1
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
2
|
Raftery RM, Gonzalez Vazquez AG, Walsh DP, Chen G, Laiva AL, Keogh MB, O'Brien FJ. Mobilizing Endogenous Progenitor Cells Using pSDF1α-Activated Scaffolds Accelerates Angiogenesis and Bone Repair in Critical-Sized Bone Defects. Adv Healthc Mater 2024; 13:e2401031. [PMID: 38850118 DOI: 10.1002/adhm.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Indexed: 06/09/2024]
Abstract
Mobilizing endogenous progenitor cells to repair damaged tissue in situ has the potential to revolutionize the field of regenerative medicine, while the early establishment of a vascular network will ensure survival of newly generated tissue. In this study, a gene-activated scaffold containing a stromal derived factor 1α plasmid (pSDF1α), a pro-angiogenic gene that is also thought to be involved in the recruitment of mesenchymal stromal cells (MSCs) to sites of injury is described. It is shown that over-expression of SDF1α protein enhanced MSC recruitment and induced vessel-like structure formation by endothelial cells in vitro. When implanted subcutaneously, transcriptomic analysis reveals that endogenous MSCs are recruited and significant angiogenesis is stimulated. Just 1-week after implantation into a calvarial critical-sized bone defect, pSDF1α-activated scaffolds are recruited MSCs and rapidly activate angiogenic and osteogenic programs, upregulating Runx2, Dlx5, and Sp7. At the same time-point, pVEGF-activated scaffolds are recruited a variety of cell types, activating endochondral ossification. The early response induced by both scaffolds leads to complete bridging of the critical-sized bone defects within 4-weeks. The versatile cell-free gene-activated scaffold described in this study is capable of harnessing and enhancing the body's own regenerative capacity and has immense potential in a myriad of applications.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- iEd Hub and Department of Anatomy and Neuroscience, College of Medicine and Health, University College Cork, Cork, T12 CY82, Ireland
| | - Arlyng G Gonzalez Vazquez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| | - David P Walsh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
- Translational Research in Nanomedical Devices, School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
| | - Ashang L Laiva
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Michael B Keogh
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Tisse Engineering Research Group, Royal College of Surgeons in Ireland - Medical University of Bahrain, Adliya, Bahrain
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- Trinity Centre for Biomedical Engineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, D02 PN40, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, D02 YN77, Ireland
| |
Collapse
|
3
|
Han D, Wang W, Gong J, Ma Y, Li Y. Collagen-hydroxyapatite based scaffolds for bone trauma and regeneration: recent trends and future perspectives. Nanomedicine (Lond) 2024; 19:1689-1709. [PMID: 39163266 PMCID: PMC11389751 DOI: 10.1080/17435889.2024.2375958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/28/2024] [Indexed: 08/22/2024] Open
Abstract
Regenerative therapy, a key area of tissue engineering, holds promise for restoring damaged organs, especially in bone regeneration. Bone healing is natural to the body but becomes complex under stress and disease. Large bone deformities pose significant challenges in tissue engineering. Among various methods, scaffolds are attractive as they provide structural support and essential nutrients for cell adhesion and growth. Collagen and hydroxyapatite (HA) are widely used due to their biocompatibility and biodegradability. Collagen and nano-scale HA enhance cell adhesion and development. Thus, nano HA/collagen scaffolds offer potential solutions for bone regeneration. This review focuses on the use and production of nano-sized HA/collagen composites in bone regeneration.
Collapse
Affiliation(s)
- Dong Han
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Weijiao Wang
- Department of Otolaryngology, Yantaishan Hospital, Yantai, 264000, China
| | - Jinpeng Gong
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yupeng Ma
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| | - Yu Li
- Department of Trauma Orthopedics, Yantaishan Hospital, Yantai, 264000, China
| |
Collapse
|
4
|
McCormick K, Moreno Herrero J, Haas H, Fattah S, Heise A, O’Brien FJ, Cryan SA. Optimizing the Delivery of mRNA to Mesenchymal Stem Cells for Tissue Engineering Applications. Mol Pharm 2024; 21:1662-1676. [PMID: 38504417 PMCID: PMC10988554 DOI: 10.1021/acs.molpharmaceut.3c00898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Messenger RNA (mRNA) represents a promising therapeutic tool in the field of tissue engineering for the fast and transient production of growth factors to support new tissue regeneration. However, one of the main challenges to optimizing its use is achieving efficient uptake and delivery to mesenchymal stem cells (MSCs), which have been long reported as difficult-to-transfect. The aim of this study was to systematically screen a range of nonviral vectors to identify optimal transfection conditions for mRNA delivery to MSCs. Furthermore, for the first time, we wanted to directly compare the protein expression profile from three different types of mRNA, namely, unmodified mRNA (uRNA), base-modified mRNA (modRNA), and self-amplifying mRNA (saRNA) in MSCs. A range of polymer- and lipid-based vectors were used to encapsulate mRNA and directly compared in terms of physicochemical properties as well as transfection efficiency and cytotoxicity in MSCs. We found that both lipid- and polymer-based materials were able to successfully condense and encapsulate mRNA into nanosized particles (<200 nm). The overall charge and encapsulation efficiency of the nanoparticles was dependent on the vector type as well as the vector:mRNA ratio. When screened in vitro, lipid-based vectors proved to be superior in terms of mRNA delivery to MSCs cultured in a 2D monolayer and from a 3D collagen-based scaffold with minimal effects on cell viability, thus opening the potential for scaffold-based mRNA delivery. Modified mRNA consistently showed the highest levels of protein expression in MSCs, demonstrating 1.2-fold and 5.6-fold increases versus uRNA and saRNA, respectively. In summary, we have fully optimized the nonviral delivery of mRNA to MSCs, determined the importance of careful selection of the mRNA type used, and highlighted the strong potential of mRNA for tissue engineering applications.
Collapse
Affiliation(s)
- Katie McCormick
- Tissue
Engineering Research Group, Department of Anatomy and Regenerative
Medicine, RCSI, Dublin D02 YN77, Ireland
- Science
Foundation Ireland Advance Materials and Bioengineering Research Centre, Dublin D02 W9K7, Ireland
| | | | | | - Sarinj Fattah
- Tissue
Engineering Research Group, Department of Anatomy and Regenerative
Medicine, RCSI, Dublin D02 YN77, Ireland
- School
of Pharmacy and Biomolecular Sciences, RCSI, Dublin D02 YN77, Ireland
| | - Andreas Heise
- Science
Foundation Ireland Advance Materials and Bioengineering Research Centre, Dublin D02 W9K7, Ireland
- Dept.
of Chemistry, RCSI, Dublin D02 YN77, Ireland
- Science
Foundation Ireland Centre for Research in Medical Devices, Galway H91 W2TY, Ireland
| | - Fergal J. O’Brien
- Tissue
Engineering Research Group, Department of Anatomy and Regenerative
Medicine, RCSI, Dublin D02 YN77, Ireland
- Science
Foundation Ireland Advance Materials and Bioengineering Research Centre, Dublin D02 W9K7, Ireland
- Science
Foundation Ireland Centre for Research in Medical Devices, Galway H91 W2TY, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D02 R590, Ireland
| | - Sally-Ann Cryan
- Tissue
Engineering Research Group, Department of Anatomy and Regenerative
Medicine, RCSI, Dublin D02 YN77, Ireland
- Science
Foundation Ireland Advance Materials and Bioengineering Research Centre, Dublin D02 W9K7, Ireland
- Science
Foundation Ireland Centre for Research in Medical Devices, Galway H91 W2TY, Ireland
- Trinity
Centre for Biomedical Engineering, Trinity
College Dublin, Dublin D02 R590, Ireland
| |
Collapse
|
5
|
Sun L, Liu M, Li Y, Zhang S, Zhu T, Du J, Khan AUR. Biomimetic short fiber reinforced 3-dimensional scaffold for bone tissue regeneration. Biomed Mater 2024; 19:025030. [PMID: 38290159 DOI: 10.1088/1748-605x/ad2405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/30/2024] [Indexed: 02/01/2024]
Abstract
Bone defects caused by diseases and trauma are considered serious clinical challenges. Autologous and allogeneic transplantations are the most widely used methods to mitigate bone defects. However, transplantation poses risks such as secondary trauma, immune rejection, and disease transmission to patients. Preparing a biologically active bone tissue engineering scaffold as a bone substitute can overcome this problem. In the current study, a PLGA/gelatin (Gel) short fiber-reinforced composite three-dimensional (3D) scaffold was fabricated by electrospinning for bone tissue defect repair. A hybrid scaffold adding inorganic materials hydrotalcite (CaAl-LDH) and osteogenic factors deferoxamine (DFO) based on PLGA and Gel composite filaments was prepared. The structure, swelling, drug release, and compressive resilience performance of the 3D scaffolds in a wet state were characterized and the osteogenic effect of the crosslinked scaffold (C-DLPG) was also investigated. The scaffold has shown the optimum physicochemical attributes which still has 380 kPa stress after a 60% compression cycle and sustainedly released the drug for about twenty days. Moreover, a promisingIn vivoosteogenic performance was noted with better tissue organization. At 8 weeks after implantation, the C-DLPG scaffold could fill the bone defect site, and the new bone area reached 19 mm2. The 3D microfiber scaffold, in this study, is expected to be a promising candidate for the treatment of bone defects in the future.
Collapse
Affiliation(s)
- Liangqiang Sun
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Mingming Liu
- Hepatobiliary Pancreatic Surgery, Weifang Traditional Chinese Medicine Hospital, Weifang Medical University, Shandong 261053, People's Republic of China
| | - Yaqiang Li
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200430, People's Republic of China
| | - Shuhua Zhang
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Tonghe Zhu
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Juan Du
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| | - Atta Ur Rehman Khan
- Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, People's Republic of China
| |
Collapse
|
6
|
Sadowska JM, Power RN, Genoud KJ, Matheson A, González-Vázquez A, Costard L, Eichholz K, Pitacco P, Hallegouet T, Chen G, Curtin CM, Murphy CM, Cavanagh B, Zhang H, Kelly DJ, Boccaccini AR, O'Brien FJ. A Multifunctional Scaffold for Bone Infection Treatment by Delivery of microRNA Therapeutics Combined With Antimicrobial Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307639. [PMID: 38009631 DOI: 10.1002/adma.202307639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Indexed: 11/29/2023]
Abstract
Treating bone infections and ensuring bone repair is one of the greatest global challenges of modern orthopedics, made complex by antimicrobial resistance (AMR) risks due to long-term antibiotic treatment and debilitating large bone defects following infected tissue removal. An ideal multi-faceted solution would will eradicate bacterial infection without long-term antibiotic use, simultaneously stimulating osteogenesis and angiogenesis. Here, a multifunctional collagen-based scaffold that addresses these needs by leveraging the potential of antibiotic-free antimicrobial nanoparticles (copper-doped bioactive glass, CuBG) to combat infection without contributing to AMR in conjunction with microRNA-based gene therapy (utilizing an inhibitor of microRNA-138) to stimulate both osteogenesis and angiogenesis, is developed. CuBG scaffolds reduce the attachment of gram-positive bacteria by over 80%, showcasing antimicrobial functionality. The antagomiR-138 nanoparticles induce osteogenesis of human mesenchymal stem cells in vitro and heal a large load-bearing defect in a rat femur when delivered on the scaffold. Combining both promising technologies results in a multifunctional antagomiR-138-activated CuBG scaffold inducing hMSC-mediated osteogenesis and stimulating vasculogenesis in an in vivo chick chorioallantoic membrane model. Overall, this multifunctional scaffold catalyzes killing mechanisms in bacteria while inducing bone repair through osteogenic and angiogenic coupling, making this platform a promising multi-functional strategy for treating and repairing complex bone infections.
