1
|
Song J, Huang B, Xu Y, Yang K, Li Y, Mu Y, Du L, Yun S, Kang L. A Low Driving-Voltage Hybrid-Electrolyte Electrochromic Window with Only Ferreous Redox Couples. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:213. [PMID: 36616123 PMCID: PMC9823981 DOI: 10.3390/nano13010213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Even after decades of development, the widespread application of electrochromic windows (ECW) is still seriously restricted by their high price and inadequate performance associated with structural/fabrication complexity and electrochemical instability. Herein, a simple hybrid electrochromic system based on PFSA (perfluorosulfonic acid)-coated Prussian blue (PB, Fe4III [FeII(CN)6]3) film and Ferricyanide-Ferrocyanide ([Fe(CN)6]4-/[Fe(CN)6]3-)-containing hybrid electrolyte is reported. The PB film and the [Fe(CN)6]4-/[Fe(CN)6]3- couple show near redox potentials well inside the electrochemical window of water, resulting in a low driven voltage (0.4 V for coloring and -0.6 V for bleaching) and a relatively long lifespan (300 cycles with 76.9% transmittance contrast retained). The PFSA layer, as a cation-exchange structure, significantly improves the transmittance modulation amplitude (ΔT: 23.3% vs. 71.9% at a wavelength of 633 nm) and optical memory abilities (ΔT retention: 10.1% vs. 67.0% after 300 s open-circuit rest increases) of the device, by means of preventing the direct contact and charge transfer between the PB film and the [Fe(CN)6]4-/[Fe(CN)6]3- couple. This "hybrid electrolyte + electron barrier layer" design provides an effective way for the construction of simple structured electrochromic devices.
Collapse
Affiliation(s)
- Jisheng Song
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Bingkun Huang
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yinyingjie Xu
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Kunjie Yang
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yingfan Li
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Yuqi Mu
- School of Materials Science and Engineering, University of Science and Technology, Beijing 100083, China
| | - Lingyu Du
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| | - Shan Yun
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huai’an 223003, China
| | - Litao Kang
- College of Environment and Materials Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|
2
|
Padmaperuma SR, Liu M, Nakamura R, Tachibana Y. Photoinduced Charge Carrier Dynamics of Metal Chalcogenide Semiconductor Quantum Dot Sensitized TiO<sub>2</sub> Film for Photovoltaic Application. J PHOTOPOLYM SCI TEC 2021. [DOI: 10.2494/photopolymer.34.271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Ryosuke Nakamura
- Project Research Center for Fundamental Sciences, Faculty of Science, Osaka University
| | | |
Collapse
|
3
|
Fu B, Deng C, Yang L. Efficiency Enhancement of Solid-State CuInS 2 Quantum Dot-Sensitized Solar Cells by Improving the Charge Recombination. NANOSCALE RESEARCH LETTERS 2019; 14:198. [PMID: 31172299 PMCID: PMC6554371 DOI: 10.1186/s11671-019-2998-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
Copper indium sulfide quantum dots (CuInS2 QDs) were incorporated into a nanocrystalline TiO2 film by using spin coating-assisted successive ionic layer adsorption and reaction process to fabricate CuInS2 QD-sensitized TiO2 photoelectrodes for the solid-state quantum dot-sensitized solar cell (QDSSC) applications. The result shows that the photovoltaic performance of solar cell is extremely dependent on the number of cycles, which has an appreciable impact on the coverage ratio of CuInS2 on the surface of TiO2 and the density of surface defect states. In the following high-temperature annealing process, it is found that annealing TiO2/CuInS2 photoelectrode at a suitable temperature would be beneficial for decreasing the charge recombination and accelerating the charge transport. After annealing at 400 °C, a significantly enhanced photovoltaic properties of solid-state CuInS2 QDSSCs are obtained, achieving the power conversion efficiency (PCE) of 3.13%, along with an open-circuit voltage (VOC) of 0.68 V, a short-circuit photocurrent density (JSC) of 11.33 mA cm-2, and a fill factor (FF) of 0.41. The enhancement in the performance of solar cells is mainly ascribed to the suppression of charge recombination and the promotion of the electron transfer after annealing.
