1
|
Lee MJ, Kim MH. Colorimetric IPN hydrogels embedded with colloidal photonic crystals: A novel approach for the detection of ethanol and Ba 2+ ions in water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124931. [PMID: 39116590 DOI: 10.1016/j.saa.2024.124931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
A critical bottleneck in sensor technology is the rapid and precise detection of specific analytes in complex matrices, hindering advancements in environmental monitoring, healthcare, and industrial process control. This study addresses this challenge by introducing a novel composite hydrogel sensor designed for rapid and selective detection of ethanol and barium ions (Ba2+) in aqueous environments. The sensor integrates interpenetrating network (IPN) hydrogels with embedded colloidal photonic crystals (CPCs), synthesized via a solution-based polymerization approach. This innovative configuration allows CPCs to dynamically adjust their photonic bandgap in response to environmental changes, manifesting as a visible, colorimetric shift. This response stems from the synergy between the mechanical properties of the IPN hydrogel and the optical sensitivity of CPCs. Upon exposure to analytes such as ethanol and Ba2+, the sensor exhibits a rapid and reversible color transition that is directly proportional to their concentration. Notably, ethanol (0 vol%-80 vol%) and Ba2+ (5-17.5 mM) induce a distinct blueshift in the photonic bandgap and trigger a color change from red-orange to green due to the alteration in the swelling behavior of the IPN hydrogel, affecting its lattice constant. The IPN hydrogel-CPC composite demonstrates exceptional operational stability and facilitates rapid detection, making it ideal for on-site applications without the need for complex equipment. These characteristics make the composite hydrogel sensor a promising candidate for environmental monitoring, industrial process control, and public health diagnostics, paving the way for the development of next-generation responsive sensor materials.
Collapse
Affiliation(s)
- Myeong Joo Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Yang T, Aizaz Ahmed M, Zhang G, Shi Y, Chen Y, Cui H, Sun Y, Yu H, Zhang Y, Lv Z, Hu B, Yang Z, Che L. Miniaturized spectrometers based on graded photonic crystal films. OPTICS EXPRESS 2024; 32:25830-25838. [PMID: 39538463 DOI: 10.1364/oe.530843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/25/2024] [Indexed: 11/16/2024]
Abstract
Miniaturized spectrometers have become increasingly important in modern analytical and diagnostic applications due to their compact size, portability, and versatility. Despite the surge in innovative designs for miniaturized spectrometers, significant challenges persist, particularly concerning manufacturing cost and efficiency when devices become smaller. Here we introduce an ultracompact spectrometer design that is both cost-effective and highly efficient. The core dispersion element of this new design is a graded photonic crystal film, which is engineered by applying gradient stress during its fabrication. The film shows bandstop transmission spectral profiles, akin to a notch filter, enhancing light throughput compared to conventional narrowband filters. The spectral analysis, with a resolution of 5 nm and operating within the wavelength range of 450-650 nm, is conducted by reconstructing the spectrum from a series of such notch transmission profiles along the graded photonic crystal film, utilizing a sophisticated algorithm. This approach not only reduces manufacturing costs but also significantly improves the sensitivity (with a light throughput efficiency of 71.05%) and overall performance of the limitations of current technology, opening up new avenues for applications in diverse fields.
Collapse
|
3
|
Zhan YY, Ogawa D, Sano K, Wang X, Araoka F, Sakai N, Sasaki T, Ishida Y. Reconfigurable Photonic Crystal Reversibly Exhibiting Single and Double Structural Colors. Angew Chem Int Ed Engl 2023; 62:e202311451. [PMID: 37861089 DOI: 10.1002/anie.202311451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Indexed: 10/21/2023]
Abstract
Unlike absorption-based colors of dyes and pigments, reflection-based colors of photonic crystals, so called "structural colors", are responsive to external stimuli, but can remain unfaded for over ten million years, and therefore regarded as a next-generation coloring mechanism. However, it is a challenge to rationally design the spectra of structural colors, where one structure gives only one reflection peak defined by Bragg's law, unlike those of absorption-based colors. Here, we report a reconfigurable photonic crystal that exhibits single-peak and double-peak structural colors. This photonic crystal is composed of a colloidal nanosheet in water, which spontaneously adopts a layered structure with single periodicity (407 nm). After a temperature-gradient treatment, the photonic crystal segregates into two regions with shrunken (385 nm) and expanded (448 nm) periodicities, and thus exhibits double reflection peaks that are blue- and red-shifted from the original one, respectively. Notably, the transition between the single-peak and double-peak states is reversible.
Collapse
Affiliation(s)
- Yi-Yang Zhan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Daisuke Ogawa
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Koki Sano
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano, 386-8567, Japan
| | - Xiang Wang
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Fumito Araoka
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Nobuyuki Sakai
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takayoshi Sasaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
4
|
Hu Y, Yu S, Wei B, Yang D, Ma D, Huang S. Stimulus-responsive nonclose-packed photonic crystals: fabrications and applications. MATERIALS HORIZONS 2023; 10:3895-3928. [PMID: 37448235 DOI: 10.1039/d3mh00877k] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Stimulus-responsive photonic crystals (PCs) possessing unconventional nonclosely packed structures have received growing attention due to their unique capability of mimicking the active structural colors of natural organisms (for example, chameleons' mechanochromic properties). However, there is rarely any systematic review regarding the progress of nonclose-packed photonic crystals (NPCs), involving their fabrication, working mechanisms, and applications. Herein, a comprehensive review of the fundamental principles and practical fabrication strategies of one/two/three-dimensional NPCs is summarized from the perspective of designing nonclose-packed structures. Subsequently, responsive NPCs with exciting functions and working mechanisms are sorted and delineated according to their diverse responses to physical (force, temperature, magnetic, and electric fields), chemical (ions, pH, vapors, and solvents), and biological (glucose, organophosphate, creatinine, and bacteria) stimuli. We then systematically introduced and discussed the applications of NPCs in sensors, printing, anticounterfeiting, display, optical devices, etc. Finally, the current challenges and development prospects for NPCs are presented. This review not only concludes the design principle for NPCs but also provides a significant basis for the exploration of next-generation NPCs.
Collapse
Affiliation(s)
- Yang Hu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Siyi Yu
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Boru Wei
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dongpeng Yang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| | - Dekun Ma
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Shaoming Huang
- School of Materials and Energy, Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Guangdong University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
5
|
Wang H, Xia Y, Zhang Z, Xie Z. 3D gradient printing based on digital light processing. J Mater Chem B 2023; 11:8883-8896. [PMID: 37694441 DOI: 10.1039/d3tb00763d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
3D gradient printing is a type of fabrication technique that builds three-dimensional objects with gradually changing properties. Gradient digital light processing based 3D printing has garnered considerable attention in recent years. This function-oriented technology precisely manipulates the performance of different positions of materials and prints them as a monolithic structure to realize specific functions. This review presents a conceptual understanding of gradient properties, covering an overview of current techniques and materials that can produce gradient structures, as well as their limitations and challenges. The principle of digital light processing (DLP) technology and feasible strategies for 3D gradient printing to overcome any barriers are also presented. Additionally, this review discusses the promising future of 4D bioprinting systems based on DLP printing.
