1
|
Wu D, Wang J, Du X, Cao Y, Ping K, Liu D. Cucurbit[8]uril-based supramolecular theranostics. J Nanobiotechnology 2024; 22:235. [PMID: 38725031 PMCID: PMC11084038 DOI: 10.1186/s12951-024-02349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/20/2024] [Indexed: 05/12/2024] Open
Abstract
Different from most of the conventional platforms with dissatisfactory theranostic capabilities, supramolecular nanotheranostic systems have unparalleled advantages via the artful combination of supramolecular chemistry and nanotechnology. Benefiting from the tunable stimuli-responsiveness and compatible hierarchical organization, host-guest interactions have developed into the most popular mainstay for constructing supramolecular nanoplatforms. Characterized by the strong and diverse complexation property, cucurbit[8]uril (CB[8]) shows great potential as important building blocks for supramolecular theranostic systems. In this review, we summarize the recent progress of CB[8]-based supramolecular theranostics regarding the design, manufacture and theranostic mechanism. Meanwhile, the current limitations and corresponding reasonable solutions as well as the potential future development are also discussed.
Collapse
Affiliation(s)
- Dan Wu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jianfeng Wang
- Department of Radiotherapy, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China
| | - Xianlong Du
- Bethune First Clinical Medical College, Jilin University, Changchun, 130012, People's Republic of China
| | - Yibin Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Kunmin Ping
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Dahai Liu
- Department of Vascular Surgery, China-Japan Union Hospital, Jilin University, Changchun, 130033, People's Republic of China.
| |
Collapse
|
2
|
Nisa K, Lone IA, Arif W, Singh P, Rehmen SU, Kumar R. Applications of supramolecular assemblies in drug delivery and photodynamic therapy. RSC Med Chem 2023; 14:2438-2458. [PMID: 38107171 PMCID: PMC10718592 DOI: 10.1039/d3md00396e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/11/2023] [Indexed: 12/19/2023] Open
Abstract
One of the world's serious health challenges is cancer. Anti-cancer agents delivered to normal cells and tissues pose several problems and challenges. In this connection, photodynamic therapy (PDT) is a minimally invasive therapeutic technique used for selectively destroying malignant cells while sparing the normal tissues. Development in photosensitisers (PSs) and light sources have to be made for PDT as a first option treatment for patients. In the pursuit of developing new attractive molecules and their formulations for PDT, researchers are working on developing such type of PSs that perform better than those being currently used. For the widespread clinical utilization of PDT, effective PSs are of particular importance. Host-guest interactions based on nanographene assemblies such as functionalized hexa-cata-hexabenzocoronenes, hexa-peri-hexabenzocoronenes and coronene have attracted increasing attention owing to less complicated synthetic steps and purification processes (gel permeation chromatography) during fabrication. Noncovalent interactions provide easy and facile approaches for building supramolecular PSs and enable them to have sensitive and controllable photoactivities, which are important for maximizing photodynamic effects and minimizing side effects. Various versatile supramolecular assemblies based on cyclodextrins, cucurbiturils, calixarenes, porphyrins and pillararenes have been designed in order to make PDT an effective therapeutic technique for curing cancer and tumours. The supramolecular assemblies of porphyrins display efficient electron transfer and fluorescence for use in bioimaging and PDT. The multifunctionalization of supramolecular assemblies is used for designing biomedically active PSs, which are helpful in PDT. It is anticipated that the development of these functionalized supramolecular assemblies will provide more fascinating advances in PDT and will dramatically expand the potential and possibilities in cancer treatments.
Collapse
Affiliation(s)
- Kharu Nisa
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ishfaq Ahmad Lone
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Waseem Arif
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Preeti Singh
- Department of Chemistry, Faculty of Science, Swami Vivekanand Subharti University Meerut-250005 India
| | - Sajad Ur Rehmen
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| | - Ravi Kumar
- Department of Chemistry, Material Chemistry Laboratory, National Institute of Technology Srinagar 190006 India
| |
Collapse
|
3
|
Davis F, Higson SPJ. Synthetic Receptors for Early Detection and Treatment of Cancer. BIOSENSORS 2023; 13:953. [PMID: 37998127 PMCID: PMC10669836 DOI: 10.3390/bios13110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/22/2023] [Indexed: 11/25/2023]
Abstract
Over recent decades, synthetic macrocyclic compounds have attracted interest from the scientific community due to their ability to selectively and reversibly form complexes with a huge variety of guest moieties. These molecules have been studied within a wide range of sensing and other fields. Within this review, we will give an overview of the most common synthetic macrocyclic compounds including cyclodextrins, calixarenes, calixresorcinarenes, pillarenes and cucurbiturils. These species all display the ability to form a wide range of complexes. This makes these compounds suitable in the field of cancer detection since they can bind to either cancer cell surfaces or indeed to marker compounds for a wide variety of cancers. The formation of such complexes allows sensitive and selective detection and quantification of such guests. Many of these compounds also show potential for the detection and encapsulation of environmental carcinogens. Furthermore, many anti-cancer drugs, although effective in in vitro tests, are not suitable for use directly for cancer treatment due to low solubility, inherent instability in in vivo environments or an inability to be adsorbed by or transported to the required sites for treatment. The reversible encapsulation of these species in a macrocyclic compound can greatly improve their solubility, stability and transport to required sites where they can be released for maximum therapeutic effect. Within this review, we intend to present the use of these species both in cancer sensing and treatment. The various macrocyclic compound families will be described, along with brief descriptions of their synthesis and properties, with an outline of their use in cancer detection and usage as therapeutic agents. Their use in the sensing of environmental carcinogens as well as their potential utilisation in the clean-up of some of these species will also be discussed.