Collapse
Affiliation(s)
- Bowen Fu
- College of Physics Science and Technology, Hebei University, Baoding, 071002 China
| | - Chong Deng
- College of Physics Science and Technology, Hebei University, Baoding, 071002 China
- Key Laboratory of Semiconductor Photovoltaic Technology of Inner Mongolia Autonomous Region, School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021 China
| | - Lin Yang
- College of Physics Science and Technology, Hebei University, Baoding, 071002 China
| |
Collapse
|
4
|
Lee S, Flanagan JC, Kim J, Yun AJ, Lee B, Shim M, Park B. Efficient Type-II Heterojunction Nanorod Sensitized Solar Cells Realized by Controlled Synthesis of Core/Patchy-Shell Structure and CdS Cosensitization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19104-19114. [PMID: 31066260 DOI: 10.1021/acsami.9b02873] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Here, we report the successful application of core/patchy-shell CdSe/CdSe xTe1- x type-II heterojunction nanorods (HNRs) to realize efficient sensitized solar cells. The core/patchy-shell structure designed to have a large type-II heterointerface without completely shielding the CdSe core significantly improves photovoltaic performance compared to other HNRs with minimal or full-coverage shells. In addition, cosensitization with CdS grown by successive ionic layer adsorption and reaction further improves the power conversion efficiency. One-diode model analysis reveals that the HNRs having exposed CdSe cores and suitably grown CdS result in significant reduction of series resistance. Investigation of the intercorrelation between diode quality parameters, diode saturation current density ( J0) and recombination order (β = (ideality factor)-1) reveals that HNRs with open CdSe cores exhibit reduced recombination. These results confirm that the superior performance of core/patchy-shell HNRs results from their fine-tuned structure: photocurrent is increased by the large type-II heterointerface and recombination is effectively suppressed due to the open CdSe core enabling facile electron extraction. An optimized power conversion efficiency of 5.47% (5.89% with modified electrode configuration) is reported, which is unmatched among photovoltaics utilizing anisotropic colloidal heterostructures as light-harvesting materials.
Collapse
Affiliation(s)
- Sangheon Lee
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Joseph C Flanagan
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Jaewook Kim
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Alan Jiwan Yun
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Byungho Lee
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| | - Moonsub Shim
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Byungwoo Park
- WCU Hybrid Materials Program, Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08226 , Korea
| |
Collapse
|
5
|
Rahman MM, Wang J, Nath NCD, Lee JJ. A non-absorbing organic redox couple for sensitization-based solar cells with metal-free polymer counter electrode. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Nikam PR, Baviskar PK, Majumder S, Sali JV, Sankapal BR. SILAR controlled CdSe nanoparticles sensitized ZnO nanorods photoanode for solar cell application: Electrolyte effect. J Colloid Interface Sci 2018; 524:148-155. [PMID: 29649623 DOI: 10.1016/j.jcis.2018.03.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/30/2018] [Accepted: 03/30/2018] [Indexed: 11/17/2022]
Abstract
Controlled growth of different sizes of cadmium selenide (CdSe) nanoparticles over well aligned ZnO nanorods have been performed using successive ionic layer adsorption and reaction (SILAR) technique at room temperature (27 °C) in order to form nano heterostructure solar cells. Deposition of compact layer of zinc oxide (ZnO) by SILAR technique on fluorine doped tin oxide (FTO) coated glass substrate followed by growth of vertically aligned ZnO nanorods array using chemical bath deposition (CBD) at low temperature (<100 °C). Different characterization techniques viz. X-ray diffractometer, UV-Vis spectrophotometer, field emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy have been used to know the structural, optical, morphological and compositional properties of synthesized nano heterostructure. The photovoltaic performance of the cells with variation in SILAR cycles for CdSe and with use of different electrolytes have been recorded as J-V characteristics and the maximum conversion efficiency of 0.63% have been attained with ferro/ferri cyanide electrolyte for 12 cycles CdSe coating over 1-D ZnO nanorods.