Collapse
Affiliation(s)
- Han Wang
- Chien-Shiung Wu College, Southeast University, Nanjing, 211102, China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| | - Yu Xia
- Chien-Shiung Wu College, Southeast University, Nanjing, 211102, China
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
- School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Zixuan Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| | - Zhuoying Xie
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
- National Demonstration Center for Experimental Biomedical Engineering Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
6
|
Schöttle M, Lauster T, Roemling LJ, Vogel N, Retsch M. A Continuous Gradient Colloidal Glass. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208745. [PMID: 36366915 DOI: 10.1002/adma.202208745] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Colloidal crystals and glasses manipulate light propagation depending on their chemical composition, particle morphology, and mesoscopic structure. This light-matter interaction has been intensely investigated, but a knowledge gap remains for mesostructures comprising a continuous property gradient of the constituting particles. Here, a general synthetic approach to bottom-up fabrication of continuous size gradient colloidal ensembles is introduced. First, the technique synthesizes a dispersion with a specifically designed gradual particle size distribution. Second, self-assembly of this dispersion yields a photonic colloidal glass with a continuous size gradient from top to bottom. Local and bulk characterization methods are used to highlight the significant potential of this mesostructure, resulting in vivid structural colors along, and in superior light scattering across the gradient. The process describes a general pathway to mesoscopic gradients. It can expectedly be transferred to a variety of other particle-based systems where continuous gradients will provide novel physical insights and functionalities.
Collapse
Affiliation(s)
- Marius Schöttle
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Tobias Lauster
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| | - Lukas J Roemling
- Insitute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Insitute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Markus Retsch
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany
| |
Collapse
|
7
|
Rahman MA, Kim DK, Lee JK, Byun JY. To realize a variety of structural color adjustments via lossy-dielectric-based Fabry-Perot cavity structure. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4855-4868. [PMID: 39634754 PMCID: PMC11502086 DOI: 10.1515/nanoph-2022-0522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/20/2022] [Indexed: 12/07/2024]
Abstract
Structural colors with tunable properties have extensive applications in surface decoration, arts, absorbers, and optical filters. Planar structures have more advantages over other forms studied to date due to their easy manufacturability. Metal-insulator-metal-based structures are one of the known methods to fabricate structural colors where colors can be tuned mainly by the thickness of the intermediate lossless insulator layer. However, generating colors by MIM structure requires a thin metallic layer on top, and the top metals' abrasiveness and/or oxidation may degrade the colors quickly. Thus, we propose a lossy dielectric layer to replace the top metallic layer as a solution to ensure the structure's durability by preventing scratches and oxidation. Herein, CrON/Si3N4/Metal structures have been studied where theoretical investigations suggest that highly saturated colors can be generated in the lossy-lossless dielectric structures. Experimental data validated such simulations by revealing a range of vivid colors. Furthermore, these structures can easily achieve strong light absorption (SLA) even for a thick top layer of ∼100 nm. The colors realized by these structures are appeared due to a combination of the interference effect of the asymmetric Fabry-Perot cavity structure and the absorption rate in the CrO x N1-x layer.
Collapse
Affiliation(s)
- Md Abdur Rahman
- Extreme Materials Research Center, Korea Institute of Science & Technology, 5, Hwarang-Ro 14-Gil, Seongbuk-Gu, Seoul02792, Republic of Korea
| | - Dong Kyu Kim
- Extreme Materials Research Center, Korea Institute of Science & Technology, 5, Hwarang-Ro 14-Gil, Seongbuk-Gu, Seoul02792, Republic of Korea
| | - Jong-Kwon Lee
- Division of Energy and Optical Technology Convergence, Cheongju University, Cheongju-Si, Chungcheongbuk-Do28503, Republic of Korea
| | - Ji Young Byun
- Extreme Materials Research Center, Korea Institute of Science & Technology, 5, Hwarang-Ro 14-Gil, Seongbuk-Gu, Seoul02792, Republic of Korea
| |
Collapse
|
8
|
Ma W, Liu H, He W, Zhang Y, Li Y, Zhao Y, Li C, Zhou L, Shao J, Liu G. Preparation of Acrylic Yarns with Durable Structural Colors Based on Stable Photonic Crystals. ACS OMEGA 2022; 7:39750-39759. [PMID: 36385851 PMCID: PMC9647713 DOI: 10.1021/acsomega.2c03672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/12/2022] [Indexed: 05/31/2023]
Abstract
Structural coloration of photonic crystals (PCs) is considered an ecological and environmental way to achieve colorful textiles. However, constructing PCs with obvious structural colors on traditional flexible yarns is still a great challenge. As a secondary structure that forms textiles, compared with fibers and fabrics, the yarns are rougher, hindering the construction of regular PCs. In this work, the flexible acrylic yarns with vivid structural colors, named PC-based structural color yarns, were prepared by constructing regular PCs via assembling poly(styrene-butyl acrylate-methacrylate) (P(St-BA-MAA)) colloidal microspheres on yarns. Specifically, the properties of P(St-BA-MAA) colloidal microspheres were investigated. The PCs with better structural stability and obvious structural colors were prepared by presetting the acrylic adhesive layer on yarns. Moreover, the color durability and color regulation methods of prepared PC-based structural color yarns were evaluated and discussed. The results showed that the P(St-BA-MAA) colloidal microspheres exhibited even particle sizes, excellent monodispersity, and a typical hard core-soft shell structure. And the glass-transition temperature (T g) of the microspheres was tested to be about 65.6 °C. The cationic acrylate regarded as a pretreatment agent could not only improve the combination between the PC layers and the yarns by acting as a "bridge" but also enhance the structural color effect by smoothing the yarn surface. The results showed that when the mass fraction of cationic acrylate was 3 wt %, the microspheres were beneficial to access regular PCs with obvious structural colors. The PCs with bright structural colors could be constructed on black acrylic yarns, and the colors of yarns were still bright after rubbing and washing tests, indicating that the prepared PC-based structural color yarns have good color fastness. Moreover, the color hue of PC-based structural color yarns could be regulated by adjusting the particle sizes and viewing angles. This study provides strategic support for the structural coloration of flexible materials.