Collapse
Affiliation(s)
| | - Séamus P. J. Higson
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK;
| |
Collapse
|
4
|
Emissive‐Dye/Cucurbit[n]uril‐Based Fluorescence Probes for Sensing Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
5
|
Guo H, Wang H, Deng H, Zhang Y, Yang X, Zhang W. Facile preparation of toluidine blue-loaded DNA nanogels for anticancer photodynamic therapy. Front Bioeng Biotechnol 2023; 11:1180448. [PMID: 37143599 PMCID: PMC10151483 DOI: 10.3389/fbioe.2023.1180448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 05/06/2023] Open
Abstract
Photodynamic therapy (PDT) provides an effective therapeutic option for different types of cancer in addition to surgery, radiation, and chemotherapy. The treatment outcome of PDT is largely determined by both the light and dark toxicity of photosensitizers (PSs), which can be technically improved with the assistance of a drug delivery system, especially the nanocarriers. Toluidine blue (TB) is a representative PS that demonstrates high PDT efficacy; however, its application is largely limited by the associated dark toxicity. Inspired by TB's noncovalent binding with nucleic acids, in this study, we demonstrated that DNA nanogel (NG) could serve as an effective TB delivery vehicle to facilitate anticancer PDT. The DNA/TB NG was constructed by the simple self-assembly between TB and short DNA segments using cisplatin as a crosslinker. Compared with TB alone, DNA/TB NG displayed a controlled TB-releasing behavior, effective cellular uptake, and phototoxicity while reducing the dark toxicity in breast cancer cells MCF-7. This DNA/TB NG represented a promising strategy to improve TB-mediated PDT for cancer treatments.
Collapse
Affiliation(s)
- Hua Guo
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huimin Wang
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Deng
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yiyi Zhang
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xue Yang, ; Weiqi Zhang,
| | - Weiqi Zhang
- State Key Laboratory of Medical Molecular Biology and Department of Biomedical Engineering, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Xue Yang, ; Weiqi Zhang,
| |
Collapse
|
6
|
Zhu Y, Zhang X, You Q, Jiang Z. Recent applications of CBT-Cys click reaction in biological systems. Bioorg Med Chem 2022; 68:116881. [PMID: 35716587 DOI: 10.1016/j.bmc.2022.116881] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/02/2022]
Abstract
Click chemistry is a hot topic in many research fields. A biocompatible reaction from fireflies has attracted increasing attention since 2009. Herein, we focus on the firefly-sourced click reaction between cysteine (Cys) and 2-cyanobenzothiazole (2-CBT). This reaction has many excellent properties, such as rapidity, simplicity and high selectivity, which make it successfully applied in protein labeling, molecular imaging, drug discovery and other fields. Meanwhile, its unique ability to form nanoparticles expands its applications in biological systems. We review its principle, development, and latest applications in the past 5 years and hope this review provides more profound and comprehensive insights to its further application.
Collapse
Affiliation(s)
- Yuechao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
7
|
Ye Y, Wang Z, Xu S, Lin X, Luo J, Li W, Wang X. Supramolecular Radical Switches Regulated by Host‐Guest Chemistry. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yu‐Yuan Ye
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Zi‐Xin Wang
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Shi‐Yuan Xu
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Xiao‐Wei Lin
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Jie Luo
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Wen‐Zhen Li
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| | - Xiao‐Qiang Wang
- School of Chemistry and Chemical Engineering Wuhan University of Science and Technology Wuhan 430081 P. R. China
| |
Collapse
|
8
|
Bhattacharya K, Das S, Kundu M, Singh S, Kalita U, Mandal M, Singha NK. Gold Nanoparticle Embedded Stimuli-Responsive Functional Glycopolymer: A Potential Material for Synergistic Chemo-Photodynamic Therapy of Cancer Cells. Macromol Biosci 2022; 22:e2200069. [PMID: 35797485 DOI: 10.1002/mabi.202200069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/20/2022] [Indexed: 11/07/2022]
Abstract
Photodynamic therapy has emerged as a non-invasive treatment modality for several types of cancers. However, conventional hydrophobic photosensitizers (PS) suffer from low water solubility and poor tumor-targeting ability. Therefore, PS modified with glycopolymers can offer adequate water solubility, biocompatibility and tumor-targeting ability due to the presence of multiple sugar units. In this study, a well-defined block copolymer (BCP) poly(3-O-methacryloyl-D-glucopyranose)-b-poly(2-(4-formylbenzoyloxy)ethylmethacrylate) (PMAG-b-PFBEMA) containing pendant glucose and aldehyde units was synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization method. A water-soluble PS (toluidine blue O; TBO) and a potent anti-cancer drug, Doxorubicin (Dox) were introduced to the polymer backbone via acid-labile Schiff-base reaction (PMAG-b-PFBEMA_TBO_Dox). The PMAG-b-PFBEMA_TBO_Dox was then anchored on the surface of AuNP via electrostatic interaction. This hybrid system exhibited excellent reactive oxygen species (ROS) generating ability under exposure of 630 nm LED along with triggered release of Dox under the acidic pH of tumor cells. The in vitro cytotoxicity study on human breast cancer cell line, MDA MB 231, for this hybrid system showed promising results due to the synergistic effect of ROS and Dox released. Thus, this glycopolymer-based dual (chemo-photodynamic) therapy model can work as potential material for future therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Koushik Bhattacharya