Collapse
Affiliation(s)
- Joanna M Sadowska
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Rachael N Power
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Katelyn J Genoud
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Austyn Matheson
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
| | - Arlyng González-Vázquez
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Lara Costard
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Kian Eichholz
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Pierluca Pitacco
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Tanguy Hallegouet
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- University of Strasbourg, Strasbourg, 67412, France
| | - Gang Chen
- Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Huijun Zhang
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Daniel J Kelly
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91056, Erlangen, Germany
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences and Trinity College Dublin (TCD), Dublin, D02 W085, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, D02 R590, Ireland
| |
Collapse
|
7
|
Castaño IM, Raftery RM, Chen G, Cavanagh B, Quinn B, Duffy GP, Curtin CM, O'Brien FJ. Dual scaffold delivery of miR-210 mimic and miR-16 inhibitor enhances angiogenesis and osteogenesis to accelerate bone healing. Acta Biomater 2023; 172:480-493. [PMID: 37797708 DOI: 10.1016/j.actbio.2023.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/30/2023] [Accepted: 09/28/2023] [Indexed: 10/07/2023]
Abstract
Angiogenesis is critical for successful bone repair, and interestingly, miR-210 and miR-16 possess counter-active targets involved in both angiogenesis and osteogenesis: miR-210 acts as an activator by silencing EFNA3 & AcvR1b, while miR-16 inhibits both pathways by silencing VEGF & Smad5. It was thus hypothesized that dual delivery of both a miR-210 mimic and a miR-16 inhibitor from a collagen-nanohydroxyapatite scaffold system may hold significant potential for bone repair. Therefore, this systems potential to rapidly accelerate bone repair by directing enhanced angiogenic-osteogenic coupling in host cells in a rat calvarial defect model at a very early 4 week timepoint was assessed. In vitro, the treatment significantly enhanced angiogenic-osteogenic coupling of human mesenchymal stem cells, with enhanced calcium deposition after just 10 days in 2D and 14 days on scaffolds. In vivo, these dual-miRNA loaded scaffolds showed more than double bone volume and vessel recruitment increased 2.3 fold over the miRNA-free scaffolds. Overall, this study demonstrates the successful development of a dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair for the first time, and the possibility of extending this 'off-the-shelf' platform system to applications beyond bone offers immense potential to impact a myriad of other tissue engineering areas. STATEMENT OF SIGNIFICANCE: miRNAs have potential as a new class of bone healing therapeutics as they can enhance the regenerative capacity of bone-forming cells. However, angiogenic-osteogenic coupling is critical for successful bone repair. Therefore, this study harnesses the delivery of miR-210, known to be an activator of both angiogenesis and osteogenesis, and miR-16 inhibitor, as miR-16 is known to inhibit both pathways, from a collagen-nanohydroxyapatite scaffold system to rapidly enhance osteogenesis in vitro and bone repair in vivo in a rat calvarial defect model. Overall, it describes the successful development of the first dual-miRNA mimic/inhibitor scaffold for enhanced in vivo bone repair. This 'off-the-shelf' platform system offers immense potential to extend beyond bone applications and impact a myriad of other tissue engineering areas.
Collapse
Affiliation(s)
- Irene Mencía Castaño
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; School of Pharmacy, RCSI, Dublin, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility, RCSI, Dublin 2, Ireland
| | | | - Brian Quinn
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland; Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, University of Galway, University Road, Galway, Ireland
| | - Caroline M Curtin
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland.
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123 St. Stephens Green, Dublin 2, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), College Green, Dublin 2, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin 2, Ireland.
| |
Collapse
|
8
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
9
|
Pitacco P, Sadowska JM, O'Brien FJ, Kelly DJ. 3D bioprinting of cartilaginous templates for large bone defect healing. Acta Biomater 2023; 156:61-74. [PMID: 35907556 DOI: 10.1016/j.actbio.2022.07.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 01/18/2023]
Abstract
Damaged or diseased bone can be treated using autografts or a range of different bone grafting biomaterials, however limitations with such approaches has motivated increased interest in developmentally inspired bone tissue engineering (BTE) strategies that seek to recapitulate the process of endochondral ossification (EO) as a means of regenerating critically sized defects. The clinical translation of such strategies will require the engineering of scaled-up, geometrically defined hypertrophic cartilage grafts that can be rapidly vascularised and remodelled into bone in mechanically challenging defect environments. The goal of this study was to 3D bioprint mechanically reinforced cartilaginous templates and to assess their capacity to regenerate critically sized femoral bone defects. Human mesenchymal stem/stromal cells (hMSCs) were incorporated into fibrin based bioinks and bioprinted into polycaprolactone (PCL) frameworks to produce mechanically reinforced constructs. Chondrogenic priming of such hMSC laden constructs was required to support robust vascularisation and graft mineralisation in vivo following their subcutaneous implantation into nude mice. With a view towards maximising their potential to support endochondral bone regeneration, we next explored different in vitro culture regimes to produce chondrogenic and early hypertrophic engineered grafts. Following their implantation into femoral bone defects within transiently immunosuppressed rats, such bioprinted constructs were rapidly remodelled into bone in vivo, with early hypertrophic constructs supporting higher levels of vascularisation and bone formation compared to the chondrogenic constructs. Such early hypertrophic bioprinted constructs also supported higher levels of vascularisation and spatially distinct patterns of new formation compared to BMP-2 loaded collagen scaffolds (here used as a positive control). In conclusion, this study demonstrates that fibrin based bioinks support chondrogenesis of hMSCs in vitro, which enables the bioprinting of mechanically reinforced hypertrophic cartilaginous templates capable of supporting large bone defect regeneration. These results support the use of 3D bioprinting as a strategy to scale-up the engineering of developmentally inspired templates for BTE. STATEMENT OF SIGNIFICANCE: Despite the promise of developmentally inspired tissue engineering strategies for bone regeneration, there are still challenges that need to be addressed to enable clinical translation. This work reports the development and assessment (in vitro and in vivo) of a 3D bioprinting strategy to engineer mechanically-reinforced cartilaginous templates for large bone defect regeneration using human MSCs. Using distinct in vitro priming protocols, it was possible to generate cartilage grafts with altered phenotypes. More hypertrophic grafts, engineered in vitro using TGF-β3 and BMP-2, supported higher levels of blood vessel infiltration and accelerated bone regeneration in vivo. This study also identifies some of the advantages and disadvantages of such endochondral bone TE strategies over the direct delivery of BMP-2 from collagen-based scaffolds.
Collapse
Affiliation(s)
- Pierluca Pitacco
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland.
| | - Joanna M Sadowska
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| | - Fergal J O'Brien
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| | - Daniel J Kelly
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland; Tissue Engineering Research Group, Dept. of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland, Ireland.
| |
Collapse
|
10
|
Liu XY, Chang ZH, Chen C, Liang J, Shi JX, Fan X, Shao Q, Meng WW, Wang JJ, Li XH. 3D printing of injury-preconditioned secretome/collagen/heparan sulfate scaffolds for neurological recovery after traumatic brain injury in rats. Stem Cell Res Ther 2022; 13:525. [PMID: 36536463 PMCID: PMC9764714 DOI: 10.1186/s13287-022-03208-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The effects of traumatic brain injury (TBI) can include physical disability and even death. The development of effective therapies to promote neurological recovery is still a challenging problem. 3D-printed biomaterials are considered to have a promising future in TBI repair. The injury-preconditioned secretome derived from human umbilical cord blood mesenchymal stem cells showed better stability in neurological recovery after TBI. Therefore, it is reasonable to assume that a biological scaffold loaded with an injury-preconditioned secretome could facilitate neural network reconstruction after TBI. METHODS In this study, we fabricated injury-preconditioned secretome/collagen/heparan sulfate scaffolds by 3D printing. The scaffold structure and porosity were examined by scanning electron microscopy and HE staining. The cytocompatibility of the scaffolds was characterized by MTT analysis, HE staining and electron microscopy. The modified Neurological Severity Score (mNSS), Morris water maze (MWM), and motor evoked potential (MEP) were used to examine the recovery of cognitive and locomotor function after TBI in rats. HE staining, silver staining, Nissl staining, immunofluorescence, and transmission electron microscopy were used to detect the reconstruction of neural structures and pathophysiological processes. The biocompatibility of the scaffolds in vivo was characterized by tolerance exposure and liver/kidney function assays. RESULTS The excellent mechanical and porosity characteristics of the composite scaffold allowed it to efficiently regulate the secretome release rate. MTT and cell adhesion assays demonstrated that the scaffold loaded with the injury-preconditioned secretome (3D-CH-IB-ST) had better cytocompatibility than that loaded with the normal secretome (3D-CH-ST). In the rat TBI model, cognitive and locomotor function including mNSS, MWM, and MEP clearly improved when the scaffold was transplanted into the damage site. There is a significant improvement in nerve tissue at the site of lesion. More abundant endogenous neurons with nerve fibers, synaptic structures, and myelin sheaths were observed in the 3D-CH-IB-ST group. Furthermore, the apoptotic response and neuroinflammation were significantly reduced and functional vessels were observed at the injury site. Good exposure tolerance in vivo demonstrated favorable biocompatibility of the scaffold. CONCLUSIONS Our results demonstrated that injury-preconditioned secretome/collagen/heparan sulfate scaffolds fabricated by 3D printing promoted neurological recovery after TBI by reconstructing neural networks, suggesting that the implantation of the scaffolds could be a novel way to alleviate brain damage following TBI.
Collapse
Affiliation(s)
- Xiao-Yin Liu
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China ,grid.13291.380000 0001 0807 1581Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041 Sichuan China
| | - Zhe-Han Chang
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Chong Chen
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China ,Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162 China
| | - Jun Liang
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jian-Xin Shi
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Xiu Fan
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Qi Shao
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Wei-Wei Meng
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| | - Jing-Jing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People’s Armed Police Forces, Tianjin, 300162 China
| | - Xiao-Hong Li
- grid.33763.320000 0004 1761 2484Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
11
|
A two-phase and long-lasting multi-antibacterial coating enables titanium biomaterials to prevent implants-related infections. Mater Today Bio 2022; 15:100330. [PMID: 35789634 PMCID: PMC9250043 DOI: 10.1016/j.mtbio.2022.100330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/08/2023] Open
Abstract
In clinical work, the main challenges for titanium (Ti) implantation are bacterial infection and aseptic loosening, which severely affect the survival rate of implants. The first 4 weeks post-operation is the infection peak phase of implants. Inhibiting implant infection caused by bacteria adhesion and proliferation during the early phase as well as promoting subsequent osteointegration is essential for implant success. Herein, we constructed a quaternary ammonium carboxymethyl chitosan (QCMC), collagen (COL Ⅰ) and hydroxyapatite (HAP) multilayers coating on Ti substrates via a modified layer-by-layer (LBL) technique and polymerization of dopamine. The QCMC/COL/HAP coating exhibited a multi-antibacterial property with a two-phase function: (1) At the first 4 weeks post-operation, the covalently bonded QCMC could be slowly degraded and demonstrated both contact-killing and release-killing properties during the infection peak phase; (2) At the second phase, osteogenesis and osseointegration-promotion capabilities were enhanced by HAP under the effective control of infection. The multifilm coating was degraded for more than 45 days under the action of collagenase Ⅰ, and displayed good biocompatibility in vivo and in vitro. Most importantly, the coating exhibited a long-lasting antibacterial activity for more than 3 months, against the main pathogenic bacteria of peri-implant infections. Both in vitro studies and in vivo animal models revealed a desirable osteogenic differentiation capacity of Ti-CCH. Therefore, our study reports a two-phase, long-lasting multi-antibacterial coating on Ti-CCH and indicates potential applications of the modified LBL strategy in orthopaedic fields, which is enlightening for developing practical implant and scaffold materials. Developing a QCMC/COL/HAP multifilm coating via modified layer-by-layer technique and self-polymerization of dopamine. The QCMC/COL/HAP coating exhibited desirable mechanical properties and excellent biocompatibility. The release kinetics endowed the QCMC/COL/HAP coating with multi-antibacterial activity at the first phase after operation. The QCMC/COL/HAP coating could improve osseointegration at the second phase of post-operation.
Collapse
|
12
|
Sahebalzamani M, Ziminska M, McCarthy HO, Levingstone TJ, Dunne NJ, Hamilton AR. Advancing bone tissue engineering one layer at a time: a layer-by-layer assembly approach to 3D bone scaffold materials. Biomater Sci 2022; 10:2734-2758. [PMID: 35438692 DOI: 10.1039/d1bm01756j] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The layer-by-layer (LbL) assembly technique has shown excellent potential in tissue engineering applications. The technique is mainly based on electrostatic attraction and involves the sequential adsorption of oppositely charged electrolyte complexes onto a substrate, resulting in uniform single layers that can be rapidly deposited to form nanolayer films. LbL has attracted significant attention as a coating technique due to it being a convenient and affordable fabrication method capable of achieving a wide range of biomaterial coatings while keeping the main biofunctionality of the substrate materials. One promising application is the use of nanolayer films fabricated by LbL assembly in the development of 3-dimensional (3D) bone scaffolds for bone repair and regeneration. Due to their versatility, nanoscale films offer an exciting opportunity for tailoring surface and bulk property modification of implants for osseous defect therapies. This review article discusses the state of the art of the LbL assembly technique, and the properties and functions of LbL-assembled films for engineered bone scaffold application, combination of multilayers for multifunctional coatings and recent advancements in the application of LbL assembly in bone tissue engineering. The recent decade has seen tremendous advances in the promising developments of LbL film systems and their impact on cell interaction and tissue repair. A deep understanding of the cell behaviour and biomaterial interaction for the further development of new generations of LbL films for tissue engineering are the most important targets for biomaterial research in the field. While there is still much to learn about the biological and physicochemical interactions at the interface of nano-surface coated scaffolds and biological systems, we provide a conceptual review to further progress in the LbL approach to 3D bone scaffold materials and inform the future of LbL development in bone tissue engineering.