Collapse
Affiliation(s)
- Wanbin Ma
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Hao Liu
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Wenyu He
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yunxiao Zhang
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yucheng Li
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Yang Zhao
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Chengcai Li
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| | - Lan Zhou
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
| | - Jianzhong Shao
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
| | - Guojin Liu
- Zhejiang
Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
- Key
Laboratory of Advanced Textile Materials and Manufacturing Technology,
Ministry of Education, Zhejiang Sci-Tech
University Hangzhou, Zhejiang 310018, People’s Republic
of China
- Zhejiang
Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
9
|
Xu M, Liang S, Zhang W, Feng L, Chen K, Deng X, Zhang D, Cai J. Biomimetic color‐changing skin based on temperature‐responsive hydrogel microspheres with the photonic crystal structure. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Minghao Xu
- College of Engineering China Agricultural University Beijing China
| | - Shuzhang Liang
- School of Mechanical Engineering & Automation Beihang University Beijing China
| | - Wenqiang Zhang
- College of Engineering China Agricultural University Beijing China
| | - Lin Feng
- School of Mechanical Engineering & Automation Beihang University Beijing China
| | - Kehan Chen
- College of Engineering China Agricultural University Beijing China
| | - Xue Deng
- College of Engineering China Agricultural University Beijing China
| | - Deyuan Zhang
- School of Mechanical Engineering & Automation Beihang University Beijing China
| | - Jun Cai
- School of Mechanical Engineering & Automation Beihang University Beijing China
| |
Collapse
|
10
|
Xiang X, Tang Q, Dan L, Shang J, Xia H. Robust colloidal photonic crystal polymer films for anticounterfeiting. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoman Xiang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering Dalian Minzu University Dalian People's Republic of China
| | - Qiyue Tang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering Dalian Minzu University Dalian People's Republic of China
| | - Li Dan
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering Dalian Minzu University Dalian People's Republic of China
| | - Jingyu Shang
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering Dalian Minzu University Dalian People's Republic of China
| | - Hongbo Xia
- Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission, Key Laboratory of Photosensitive Materials & Devices of Liaoning Province, School of Physics and Materials Engineering Dalian Minzu University Dalian People's Republic of China
| |
Collapse
|
11
|
Sun L, Chen Z, Xu D, Zhao Y. Electroconductive and Anisotropic Structural Color Hydrogels for Visual Heart-on-a-Chip Construction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105777. [PMID: 35347883 PMCID: PMC9165491 DOI: 10.1002/advs.202105777] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/02/2022] [Indexed: 05/07/2023]
Abstract
Heart-on-a-chip plays an important role in revealing the biological mechanism and developing new drugs for cardiomyopathy. Tremendous efforts have been devoted to developing heart-on-a-chip systems featuring simplified fabrication, accurate imitation and microphysiological visuality. In this paper, the authors present a novel electroconductive and anisotropic structural color hydrogel by simply polymerizing non-close-packed colloidal arrays on super aligned carbon nanotube sheets (SACNTs) for visualized and accurate heart-on-a-chip construction. The generated anisotropic hydrogel consists of a colloidal array-locked hydrogel layer with brilliant structural color on one surface and a conductive methacrylated gelatin (GelMA)/SACNTs film on the other surface. It is demonstrated that the anisotropic morphology of the SACNTs could effectively induce the alignment of cardiomyocytes, and the conductivity of SACNTs could contribute to the synchronous beating of cardiomyocytes. Such consistent beating rhythm caused the deformation of the hydrogel substrates and dynamic shifts in structural color and reflection spectra of the whole hybrid hydrogels. More attractively, with the integration of such cardiomyocyte-driven living structural color hydrogels and microfluidics, a visualized heart-on-a-chip system with more consistent beating frequency has been established for dynamic cardiomyocyte sensing and drug screening. The results indicate that the electroconductive and anisotropic structural color hydrogels are potential for various biomedical applications.
Collapse
Affiliation(s)
- Lingyu Sun
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Zhuoyue Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Dongyu Xu
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
- Institute for Stem Cell and RegenerationChinese Academy of ScienceBeijing100101China
| |
Collapse
|
12
|
Tarutani N, Uesugi R, Uemura K, Katagiri K, Inumaru K, Takeoka Y. Understanding the Electrophoretic Deposition Accompanied by Electrochemical Reactions Toward Structurally Colored Bilayer Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23653-23659. [PMID: 35475601 DOI: 10.1021/acsami.2c04635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Safe, low-cost structurally colored materials are alternative colorants to toxic inorganic pigments and organic dyes. Colloidal amorphous arrays are promising structurally colored materials because of their angle-independent colors. In this study, we focused on precise tuning of the chromaticity by preparing bilayer colloidal amorphous arrays through electrophoretic deposition (EPD). Systematic investigations with various EPD conditions clarified the contributions of each condition to the EPD process and the competing electrochemical reactions, which enabled us to prepare well-colored coatings. EPD films composed of colloidal amorphous array bilayers were successfully synthesized with controlled film thickness. Chromaticity of the films was found to be precisely controlled by the EPD duration. We believe that this understanding of the EPD process and its application to synthesis of structurally colored bilayer films will bring structurally colored materials closer to practical industrial use.
Collapse
Affiliation(s)
- Naoki Tarutani
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Ryo Uesugi
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Kensuke Uemura
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Kiyofumi Katagiri
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Kei Inumaru
- Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8527, Japan
| | - Yukikazu Takeoka
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
13
|
Cholesteric Liquid Crystal Photonic Hydrogel Films Immobilized with Urease Used for the Detection of Hg2+. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10040140] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mercury ion is one of the most widespread heavy metal contaminants which can accumulate in the body through multiple channels, posing a detrimental impact on human health. We demonstrate a simple and low-cost method for the detection of Hg2+ assisted by a cholesteric liquid crystal photonic hydrogel (polyacrylic acid (PAA)) film with immobilized urease (CLC-PAAurease film). In the absence of Hg2+, a significant change in color and an obvious red shift in the reflected light wavelength of the prepared film were observed, since urease can hydrolyze urea to produce NH3, resulting in an increasing pH value of the microenvironment of CLC-PAAurease film. Hg2+ can inhibit the activity of urease so that the color change of the film is not obvious, corresponding to a relatively small variation of the reflected light wavelength. Therefore, Hg2+ can be quantitatively detected by measuring the displacement of the reflected light wavelength of the film. The detection limit of Hg2+ is about 10 nM. This approach has a good application prospect in the monitoring of heavy metal ions in environmental water resources.