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Sudarshan Singh
- Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Uddhab Kalita
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| | - Nikhil K Singha
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India.,School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, West Bengal, 721302, India
| |
Collapse
|
9
|
An J, Tang S, Hong G, Chen W, Chen M, Song J, Li Z, Peng X, Song F, Zheng WH. An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers. Nat Commun 2022; 13:2225. [PMID: 35469028 PMCID: PMC9038921 DOI: 10.1038/s41467-022-29862-9] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/04/2022] [Indexed: 01/25/2023] Open
Abstract
The most common working mechanism of photodynamic therapy is based on high-toxicity singlet oxygen, which is called Type II photodynamic therapy. But it is highly dependent on oxygen consumption. Recently, Type I photodynamic therapy has been found to have better hypoxia tolerance to ease this restriction. However, few strategies are available on the design of Type I photosensitizers. We herein report an unexpected strategy to alleviate the limitation of traditional photodynamic therapy by biotinylation of three photosensitizers (two fluorescein-based photosensitizers and the commercially available Protoporphyrin). The three biotiylated photosensitizers named as compound 1, 2 and 3, exhibit impressive ability in generating both superoxide anion radicals and singlet oxygen. Moreover, compound 1 can be activated upon low-power white light irradiation with stronger ability of anion radicals generation than the other two. The excellent combinational Type I / Type II photodynamic therapy performance has been demonstrated with the photosensitizers 1. This work presents a universal protocol to provide tumor-targeting ability and enhance or trigger the generation of anion radicals by biotinylation of Type II photosensitizers against tumor hypoxia. Type I photodynamic therapy (PDT) sensitizers show good hypoxia tolerance but only few strategies are available for the design of purely organic Type I photosensitizers (PS). Here, the authors use biotinylation as design strategy to obtain PS-Biotin sensitizers with high efficiency for the generation of superoxide anion radicals and singlet oxygen.
Collapse
Affiliation(s)
- Jing An
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Shanliang Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Gaobo Hong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Wenlong Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Miaomiao Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Jitao Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
| | - Zhiliang Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China
| | - Fengling Song
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, China. .,Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, China.
| | - Wen-Heng Zheng
- Department of Interventional Therapy, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, 110042, Shenyang, China.
| |
Collapse
|
10
|
Xue EY, Yang C, Fong WP, Ng DKP. Site-Specific Displacement-Driven Activation of Supramolecular Photosensitizing Nanoassemblies for Antitumoral Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14903-14915. [PMID: 35333503 DOI: 10.1021/acsami.1c23740] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The delivery and activation of photosensitizers in a specific manner is crucial in photodynamic therapy. For an antitumoral application, it can confine the photodynamic action on the cancer cells, thereby enhancing the treatment efficacy and reducing the side effects. We report herein a novel supramolecular photosensitizing nanosystem that can be specifically activated in cancer cells and tumors that overexpress epidermal growth factor receptor (EGFR). It involves the self-assembly of the amphiphilic host-guest complex of a β-cyclodextrin-conjugated phthalocyanine-based photosensitizer (Pc-CD) and a ferrocene-substituted poly(ethylene glycol) (Mn = 2000) (Fc-PEG) in aqueous media. The resulting nanosystem Pc-CD@Fc-PEG with a hydrodynamic diameter of 124-147 nm could not emit fluorescence and generate reactive oxygen species due to the self-quenching effect and the ferrocene-based quencher. Upon interactions with molecules of adamantane substituted with an EGFR-targeting peptide (Ad-QRH*) in water and in EGFR-positive HT29 and A431 cells, the ferrocene guest species were displaced, resulting in disassembly of the nanoparticles and restoration of these photoactivities. The half-maximal inhibitory concentration values were down to 1.24 μM (for HT29 cells). The nanosystem Pc-CD@Fc-PEG could also be activated in an Ad-QRH*-treated HT29 tumor in nude mice, leading to increased intratumoral fluorescence intensity and effective eradication of the tumor upon laser irradiation. The results showed that this two-step supramolecular approach can actualize site-specific photosensitization and minimize nonspecific phototoxicity in a general photodynamic treatment.