Collapse
Affiliation(s)
- MohammadAli Sahebalzamani
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland.
| | - Monika Ziminska
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK.
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Tanya J Levingstone
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland. .,Centre for Medical Engineering Research, Dublin City University, Dublin 9, Ireland. .,School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, UK. .,Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin, Dublin 2, Ireland.,Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland.,Biodesign Europe, Dublin City University, Dublin 9, Ireland
| | - Andrew R Hamilton
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
13
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
14
|
Power RN, Cavanagh BL, Dixon JE, Curtin CM, O’Brien FJ. Development of a Gene-Activated Scaffold Incorporating Multifunctional Cell-Penetrating Peptides for pSDF-1α Delivery for Enhanced Angiogenesis in Tissue Engineering Applications. Int J Mol Sci 2022; 23:1460. [PMID: 35163379 PMCID: PMC8835777 DOI: 10.3390/ijms23031460] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/18/2022] Open
Abstract
Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen-nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen-nanohydroxyapatite (coll-nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll-nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair.
Collapse
Affiliation(s)
- Rachael N. Power
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | | | - James E. Dixon
- School of Pharmacy, University of Nottingham Biodiscovery Institute, University of Nottingham, Nottingham NG7 2RD, UK;
| | - Caroline M. Curtin
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Royal College of Surgeons in Ireland (RCSI), D02 YN77 Dublin, Ireland; (R.N.P.); (C.M.C.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI, D02 YN77 Dublin, Ireland
| |
Collapse
|
15
|
Brady RT, O’Brien FJ, Hoey DA. The Impact of the Extracellular Matrix Environment on Sost Expression by the MLO-Y4 Osteocyte Cell Line. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9010035. [PMID: 35049744 PMCID: PMC8772728 DOI: 10.3390/bioengineering9010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/27/2022]
Abstract
Bone is a dynamic organ that can adapt its structure to meet the demands of its biochemical and biophysical environment. Osteocytes form a sensory network throughout the tissue and orchestrate tissue adaptation via the release of soluble factors such as a sclerostin. Osteocyte physiology has traditionally been challenging to investigate due to the uniquely mineralized extracellular matrix (ECM) of bone leading to the development of osteocyte cell lines. Importantly, the most widely researched and utilized osteocyte cell line: the MLO-Y4, is limited by its inability to express sclerostin (Sost gene) in typical in-vitro culture. We theorised that culture in an environment closer to the in vivo osteocyte environment could impact on Sost expression. Therefore, this study investigated the role of composition and dimensionality in directing Sost expression in MLO-Y4 cells using collagen-based ECM analogues. A significant outcome of this study is that MLO-Y4 cells, when cultured on a hydroxyapatite (HA)-containing two-dimensional (2D) film analogue, expressed Sost. Moreover, three-dimensional (3D) culture within HA-containing collagen scaffolds significantly enhanced Sost expression, demonstrating the impact of ECM composition and dimensionality on MLO-Y4 behaviour. Importantly, in this bone mimetic ECM environment, Sost expression was found to be comparable to physiological levels. Lastly, MLO-Y4 cells cultured in these novel conditions responded accordingly to fluid flow stimulation with a decrease in expression. This study therefore presents a novel culture system for the MLO-Y4 osteocyte cell line, ensuring the expression of an important osteocyte specific gene, Sost, overcoming a major limitation of this model.
Collapse
Affiliation(s)
- Robert T. Brady
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (R.T.B.); (F.J.O.)
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland; (R.T.B.); (F.J.O.)
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
| | - David A. Hoey
- Trinity Centre for Biomedical Engineering, School of Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Advanced Materials and BioEngineering Research Centre (AMBER), Trinity College Dublin & Royal College of Surgeons in Ireland, D02 PN40 Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, Trinity College Dublin, D02 PN40 Dublin, Ireland
- Correspondence:
| |
Collapse
|
16
|
Costard LS, Hosn RR, Ramanayake H, O'Brien FJ, Curtin CM. Influences of the 3D microenvironment on cancer cell behaviour and treatment responsiveness: A recent update on lung, breast and prostate cancer models. Acta Biomater 2021; 132:360-378. [PMID: 33484910 DOI: 10.1016/j.actbio.2021.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/21/2022]
Abstract
The majority of in vitro studies assessing cancer treatments are performed in two-dimensional (2D) monolayers and are subsequently validated in in vivo animal models. However, 2D models fail to accurately model the tumour microenvironment. Furthermore, animal models are not directly applicable to mimic the human scenario. Three-dimensional (3D) culture models may help to address the discrepancies of 2D and animal models. When cancer cells escape the primary tumour, they can invade at distant organs building secondary tumours, called metastasis. The development of metastasis leads to a dramatic decrease in the life expectancy of patients. Therefore, 3D systems to model the microenvironment of metastasis have also been developed. Several studies have demonstrated changes in cell behaviour and gene expression when cells are cultured in 3D compared to 2D and concluded a better comparability to cells in vivo. Of special importance is the effect seen in response to anti-cancer treatments as models are built primarily to serve as drug-testing platforms. This review highlights these changes between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate tumours. In addition to models aiming to mimic the primary tumour site, the effects of 3D cell culturing in bone metastasis models are also described. STATEMENT OF SIGNIFICANCE: Most in vitro studies in cancer research are performed in 2D and are subsequently validated in in vivo animal models. However, both models possess numerous limitations: 2D models fail to accurately model the tumour microenvironment while animal models are expensive, time-consuming and can differ considerably from humans. It is accepted that the cancer microenvironment plays a critical role in the disease, thus, 3D models have been proposed as a potential solution to address the discrepancies of 2D and animal models. This review highlights changes in cell behaviour, including proliferation, gene expression and chemosensitivity, between cancer cells grown in 2D and 3D models for some of the most common cancers including lung, breast and prostate cancer as well as bone metastasis.
Collapse
|
17
|
Boller LA, Shiels SM, Florian DC, Peck SH, Schoenecker JG, Duvall C, Wenke JC, Guelcher SA. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats. Acta Biomater 2021; 130:485-496. [PMID: 34129957 DOI: 10.1016/j.actbio.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Most fractures heal by a combination of endochondral and intramembranous ossification dependent upon strain and vascularity at the fracture site. Many biomaterials-based bone regeneration strategies rely on the use of calcium phosphates such as nano-crystalline hydroxyapatite (nHA) to create bone-like scaffolds. In this study, nHA was dispersed in reactive polymers to form composite scaffolds that were evaluated both in vitro and in vivo. Matrix assays, immunofluorescent staining, and Western blots demonstrated that nHA influenced mineralization and subsequent osteogenesis in a dose-dependent manner in vitro. Furthermore, nHA dispersed in polymeric composites promoted osteogenesis by a similar mechanism as particulated nHA. Scaffolds were implanted into a 2-mm defect in the femoral diaphysis or metaphysis of Sprague-Dawley rats to evaluate new bone formation at 4 and 8 weeks. Two formulations were tested: a poly(thioketal urethane) scaffold without nHA (PTKUR) and a PTKUR scaffold augmented with 22 wt% nHA (22nHA). The scaffolds supported new bone formation in both anatomic sites. In the metaphysis, augmentation of scaffolds with nHA promoted an intramembranous healing response. Within the diaphysis, nHA inhibited endochondral ossification. Immunohistochemistry was performed on cryo-sections of the bone/scaffold interface in which CD146, CD31, Endomucin, CD68, and Myeloperoxidase were evaluated. No significant differences in the infiltrating cell populations were observed. These findings suggest that nHA dispersed in polymeric composites induces osteogenic differentiation of adherent endogenous cells, which has skeletal site-specific effects on fracture healing. STATEMENT OF SIGNIFICANCE: Understanding the mechanism by which synthetic scaffolds promote new bone formation in preclinical models is crucial for bone regeneration applications in the clinic where complex fracture cases are seen. In this study, we found that dispersion of nHA in polymeric scaffolds promoted in vitro osteogenesis in a dose-dependent manner through activation of the PiT1 receptor and subsequent downstream Erk1/2 signaling. While augmentation of polymeric scaffolds with nHA enhanced intramembranous ossification in metaphyseal defects, it inhibited endochondral ossification in diaphyseal defects. Thus, our findings provide new insights into designing synthetic bone grafts that complement the skeletal site-specific fracture healing response.
Collapse
|
18
|
Li Z, Du T, Ruan C, Niu X. Bioinspired mineralized collagen scaffolds for bone tissue engineering. Bioact Mater 2021; 6:1491-1511. [PMID: 33294729 PMCID: PMC7680706 DOI: 10.1016/j.bioactmat.2020.11.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Successful regeneration of large segmental bone defects remains a major challenge in clinical orthopedics, thus it is of important significance to fabricate a suitable alternative material to stimulate bone regeneration. Due to their excellent biocompatibility, sufficient mechanical strength, and similar structure and composition of natural bone, the mineralized collagen scaffolds (MCSs) have been increasingly used as bone substitutes via tissue engineering approaches. Herein, we thoroughly summarize the state of the art of MCSs as tissue-engineered scaffolds for acceleration of bone repair, including their fabrication methods, critical factors for osteogenesis regulation, current opportunities and challenges in the future. First, the current fabrication methods for MCSs, mainly including direct mineral composite, in-situ mineralization and 3D printing techniques, have been proposed to improve their biomimetic physical structures in this review. Meanwhile, three aspects of physical (mechanics and morphology), biological (cells and growth factors) and chemical (composition and cross-linking) cues are described as the critical factors for regulating the osteogenic feature of MCSs. Finally, the opportunities and challenges associated with MCSs as bone tissue-engineered scaffolds are also discussed to point out the future directions for building the next generation of MCSs that should be endowed with satisfactorily mimetic structures and appropriately biological characters for bone regeneration.
Collapse
Affiliation(s)
- Zhengwei Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tianming Du
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Xufeng Niu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100083, PR China
- Research Institute of Beihang University in Shenzhen, Shenzhen, 518057, PR China
| |
Collapse
|
19
|
Song T, Zhao F, Wang Y, Li D, Lei N, Li X, Xiao Y, Zhang X. Constructing a biomimetic nanocomposite with the in situ deposition of spherical hydroxyapatite nanoparticles to induce bone regeneration. J Mater Chem B 2021; 9:2469-2482. [PMID: 33646220 DOI: 10.1039/d0tb02648d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inspired by the nanostructure of bone, biomimetic nanocomposites comprising natural polymers and inorganic nanoparticles have gained much attention for bone regenerative applications. However, the mechanical and biological performances of nanocomposites are largely limited by the inhomogeneous distribution, uncontrolled size and irregular morphology of inorganic nanoparticles at present. In this work, an innovative in situ precipitation method has been developed to construct a biomimetic nanocomposite which consists of spherical hydroxyapatite (HA) nanoparticles and gelatin (Gel). The homogeneous dispersion of HA nanoparticles in nHA-Gel endowed it with a low swelling ratio, enhanced mechanical properties and slow degradation. Moreover, strontium (Sr) was incorporated into HA nanoparticles to further enhance the bioactivity of nanocomposites. In vitro experiments suggested that nHA-Gel and Sr-nHA-Gel facilitated cell spreading and promoted osteogenic differentiation of bone-marrow-derived mesenchymal stem cells (BMSCs) as compared to pure Gel and mHA-Gel conventional composites developed by mechanical mixing. In vivo rat critical-sized calvarial defect repair further confirmed that nHA-Gel and Sr-nHA-Gel possessed relatively effective bone regenerative abilities among the four groups. Collectively, the biomimetic nanocomposites of nHA-Gel and Sr-nHA-Gel have good efficacy in inducing bone regeneration and would be a promising alternative to bone grafts for clinical applications.