Collapse
Affiliation(s)
- Pratibha R Nikam
- Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425001, India
| | - Prashant K Baviskar
- Advanced Physics Laboratory, Department of Physics, Savitribai Phule Pune University, Pune 411007, India.
| | - Sutripto Majumder
- Department of Physics, National Institute of Technology, Raipur, G.E. Road, Raipur, Chattisgarh 492010, India; Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010, India
| | - Jaydeep V Sali
- Department of Physics, School of Physical Sciences, North Maharashtra University, Jalgaon 425001, India
| | - Babasaheb R Sankapal
- Nano Materials and Device Laboratory, Department of Physics, Visvesvaraya National Institute of Technology, South Ambazari Road, Nagpur 440010, India.
| |
Collapse
|
7
|
Kurochkina MA, Konshina EA, Khmelevskaia D. Photoluminescence of CdSe/ZnS quantum dots in nematic liquid crystals in electric fields. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:1544-1549. [PMID: 29977687 PMCID: PMC6009683 DOI: 10.3762/bjnano.9.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
We have experimentally investigated the effect of the reorientation of a nematic liquid crystal (LC) in an electric field on the photoluminescence (PL) of CdSe/ZnS semiconductor quantum dots (QDs). To the LC with positive dielectric anisotropy, 1 wt % QDs with a core diameter of 5 nm was added. We compared the change of PL intensity and decay times of QDs in LC cells with initially planar or vertically orientated molecules, i.e., in active or passive LC matrices. The PL intensity of the QDs increases four-fold in the active LC matrix and only 1.6-fold in the passive LC matrix without reorientation of the LC molecules. With increasing electric field strength, the quenching of QDs luminescence occurred in the active LC matrix, while the PL intensity did not change in the passive LC matrix. The change in the decay time with increasing electric field strength was similar to the behavior of the PL intensity. The observed buildup in the QDs luminescence can be associated with the transfer of energy from LC molecules to QDs. In a confocal microscope, we observed the increase of particle size and the redistribution of particles in the active LC matrix with the change of the electric field strength. At the same time, no significant changes occurred in the passive LC matrix. With the reorientation of LC molecules from the planar in vertical position in the LC active matrix, quenching of QD luminescence and an increase of the ion current took place simultaneously. The obtained results are interesting for controlling the PL intensity of semiconductor QDs in liquid crystals by the application of electric fields.
Collapse
Affiliation(s)
- Margarita A Kurochkina
- Center of Information and Optical Technologies, ITMO University, Kronverksky pr. 49, Saint-Petersburg, 197101, Russia
| | - Elena A Konshina
- Department of Optical Physics and Modern Natural Science, ITMO University, Kronverksky pr. 49, Saint-Petersburg, 197101, Russia
| | - Daria Khmelevskaia
- Department of Optical Physics and Modern Natural Science, ITMO University, Kronverksky pr. 49, Saint-Petersburg, 197101, Russia
| |
Collapse
|
8
|
Systematic stacking of PbS/CdS/CdSe multi-layered quantum dots for the enhancement of solar cell efficiency by harvesting wide solar spectrum. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Pan Z, Rao H, Mora-Seró I, Bisquert J, Zhong X. Quantum dot-sensitized solar cells. Chem Soc Rev 2018; 47:7659-7702. [DOI: 10.1039/c8cs00431e] [Citation(s) in RCA: 259] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A comprehensive overview of the development of quantum dot-sensitized solar cells (QDSCs) is presented.
Collapse
Affiliation(s)
- Zhenxiao Pan
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Huashang Rao
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| | - Iván Mora-Seró
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Juan Bisquert
- Institute of Advanced Materials (INAM)
- Universitat Jaume I
- 12006 Castelló
- Spain
| | - Xinhua Zhong
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- China
| |
Collapse
|
10
|
Riedel M, Sabir N, Scheller FW, Parak WJ, Lisdat F. Connecting quantum dots with enzymes: mediator-based approaches for the light-directed read-out of glucose and fructose oxidation. NANOSCALE 2017; 9:2814-2823. [PMID: 28155960 DOI: 10.1039/c7nr00091j] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The combination of the biocatalytic features of enzymes with the unique physical properties of nanoparticles in a biohybrid system provides a promising approach for the development of advanced bioelectrocatalytic devices. This study describes the construction of photoelectrochemical signal chains based on CdSe/ZnS quantum dot (QD) modified gold electrodes as light switchable elements, and low molecular weight redox molecules for the combination with different biocatalysts. Photoelectrochemical and photoluminescence experiments verify that electron transfer can be achieved between the redox molecules hexacyanoferrate and ferrocene, and the QDs under illumination. Since for both redox mediators a concentration dependent photocurrent change has been found, light switchable enzymatic signal chains are built up with fructose dehydrogenase (FDH) and pyrroloquinoline quinone-dependent glucose dehydrogenase ((PQQ)GDH) for the detection of sugars. After immobilization of the enzymes at the QD electrode the biocatalytic oxidation of the substrates can be followed by conversion of the redox mediator in solution and subsequent detection at the QD electrode. Furthermore, (PQQ)GDH has been assembled together with ferrocenecarboxylic acid on top of the QD electrode for the construction of a funtional biohybrid architecture, showing that electron transfer can be realized from the enzyme over the redox mediator to the QDs and subsequently to the electrode in a completely immobilized fashion. The results obtained here do not only provide the basis for light-switchable biosensing and bioelectrocatalytic applications, but may also open the way for self-driven point-of-care systems by combination with solar cell approaches (power generation at the QD electrode by enzymatic substrate consumption).