Collapse
|
11
|
Nie H, Wei Z, Ni XL, Liu Y. Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chem Rev 2022; 122:9032-9077. [PMID: 35312308 DOI: 10.1021/acs.chemrev.1c01050] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cucurbit[n]urils (Q[n]s or CB[n]s), as a classical of artificial organic macrocyclic hosts, were found to have excellent advantages in the fabricating of tunable and smart organic luminescent materials in aqueous media and the solid state with high emitting efficiency under the rigid pumpkin-shaped structure-derived macrocyclic-confinement effect in recent years. This review aims to give a systematically up-to-date overview of the Q[n]-based supramolecular organic luminescent emissions from the confined spaces triggered host-guest complexes, including the assembly fashions and the mechanisms of the macrocycle-based luminescent complexes, as well as their applications. Finally, challenges and outlook are provided. Since this class of Q[n]-based supramolecular organic luminescent emissions, which have essentially derived from the cavity-dependent confinement effect and the resulting assembly fashions, emerged only a few years ago, we hope this review will provide valuable information for the further development of macrocycle-based light-emitting materials and other related research fields.
Collapse
Affiliation(s)
- Haigen Nie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Zhen Wei
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| | - Xin-Long Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China.,Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Solis-Egaña F, Lavín-Urqueta N, Guerra Díaz D, Mariño-Ocampo N, Faúndez MA, Fuentealba D. Supramolecular co-encapsulation of a photosensitizer and chemotherapeutic drug in cucurbit[8]uril for potential chemophototherapy. Photochem Photobiol Sci 2022; 21:349-359. [PMID: 35088367 DOI: 10.1007/s43630-022-00174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Supramolecular strategies as well as combinatorial approaches have been proposed to improve cancer therapeutics. In this work, we investigated the encapsulation of the photosensitizer acridine orange (AO) and the chemotherapeutic drug oxaliplatin (OxPt) in cucurbit[8]uril (CB[8]), and tested their effect both separate and combined on tumoral cells cultivated in vitro. Binding constants and enthalpies of reaction for the AO@CB[8], (AO)2@CB[8] and OxPt@CB[8] complexes were determined by isothermal titration calorimetry. In the case of AO, a negative cooperativity for the binding of the second AO molecule was found, in agreement with previous fluorescence titration data. We show herein that the AO@CB[8] complex was effectively incorporated within the cells and showed important phototoxicity, while the OxPt@CB[8] complex was cytotoxic only at long incubation times (24 h). Pre-treatment of the cells with the OxPt@CB[8] complex for 24 h inhibited any photodynamic action by the later treatment with the AO@CB[8] complex. However, when both complexes were co-incubated for 90 min, the combined cytotoxicity/phototoxicity was superior to any of the treatments individually. A cooperative effect was identified that added up to an extra 30% cytotoxicity/phototoxicity. The results point to an interesting system where a photosensitizer and chemotherapeutic drug are co-encapsulated in a macrocycle to develop chemophototherapy applications.
Collapse
Affiliation(s)
- Fresia Solis-Egaña
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nicole Lavín-Urqueta
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Daniel Guerra Díaz
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nory Mariño-Ocampo
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Mario A Faúndez
- Escuela de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
13
|
Pham TC, Nguyen VN, Choi Y, Lee S, Yoon J. Recent Strategies to Develop Innovative Photosensitizers for Enhanced Photodynamic Therapy. Chem Rev 2021; 121:13454-13619. [PMID: 34582186 DOI: 10.1021/acs.chemrev.1c00381] [Citation(s) in RCA: 638] [Impact Index Per Article: 212.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review presents a robust strategy to design photosensitizers (PSs) for various species. Photodynamic therapy (PDT) is a photochemical-based treatment approach that involves the use of light combined with a light-activated chemical, referred to as a PS. Attractively, PDT is one of the alternatives to conventional cancer treatment due to its noninvasive nature, high cure rates, and low side effects. PSs play an important factor in photoinduced reactive oxygen species (ROS) generation. Although the concept of photosensitizer-based photodynamic therapy has been widely adopted for clinical trials and bioimaging, until now, to our surprise, there has been no relevant review article on rational designs of organic PSs for PDT. Furthermore, most of published review articles in PDT focused on nanomaterials and nanotechnology based on traditional PSs. Therefore, this review aimed at reporting recent strategies to develop innovative organic photosensitizers for enhanced photodynamic therapy, with each example described in detail instead of providing only a general overview, as is typically done in previous reviews of PDT, to provide intuitive, vivid, and specific insights to the readers.