Collapse
|
14
|
Isozaki Y, Higashiharaguchi S, Kaenko N, Yamazaki S, Taniguchi T, Takashi K, Ueda Y, Motokawa R. Polymer Photonic Crystals Prepared by Triblock Copolymerization-Induced in situ Microphase Separation. CHEM LETT 2022. [DOI: 10.1246/cl.220089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuka Isozaki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Seiya Higashiharaguchi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Naoya Kaenko
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shun Yamazaki
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tatsuo Taniguchi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Karatsu Takashi
- Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yuki Ueda
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| | - Ryuhei Motokawa
- Materials Sciences Research Center, Japan Atomic Energy Agency, 2-4 Shirakata, Tokai-mura, Ibaraki 319-1195, Japan
| |
Collapse
|
15
|
Liberman-Martin AL, Chang AB, Chu CK, Siddique RH, Lee B, Grubbs RH. Processing Effects on the Self-Assembly of Brush Block Polymer Photonic Crystals. ACS Macro Lett 2021; 10:1480-1486. [PMID: 35549148 DOI: 10.1021/acsmacrolett.1c00579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The self-assembly of poly(dimethylsiloxane)-b-poly(trimethylene carbonate) (PDMS-b-PTMC) bottlebrush block polymers was investigated under different processing conditions. Small-angle X-ray scattering (SAXS) and UV/Visible spectroscopy provided insight into the self-assembly and structure in response to heating and applied pressure. In the absence of applied pressure (i.e., before annealing), the PDMS-b-PTMC bottlebrush block polymers are white solids and adopt small, randomly oriented lamellar grains. Heating the materials to 140 °C in the absence of applied pressure appears to "lock in" the isotropic, short-range-ordered state, preventing the formation of the long-range-ordered lamellar structure responsible for photonic properties. Applying modest anisotropic pressure (3 psi) between parallel plates at ambient temperature orients the short-range lamellar grains; however, applied pressure alone does not produce long-range order. Only when the bottlebrush block polymers were heated (>100 °C) under modest pressure (3 psi) were long-range-ordered photonic crystals formed. Analysis of the SAXS data motivated analogies to liquid crystals and revealed the potential self-assembly pathway. These results provide insight into the structure and self-assembly of bottlebrush block polymers with low glass transition temperature side chains in response to different processing conditions.
Collapse
Affiliation(s)
| | - Alice B. Chang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Crystal K. Chu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Radwanul H. Siddique
- Department of Medical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Byeongdu Lee
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert H. Grubbs
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
16
|
Zhong K, Yu W, de Coene Y, Yamada A, Krylychkina O, Jooken S, Deschaume O, Bartic C, Clays K. Dual photonic bandgap hollow sphere colloidal photonic crystals for real-time fluorescence enhancement in living cells. Biosens Bioelectron 2021; 194:113577. [PMID: 34481238 DOI: 10.1016/j.bios.2021.113577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/30/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
To overcome the problems of refractive index matching and increased disorder when working with traditional heterostructure colloidal photonic crystals (CPCs) with dual or multiple photonic bandgaps (PBGs) for fluorescence enhancement in water, we propose the use of a chemical heterostructure in hollow sphere CPCs (HSCPCs). A partial chemical modification of the HSCPC creates a large contrast in wettability to induce the heterostructure, while the hollow spheres increase the refractive index difference when used in aqueous environment. With the platform, fluorescence enhancement reaches around 160 times in solution, and 72 times (signal-to-background ratio ~7 times) in cells during proof-of-concept live cardiomyocyte contractility experiments. Such photonic platform can be further exploited for chemical sensing, bioassays, and environmental monitoring. Moreover, the introduction of chemical heterostructures provides new design principles for functionalized photonic devices.
Collapse
Affiliation(s)
- Kuo Zhong
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| | - Wei Yu
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Yovan de Coene
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Atsushi Yamada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | | | - Stijn Jooken
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Olivier Deschaume
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium
| | - Koen Clays
- Laboratory for Molecular Electronics and Photonics, KU Leuven, Celestijnenlaan 200D, 3001, Leuven, Belgium.
| |
Collapse
|
17
|
Shi P, Miwa E, He J, Sakai M, Seki T, Takeoka Y. Bioinspired Color Elastomers Combining Structural, Dye, and Background Colors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55591-55599. [PMID: 34752057 DOI: 10.1021/acsami.1c19471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organisms that alter body color undergo color change in response to environmental variations and stimuli by combining chromatophores that develop colors by various mechanisms. Inspired by their body color changes, we can develop sensors and optical materials that change colors in response to multiple stimuli, such as mechanical and light stimuli. In this study, we report on bioinspired composite elastomers that exhibit various color changes as the pigment color, structural color, and background color change. These composite elastomers exhibit structural colors due to their fine structures in which fine silica particles form colloidal crystals, and the structural colors reversibly change as the elastomers elongate. Furthermore, photochromic dyes can reversibly change color depending on the wavelength of irradiated light when they are introduced to the composite elastomers. Since the structural color is one of the three primary colors of light and the pigment color is the color that corresponds to the three primary colors of a pigment, each color becomes vivid when the background color is black or white. Thus, we clarify that the composite elastomers exhibit various color changes due to the combination of structural color change in response to the mechanical stimulus, pigment color change in response to light irradiation, and background color change.
Collapse
Affiliation(s)
- Pei Shi
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- School of Materials Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Eiji Miwa
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Jialei He
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Miki Sakai
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
18
|
Wu Y, Wang Y, Zhang S, Wu S. Artificial Chameleon Skin with Super-Sensitive Thermal and Mechanochromic Response. ACS NANO 2021; 15:15720-15729. [PMID: 34517702 DOI: 10.1021/acsnano.1c05612] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Both the nonclose-packed structure and the large refractive index contrast of guanine nanocrystals and cytosols in iridophores play a vital role in the dynamic camouflage of chameleons, including the bright skin color and color tuning sensitivity to external stimulus. Here, the nonclose-packed photonic crystals consisting of ZnS nanospheres and polymers, which have similar refractive indices with guanine nanocrystals and cytosols, respectively, are constructed by a two-step filling strategy. ZnS@SiO2 nanospheres are self-assembled to build intermediate close-packed photonic crystals followed by filling polymers in their interstices. The nonclose-packed photonic crystal is successfully achieved when the silica portion is etched by HF solution and refilled by polymers. Excitingly, the stimulus response of the designed photonic crystal is as sensitive as the skin of chameleons due to the similar contrast of refractive indices and nonclose-packed structure. The reflection peak of the structure can blue-shift more than 200 nm as the temperature increases from 30 to 55 °C or under 20% compressional strain. This work not only builds the nonclose-packed photonic crystals by introducing a two-step filling strategy but also proves that high refractive contrast in photonic crystals is an effective strategy to achieve ultrasensitivity, which is highly desirable for various applications.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P.R. China
| | - Yu Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P.R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P.R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2# Linggong Road, Dalian 116024, P.R. China
| |
Collapse
|
19
|
Schöttle M, Tran T, Feller T, Retsch M. Time-Temperature Integrating Optical Sensors Based on Gradient Colloidal Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101948. [PMID: 34418180 PMCID: PMC11468944 DOI: 10.1002/adma.202101948] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Manipulation-free and autonomous recording of temperature states for extended periods of time is of increasing importance for food spoilage and battery safety assessment. An optical readout is preferred for low-tech visual inspection. Here, a concept for time-temperature integrators based on colloidal crystals is introduced. Two unique features in this class of advanced materials are combined: 1) the film-formation kinetics can be controlled by orders of magnitude based on mixtures of particles with distinct glass transition temperatures. 2) A gradual variation of the particle mixture along a linear gradient of the colloidal crystal enables local readout. Tailor-made latex particles of identical size but different glass transition temperatures provide a homogenous photonic stopband. The disappearance of this opalescence is directly related to the local particle ratio and the exposure to a time and temperature combination. This sensing material can be adjusted to report extended intermediate and short excessive temperature events, which makes it specifically suitable for long-term tracing and threshold applications.