Collapse
Affiliation(s)
- Tao Song
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Fengxin Zhao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dongxiao Li
- Sichuan Academy of Chinese Medicine Science, Chengdu, 610064, Sichuan, China
| | - Ning Lei
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610064, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
20
|
Costard LS, Kelly DC, Power RN, Hobbs C, Jaskaniec S, Nicolosi V, Cavanagh BL, Curtin CM, O’Brien FJ. Layered Double Hydroxide as a Potent Non-viral Vector for Nucleic Acid Delivery Using Gene-Activated Scaffolds for Tissue Regeneration Applications. Pharmaceutics 2020; 12:pharmaceutics12121219. [PMID: 33339452 PMCID: PMC7765978 DOI: 10.3390/pharmaceutics12121219] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
Nonviral vectors offer a safe alternative to viral vectors for gene therapy applications, albeit typically exhibiting lower transfection efficiencies. As a result, there remains a significant need for the development of a nonviral delivery system with low cytotoxicity and high transfection efficacy as a tool for safe and transient gene delivery. This study assesses MgAl-NO3 layered double hydroxide (LDH) as a nonviral vector to deliver nucleic acids (pDNA, miRNA and siRNA) to mesenchymal stromal cells (MSCs) in 2D culture and using a 3D tissue engineering scaffold approach. Nanoparticles were formulated by complexing LDH with pDNA, microRNA (miRNA) mimics and inhibitors, and siRNA at varying mass ratios of LDH:nucleic acid. In 2D monolayer, pDNA delivery demonstrated significant cytotoxicity issues, and low cellular transfection was deemed to be a result of the poor physicochemical properties of the LDH–pDNA nanoparticles. However, the lower mass ratios required to successfully complex with miRNA and siRNA cargo allowed for efficient delivery to MSCs. Furthermore, incorporation of LDH–miRNA nanoparticles into collagen-nanohydroxyapatite scaffolds resulted in successful overexpression of miRNA in MSCs, demonstrating the development of an efficacious miRNA delivery platform for gene therapy applications in regenerative medicine.
Collapse
Affiliation(s)
- Lara S. Costard
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (L.S.C.); (D.C.K.); (R.N.P.)
| | - Domhnall C. Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (L.S.C.); (D.C.K.); (R.N.P.)
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland, Galway (NUI, Galway), H91 TK33 Galway, Ireland
| | - Rachael N. Power
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (L.S.C.); (D.C.K.); (R.N.P.)
| | - Christopher Hobbs
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin (TCD), College Green, D02 PN40 Dublin, Ireland; (C.H.); (S.J.); (V.N.)
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, D02 PN40 Dublin, Ireland
| | - Sonia Jaskaniec
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin (TCD), College Green, D02 PN40 Dublin, Ireland; (C.H.); (S.J.); (V.N.)
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, D02 PN40 Dublin, Ireland
| | - Valeria Nicolosi
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin (TCD), College Green, D02 PN40 Dublin, Ireland; (C.H.); (S.J.); (V.N.)
- School of Chemistry and Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, College Green, D02 PN40 Dublin, Ireland
| | - Brenton L. Cavanagh
- Cellular and Molecular Imaging Core, RCSI, 123 St Stephen’s Green, D02 YN77 Dublin, Ireland;
| | - Caroline M. Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (L.S.C.); (D.C.K.); (R.N.P.)
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin (TCD), College Green, D02 PN40 Dublin, Ireland; (C.H.); (S.J.); (V.N.)
- Trinity Centre for BioMedical Engineering, Trinity Biomedical Sciences Institute, TCD, College Green, D02 PN40 Dublin, Ireland
- Correspondence: (C.M.C.); (F.J.O.); Tel.: +353-1-4028620 (C.M.C.); +353-1-4028533 (F.J.O.)
| | - Fergal J. O’Brien
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen’s Green, D02 YN77 Dublin, Ireland; (L.S.C.); (D.C.K.); (R.N.P.)
- Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland, Galway (NUI, Galway), H91 TK33 Galway, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and Trinity College Dublin (TCD), College Green, D02 PN40 Dublin, Ireland; (C.H.); (S.J.); (V.N.)
- Trinity Centre for BioMedical Engineering, Trinity Biomedical Sciences Institute, TCD, College Green, D02 PN40 Dublin, Ireland
- Correspondence: (C.M.C.); (F.J.O.); Tel.: +353-1-4028620 (C.M.C.); +353-1-4028533 (F.J.O.)
| |
Collapse
|
21
|
González-Vázquez A, Raftery RM, Günbay S, Chen G, Murray DJ, O'Brien FJ. Accelerating bone healing in vivo by harnessing the age-altered activation of c-Jun N-terminal kinase 3. Biomaterials 2020; 268:120540. [PMID: 33307368 DOI: 10.1016/j.biomaterials.2020.120540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023]
Abstract
We have recently demonstrated that c-Jun N-terminal kinase 3 (JNK3) is a key modulator of the enhanced osteogenic potential of stem cells derived from children when compared to those derived from adults. In this study, we formulated a JNK3-activator nanoparticle (JNK3*) that recapitulates the immense osteogenic potential of juvenile cells in adult stem cells by facilitating JNK3 activation. Moreover, we aimed to functionalize a collagen-based scaffold by incorporating the JNK3* in order to develop an advanced platform capable of accelerating bone healing by recruitment of host stem cells. Our data, in vitro and in vivo, demonstrated that the immense osteogenic potential of juvenile cells could be recapitulated in adult stem cells by facilitating JNK3 activation. Moreover, our results revealed that the JNK3* functionalized 3D scaffold induced the fastest bone healing and greatest blood vessel infiltration when implanted in critical-size rat calvarial defects in vivo. JNK3*scaffold fastest bone healing in vivo was associated with its capacity to recruit host stem cells to the site of injury and promote angiogenic-osteogenic coupling (e.g. Vegfa, Tie1, Runx2, Alp and Igf2 upregulation). In summary, this study has demonstrated the potential of harnessing knowledge of age-altered stem cell mechanobiology in order to develop a materials-based functionalization approach for the repair of large tissue defects.
Collapse
Affiliation(s)
- Arlyng González-Vázquez
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2 D02 YN77, Ireland; Advanced Materials Bio-Engineering Research Centre (AMBER), RCSI and TCD, Dublin 2 D02 PN40, Ireland
| | - Rosanne M Raftery
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2 D02 YN77, Ireland; Advanced Materials Bio-Engineering Research Centre (AMBER), RCSI and TCD, Dublin 2 D02 PN40, Ireland
| | - Suzan Günbay
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin 2 D02 YN77, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2 D02 PN40, Ireland
| | - Gang Chen
- Department of Physiology and Medical Physics, RCSI, Dublin 2 D02 YN77, Ireland
| | - Dylan J Murray
- National Paediatric Craniofacial Centre, Children's Health Ireland at Temple Street, Temple Street, Rotunda, Dublin 1 D01 XD99, Ireland
| | - Fergal J O'Brien
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin (TCD), Dublin 2 D02 PN40, Ireland; Advanced Materials Bio-Engineering Research Centre (AMBER), RCSI and TCD, Dublin 2 D02 PN40, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin 2 D02 YN77, Ireland.
| |
Collapse
|
22
|
Shi Z, Xu Y, Mulatibieke R, Zhong Q, Pan X, Chen Y, Lian Q, Luo X, Shi Z, Zhu Q. Nano-Silicate-Reinforced and SDF-1α-Loaded Gelatin-Methacryloyl Hydrogel for Bone Tissue Engineering. Int J Nanomedicine 2020; 15:9337-9353. [PMID: 33262591 PMCID: PMC7699450 DOI: 10.2147/ijn.s270681] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Purpose Autologous bone grafts are the gold standard for treating bone defects. However, limited bone supply and morbidity at the donor site restrict its extensive use. Therefore, developing bone graft materials as an alternative to autologous grafts has gained considerable attention. Injectable hydrogels endowed with osteogenic potential have the ability to fill irregular bone defects using minimally invasive procedures and have thus been attracting researchers’ attention. However, from a clinical perspective, most fabrication methods employed for the current injectable osteogenic hydrogels are difficult and inconvenient. In the current study, we fabricated an injectable osteogenic hydrogel using a simple and convenient strategy. Materials and Methods Gelatin-methacryloyl (GelMA) pre-polymer was synthetized. Nano silicate (SN) and stromal cell-derived factor-1 alpha (SDF-1α) were introduced into the pre-polymer to achieve injectability, controlled release property, excellent osteogenic ability, and efficient stem cell homing. Results The GelMA-SN-SDF-1α demonstrated excellent injectability via a 17-G needle at room temperature. The loaded SDF-1α exhibited a long-term controlled release pattern and efficiently stimulated MSC migration and homing. The GelMA-SN-SDF-1α hydrogel amplified cell spreading, migration, osteogenic-related biomarker expression, and matrix mineralization. The GelMA-SN-SDF-1α hydrogel filled critical-sized calvaria defects in rats and demonstrated excellent bone regeneration ability, as assessed using micro-CT scanning and histomorphometric staining. Conclusion The GelMA-SN-SDF-1α hydrogel provides a simple and convenient strategy for the fabrication of injectable osteogenic graft materials. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/FhyefSKUa34
Collapse
Affiliation(s)
- Zhe Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yichuan Xu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Ruzha Mulatibieke
- Department of Plastic Surgery, The Third Affiliated Hospital of Sun Yet-Sen University, Guangzhou, People's Republic of China
| | - Qiang Zhong
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xin Pan
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Yuhang Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qiang Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Xin Luo
- Rehabilitation Medical School, Guangzhou International Economics College, Guangzhou, People's Republic of China
| | - Zhanjun Shi
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Qingan Zhu
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
24
|
Jiang J, Liu X, Chen H, Dai C, Niu X, Dai L, Chen X, Zhang S. 3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine. Biomater Sci 2020; 8:6362-6374. [PMID: 33026366 DOI: 10.1039/d0bm01116a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tissue engineering is considered highly promising for the repair of traumatic brain injury (TBI), and accumulating evidence has proved the efficacy of biomaterials and 3D printing. Although collagen is famous for its natural properties, some defects still restrict its potential applications in tissue repair. In this experimental study, we fabricated a kind of scaffold with collagen and heparin sulfate via 3D printing, which possesses favorable physical properties and suitable degradation rate along with satisfactory cytocompatibility. After implantation, the results of motor evoked potentials (MEPs) showed that the latency and amplitude can both be improved in hemiplegic limbs, and the structural integrity of the cerebral cortex and corticospinal tract can be enhanced significantly under magnetic resonance imaging (MRI) evaluation. Additionally, the results of in situ hybridization (ISH) and immunofluorescence staining also revealed the facilitating role of 3D printing collagen/heparin sulfate scaffolds on vascular and neural regeneration. Moreover, the individuals implanted with this kind of scaffold present better gait characteristics and preferable electromyography and myodynamia. In general, 3D printed collagen/heparin sulfate scaffolds have superb performance in both structural repair and functional improvement and may offer a new strategy for the repair of TBI.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School, Medical School of Chinese PLA, Beijing 100853, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhao H, Zhang X, Zhou D, Weng Y, Qin W, Pan F, Lv S, Zhao X. Collagen, polycaprolactone and attapulgite composite scaffolds for in vivo bone repair in rabbit models. ACTA ACUST UNITED AC 2020; 15:045022. [PMID: 32224507 DOI: 10.1088/1748-605x/ab843f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although numerous materials have been explored as bone scaffolds, many of them are limited by their low osteoconductivity and high biodegradability. Therefore, new materials are desired to induce bone cell proliferation and facilitate bone formation. Attapulgite (ATP) is a hydrated silicate that exists in nature as a fibrillar clay mineral and is well known for its large specific surface area, high viscosity, and high absorption capacity, and therefore has the potential to be a new type of bone repair material due to its unique physicochemical properties. In this study, composite scaffolds composed of collagen/polycaprolactone/attapulgite (CPA) or collagen/polycaprolactone (CP) were fabricated through a salt-leaching method. The morphology, composition, microstructure, physical, and mechanical characteristics of the CPA and CP scaffolds were assessed. Cells from the mouse multipotent mesenchymal precursor cell line (D1 cells) were cocultured with the scaffolds, and cell adhesion, proliferation, and gene expression on the CPA and CP scaffolds were analyzed. Adult rabbits with radius defects were used to evaluate the performance of these scaffolds in repairing bone defects over 4-12 weeks. The experimental results showed that the cells demonstrated excellent attachment ability on the CPA scaffolds, as well as remarkable upregulation of the levels of osteoblastic markers such as Runx2, Osterix, collagen 1, osteopontin, and osteocalcin. Furthermore, results from radiography, micro-computed tomography, histological and immunohistochemical analysis demonstrated that abundant new bones were formed on the CPA scaffolds. Ultimately, these results demonstrated that CPA composite scaffolds show excellent potential in bone tissue engineering applications, with the capacity to be used as effective bone regeneration and repair scaffolds in clinical applications.