Collapse
Affiliation(s)
- Thanh Chung Pham
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Van-Nghia Nguyen
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Yeonghwan Choi
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.,Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
14
|
Xue EY, Shi WJ, Fong WP, Ng DKP. Targeted Delivery and Site-Specific Activation of β-Cyclodextrin-Conjugated Photosensitizers for Photodynamic Therapy through a Supramolecular Bio-orthogonal Approach. J Med Chem 2021; 64:15461-15476. [PMID: 34662121 DOI: 10.1021/acs.jmedchem.1c01505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Targeted delivery of photosensitizers using hydrophilic and tumor-directing carriers and site-specific activation of their photocytotoxicity are two common strategies to enhance the specificity of anticancer photodynamic therapy. We report herein a novel supramolecular bio-orthogonal approach to integrate these two functions. A β-cyclodextrin-substituted aza-boron-dipyrromethene-based photosensitizer was first complexed with a ferrocene-substituted black-hole quencher to inhibit its photosensitizing ability. Upon encountering the adamantane moieties that had been delivered to target cancer cells through specific binding of the conjugated peptide to the overexpressed epidermal growth factor receptor, the ferrocene-based guest species were displaced due to the stronger binding interactions between β-cyclodextrin and adamantane, thereby restoring the photodynamic activity of the photosensitizer. Hence, this two-step process enabled targeted delivery and site-specific activation of the photosensitizer, as demonstrated through a series of experiments in aqueous media, in a range of cancer cell lines and in tumor-bearing nude mice.
Collapse
Affiliation(s)
- Evelyn Y Xue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wen-Jing Shi
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| |
Collapse
|
15
|
Lin L, Song X, Dong X, Li B. Nano-photosensitizers for enhanced photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102597. [PMID: 34699982 DOI: 10.1016/j.pdpdt.2021.102597] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Photodynamic therapy (PDT) utilizes photosensitizers (PSs) together with irradiation light of specific wavelength interacting with oxygen to generate cytotoxic reactive oxygen species (ROS), which could trigger apoptosis and/or necrosis-induced cell death in target tissues. During the past two decades, multifunctional nano-PSs employing nanotechnology and nanomedicine developed, which present not only photosensitizing properties but additionally accurate drug release abilities, efficient response to optical stimuli and hypoxia resistance. Further, nano-PSs have been developed to enhance PDT efficacy by improving the ROS yield. In addition, nano-PSs with additive or synergistic therapies are significant for both currently preclinical study and future clinical practice, given their capability of considerable higher therapeutic efficacy under safer systemic drug dosage. In this review, nano-PSs that allow precise drug delivery for efficient absorption by target cells are introduced. Nano-PSs boosting sensitivity and conversion efficiency to PDT-activating stimuli are highlighted. Nano-PSs developed to address the challenging hypoxia conditions during PDT of deep-sited tumors are summarized. Specifically, PSs capable of synergistic therapy and the emerging novel types with higher ROS yield that further enhance PDT efficacy are presented. Finally, future demands for ideal nano-PSs, emphasizing clinical translation and application are discussed.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China
| | - Xuejiao Song
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Xiaocheng Dong
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, Nanjing Technology University, Nanjing 211800, China
| | - Buhong Li
- Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, 350117, China.
| |
Collapse
|
16
|
Dai N, Qi R, Zhao H, Liu L, Lv F, Wang S. Supramolecular Regulation of Catalytic Activity for an Amphiphilic Pyrene-Ruthenium Complex in Water. Chemistry 2021; 27:11567-11573. [PMID: 34060163 DOI: 10.1002/chem.202101668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 11/06/2022]
Abstract
A switchable catalytic system has been designed and constructed with a host-guest interaction between cucurbituril (CB) and an amphiphilic metal complex pyrene-ruthenium (Py-Ru). Py-Ru can self-assemble into positively charged nanoparticles in water, and exhibits an enhanced catalytic efficiency in the transfer hydrogenation of NAD+ to NADH. After forming an inclusion complex with CB, Py-Ru aggregates are broken, leading to a decrease in catalytic efficiency, which can be recovered by competitive replacement with amantadine. This supramolecular strategy provides an efficient and flexible method for constructing reversible catalytic system, which also extends the application scope of the host-guest interaction.
Collapse
Affiliation(s)
- Nan Dai
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ruilian Qi
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hao Zhao
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Yang Y, Tang T, Liu B, Tian J, Wu H, Liu Z, Liu Z, Zhang L, Bao H, Liu T. TB@PLGA Nanoparticles for Photodynamic/Photothermal Combined Cancer Therapy with Single Near-Infrared Irradiation. Int J Nanomedicine 2021; 16:4863-4871. [PMID: 34295159 PMCID: PMC8291662 DOI: 10.2147/ijn.s304713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022] Open
Abstract
Background Phototherapy has significant potential as an effective treatment for cancer. However, the application of a multifunctional nanoplatform for photodynamic therapy (PDT) and photothermal therapy (PTT) at a single excitation wavelength remains a challenge. Materials and Methods The double emulsion solvent evaporation method was used to prepare toluidine blue@poly lactic-co-glycolic acid (TB@PLGA) nanoparticles (NPs). The biocompatibility of TB@PLGA NPs was evaluated, and a 660 nm luminescence was used as the light source. The photothermal effect, photothermal stability, and singlet oxygen yield of NPs in an aqueous solution verified the feasibility of NPs as a PTT/PDT synergistic therapy drug. Results TB@PLGA NPs were successfully prepared and characterized. In vitro experiments demonstrated that TB@PLGA NPs can cause massive necrosis of tumor cells and induce apoptosis through a photodynamic mechanism under 660 nm laser irradiation. The TB@PLGA NPs also achieved optimal tumor inhibition effect in vivo. Conclusion The TB@PLGA NPs prepared in this study were applied as a dual-mode phototherapeutic agent under single laser irradiation. Both in vitro and in vivo experiments demonstrated the good potential of PTT/PDT for tumor inhibitors.