Collapse
Affiliation(s)
- Marius Schöttle
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstr. 3095447BayreuthGermany
| | - Thomas Tran
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstr. 3095447BayreuthGermany
| | - Tanja Feller
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstr. 3095447BayreuthGermany
| | - Markus Retsch
- Department of ChemistryPhysical Chemistry IUniversity of BayreuthUniversitätsstr. 3095447BayreuthGermany
- Bavarian Center for Battery Technology (BayBatt)Bavarian Polymer Instituteand Bayreuth Center for Colloids and InterfacesUniversity of BayreuthUniversitätsstr. 3095447BayreuthGermany
| |
Collapse
|
20
|
Jia ZH, Xie R, Qiu Y, Lv XB, Ju XJ, Wang W, Liu Z, Chu LY. Magnetically Assembled Photonic Crystal Gels with Wide Thermochromic Range and High Sensitivity. Macromol Rapid Commun 2021; 42:e2100200. [PMID: 34028919 DOI: 10.1002/marc.202100200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Indexed: 02/05/2023]
Abstract
Thermochromic poly(N-isopropyl acrylamide) (PNIPAM) photonic crystal gels based on 1D magnetically assembling colloidal nanocrystal clusters have attracted much attention due to its convenient preparation process, striking color response, and good mechanical strength. However, there remain challenges to broaden the thermochromic range and improve the sensitivity for their iridescent color display. Here, a PNIPAM photonic gel with wide thermochromic range and high sensitivity is prepared by using four-arm star poly(ethylene glycol) acrylamide (PEGAAm) as cross-linker at appropriately reduced magnetic field strength as well as cross-linker content. PEGAAm improves the homogeneity of the microstructure in PNIPAM photonic gel and thus maintains the structure colors at a wide temperature range from room temperature to 44 °C. The reduced magnetic field strength of 70 Gs and low cross-linker content (the molar ratio of monomer to cross-linker of 300:1) lead to a large initial lattice spacing of the photonic gel and thus wide diffraction wavelength migration of 194 nm. This optimized PNIPAM gel exhibits vivid iridescent colors from orange-red to indigo blue as temperature increases from 20 to 44 °C with satisfactory repeatability. Therefore, it may be an ideal candidate for temperature sensors and displays with utility and accuracy such as low-temperature burns.
Collapse
Affiliation(s)
- Zhi-Han Jia
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Yue Qiu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xing-Bin Lv
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
21
|
Choi YJ, Park S, Yoon WJ, Lim SI, Koo J, Kang DG, Park S, Kim N, Jeong KU. Imidazolium-Functionalized Diacetylene Amphiphiles: Strike a Lighter and Wear Polaroid Glasses to Decipher the Secret Code. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003980. [PMID: 32794285 DOI: 10.1002/adma.202003980] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Indexed: 06/11/2023]
Abstract
The development of smart inks that change color and transparency in response to external stimuli is very important for various fields, from modern art to safety and anticounterfeiting technology. A uniaxially oriented diacetylene thin film on a macroscopic area is obtained by coating, self-assembling and topochemical photopolymerizing of imidazolium-functionalized diacetylenes (M-DA and T-DA) and 4,6-decadiyne ink (70 wt%:20 wt%:10 wt%) exhibiting a lyotropic smectic A liquid-crystalline phase at room temperature. The color and transparency of letters and symbols written with the DA-based secret inks change reversibly from blue to red as well as from colorless transparent to black opaque depending on the temperature and polarization axis. A secret code written with thermoresponsive and polarization-dependent secret inks consisting of imidazolium-functionalized diacetylenes is successfully deciphered by wearing polaroid glasses and holding a burning torch.
Collapse
Affiliation(s)
- Yu-Jin Choi
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seohee Park
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Won-Jin Yoon
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Seok-In Lim
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jahyeon Koo
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Dong-Gue Kang
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sungjune Park
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Namil Kim
- Environmental Materials R&D Center, Korea Automotive Technology Institute, Cheonan, 330-912, Republic of Korea
| | - Kwang-Un Jeong
- Department of Polymer-Nano Science and Technology, Department of Nanoconvergence Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| |
Collapse
|
22
|
Shen X, Du J, Sun J, Guo J, Hu X, Wang C. Transparent and UV Blocking Structural Colored Hydrogel for Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39639-39648. [PMID: 32805949 DOI: 10.1021/acsami.0c10763] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Usually, materials with perfect structures possess excellent properties, but it is not always the case. Here, a new approach is reported to construct structural colored hydrogel films with excellent ultraviolet (UV) blocking performance for contact lenses. The theoretical simulation predicts that with perfect periodic structures, the hydrogel films can strongly reflect incident light in a narrow visible wavelength range and thus exhibit extraordinarily brilliant colors. However, such hydrogel films cannot effectively block UV light. By slightly breaking the structural periodicity (quasi-periodic structure), strong diffuse scattering or pseudoabsorption of light can occur for all of the wavelengths shorter than a structural characteristic length, leading to perfect UV blocking. According to the theoretical prediction, a structural colored hydrogel film with nearly periodic polystyrene sphere arrays in poly(hydroxyethyl methacrylate) hydrogel matrix is fabricated; this hydrogel film possesses brilliant colors and perfect UV blocking, and the core particle composition and size have been investigated in detail for the optimized properties of contact lenses. Meanwhile, the cell proliferation assay proves the cytocompatibility of the hydrogel for real application. Regarding its unique optical characteristics, the as-prepared structural colored hydrogel shows great promise in the fields of UV-protective equipment, medical device, soft robot, sensor, and so on.
Collapse
Affiliation(s)
- Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiayuan Du
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xinhua Hu
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Gulina LB, Gurenko VE, Tolstoy VP, Mikhailovskii VY, Koroleva AV. Interface-Assisted Synthesis of the Mn 3-xFe xO 4 Gradient Film with Multifunctional Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14983-14989. [PMID: 31702162 DOI: 10.1021/acs.langmuir.9b02338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Anisotropic gradient materials are considered as promising and novel in that they have numerous functional properties and are able to transform into hierarchical microstructures. We report a facile method of gradient inorganic thin film synthesis through diffusion-controlled deposition at the gas-solution interface. To investigate the reaction of interfacial phase boundary controllable hydrolysis by gaseous ammonium, an aqueous solution of FeCl3 and MnCl2 was chosen, as the precipitation pH values for the hydroxides of these metals differ gradually. As a result of synthesis using the gas-solution interface technique (GSIT), a thin film is formed on the surface of the solution that consists of Mn2+(Fe,Mn)23+O4 nanoparticles with hausmannite crystal structure. The ratio between iron and manganese in the film can be adjusted over a wide range by varying the synthetic procedure. Specific conditions are determined that allow the formation of a Mn-Fe mixed oxide film with a gradient of composition, morphology, and properties, as well as its further transformation into microscrolls with a diameter of 10-20 μm and a length of up to 300 μm, showing weak superparamagnetic properties. The technique reported provides a new interfacial route for the development of functional gradient materials with tubular morphology.