Collapse
Affiliation(s)
- M Riedel
- Biosystems Technology, Institute for Applied Life Sciences, Technical University Wildau, Hochschulring 1, D-15745 Wildau, Germany.
| | - N Sabir
- Fachbereich Physik, Philips University Marburg, Renthof 5, D-35032 Marburg, Germany
| | - F W Scheller
- Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 25-26, D-14476 Potsdam, Germany
| | - W J Parak
- Fachbereich Physik, Philips University Marburg, Renthof 5, D-35032 Marburg, Germany
| | - F Lisdat
- Biosystems Technology, Institute for Applied Life Sciences, Technical University Wildau, Hochschulring 1, D-15745 Wildau, Germany.
| |
Collapse
|
11
|
Li CT, Lin RYY, Lin JT. Sensitizers for Aqueous-Based Solar Cells. Chem Asian J 2017; 12:486-496. [PMID: 28070969 DOI: 10.1002/asia.201601627] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/08/2017] [Indexed: 11/11/2022]
Abstract
Aqueous dye-sensitized solar cells (DSSCs) are attractive due to their sustainability, the use of water as a safe solvent for the redox mediators, and their possible applications in photoelectrochemical water splitting. However, the higher tendency of dye leaching by water and the lower wettability of dye molecules are two major obstacles that need to be tackled for future applications of aqueous DSSCs. Sensitizers designed for aqueous DSSCs are discussed based on their functions, such as modification of the molecular skeleton and the anchoring group for better stability against dye leaching by water, and the incorporation of hydrophilic entities into the dye molecule or the addition of a surfactant to the system to increase the wettability of the dye for more facile dye regeneration. Surface treatment of the photoanode to deter dye leaching or improve the wettability of the dye molecule is also discussed. Redox mediators designed for aqueous DSSCs are also discussed. The review also includes quantum-dot-sensitized solar cells, with a focus on improvements in QD loading and suppression of interfacial charge recombination at the photoanode.
Collapse
Affiliation(s)
- Chun-Ting Li
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| | - Ryan Yeh-Yung Lin
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Jiann T Lin
- Institute of Chemistry, Academia Sinica, Nankang, Taipei, 11529, Taiwan
| |
Collapse
|
12
|
Liu M, Endo M, Shimazaki A, Wakamiya A, Tachibana Y. Light Intensity Dependence of Performance of Lead Halide Perovskite Solar Cells. J PHOTOPOLYM SCI TEC 2017. [DOI: 10.2494/photopolymer.30.577] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Masaru Endo
- Institute for Chemical Research, Kyoto University
| | - Ai Shimazaki
- Institute for Chemical Research, Kyoto University
| | | | - Yasuhiro Tachibana
- School of Engineering, RMIT University
- Office for University-Industry Collaboration, Osaka University
| |
Collapse
|
13
|
Wang S, Tian J. Recent advances in counter electrodes of quantum dot-sensitized solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra19226b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The recent progress in the development of counter electrodes (CEs) is reviewed, and the key issues for the materials, structures and performance evaluation of CEs are also addressed.
Collapse
Affiliation(s)
- Shixun Wang
- Institute of Advanced Materials Technology
- University of Science and Technology Beijing
- Beijing
- China
| | - Jianjun Tian
- Institute of Advanced Materials Technology
- University of Science and Technology Beijing
- Beijing
- China
| |
Collapse
|