Collapse
Affiliation(s)
- Yue Yang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Taya Tang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Bo Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Jijing Tian
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Haiyan Wu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zhongjie Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| | - Zhaoping Liu
- China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Huihui Bao
- China National Center for Food Safety Risk Assessment, Beijing, People's Republic of China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
18
|
The construction of supramolecular and hybrid Ag-AgCl nanoparticles with photodynamic therapy action on the base of tetraundecylсalix[4]resorcinarene-mPEG conjugate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
19
|
Liu Y, Chen M, Zhao Y, Lv S, Zheng D, Liu D, Song F. A Novel D-A-D Photosensitizer for Efficient NIR Imaging and Photodynamic Therapy. Chembiochem 2021; 22:2161-2167. [PMID: 33871143 DOI: 10.1002/cbic.202100107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/16/2021] [Indexed: 12/14/2022]
Abstract
Photodynamic therapy (PDT) has attracted great interest in cancer theranostics owing to its minimal invasiveness and low side effect. In PDT, photosensitizers are indispensable components that generate cytotoxic reactive oxygen species (ROS). Tremendous efforts have been devoted to optimizing the photosensitizer with enhanced ROS efficiency. However, to improve the precision and controllability for PDT, developing NIR imaging-guided photosensitizers are still urgent and challenging. Here, we have designed a novel photosensitizer 2Cz-BTZ which integrated with intense NIR emission and photoinduced singlet oxygen 1 O2 generation capabilities. Moreover, after loading the photosensitizers 2Cz-BTZ into biocompatible amphiphilic polymers F127, the formed 2Cz-BTZ@F127 nanoparticles (NPs) exhibited good photoinduced therapy as well as long-term in vivo imaging capabilities. Under these merits, the 2Cz-BTZ@F127 NPs showed NIR imaging-guided PDT, which paves a promising way for spatiotemporally precise tumor theranostics.
Collapse
Affiliation(s)
- Yuhan Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - MiaoMiao Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, P. R. China
| | - Yanliang Zhao
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Shibo Lv
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Daoyuan Zheng
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Dapeng Liu
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China
| | - Fengling Song
- Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, 266237, Qingdao, Shandong, P. R. China.,State Key Laboratory of Fine Chemicals, Dalian University of Technology, No. 2 Linggong Road, High-tech District, Dalian, P. R. China
| |
Collapse
|
20
|
Supramolecular Control of Singlet Oxygen Generation. Molecules 2021; 26:molecules26092673. [PMID: 34063309 PMCID: PMC8124681 DOI: 10.3390/molecules26092673] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 11/17/2022] Open
Abstract
Singlet oxygen (1O2) is the excited state electronic isomer and a reactive form of molecular oxygen, which is most efficiently produced through the photosensitized excitation of ambient triplet oxygen. Photochemical singlet oxygen generation (SOG) has received tremendous attention historically, both for its practical application as well as for the fundamental aspects of its reactivity. Applications of singlet oxygen in medicine, wastewater treatment, microbial disinfection, and synthetic chemistry are the direct results of active past research into this reaction. Such advancements were achieved through design factors focused predominantly on the photosensitizer (PS), whose photoactivity is relegated to self-regulated structure and energetics in ground and excited states. However, the relatively new supramolecular approach of dictating molecular structure through non-bonding interactions has allowed photochemists to render otherwise inactive or less effective PSs as efficient 1O2 generators. This concise and first of its kind review aims to compile progress in SOG research achieved through supramolecular photochemistry in an effort to serve as a reference for future research in this direction. The aim of this review is to highlight the value in the supramolecular photochemistry approach to tapping the unexploited technological potential within this historic reaction.