Collapse
Affiliation(s)
- Larisa B Gulina
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | - Vladislav E Gurenko
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | - Valeri P Tolstoy
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| | | | - Alexandra V Koroleva
- Saint Petersburg State University , 7/9 Universitetskaya Nab. , St. Petersburg 199034 , Russia
| |
Collapse
|
24
|
Liu J, Gao D, Mao W, Zhao Q, Ma H, Wang Y, Wang X, Yung TK, Tam WY. Characterization of free-standing 1D photonic crystals using an effective medium approach. OPTICS LETTERS 2019; 44:4853-4856. [PMID: 31568459 DOI: 10.1364/ol.44.004853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Photonic crystals (PCs) are usually fabricated on bulk substrates which break the symmetry of the PC system for incidence from either side of the PCs. Here we report the fabrication of a free-standing 1D layered dielectric PC by using a two-beam holographic interference method. The free-standing PC exhibits distinct photonic bandgaps as well as Fabry-Perot oscillations in the photonic bands. Furthermore, we show that the PC can be modeled by an effective medium approach and obtain the reflection phase for the photonic bands of the PC. We have also performed full-wave simulations for the PC and obtained very good agreement with the experiment. The free-standing PC enables a better comparison between experiment and simulation, and importantly, it is flexible enabling new applications for PCs.
Collapse
|
25
|
Liu Y, Wang H, Ho J, Ng RC, Ng RJH, Hall-Chen VH, Koay EHH, Dong Z, Liu H, Qiu CW, Greer JR, Yang JKW. Structural color three-dimensional printing by shrinking photonic crystals. Nat Commun 2019; 10:4340. [PMID: 31554803 PMCID: PMC6761189 DOI: 10.1038/s41467-019-12360-w] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/23/2019] [Indexed: 11/09/2022] Open
Abstract
The coloration of some butterflies, Pachyrhynchus weevils, and many chameleons are notable examples of natural organisms employing photonic crystals to produce colorful patterns. Despite advances in nanotechnology, we still lack the ability to print arbitrary colors and shapes in all three dimensions at this microscopic length scale. Here, we introduce a heat-shrinking method to produce 3D-printed photonic crystals with a 5x reduction in lattice constants, achieving sub-100-nm features with a full range of colors. With these lattice structures as 3D color volumetric elements, we printed 3D microscopic scale objects, including the first multi-color microscopic model of the Eiffel Tower measuring only 39 µm tall with a color pixel size of 1.45 µm. The technology to print 3D structures in color at the microscopic scale promises the direct patterning and integration of spectrally selective devices, such as photonic crystal-based color filters, onto free-form optical elements and curved surfaces.
Collapse
Affiliation(s)
- Yejing Liu
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Hao Wang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jinfa Ho
- Nanofabrication Department, Institute of Materials Research and Engineering, Singapore, 138634, Singapore
| | - Ryan C Ng
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ray J H Ng
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore.,Nanofabrication Department, Institute of Materials Research and Engineering, Singapore, 138634, Singapore
| | - Valerian H Hall-Chen
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, OX1 3PU, UK
| | - Eleen H H Koay
- Nanofabrication Department, Institute of Materials Research and Engineering, Singapore, 138634, Singapore
| | - Zhaogang Dong
- Nanofabrication Department, Institute of Materials Research and Engineering, Singapore, 138634, Singapore
| | - Hailong Liu
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Julia R Greer
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Joel K W Yang
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore. .,Nanofabrication Department, Institute of Materials Research and Engineering, Singapore, 138634, Singapore.
| |
Collapse
|
26
|
Chi J, Shao C, Zhang Y, Ni D, Kong T, Zhao Y. Magnetically responsive colloidal crystals with angle-independent gradient structural colors in microfluidic droplet arrays. NANOSCALE 2019; 11:12898-12904. [PMID: 31250872 DOI: 10.1039/c9nr04011k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Magnetically responsive colloidal crystal films with gradient structural colors have a significant value in optical applications via controllable external stimuli. Herein, we propose a practical method for fabricating colloidal crystal hydrogel films with continuous gradient structural colors by using superparamagnetic colloidal nanoparticles. The colloidal nanoparticles could self-assemble into chain-like non-close-packed arrays to present structural colors under the stimuli of external magnetic fields. And structural colors with gradient changes could be achieved when subjected to a spatial magnetic field with a remarkable variation in field strength and direction. By integrating with a microfluidic droplet array template with spherical symmetry morphology, we have demonstrated convenient fabrication of free-standing colloidal crystal films with angle-independent gradient structural colors, which could be utilized for the fabrication of optical devices.
Collapse
Affiliation(s)
- Junjie Chi
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China. and State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Changmin Shao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yalan Zhang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Dong Ni
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Tiantian Kong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
27
|
Liu C, Zhang W, Zhao Y, Lin C, Zhou K, Li Y, Li G. Urea-Functionalized Poly(ionic liquid) Photonic Spheres for Visual Identification of Explosives with a Smartphone. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21078-21085. [PMID: 31071256 DOI: 10.1021/acsami.9b04568] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Current effort merging rational design of colorimetric sensor array with portable and easy-to-use hand-held readers delivers an effective and convenient method for on-site detection and discrimination of explosives. However, on the one hand, there are rare relevant reports; on the other hand, some limitations regarding direct sensing, color retention, and array extendibility still remain. Herein, urea-functionalized poly(ionic liquid) photonic spheres were employed to construct a brand-new colorimetric sensor array for directly identifying five nitroaromatic explosives with a smartphone. It is found that the strong hydrogen bonding between the urea motifs and the nitro groups offers the spheres high affinity for binding the targets, whereas the existence of other abundant intermolecular interactions in poly(ionic liquid) units renders one single sphere eligible for prominent cross-responses to a broad range of analytes. Besides, in our case, opal-like photonic crystal structures other than chemical dyes are used to fabricate a new style of colorimetric array. Such structural colors can be vivid and unchanged over a long period even in hazard environments. Importantly, through simply altering the preparation conditions of our PIL spheres, a pool of sensing elements could be added to the developed array for discrimination of extended target systems such as more explosives and even their mixtures in real-world context.