Collapse
Affiliation(s)
- Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Castaño IM, Raftery RM, Chen G, Cavanagh B, Quinn B, Duffy GP, O'Brien FJ, Curtin CM. Rapid bone repair with the recruitment of CD206 +M2-like macrophages using non-viral scaffold-mediated miR-133a inhibition of host cells. Acta Biomater 2020; 109:267-279. [PMID: 32251781 DOI: 10.1016/j.actbio.2020.03.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/10/2020] [Accepted: 03/27/2020] [Indexed: 01/01/2023]
Abstract
microRNAs offer vast therapeutic potential for multiple disciplines. From a bone perspective, inhibition of miR-133a may offer potential to enhance Runx2 activity and increase bone repair. This study aims to assess the therapeutic capability of antagomiR-133a delivery from collagen-nanohydroxyapatite (coll-nHA) scaffolds following cell-free implantation in rat calvarial defects (7 mm diameter). This is, to the best of our knowledge, the first report of successful in vivo antagomiR uptake in host cells of fully immunocompetent animals without distribution to other off-target tissues. Our results demonstrate the localized release of antagomiR-133a to the implant site at 1 week post-implantation with increased calcium deposits already evident in the antagomiR-133a loaded scaffolds at this early timepoint. This was followed by an approximate 2-fold increase in bone volume versus antagomiR-free scaffolds and a significant 10-fold increase over the empty defect controls, after just 4 weeks. An increase in host CD206+ cells suggests an accelerated pro-remodeling response by M2-like macrophages accompanying bone repair with this treatment. Overall, this non-viral scaffold-mediated antagomiR-133a delivery platform demonstrates capability to accelerate bone repair in vivo - without the addition of exogenous cells - and underlines the role of M2 macrophage-like cells in directing accelerated bone repair. Expanding the repertoire of this platform to deliver alternative miRNAs offers exciting possibilities for a variety of therapeutic indications. STATEMENT OF SIGNIFICANCE: microRNAs, small non-coding RNA molecules involved in gene regulation, may have potential as a new class of bone healing therapeutics as they can enhance the regenerative capacity of bone-forming cells. We developed a collagen-nanohydroxyapatite-microRNA scaffold system to investigate whether miR133a inhibition can enhance osteogenesis in rat MSCs and ultimately accelerate endogenous bone repair by host cells in vivo without pre-seeding cells prior to implantation. Overall, this off-the-shelf, non-viral scaffold-mediated antagomiR-133a delivery platform demonstrates capability to accelerate bone repair in vivo - without the requirement of exogenous cells - and highlights the role of CD206+M2 macrophage-like cells in guiding accelerated bone repair. Translating the repertoire of this platform to deliver alternative miRNAs offers exciting possibilities for a vast myriad of therapeutic indications.
Collapse
|
27
|
Kalirajan C, Palanisamy T. Bioengineered Hybrid Collagen Scaffold Tethered with Silver-Catechin Nanocomposite Modulates Angiogenesis and TGF-β Toward Scarless Healing in Chronic Deep Second Degree Infected Burns. Adv Healthc Mater 2020; 9:e2000247. [PMID: 32378364 DOI: 10.1002/adhm.202000247] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/19/2020] [Indexed: 12/12/2022]
Abstract
Management of burn wounds with diabetes and microbial infection is challenging in tissue engineering. The delayed wound healing further leads to scar formation in severe burn injury. Herein, a silver-catechin nanocomposite tethered collagen scaffold with angiogenic and antibacterial properties is developed to enable scarless healing in chronic wounds infected with Pseudomonas aeruginosa under diabetic conditions. Histological observations of the granulation tissues collected from an experimental rat model show characteristic structural organizations similar to normal skin, whereas the open wound and pristine collagen scaffold treated animals display elevated dermis with thick epidermal layer and lack of appendages. Epidermal thickness of the hybrid scaffold treated diabetic animals is lowered to 33 ± 2 µm compared to 90 ± 2 µm for pristine collagen scaffold treated groups. Further, the scar elevation index of 1.3 ± 0.1 estimated for the bioengineered scaffold treated diabetic animals is closer to the normal skin. Immunohistochemical analyses provide compelling evidence for the enhanced angiogenesis as well as downregulated transforming growth factor- β1 (TGF-β1) and upregulated TGF-β3 expressions in the hybrid scaffold treated animal groups. The insights from this study endorse the bioengineered collagen scaffolds for applications in tissue regeneration without scar in chronic burn wounds.
Collapse
Affiliation(s)
- Cheirmadurai Kalirajan
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| | - Thanikaivelan Palanisamy
- Advanced Materials LaboratoryCentral Leather Research Institute (Council of Scientific and Industrial Research) Adyar Chennai 600020 India
- University of Madras Chepauk Chennai 600005 India
| |
Collapse
|
28
|
Zhao H, Tang J, Zhou D, Weng Y, Qin W, Liu C, Lv S, Wang W, Zhao X. Electrospun Icariin-Loaded Core-Shell Collagen, Polycaprolactone, Hydroxyapatite Composite Scaffolds for the Repair of Rabbit Tibia Bone Defects. Int J Nanomedicine 2020; 15:3039-3056. [PMID: 32431500 PMCID: PMC7200251 DOI: 10.2147/ijn.s238800] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background Electrospinning is a widely used technology that can produce scaffolds with high porosity and surface area for bone regeneration. However, the small pore sizes in electrospun scaffolds constrain cell growth and tissue-ingrowth. In this study, novel drug-loading core-shell scaffolds were fabricated via electrospinning and freeze drying to facilitate the repair of tibia bone defects in rabbit models. Materials and Methods The collagen core scaffolds were freeze-dried containing icariin (ICA)-loaded chitosan microspheres. The shell scaffolds were electrospun using collagen, polycaprolactone and hydroxyapatite materials to form CPH composite scaffolds with the ones containing ICA microspheres named CPHI. The core-shell scaffolds were then cross-linked by genipin. The morphology, microstructure, physical and mechanical properties of the scaffolds were assessed. Rat marrow mesenchymal stem cells from the wistar rat were cultured with the scaffolds. The cell adhesion and proliferation were analysed. Adult rabbit models with tibial plateau defects were used to evaluate the performance of these scaffolds in repairing the bone defects over 4 to 12 weeks. Results The results reveal that the novel drug-loading core-shell scaffolds were successfully fabricated, which showed good physical and chemical properties and appropriate mechanical properties. Furthermore, excellent cells attachment was observed on the CPHI scaffolds. The results from radiography, micro-computed tomography, histological and immunohistochemical analysis demonstrated that abundant new bones were formed on the CPHI scaffolds. Conclusion These new core-shell composite scaffolds have great potential for bone tissue engineering applications and may lead to effective bone regeneration and repair.
Collapse
Affiliation(s)
- Hongbin Zhao
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Junjie Tang
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Dong Zhou
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Yiping Weng
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Wen Qin
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Chun Liu
- Medical Research Centre, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou 213164, People's Republic of China
| | - Songwei Lv
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, People's Republic of China
| | - Wei Wang
- Medical School, Hexi University, Zhangye 730041, People's Republic of China
| | - Xiubo Zhao
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou 213164, People's Republic of China.,Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
29
|
Wijerathne HMCS, Yan D, Zeng B, Xie Y, Hu H, Wickramaratne MN, Han Y. Effect of nano-hydroxyapatite on protein adsorption and cell adhesion of poly(lactic acid)/nano-hydroxyapatite composite microspheres. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2531-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
30
|
Nolan JC, Frawley T, Tighe J, Soh H, Curtin C, Piskareva O. Preclinical models for neuroblastoma: Advances and challenges. Cancer Lett 2020; 474:53-62. [PMID: 31962141 DOI: 10.1016/j.canlet.2020.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
Neuroblastoma is a paediatric cancer of the sympathetic nervous system and the most common solid tumour of infancy, contributing to 15% of paediatric oncology deaths. Current therapies are not effective in the long-term treatment of almost 80% of patients with this clinically aggressive disease. The primary challenge in the identification and validation of new agents for paediatric drug development is the accurate representation of tumour biology and diversity. In addition to this limitation, the low incidence of neuroblastoma makes the recruitment of eligible patients for early phase clinical trials highly challenging and highlights the need for robust preclinical testing to ensure that the best treatments are selected. The research field requires new preclinical models, technologies, and concepts to tackle these problems. Tissue engineering offers attractive tools to assist in the development of three-dimensional (3D) cell models using various biomaterials and manufacturing approaches that recreate the geometry, mechanics, heterogeneity, metabolic gradients, and cell communication of the native tumour microenvironment. In this review, we discuss current experimental models and assess their abilities to reflect the structural organisation and physiological conditions of the human body, in addition to current and new techniques to recapitulate the tumour niche using tissue-engineered platforms. Finally, we will discuss the possible use of novel 3D in vitro culture systems to address open questions in neuroblastoma biology.
Collapse
Affiliation(s)
- J C Nolan
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - T Frawley
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - J Tighe
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Soh
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Curtin
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - O Piskareva
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
31
|
Chen M, Zhao F, Li Y, Wang M, Chen X, Lei B. 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110153. [DOI: 10.1016/j.msec.2019.110153] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 08/31/2019] [Indexed: 01/04/2023]
|
32
|
Xu X, Chen X, Li J. Natural protein bioinspired materials for regeneration of hard tissues. J Mater Chem B 2020; 8:2199-2215. [DOI: 10.1039/d0tb00139b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review describes the protein bioinspired materials for the repair of hard tissues such as enamel, dentin and bone.
Collapse
Affiliation(s)
- Xinyuan Xu
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| | - Xingyu Chen
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610003
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
- Chengdu 610065
- P. R. China
| |
Collapse
|
33
|
Barros JAR, Melo LDRD, Silva RARD, Ferraz MP, Azeredo JCVDR, Pinheiro VMDC, Colaço BJA, Fernandes MHR, Gomes PDS, Monteiro FJ. Encapsulated bacteriophages in alginate-nanohydroxyapatite hydrogel as a novel delivery system to prevent orthopedic implant-associated infections. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102145. [PMID: 31857183 DOI: 10.1016/j.nano.2019.102145] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/26/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
An innovative delivery system based on bacteriophages-loaded alginate-nanohydroxyapatite hydrogel was developed as a multifunctional approach for local tissue regeneration and infection prevention and control. Bacteriophages were efficiently encapsulated, without jeopardizing phage viability and functionality, nor affecting hydrogel morphology and chemical composition. Bacteriophage delivery occurred by swelling-disintegration-degradation process of the alginate structure and was influenced by environmental pH. Good tissue response was observed following the implantation of bacteriophages-loaded hydrogels, sustaining their biosafety profile. Bacteriophages-loaded hydrogels did not affect osteoblastic cells' proliferation and morphology. A strong osteogenic and mineralization response was promoted through the implantation of hydrogels system with nanohydroxyapatite. Lastly, bacteriophages-loaded hydrogel showed excellent antimicrobial activity inhibiting the attachment and colonization of multidrug-resistant E. faecalis surrounding and within femoral tissues. This new local delivery approach could be a promising approach to prevent and control bacterial contamination during implantation and bone integration.