Collapse
|
21
|
Pappalardo A, Gangemi CM, Testa C, Sfrazzetto GT. Supramolecular Assemblies for Photodynamic Therapy. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210122094010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In recent years, supramolecular systems for nano-medicine, and in particular for
photodynamic therapy, have gained great attention for their uses as smart and engineered
therapeutic agents. We proposed a collection of very recent articles on supramolecular complexes
for photodynamic therapy based on different photosensitizers assembled with cyclodextrins,
cucurbiturils, calixarenes, pillararenes, or involved in nanobox and tweezer structures,
nanoparticles, aggregates and micelles, that are dynamic assemblies inspired to biological
systems. Despite the advantages of traditional Photodynamic therapy (PDT), which is a
non-invasive, reliable and highly selective clinical treatment for several pathological conditions,
different drawbacks are still smothering the applicability of this clinical treatment. In
this contest, a new supramolecular approach is emerging, in fact, the reversible formation of
these supramolecular assemblies, combined with the possibility to modify their dimensions and shapes in the presence
of a guest make them similar to biological macromolecules, such as proteins and enzymes. Furthermore, due to
the relatively weak and dynamic nature of supramolecular assemblies, they can undergo assembly and disassembly
very fast as well as responses to external stimuli, such as biological (e.g. enzyme activation), chemical (e.g. redox
potential or pH), and physical (e.g. temperature, light or magnetic fields). Therefore, the responsiveness of these supramolecular
assemblies represents a highly promising approach to obtain potentially personalized PDT.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | - Chiara M.A. Gangemi
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | - Caterina Testa
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania,Italy
| | | |
Collapse
|
22
|
Zhou J, Rao L, Yu G, Cook TR, Chen X, Huang F. Supramolecular cancer nanotheranostics. Chem Soc Rev 2021; 50:2839-2891. [PMID: 33524093 DOI: 10.1039/d0cs00011f] [Citation(s) in RCA: 213] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Among the many challenges in medicine, the treatment and cure of cancer remains an outstanding goal given the complexity and diversity of the disease. Nanotheranostics, the integration of therapy and diagnosis in nanoformulations, is the next generation of personalized medicine to meet the challenges in precise cancer diagnosis, rational management and effective therapy, aiming to significantly increase the survival rate and improve the life quality of cancer patients. Different from most conventional platforms with unsatisfactory theranostic capabilities, supramolecular cancer nanotheranostics have unparalleled advantages in early-stage diagnosis and personal therapy, showing promising potential in clinical translations and applications. In this review, we summarize the progress of supramolecular cancer nanotheranostics and provide guidance for designing new targeted supramolecular theranostic agents. Based on extensive state-of-the-art research, our review will provide the existing and new researchers a foundation from which to advance supramolecular cancer nanotheranostics and promote translationally clinical applications.
Collapse
Affiliation(s)
- Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China.
| | | | | | | | | | | |
Collapse
|
23
|
Cheng G, Luo J, Liu Y, Chen X, Wu Z, Chen T. Cucurbituril-Oriented Nanoplatforms in Biomedical Applications. ACS APPLIED BIO MATERIALS 2020; 3:8211-8240. [PMID: 35019600 DOI: 10.1021/acsabm.0c01061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cucucrbituril (CB) belongs to a family of macrocycles that are easily accessible. Their structural specificity provides excellent molecular recognition capabilities, with the ability to be readily chemically modified. Because of these properties, researchers have found CB to be a useful molecular carrier for delivering drug molecules and therapeutic biomolecules. Their significance lies in the fact that CB not only increases the solubility and stability of an encapsulated guest but also provides the possibility to achieve targeted delivery of the guest molecule. Therefore, the emergence of CB undoubtedly provides opportunities for the development of targeted drug delivery in an era where intelligent drugs have attracted considerable attention. It has also been found that CB can enhance fluorescent dyes, allowing the preparation of biosensors with enhanced sensitivity for use in clinical settings. In the present review, the acquisition, properties, and structural modifications of CB are first comprehensively described, and then the value of this macrocycle in applications within the medical field is discussed. In addition, we have also summarized patent applications of CB in this field over recent years, aiming to illustrate the current status of developments of this molecule. Finally, we discuss the challenges faced by CB in the medical field and future trends in its development.
Collapse
Affiliation(s)
- Guowang Cheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
24
|
Huang B, Wang P, Ouyang Y, Pang R, Liu S, Hong C, Ma S, Gao Y, Tian J, Zhang W. Pillar[5]arene-Based Switched Supramolecular Photosensitizer for Self-Amplified and pH-Activated Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41038-41046. [PMID: 32830945 DOI: 10.1021/acsami.0c10372] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT) has emerged as a promising and spatiotemporally controllable cancer treatment modality. However, serious skin photosensitization during the PDT process limits the clinical application of PDT. Thus, the construction of "smart" and multifunctional photosensitizers has attracted substantial interest. Herein, we develop a mitochondria-targeting and pH-switched hybrid supramolecular photosensitizer by the host-guest interaction. The PDT efficacy of supramolecular photosensitizers can be quenched by the Förster resonance energy transfer (FRET) effect during long circulation and activated by the dissociation of supramolecular photosensitizers in an acidic tumor microenvironment, benefitting from the dynamic feature of the host-guest interaction and pH responsiveness of the water-soluble pillar[5]arene on gold nanoparticles. The rational integration of mitochondria-targeting and reductive glutathione (GSH) elimination in the hybrid switchable supramolecular photosensitizer prolongs the lifetime of reactive oxygen species generated in the PDT near mitochondria and further amplifies the PDT efficacy. Thus, the facile and versatile construction of switchable supramolecular photosensitizer offers not only the targeted and precise phototherapy but also high therapeutic efficacy, which would provide a new path for the clinic application of PDT.
