. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Dong K, Zhang J, He A. Synthesis of amine-capped Trans-1, 4- polyisoprene. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Lo Presti D, Santucci F, Massaroni C, Formica D, Setola R, Schena E. A multi-point heart rate monitoring using a soft wearable system based on fiber optic technology. Sci Rep 2021; 11:21162. [PMID: 34707131 PMCID: PMC8551187 DOI: 10.1038/s41598-021-00574-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
Early diagnosis can be crucial to limit both the mortality and economic burden of cardiovascular diseases. Recent developments have focused on the continuous monitoring of cardiac activity for a prompt diagnosis. Nowadays, wearable devices are gaining broad interest for a continuous monitoring of the heart rate (HR). One of the most promising methods to estimate HR is the seismocardiography (SCG) which allows to record the thoracic vibrations with high non-invasiveness in out-of-laboratory settings. Despite significant progress on SCG, the current state-of-the-art lacks both information on standardized sensor positioning and optimization of wearables design. Here, we introduce a soft wearable system (SWS), whose novel design, based on a soft polymer matrix embedding an array of fiber Bragg gratings, provides a good adhesion to the body and enables the simultaneous recording of SCG signals from multiple measuring sites. The feasibility assessment on healthy volunteers revealed that the SWS is a suitable wearable solution for HR monitoring and its performance in HR estimation is strongly influenced by sensor positioning and improved by a multi-sensor configuration. These promising characteristics open the possibility of using the SWS in monitoring patients with cardiac pathologies in clinical (e.g., during cardiac magnetic resonance procedures) and everyday life settings.
Collapse
Affiliation(s)
- Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128, Rome, RM, Italy
| | - Francesca Santucci
- Departmental Faculty of Engineering, Unit of Automatic Control, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128, Rome, RM, Italy
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128, Rome, RM, Italy
| | - Domenico Formica
- Unit of NEXT, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128, Rome, RM, Italy
| | - Roberto Setola
- Departmental Faculty of Engineering, Unit of Automatic Control, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128, Rome, RM, Italy
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Departmental Faculty of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 00128, Rome, RM, Italy.
| |
Collapse
|