Collapse
Affiliation(s)
- Joana Alberta Ribeiro Barros
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal.
| | - Luís Daniel Rodrigues de Melo
- Laboratório de Investigação em Biofilmes Rosário Oliveira, Center of Biological Engineering, University of Minho, Braga, Portugal
| | - Rita Araújo Reis da Silva
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Maria Pia Ferraz
- FP-ENAS/CEBIMED - University Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Center, Porto, Portugal
| | | | | | - Bruno Jorge Antunes Colaço
- Department of Animal Sciences, ECAV, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - Maria Helena Raposo Fernandes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Pedro de Sousa Gomes
- Laboratory for Bone Metabolism and Regeneration - Faculty of Dental Medicine, University of Porto, Porto, Portugal; REQUIMTE/LAQV, University of Porto, Porto, Portugal
| | - Fernando Jorge Monteiro
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; FEUP - Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
34
|
Li X, Yin HM, Luo E, Zhu S, Wang P, Zhang Z, Liao GQ, Xu JZ, Li ZM, Li JH. Accelerating Bone Healing by Decorating BMP-2 on Porous Composite Scaffolds. ACS APPLIED BIO MATERIALS 2019; 2:5717-5726. [PMID: 35021565 DOI: 10.1021/acsabm.9b00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - En Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
35
|
Colaço E, Brouri D, Aissaoui N, Cornette P, Dupres V, Domingos RF, Lambert JF, Maisonhaute E, Kirat KE, Landoulsi J. Hierarchical Collagen–Hydroxyapatite Nanostructures Designed through Layer-by-Layer Assembly of Crystal-Decorated Fibrils. Biomacromolecules 2019; 20:4522-4534. [DOI: 10.1021/acs.biomac.9b01299] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Elodie Colaço
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France CNRS 7154, 75205 Paris, Cedex 05, France
| | - Dalil Brouri
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Nesrine Aissaoui
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
| | - Pauline Cornette
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Vincent Dupres
- Cellular Microbiology and Physics of Infections−Lille Center for Infection and Immunity, Institut Pasteur de Lille-CNRS-INSERM U1019-CHRU Lille, University of Lille, Lille, France
| | - Rute F. Domingos
- Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris Diderot, CNRS, 75205 Paris, Cedex 05, France
| | - Jean-François Lambert
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| | - Emmanuel Maisonhaute
- Sorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Electrochimiques, F-75005 Paris, France
| | - Karim El Kirat
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France CNRS 7154, 75205 Paris, Cedex 05, France
| | - Jessem Landoulsi
- Laboratoire de Biomécanique & Bioingénierie, CNRS, Université de Technologie de Compiègne, BP 20529, F-60205 Compiègne Cedex, France CNRS 7154, 75205 Paris, Cedex 05, France
- Sorbonne Université, CNRS, Laboratoire de Réactivité de Surface, F-75005 Paris, France
| |
Collapse
|
36
|
Dai Z, Dang M, Zhang W, Murugan S, Teh SW, Pan H. Biomimetic hydroxyapatite/poly xylitol sebacic adibate/vitamin K nanocomposite for enhancing bone regeneration. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1898-1907. [PMID: 31066314 DOI: 10.1080/21691401.2019.1573183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydroxyapatite (HAP) is a significant bone mineral that establishes bone strength. HAP composites in combination with biodegradable and bioactive polymer poly xylitol sebacic adipate (PXSA) would result in a constant release at target sites. Numerous studies have shown that vitamin K (VK) might possess a vital function in bone metabolism. The purpose of the present study was to inspect the synthesized composite HAP/PXSA/VK in developing polymeric biomaterials composite for the application of bone tissue regeneration. FTIR, X-ray diffraction, SEM and TEM techniques were applied to characterize the prepared composites. The release of VK from the HAP/PXSA/VK composite was evidenced through UV-Vis spectroscopy. In vitro studies proved that the HAP/PXSA/VK composite is appropriate for mesenchymal stem cell culture. Compared to pure HAP prepared following the same method, HAP/PXSA/VK composite provided favourable microstructures and good biodegradation distinctiveness for the application of tissue engineering, as well as tissue in-growth characteristics and improved scaffold cell penetration. This work reveals that the HAP/PXSA/VK composites have the potential for applications in bone tissue engineering.
Collapse
Affiliation(s)
- Zhipeng Dai
- a Department of Orthopedics , Henan Provincial People's Hospital , Zhengzhou City , Henan Province , China
| | - Minyan Dang
- b Innoscience Research SdnBhd , Subang Jaya , Selangor , Malaysia
| | - Wenzhi Zhang
- b Innoscience Research SdnBhd , Subang Jaya , Selangor , Malaysia
| | - Sumathra Murugan
- c Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry , Madurai Kamaraj University , Madurai , Tamil Nadu , India
| | - Seoh Wei Teh
- d Department of Biomedical Science , University Putra Malaysia (UPM) , Serdang , Malaysia
| | - Haiyan Pan
- e Department of Orthopaedics , Ankang Hospital of Traditional Chinese Medicine , Ankang , Shaanxi Province , China
| |
Collapse
|
37
|
Oltean-Dan D, Dogaru GB, Tomoaia-Cotisel M, Apostu D, Mester A, Benea HRC, Paiusan MG, Jianu EM, Mocanu A, Balint R, Popa CO, Berce C, Bodizs GI, Toader AM, Tomoaia G. Enhancement of bone consolidation using high-frequency pulsed electromagnetic short-waves and titanium implants coated with biomimetic composite embedded into PLA matrix: in vivo evaluation. Int J Nanomedicine 2019; 14:5799-5816. [PMID: 31440048 PMCID: PMC6664427 DOI: 10.2147/ijn.s205880] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose Bone consolidation after severe trauma is the most challenging task in orthopedic surgery. This study aimed to develop biomimetic composite for coating Ti implants. Afterwards, these implants were tested in vivo to assess bone consolidation in the absence or the presence of high-frequency pulsed electromagnetic short-waves (HF-PESW). Materials Biomimetic coating was successfully developed using multi-substituted hydroxyapatite (ms-HAP) functionalized with collagen (ms-HAP/COL), embedded into poly-lactic acid (PLA) matrix (ms-HAP/COL@PLA), and subsequently covered with self-assembled COL layer (ms-HAP/COL@PLA/COL, named HAPc). Methods For in vivo evaluation, 32 Wistar albino rats were used in four groups: control group (CG) with Ti implant; PESW group with Ti implant+HF-PESW; HAPc group with Ti implant coated with HAPc; HAPc+PESW group with Ti implant coated with HAPc+HF-PESW. Left femoral diaphysis was fractured and fixed intramedullary. From the first post-operative day, PESW and HAPc+PESW groups underwent HF-PESW stimulation for 14 consecutive days. Biomimetic coating was characterized by XRD, HR-TEM, SEM, EDX and AFM. Results Osteogenic markers (ALP and osteocalcin) and micro-computed tomography (CT) analysis (especially bone volume/tissue volume ratio results) indicated at 2 weeks the following group order: HAPc+PESW>HAPc≈PESW (P>0.05) and HAPc+PESW>control (P<0.05), indicating the higher values in HAPc+PESW group compared to CG. The fracture-site bone strength showed, at 2 weeks, the highest average value in HAPc+PESW group. Moreover, histological analysis revealed the most abundant COL fibers assembled in dense bundles in HAPc-PESW group. At 8 weeks, micro-CT indicated higher values only in HAPc+PESW group vs CG (P<0.05), and histological results showed a complete-healed fracture in groups: HAPc+PESW, HAPc and PESW, but with more advanced bone remodeling in HAPc+PESW group. Conclusion Using Ti implants coated by HAPc jointly with HF-PESW stimulation positively influenced the bone consolidation process, especially in its early phase, thus potentially providing a superior strategy for clinical applications.
Collapse
Affiliation(s)
- Daniel Oltean-Dan
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Gabriela-Bombonica Dogaru
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Medical Rehabilitation, 400347 Cluj-Napoca, Romania
| | - Maria Tomoaia-Cotisel
- Babes Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Physical Chemistry, 400028 Cluj-Napoca, Romania.,Academy of Romanian Scientists , 050085 Bucharest, Romania
| | - Dragos Apostu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Alexandru Mester
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Oral Rehabilitation, Oral Health and Management, 400012 Cluj-Napoca, Romania
| | - Horea-Rares-Ciprian Benea
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Mihai-Gheorghe Paiusan
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania
| | - Elena-Mihaela Jianu
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Histology, 400349 Cluj-Napoca, Romania
| | - Aurora Mocanu
- Babes Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Physical Chemistry, 400028 Cluj-Napoca, Romania
| | - Reka Balint
- Babes Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemical Engineering, Research Center of Physical Chemistry, 400028 Cluj-Napoca, Romania
| | - Catalin-Ovidiu Popa
- Technical University of Cluj-Napoca, Department of Materials Science and Engineering, 400641 Cluj-Napoca, Romania
| | - Cristian Berce
- Iuliu Hatieganu University of Medicine and Pharmacy, Center for Experimental Medicine, 400349 Cluj-Napoca, Romania
| | | | - Alina-Mihaela Toader
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Physiology, 400006 Cluj-Napoca, Romania
| | - Gheorghe Tomoaia
- Iuliu Hatieganu University of Medicine and Pharmacy, Department of Orthopedics and Traumatology, 400132 Cluj-Napoca, Romania.,Academy of Romanian Scientists , 050085 Bucharest, Romania
| |
Collapse
|
38
|
Liang An, Zhao X, Xu C, Yan Z, Yang Z, Xu Z. Magnetically Separable and Recyclable γ-Fe2O3/HAp/Ag3PO4 Composite Microsheets: Fabrication, Characterization, and Photocatalytic Performance. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s003602441907015x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Bittner SM, Smith BT, Diaz-Gomez L, Hudgins CD, Melchiorri AJ, Scott DW, Fisher JP, Mikos AG. Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering. Acta Biomater 2019; 90:37-48. [PMID: 30905862 PMCID: PMC6744258 DOI: 10.1016/j.actbio.2019.03.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/14/2019] [Accepted: 03/20/2019] [Indexed: 01/10/2023]
Abstract
Recent developments in 3D printing (3DP) research have led to a variety of scaffold designs and techniques for osteochondral tissue engineering; however, the simultaneous incorporation of multiple types of gradients within the same construct remains a challenge. Herein, we describe the fabrication and mechanical characterization of porous poly(ε-caprolactone) (PCL) and PCL-hydroxyapatite (HA) scaffolds with incorporated vertical porosity and ceramic content gradients via a multimaterial extrusion 3DP system. Scaffolds of 0 wt% HA (PCL), 15 wt% HA (HA15), or 30 wt% HA (HA30) were fabricated with uniform composition and porosity (using 0.2 mm, 0.5 mm, or 0.9 mm on-center fiber spacing), uniform composition and gradient porosity, and gradient composition (PCL-HA15-HA30) and porosity. Micro-CT imaging and porosity analysis demonstrated the ability to incorporate both vertical porosity and pore size gradients and a ceramic gradient, which collectively recapitulate gradients found in native osteochondral tissues. Uniaxial compression testing demonstrated an inverse relationship between porosity, ϕ, and compressive modulus, E, and yield stress, σy, for uniform porosity scaffolds, however, no differences were observed as a result of ceramic incorporation. All scaffolds demonstrated compressive moduli within the appropriate range for trabecular bone, with average moduli between 86 ± 14-220 ± 26 MPa. Uniform porosity and pore size scaffolds for all ceramic levels had compressive moduli between 205 ± 37-220 ± 26 MPa, 112 ± 13-118 ± 23 MPa, and 86 ± 14-97 ± 8 MPa respectively for porosities ranging between 14 ± 4-20 ± 6%, 36 ± 3-43 ± 4%, and 54 ± 2-57 ± 2%, with the moduli and yield stresses of low porosity scaffolds being significantly greater (p < 0.05) than those of all other groups. Single (porosity) gradient and dual (composition/porosity) gradient scaffolds demonstrated compressive properties similar (p > 0.05) to those of the highest porosity uniform scaffolds (porosity gradient scaffolds 98 ± 23-107 ± 6 MPa, and 102 ± 7 MPa for dual composition/porosity gradient scaffolds), indicating that these properties are more heavily influenced by the weakest section of the gradient. The compression data for uniform scaffolds were also readily modeled, yielding scaling laws of the form E ∼ (1 - ϕ)1.27 and σy ∼ (1 - ϕ)1.37, which demonstrated that the compressive properties evaluated in this study were well-aligned with expectations from previous literature and were readily modeled with good fidelity independent of polymer scaffold geometry and ceramic content. All uniform scaffolds were similarly deformed and recovered despite different porosities, while the large-pore sections of porosity gradient scaffolds were significantly more deformed than all other groups, indicating that porosity may not be an independent factor in determining strain recovery. Moving forward, the technique described here will serve as the template for more complex multimaterial constructs with bioactive cues that better match native tissue physiology and promote tissue regeneration. STATEMENT OF SIGNIFICANCE: This manuscript describes the fabrication and mechanical characterization of "dual" porosity/ceramic content gradient scaffolds produced via a multimaterial extrusion 3D printing system for osteochondral tissue engineering. Such scaffolds are designed to better address the simultaneous gradients in architecture and mineralization found in native osteochondral tissue. The results of this study demonstrate that this technique may serve as a template for future advances in 3D printing technology that may better address the inherent complexity in such heterogeneous tissues.