Collapse
Affiliation(s)
- Chengcheng Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Wanlin Zhang
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yang Zhao
- Institute of Forensic Science , Ministry of Public Security , Beijing 100038 , P. R. China
| | - Changxu Lin
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology , Xiamen University , Xiamen 361005 , P. R. China
| | - Kang Zhou
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yanmei Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Guangtao Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
28
|
Kim DH, Ishizu K, Lee DH. Permanent locking of colloidal crystals composed of core-brush polymeric nanoparticles. POLYM ENG SCI 2018. [DOI: 10.1002/pen.24762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dong-Hyeon Kim
- Department of Green Energy Engineering; Uiduk University; 261 Donghae-daero, Gangdong-myeon, Gyeongju-si, Gyeongsangbuk-do 38004 Korea
| | - Koji Ishizu
- Department of Organic Materials and Macromolecules; International Research Center of Macromolecular Science, Tokyo Institute of Technology; Tokyo 152-8552 Japan
| | | |
Collapse
|
29
|
Goerlitzer ESA, Klupp Taylor RN, Vogel N. Bioinspired Photonic Pigments from Colloidal Self-Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1706654. [PMID: 29733481 DOI: 10.1002/adma.201706654] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/17/2018] [Indexed: 05/23/2023]
Abstract
The natural world is a colorful environment. Stunning displays of coloration have evolved throughout nature to optimize camouflage, warning, and communication. The resulting flamboyant visual effects and remarkable dynamic properties, often caused by an intricate structural design at the nano- and microscale, continue to inspire scientists to unravel the underlying physics and to recreate the observed effects. Here, the methodologies to create bioinspired photonic pigments using colloidal self-assembly approaches are considered. The physics governing the interaction of light with structural features and natural examples of structural coloration are briefly introduced. It is then outlined how the self-assembly of colloidal particles, acting as wavelength-scale building blocks, can be particularly useful to replicate coloration from nature. Different coloration effects that result from the defined structure of the self-assembled colloids are introduced and it is highlighted how these optical properties can be translated into photonic pigments by modifications of the assembly processes. The importance of absorbing elements, as well as the role of surface chemistry and wettability to control structural coloration is discussed. Finally, approaches to integrate dynamic control of coloration into such self-assembled photonic pigments are outlined.
Collapse
Affiliation(s)
- Eric S A Goerlitzer
- Institute of Particle Technology and Advanced Materials and Processes Master Programme, Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Robin N Klupp Taylor
- Institute of Particle Technology and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology and Interdisciplinary Center for Functional Particle Systems (FPS), Friedrich-Alexander University Erlangen-Nürnberg, 91058, Erlangen, Germany
| |
Collapse
|
30
|
Gao Z, Gao D, Huang C, Zhang H, Guo J, Wei J. Dual-Responsive SPMA-Modified Polymer Photonic Crystals and Their Dynamic Display Patterns. Macromol Rapid Commun 2018; 39:e1800134. [PMID: 29806723 DOI: 10.1002/marc.201800134] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/17/2018] [Indexed: 11/06/2022]
Abstract
Light and electrothermal responsive polymer photonic crystals (PCs) modified with 1'-acryloyl chloride-3',3'-dimethyl-6-nitro-spiro(2H-1-benzopyran-2,2'-indoline) (SPMA) are proposed, and their dynamic display patterns are achieved through the combination of the SPMA-modified PCs and a patterned graphite layer. These PCs exhibit fluorescence under UV light irradiation because of the isomerization of the SPMA, which is restricted in the shell of the polymer colloidal spheres. After a voltage is applied to the patterned graphite layer, the fluorescence of PCs in the specific area disappears, and dynamic display patterns are obtained. Under UV light irradiation, the PCs change from the "partial-fluorescence" state to the initial "fluorescence" state, and the patterns disappear. Using this technique, the PC pattern "M L N" on the glass substrate and PC patterns from "0" to "9" on the paper substrate are fabricated. Thus, these dual-responsive PCs have potential applications in information recording, anticounterfeiting, dynamic display, and photoelectric devices.
Collapse
Affiliation(s)
- Zewen Gao
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dongsheng Gao
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing, 100029, P. R. China
| | - Chao Huang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hanbing Zhang
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jinbao Guo
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Wei
- College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.,Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing, 100029, P. R. China
| |
Collapse
|
31
|
Quan M, Yang B, Wang J, Yu H, Cao X. Simultaneous Microscopic Structure Characteristics of Shape-Memory Effects of Thermo-Responsive Poly(vinylidene fluoride-co-hexafluoropropylene) Inverse Opals. ACS APPLIED MATERIALS & INTERFACES 2018; 10:4243-4249. [PMID: 29303247 DOI: 10.1021/acsami.7b17230] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This paper presents a simultaneous microscopic structure characteristic of shape-memory (SM) poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) inverse opals together with a bulk PVDF-HFP by scanning electron microscopy (SEM). The materials show a thermo-sensitive micro-SM property, accompanied with a reversible and modulated optical property. The introduction of the inverse opal structure into the shape-memory polymer material renders a recognition ability of the microstructure change aroused from complex environmental signals by an optical signal, which can be simultaneously detected by SEM. Furthermore, this feature was applied as a reversible write/erase of fingerprint pattern through the press-stimulus and solvent-induced effect, together with the changes of morphology/optical signal. This micro-SM property can be attributed to the shrink/swell effect of the polymer chain from external stimuli combined with the microscopic structure of inverse opals. It will trigger a promising way toward designing reversible micro-deformed actuators.
Collapse
Affiliation(s)
- Maohua Quan
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing , Beijing 100083, China
| | - Bowen Yang
- Department of Material Science and Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Jingxia Wang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- School of Future Technologies, University of Chinese Academy of Sciences , Yanqihu Campus, Huaibei Town, Huaibei Zhuang Huairou District, Beijing 101407, China
| | - Haifeng Yu
- Department of Material Science and Engineering, College of Engineering, Peking University , Beijing 100871, China
| | - Xinyu Cao
- Key Laboratory of Green Printing, Institute of Chemistry Chinese Academy of Sciences , Beijing 100190, China
| |
Collapse
|
32
|
Suzuki N, Iwase E, Onoe H. Micropatterning of Multiple Photonic Colloidal Crystal Gels for Flexible Structural Color Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6102-6107. [PMID: 28534633 DOI: 10.1021/acs.langmuir.7b01035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We herein report the micropatterning of flexible multiple photonic colloidal crystal gels (PCCGs) using single-layered microchannels. These patterned PCCGs exhibit structural colors that can be tuned by adjustment of the diameter and concentration of the colloidal particles in precursor solutions of N-isopropylacrylamide (NIPAM) or polyethylene glycol diacrylate (PEGDA). The precursor solutions containing dispersed colloidal particles were selectively injected into single-layered microchannels where they polymerized rapidly. The shape, density, and height of the patterned PCCG pixels were determined by the microchannels, which in turn determined the optical properties of the PCCG arrays. Furthermore, the preparation of three different types of PCCGs exhibiting three different structural colors at a high pixel density was demonstrated successfully using the single-layered polydimethylsiloxane (PDMS) microchannels. Finally, the optical reflective properties and the mechanical flexibility of the patterned multiple PCCG arrays were evaluated. We expect that our method for the preparation of such patterned PCCG arrays will contribute to the development of flexible optical devices.