Collapse
Affiliation(s)
- Sean M Bittner
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Brandon T Smith
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, USA
| | - Luis Diaz-Gomez
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Carrigan D Hudgins
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - Anthony J Melchiorri
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA
| | - David W Scott
- Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77030, USA
| | - John P Fisher
- NIH/NIBIB Center for Engineering Complex Tissues, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Antonios G Mikos
- Department of Bioengineering, Rice University, 6500 Main Street, Houston, TX 77030, USA; Biomaterials Lab, Rice University, 6500 Main Street, Houston, TX 77030, USA; NIH/NIBIB Center for Engineering Complex Tissues, USA.
| |
Collapse
|
40
|
Fang J, Li P, Lu X, Fang L, Lü X, Ren F. A strong, tough, and osteoconductive hydroxyapatite mineralized polyacrylamide/dextran hydrogel for bone tissue regeneration. Acta Biomater 2019; 88:503-513. [PMID: 30772515 DOI: 10.1016/j.actbio.2019.02.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/01/2023]
Abstract
The design of hydrogels with adequate mechanical properties and excellent bioactivity, osteoconductivity, and capacity for osseointegration is essential to bone repair and regeneration. However, it is challenging to integrate all these properties into one bone scaffold. Herein, we developed a strong, tough, osteoconductive hydrogel by a facile one-step micellar copolymerization of acrylamide and urethacrylate dextran (Dex-U), followed by the in situ mineralization of hydroxyapatite (HAp) nanocrystals. We show that the soft, flexible, and hydrophobically associated polyacrylamide (PAAm) network is strengthened by the stiff crosslinked Dex-U phase, and that the mineralized HAp simultaneously improves the mechanical properties and osteoconductivity. The obtained HAp mineralized PAAm/Dex-U hydrogel (HAp-PADH) has extremely high compressive strength (6.5 MPa) and enhanced fracture resistance (over 2300 J m-2), as compared with pure PAAm hydrogels. In vitro, we show that the mineralized HAp layer promotes the adhesion and proliferation of osteoblasts, and effectively stimulates osteogenic differentiation. Through the in vivo evaluation of hydrogels in a femoral condyle defect rabbit model, we show regeneration of a highly mineralized bone tissue and direct bonding to the HAp-PADH interface. These findings confirm the excellent osteoconductivity and osseointegration ability of fabricated HAp-PADH. The present HAp-PADH, with its superior mechanical properties and excellent osteoconductivity, should have great potential for bone repair and regeneration. STATEMENT OF SIGNIFICANCE: We developed a strong, tough, and osteoconductive hydrogel by a facile one-step micellar copolymerization of acrylamide and urethane methacrylate dextran (Dex-U), followed by the in situ mineralization of hydroxyapatite (HAp) nanocrystals. The hydrophobic micellar copolymerization and introduction of the stiff crosslinked Dex-U phase endowed the soft polyacrylamide (PAAm) network with enhanced strength and toughness. The in situ mineralized HAp nanocrystals on the hydrogels further improved the mechanical properties of the hydrogels and promoted osteogenic differentiation of cells. Mechanical tests together with in vitro and in vivo evaluations confirmed that the HAp mineralized PAAm/Dex-U hydrogel (HAp-PADH) achieved a combination of superior mechanical properties and excellent osseointegration, and thus may offer a promising candidate for bone repair and regeneration.
Collapse
Affiliation(s)
- Ju Fang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China; State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, China
| | - Pengfei Li
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 621000, China
| | - Xiong Lu
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 621000, China
| | - Liming Fang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaoying Lü
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu 210096, China
| | - Fuzeng Ren
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
41
|
Gonzalez-Fernandez T, Rathan S, Hobbs C, Pitacco P, Freeman FE, Cunniffe GM, Dunne NJ, McCarthy HO, Nicolosi V, O'Brien FJ, Kelly DJ. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues. J Control Release 2019; 301:13-27. [PMID: 30853527 DOI: 10.1016/j.jconrel.2019.03.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022]
Abstract
The regeneration of complex tissues and organs remains a major clinical challenge. With a view towards bioprinting such tissues, we developed a new class of pore-forming bioink to spatially and temporally control the presentation of therapeutic genes within bioprinted tissues. By blending sacrificial and stable hydrogels, we were able to produce bioinks whose porosity increased with time following printing. When combined with amphipathic peptide-based plasmid DNA delivery, these bioinks supported enhanced non-viral gene transfer to stem cells in vitro. By modulating the porosity of these bioinks, it was possible to direct either rapid and transient (pore-forming bioinks), or slower and more sustained (solid bioinks) transfection of host or transplanted cells in vivo. To demonstrate the utility of these bioinks for the bioprinting of spatially complex tissues, they were next used to zonally position stem cells and plasmids encoding for either osteogenic (BMP2) or chondrogenic (combination of TGF-β3, BMP2 and SOX9) genes within networks of 3D printed thermoplastic fibers to produce mechanically reinforced, gene activated constructs. In vivo, these bioprinted tissues supported the development of a vascularised, bony tissue overlaid by a layer of stable cartilage. When combined with multiple-tool biofabrication strategies, these gene activated bioinks can enable the bioprinting of a wide range of spatially complex tissues.
Collapse
Affiliation(s)
- T Gonzalez-Fernandez
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland
| | - S Rathan
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - C Hobbs
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; School of Physics, Trinity College Dublin, Ireland; Centre for Research of Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Ireland
| | - P Pitacco
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - F E Freeman
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - G M Cunniffe
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland
| | - N J Dunne
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Ireland; School of Pharmacy, Queen's University Belfast, UK
| | - H O McCarthy
- School of Pharmacy, Queen's University Belfast, UK
| | - V Nicolosi
- Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; School of Physics, Trinity College Dublin, Ireland; Centre for Research of Adaptive Nanostructures and Nanodevices, Trinity College Dublin, Ireland
| | - F J O'Brien
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in, Ireland
| | - D J Kelly
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Ireland; Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), Trinity College Dublin and Royal College of Surgeons, Ireland; Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in, Ireland.
| |
Collapse
|
42
|
Collagen scaffolds functionalised with copper-eluting bioactive glass reduce infection and enhance osteogenesis and angiogenesis both in vitro and in vivo. Biomaterials 2019; 197:405-416. [PMID: 30708184 DOI: 10.1016/j.biomaterials.2019.01.031] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/13/2022]
Abstract
The bone infection osteomyelitis (typically by Staphylococcus aureus) usually requires a multistep procedure of surgical debridement, long-term systemic high-dose antibiotics, and - for larger defects - bone grafting. This, combined with the alarming rise in antibiotic resistance, necessitates development of alternative approaches. Herein, we describe a one-step treatment for osteomyelitis that combines local, controlled release of non-antibiotic antibacterials with a regenerative collagen-based scaffold. To maximise efficacy, we utilised bioactive glass, an established osteoconductive material with immense capacity for bone repair, as a delivery platform for copper ions (proven antibacterial, angiogenic, and osteogenic properties). Multifunctional collagen-copper-doped bioactive glass scaffolds (CuBG-CS) were fabricated with favourable microarchitectural and mechanical properties (up to 1.9-fold increase in compressive modulus over CS) within the ideal range for bone tissue engineering. Scaffolds demonstrated antibacterial activity against Staphylococcus aureus (up to 66% inhibition) whilst also enhancing osteogenesis (up to 3.6-fold increase in calcium deposition) and angiogenesis in vitro. Most significantly, when assessed in a chick embryo in vivo model, CuBG-CS not only demonstrated biocompatibility, but also a significant angiogenic and osteogenic response, consistent with in vitro studies. Collectively, these results indicate that the CuBG-CS developed here show potential as a one-step osteomyelitis treatment: reducing infection, whilst enhancing bone healing.
Collapse
|
43
|
Yin HM, Li X, Wang P, Ren Y, Liu W, Xu JZ, Li JH, Li ZM. Role of HA and BG in engineering poly(ε-caprolactone) porous scaffolds for accelerating cranial bone regeneration. J Biomed Mater Res A 2018; 107:654-662. [PMID: 30474348 DOI: 10.1002/jbm.a.36584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 10/30/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
Effects of varied bioactive fillers on the biological behavior of porous polymer/inorganic composite scaffolds are lack of comprehensive comparison and remain elusive. Moreover, composite scaffolds with high porosity suffer from inferior mechanical performance. Herein, high-pressure molding and salt leaching were employed to prepare poly(ε-caprolactone) (PCL) composite porous scaffolds loaded with hydroxyapatite (HA) and bioactive glass (BG), respectively. Structural analysis indicated all the porous scaffolds presented interconnected open-pore structure with the porosity of ~87% and pore size of ~180 μm, hinging on the amounts and size of porogen. Compared to PCL/HA scaffolds, PCL/BG scaffolds showed ~2.3-fold augment in the water absorption. Attributing to the compact framework, the PCL/HA and PCL/BG porous scaffolds exhibited outstanding compressive modulus, which was notably higher than other PCL composite porous scaffolds reported in literatures. Cells culture results demonstrated that PCL/BG scaffolds displayed higher expression of osteogenic differentiation than PCL and PCL/HA scaffolds. Furthermore, in vivo results showed that more mature bone was formed within PCL/BG scaffolds than PCL/HA scaffolds, manifesting that the introduction of BG accelerated cranial bone regeneration to obtain complete bone healing within a short time. Therefore, these data indicate that PCL/BG scaffolds are more competitive for bone tissue engineering application. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 654-662, 2019.
Collapse
Affiliation(s)
- Hua-Mo Yin
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Peng Wang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yue Ren
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Liu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jia-Zhuang Xu
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ji-Hua Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
44
|
Zhang T, Chen H, Zhang Y, Zan Y, Ni T, Liu M, Pei R. Photo-crosslinkable, bone marrow-derived mesenchymal stem cells-encapsulating hydrogel based on collagen for osteogenic differentiation. Colloids Surf B Biointerfaces 2018; 174:528-535. [PMID: 30500741 DOI: 10.1016/j.colsurfb.2018.11.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/15/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022]
Abstract
Many patients suffer from bone injury and self-regeneration is not effective. Developing new strategies for effective bone injury repair is highly desired. Herein, collagen, an important component of the extracellular matrix, was modified with glycidyl methacrylate. The water solubility and photochemical cross-linking ability of the resulting collagen derivative was then improved. Thereafter, BMSC-laden hydrogel was fabricated using collagen modified with glycidyl methacrylate and hyaluronic acid modified with methacrylic anhydride under UV light in the presence of I 2959. The physicochemical properties were characterized suggesting that the hydrogel had great potential for enhancing cell adhesion and proliferation. Furthermore, without adding the bone morphogenetic protein-2, the collagen also promoted osteogenic differentiation of BMSCs within the hydrogel. Altogether, this hydrogel system provides a general strategy to fabricate cell-encapsulating hydrogel based on collagen and could be used as 3D scaffold for bone injury repair.
Collapse
Affiliation(s)
- Tingting Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hong Chen
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yajie Zhang
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Yue Zan
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tianyu Ni
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Min Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China.
| | - Renjun Pei
- CAS Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
45
|
Synergistic Effects of Controlled-Released BMP-2 and VEGF from nHAC/PLGAs Scaffold on Osteogenesis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3516463. [PMID: 30345299 PMCID: PMC6174819 DOI: 10.1155/2018/3516463] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023]
Abstract
Tissue engineering bones take great advantages in massive bone defect repairing; under the induction of growth factors, seed cells differentiate into osteoblasts, and the scaffold materials gradually degrade and are replaced with neogenetic bones, which simulates the actual pathophysiological process of bone regeneration. However, mechanism research is required and further developed to instruct elements selection and optimization. In the present study, we prepared vascular endothelial growth factor/bone morphogenetic protein-2- nanohydroxyapatite/collagen (VEGF/ BMP-2- nHAC/ PLGAs) scaffolds and inoculated mouse MC3T3-E1 preosteoblasts to detect osteogenic indexes and activation of related signaling pathways. The hypothesis is to create a three-dimensional environment that simulates bone defect repairing, and p38 mitogen-activated kinase (p38) inhibitor was applied and osterix shRNA was transferred into mouse MC3T3-E1 preosteoblasts to further investigate the molecular mechanism of crosstalk between BMP-2 and VEGF. Our results demonstrated the following: (1) BMP-2 and VEGF were sustainably released from PLGAs microspheres. (2) nHAC/PLGAs scaffold occupied a three-dimensional porous structure and has excellent physical properties. (3) MC3T3-E1 cells proliferated and differentiated well in the scaffold. (4) Osteogenic differentiation related factors expression of VEGF/BMP-2 loaded scaffold was obviously higher than that of other groups; p38 inhibitor SB203580 decreased the nucleus/cytoplasm ratio of osterix expression. To conclude, the active artificial bone we prepared could provide a favorable growth space for MC3T3-E1 cells, and osteogenesis and maturation reinforced by simultaneous VEGF and BMP-2 treatment may be mainly through the activation of the p38 MAPK pathway to promote nuclear translocation of osterix protein.
Collapse
|
46
|
Inflammatory-Driven Angiogenesis in Bone Augmentation with Bovine Hydroxyapatite, B-Tricalcium Phosphate, and Bioglasses: A Comparative Study. J Immunol Res 2018; 2018:9349207. [PMID: 30298138 PMCID: PMC6157209 DOI: 10.1155/2018/9349207] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Introduction The clinical use of bioactive materials for bone augmentation has remained a challenge because of predictability and effectiveness concerns, as well as increased costs. The purpose of this study was to analyse the ability to integrate bone substitutes by evaluating the immunohistochemical expression of the platelet endothelial cell adhesion molecules, vascular endothelial growth factor, collagen IV, laminin, and osteonectin, in the vicinity of bone grafts, enabling tissue revascularization and appearance of bone lamellae. There is a lack of in vivo studies of inflammatory-driven angiogenesis in bone engineering using various grafts. Methods The study was performed in animal experimental model on the standardized monocortical defects in the tibia of 20 New Zealand rabbits. The defects were augmented with three types of bone substituents. The used bone substituents were beta-tricalcium phosphate, bovine hydroxyapatite, and bioactive glasses. After a period of 6 months, bone fragments were harvested for histopathologic examination. Endothelial cell analysis was done by analysing vascularization with PECAM/CD31 and VEGF and fibrosis with collagen IV, laminin, and osteonectin stains. Statistical analysis was realized by descriptive analysis which was completed with the kurtosis and skewness as well as the Kruskal-Wallis and Mann-Whitney statistical tests. Results The discoveries show that the amount of bone that is formed around beta-tricalcium phosphate and bovine hydroxyapatite is clearly superior to the bioactive glasses. Both the lumen diameter and the number of vessels were slightly increased in favor of beta-tricalcium phosphate. Conclusion We can conclude that bone substitutes as bovine bone and beta-tricalcium phosphate have significant increased angiogenesis (and subsequent improved osteogenesis) compared to the bioactive glass. In our study, significant angiogenesis is linked with a greater tissue formation, indicating that in bone engineering with the allografts we used, inflammation has more benefic effects, the catabolic action being exceeded by the tissue formation.
Collapse
|
47
|
Rivas M, del Valle LJ, Rodríguez-Rivero AM, Turon P, Puiggalí J, Alemán C. Loading of Antibiotic into Biocoated Hydroxyapatite Nanoparticles: Smart Antitumor Platforms with Regulated Release. ACS Biomater Sci Eng 2018; 4:3234-3245. [DOI: 10.1021/acsbiomaterials.8b00353] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Manuel Rivas
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
| | - Luís J. del Valle
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, Barcelona E-08028, Spain
| | | | - Pau Turon
- B. Braun Surgical, S.A. Carretera de Terrasa 121, 08191 Rubí (Barcelona), Spain
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, Barcelona E-08028, Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, Barcelona E-08028, Spain
| |
Collapse
|
48
|
Raftery RM, Mencía-Castaño I, Sperger S, Chen G, Cavanagh B, Feichtinger GA, Redl H, Hacobian A, O'Brien FJ. Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair. J Control Release 2018; 283:20-31. [PMID: 29782946 DOI: 10.1016/j.jconrel.2018.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 05/18/2018] [Indexed: 12/13/2022]
Abstract
Gene-activated scaffolds have been shown to induce controlled, sustained release of functional transgene both in vitro and in vivo. Bone morphogenetic proteins (BMPs) are potent mediators of osteogenesis however we found that the delivery of plasmid BMP-2 (pBMP-2) alone was not sufficient to enhance bone formation. Therefore, the aim of this study was to assess if the use of a series of modified BMP-2 plasmids could enhance the functionality of a pBMP-2 gene-activated scaffold and ultimately improve bone regeneration when implanted into a critical sized bone defect in vivo. A multi-cistronic plasmid encoding both BMP-2 and BMP-7 (BMP-2/7) was employed as was a BMP-2-Advanced plasmid containing a highly truncated intron sequence. With both plasmids, the highly efficient cytomegalovirus (CMV) promoter sequence was used. However, as there have been reports that the elongated factor 1-α promoter is more efficient, particularly in stem cells, a BMP-2-Advanced plasmid containing the EF1α promoter was also tested. Chitosan nanoparticles (CS) were used to deliver each plasmid to MSCs and induced transient up-regulation of BMP-2 protein expression, in turn significantly enhancing MSC-mediated osteogenesis when compared to untreated controls (p < 0.001). When incorporated into a bone mimicking collagen-hydroxyapatite scaffold, the BMP-2-Advanced plasmid, under the control of the CMV promotor, induced MSCs to produce approximately 2500 μg of calcium per scaffold, significantly higher (p < 0.001) than all other groups. Just 4 weeks post-implantation in vivo, this cell-free gene-activated scaffold induced significantly more bone tissue formation compared to a pBMP-2 gene-activated scaffold (p < 0.001) as indicated by microCT and histomorphometry. Immunohistochemistry revealed that the BMP-2-Advanced plasmid accelerated differentiation of osteoprogenitor cells to mature osteoblasts, thus causing rapid healing of the bone defects. This study confirms that optimising the plasmid construct can enhance the functionality of gene-activated scaffolds and translate to accelerated bone formation in a critical sized defect.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Irene Mencía-Castaño
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Simon Sperger
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Gang Chen
- Department of Physiology and Medical Physics, Centre for the Study of Neurological Disorders, Microsurgical Research and Training Facility (MRTF), Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Georg A Feichtinger
- Division of Oral Biology, School of Dentistry, Faculty of Medicine and Health, University of Leeds, United Kingdom
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Ara Hacobian
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, The Austrian Cluster for Tissue Regeneration, European Institute of Excellence on Tissue Engineering and Regenerative Medicine Research (Expertissues EEIG), Vienna, Austria
| | - Fergal J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
49
|
Mencía Castaño I, Curtin CM, Duffy GP, O'Brien FJ. Harnessing an Inhibitory Role of miR-16 in Osteogenesis by Human Mesenchymal Stem Cells for Advanced Scaffold-Based Bone Tissue Engineering. Tissue Eng Part A 2018; 25:24-33. [PMID: 29490603 DOI: 10.1089/ten.tea.2017.0460] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miRNA) therapeutics is increasingly being developed to either target bone-related diseases such as osteoporosis and osteoarthritis or as the basis for novel bone tissue engineering strategies. A number of miRNAs have been reported as potential osteo-therapeutics but no consensus has yet been established on the optimal target. miR-16 has been studied extensively in nonosteogenic functions and used as functionality reporter target in the development of nonviral miRNA delivery platforms. This study hypothesized that miR-16 may also play an inhibitory role in osteogenesis due to its ability to directly target Smad5 and AcvR2a. This study thus aimed to assess the potential of miR-16 inhibition to increase osteogenesis in human mesenchymal stem cells (hMSCs) using a previously established miRNA delivery platform composed of nanohydroxyapatite (nHA) particles as nonviral vectors in combination with collagen-nHA scaffolds designed specifically for bone repair. Initial results showed that antagomiR-16 delivery efficiently increased the relative levels of both putative targets and Runx2, the key transcription factor for osteogenesis, while also increasing osteocalcin levels. Furthermore, significant increases in mineral calcium deposition by hMSCs were found in both monolayer and most importantly in scaffold-based osteodifferentiation studies, ultimately demonstrating that miR-16 inhibition further enhances the therapeutic potential of a scaffold with known potential for bone repair applications and thus holds significant therapeutic potential as a novel bone tissue engineering strategy. Furthermore, we suggest that harnessing the additional functions known to miR-16 by incorporating either its enhancers or inhibitors to tissue-specific tailored scaffolds provides exciting opportunities for a diverse range of therapeutic indications.
Collapse
Affiliation(s)
- Irene Mencía Castaño
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Caroline M Curtin
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Garry P Duffy
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.,4 Department of Anatomy, School of Medicine, College of Medicine Nursing and Health Sciences, National University of Ireland Galway, Ireland
| | - Fergal J O'Brien
- 1 Tissue Engineering Research Group, Department of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland.,2 Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland.,3 Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
50
|
Curtin C, Nolan JC, Conlon R, Deneweth L, Gallagher C, Tan YJ, Cavanagh BL, Asraf AZ, Harvey H, Miller-Delaney S, Shohet J, Bray I, O'Brien FJ, Stallings RL, Piskareva O. A physiologically relevant 3D collagen-based scaffold-neuroblastoma cell system exhibits chemosensitivity similar to orthotopic xenograft models. Acta Biomater 2018; 70:84-97. [PMID: 29447961 DOI: 10.1016/j.actbio.2018.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/02/2018] [Accepted: 02/05/2018] [Indexed: 12/18/2022]
Abstract
3D scaffold-based in vitro cell culturing is a recent technological advancement in cancer research bridging the gap between conventional 2D culture and in vivo tumours. The main challenge in treating neuroblastoma, a paediatric cancer of the sympathetic nervous system, is to combat tumour metastasis and resistance to multiple chemotherapeutic drugs. The aim of this study was to establish a physiologically relevant 3D neuroblastoma tissue-engineered system and explore its therapeutic relevance. Two neuroblastoma cell lines, chemotherapeutic sensitive Kelly and chemotherapeutic resistant KellyCis83 were cultured in a 3D in vitro model on two collagen-based scaffolds containing either glycosaminoglycan (Coll-GAG) or nanohydroxyapatite (Coll-nHA) and compared to 2D cell culture and an orthotopic murine model. Both neuroblastoma cell lines actively infiltrated the scaffolds and proliferated displaying >100-fold increased resistance to cisplatin treatment when compared to 2D cultures, exhibiting chemosensitivity similar to orthotopic xenograft in vivo models. This model demonstrated its applicability to validate miRNA-based gene delivery. The efficacy of liposomes bearing miRNA mimics uptake and gene knockdown was similar in both 2D and 3D in vitro culturing models highlighting the proof-of-principle for the applicability of 3D collagen-based scaffolds cell system for validation of miRNA function. Collectively, this data shows the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. While neuroblastoma is the specific disease being focused upon, the platform may have multi-functionality beyond this tumour type. STATEMENT OF SIGNIFICANCE Traditional 2D cell cultures do not completely capture the 3D architecture of cells and extracellular matrix contributing to a gap in our understanding of mammalian biology at the tissue level and may explain some of the discrepancies between in vitro and in vivo results. Here, we demonstrated the successful development and characterisation of a physiologically relevant, scaffold-based 3D tissue-engineered neuroblastoma cell model, strongly supporting its value in the evaluation of chemotherapeutics, targeted therapies and investigation of neuroblastoma pathogenesis. The ability to test drugs in this reproducible and controllable tissue-engineered model system will help reduce the attrition rate of the drug development process and lead to more effective and tailored therapies. Importantly, such 3D cell models help to reduce and replace animals for pre-clinical research addressing the principles of the 3Rs.
Collapse
Affiliation(s)
- C Curtin
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - J C Nolan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - R Conlon
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - L Deneweth
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - C Gallagher
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Y J Tan
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - B L Cavanagh
- Cellular and Molecular Imaging Core, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - A Z Asraf
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - H Harvey
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - S Miller-Delaney
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - J Shohet
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, TX, United States
| | - I Bray
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - F J O'Brien
- Tissue Engineering Research Group, Dept. of Anatomy, Royal College of Surgeons in Ireland, Dublin, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - R L Stallings
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - O Piskareva
- Molecular & Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland; National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland.
| |
Collapse
|