Collapse
Affiliation(s)
- Noriyuki Suzuki
- Graduate School of Integrated Design Engineering, Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| | - Eiji Iwase
- Department of Applied Mechanics and Aerospace Engineering, Waseda University 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hiroaki Onoe
- Graduate School of Integrated Design Engineering, Keio University 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan
| |
Collapse
|
33
|
Liberman-Martin AL, Chu CK, Grubbs RH. Application of Bottlebrush Block Copolymers as Photonic Crystals. Macromol Rapid Commun 2017; 38. [PMID: 28544118 DOI: 10.1002/marc.201700058] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 04/08/2017] [Indexed: 11/12/2022]
Abstract
Brush block copolymers are a class of comb polymers that feature polymeric side chains densely grafted to a linear backbone. These polymers display interesting properties due to their dense functionality, low entanglement, and ability to rapidly self-assemble to highly ordered nanostructures. The ability to prepare brush polymers with precise structures has been enabled by advancements in controlled polymerization techniques. This Feature Article highlights the development of brush block copolymers as photonic crystals that can reflect visible to near-infrared wavelengths of light. Fabrication of these materials relies on polymer self-assembly processes to achieve nanoscale ordering, which allows for the rapid preparation of photonic crystals from common organic chemical feedstocks. The characteristic physical properties of brush block copolymers are discussed, along with methods for their preparation. Strategies to induce self-assembly at ambient temperatures and the use of blending techniques to tune photonic properties are emphasized.
Collapse
Affiliation(s)
- Allegra L Liberman-Martin
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Crystal K Chu
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| | - Robert H Grubbs
- Arnold and Mabel Beckman Laboratories of Chemical Synthesis, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, United States
| |
Collapse
|
34
|
Ding H, Zhu C, Tian L, Liu C, Fu G, Shang L, Gu Z. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11933-11941. [PMID: 28120613 DOI: 10.1021/acsami.6b11409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.
Collapse
Affiliation(s)
- Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Cun Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Lei Tian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Cihui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Guangbin Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
35
|
Ma H, Tang K, Luo W, Ma L, Cui Q, Li W, Guan J. Photonic nanorods with magnetic responsiveness regulated by lattice defects. NANOSCALE 2017; 9:3105-3113. [PMID: 28197592 DOI: 10.1039/c6nr10022h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Herein, we use experiments and numerical simulations to demonstrate a novel class of magnetically responsive photonic crystals (MRPCs) based on photonic nanorods which exhibit multiple optical properties in a magnetic field (H) due to their fixed photonic nanorods and H-tunable lattice defects. As an example, superparamagnetic Fe3O4@polyvinyl pyrrolidone (PVP)@SiO2 photonic nanorods were fabricated through a polyacrylic acid-catalysed hydrolysis-condensation reaction of γ-mercaptopropyltrimethoxysilane around chain-like PC templates formed by monodispersed Fe3O4@PVP particles under H. For the as-proposed MRPCs, with increasing H, the photonic nanorods firstly experience in situ rotational orientation along the H direction, followed by alignment and connection into long parellel nanochains via the spaces between the ends of adjacent photonic nanorods (named lattice defects). As the number and size of the lattice defects changes with H, the MRPCs exhibit visible red-shifts and blue-shifts of their diffraction wavelengths in addition to monotonous enhancement of their diffraction peaks. These optical properties are very different from those of previously reported MRPCs. The diversity of the structural colors and brightness of these MRPCs with H is also closely dependent on the applied time of H, the concentration of the photonic nanorods, and the structural parameters of the nanorods, including nanorod length and interparticle distance. Due to the difficult duplication of their various optical properties as well as their easy fabrication and low cost, MRPCs based on photonic nanorods are suitable for wide applications in forgery protection and information encryption.
Collapse
Affiliation(s)
- Huiru Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China. and Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Kai Tang
- Department of Chemistry, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Lin Ma
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Qian Cui
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Wei Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China.
| |
Collapse
|
36
|
Zhang X, Wang F, Wang L, Lin Y, Zhu J. Brilliant Structurally Colored Films with Invariable Stop-Band and Enhanced Mechanical Robustness Inspired by the Cobbled Road. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22585-22592. [PMID: 27509171 DOI: 10.1021/acsami.6b07576] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently, structural colors have attracted great concentrations because the coloration is free from chemical- or photobleaching. However, the color saturation and mechanical robustness are generally competitive properties in the fabrication of PCs (photonic crystals) films. Besides, the structure of PCs and their derivatives are easy to be invaded by liquids and lead to band gap shifts due to the change of refractive index or periodicity. To solve those problems, we infiltrate polydimethylsiloxane (PDMS) into the intervals between regularly arrayed hollow SiO2 nanospheres, inspired by the cobbled road prepared by embedding stone in the bulk cement matrix. Consequently, the as-prepared PCs films show brilliant colors, invariable stop-bands, and excellent mechanical robustness. Moreover, the water contact angle even reached 166° after a sandpaper abrasion test. The combination of brilliant colors, invariable stop-bands, and excellent robustness is significant for potential application in paint and external decoration of architectures.
Collapse
Affiliation(s)
- Xin Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology , Xi'an, Shaanxi 710021, PR China
| | - Fen Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology , Xi'an, Shaanxi 710021, PR China
| | - Lei Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology , Xi'an, Shaanxi 710021, PR China
| | - Ying Lin
- School of Materials Science and Engineering, Shaanxi University of Science and Technology , Xi'an, Shaanxi 710021, PR China
| | - Jianfeng Zhu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology , Xi'an, Shaanxi 710021, PR China
| |
Collapse
|
37
|
Nan F, Chen Q, Liu P, Nagarajan S, Duan Y, Zhang J. Iridescent graphene/cellulose nanocrystal film with water response and highly electrical conductivity. RSC Adv 2016. [DOI: 10.1039/c6ra20133d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The co-assembly of cellulose nanocrystal (CNC) and thermal reduced graphene (TRG) leads to composite films with highly ordered, layered structures at submicrometer level, which can be reversibly changed by the hydration or dehydration process.
Collapse
Affiliation(s)
- Fuchun Nan
- Key Laboratory of Rubber-Plastics
- Ministry of Education
- Shandong Provincial Key Laboratory of Rubber-Plastics
- Qingdao University of Science & Technology
- Qingdao City 266042
| | - Qi Chen
- Key Laboratory of Rubber-Plastics
- Ministry of Education
- Shandong Provincial Key Laboratory of Rubber-Plastics
- Qingdao University of Science & Technology
- Qingdao City 266042
| | - Ping Liu
- Key Laboratory of Rubber-Plastics
- Ministry of Education
- Shandong Provincial Key Laboratory of Rubber-Plastics
- Qingdao University of Science & Technology
- Qingdao City 266042
| | - S. Nagarajan
- Key Laboratory of Rubber-Plastics
- Ministry of Education
- Shandong Provincial Key Laboratory of Rubber-Plastics
- Qingdao University of Science & Technology
- Qingdao City 266042
| | - Yongxin Duan
- Key Laboratory of Rubber-Plastics
- Ministry of Education
- Shandong Provincial Key Laboratory of Rubber-Plastics
- Qingdao University of Science & Technology
- Qingdao City 266042
| | - Jianming Zhang
- Key Laboratory of Rubber-Plastics
- Ministry of Education
- Shandong Provincial Key Laboratory of Rubber-Plastics
- Qingdao University of Science & Technology
- Qingdao City 266042
| |
Collapse
|