Collapse
Affiliation(s)
- Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Peng Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ruiqi Pang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Siyi Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chenyu Hong
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Shaohua Ma
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Yun Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
25
|
Robinson-Duggon J, Pizarro N, Gunther G, Zúñiga-Núñez D, Edwards AM, Greer A, Fuentealba D. Fatty Acid Conjugates of Toluidine Blue O as Amphiphilic Photosensitizers: Synthesis, Solubility, Photophysics and Photochemical Properties †. Photochem Photobiol 2020; 97:71-79. [PMID: 32619275 DOI: 10.1111/php.13304] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/07/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Toluidine blue O (TBO) is a water-soluble photosensitizer that has been used in photodynamic antimicrobial and anticancer treatments, but suffers from limited solubility in hydrophobic media. In an effort to incrementally increase TBO's hydrophobicity, we describe the synthesis of hexanoic (TBOC6) and myristic (TBOC14) fatty acid derivatives of TBO formed in low to moderate percent yields by condensation with the free amine site. Covalently linking 6 and 14 carbon chains led to modifications of not only TBO's solubility, but also its photophysical and photochemical properties. TBOC6 and TBOC14 derivatives were more soluble in organic solvents and showed hypsochromic shifts in their absorption and emission bands. The solubility in phosphate buffer solution was low for both TBOC6 and TBOC14, but unexpectedly slightly greater in the latter. Both TBOC6 and TBOC14 showed decreased triplet excited-state lifetimes and singlet oxygen quantum yields in acetonitrile, which was attributed to heightened aggregation of these conjugates particularly at high concentrations due to the hydrophobic "tails." While in diluted aqueous buffer solution, indirect measurements showed similar efficiency in singlet oxygen generation for TBOC14 compared to TBO. This work demonstrates a facile synthesis of fatty acid TBO derivatives leading to amphiphilic compounds with a delocalized cationic "head" group and hydrophobic "tails" for potential to accumulate into biological membranes or membrane/aqueous interfaces in PDT applications.
Collapse
Affiliation(s)
- José Robinson-Duggon
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile.,Departamento de Bioquímica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá City, Panamá
| | - Nancy Pizarro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago, Chile
| | - Germán Gunther
- Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica, Universidad de Chile, Santiago, Chile
| | - Daniel Zúñiga-Núñez
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | - Ana María Edwards
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA.,The Graduate Center of the City University of New York, New York, NY, USA
| | - Denis Fuentealba
- Laboratorio de Química Biosupramolecular, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Macul, Santiago, Chile
| |
Collapse
|
26
|
Tian J, Xia L, Wu J, Huang B, Cao H, Zhang W. Linear Alternating Supramolecular Photosensitizer for Enhanced Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32352-32359. [PMID: 32584539 DOI: 10.1021/acsami.0c07333] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Supramolecular polymers with facile and versatile architectures via noncovalent connection present great potential in biological fields. Herein, a linear alternating supramolecular polymer is constructed via host-guest inclusion interaction between cyclodextrin dimer (CD2) and bifunctional adamantane-conjugated porphyrin (TPP-Ad2). The supramolecular alternating structure of CD/TPP could not only suppress the aggregation of PSs to improve the photophysical properties because of the steric hindrance but also enhance the water solubility of PSs induced from cyclodextrin moieties. The nanoplatform obtained by this linear alternating supramolecular polymer (TPP-Ad2/CD2) presents significantly enhanced photodynamic therapy (PDT) efficacy, providing a promising path for PDT.
Collapse
Affiliation(s)
- Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Wu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
27
|
Sowa A, Voskuhl J. Host-guest complexes - Boosting the performance of photosensitizers. Int J Pharm 2020; 586:119595. [PMID: 32629069 DOI: 10.1016/j.ijpharm.2020.119595] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/20/2022]
Abstract
In this review, we will show the diversity of supramolecular host-guest complexes of cyclodextrins, cucurbit[n]urils, calix[n]- and pillar[n]arenes with photosensitizers, like porphyrins and phthalocyanines. Host-guest complexes are one of the main building blocks in supramolecular chemistry. For example, they have been widely used to encapsulate hydrophobic drug molecules to enhance the bioavailability in the human body. In these days of multiresistant bacteria and difficulties in cancer therapy, supramolecular host-guest systems with photosensitizers for the photodynamic therapy(PDT) gain more and more interest. In general, photosensitizers with a (large) conjugated aromatic π-system are used, which tend to π-πstacking in aqueous media suppressing the cell toxicity by singletoxygen production quenching. This can be overcome by the formation of host-guest complexes. Besides that, encapsulation of the photosensitizers in host molecules can enhance the solubility, increase cellular uptake, lead to hydrogels, rotaxanes, and switchable systems.
Collapse
Affiliation(s)
- Andrea Sowa
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany
| | - Jens Voskuhl
- Institute of Organic Chemistry, University of Duisburg-Essen, Universitätsstrasse 2, 45141 Essen, Germany.
| |
Collapse
|
28
|
Fu HG, Chen Y, Yu Q, Liu Y. Polysaccharide-Based Nanoparticles for Two-Step Responsive Release of Antitumor Drug. ACS Med Chem Lett 2020; 11:1191-1195. [PMID: 32551000 DOI: 10.1021/acsmedchemlett.0c00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
A novel two-step in situ method for targeted antitumor drug release by supramolecular assembly (Fc-CPT@HACD) was constructed using camptothecin prodrug (Fc-CPT) and β-cyclodextrin (β-CD)-modified hyaluronic acid (HACD). Benefiting from the overexpressed H2O2 and glutathione (GSH) in tumor cells, Fc-CPT@HACD can be disassembled by oxidation of ferrocene (Fc) to Fc+, leading to an efficient release of the anticancer drug camptothecin (CPT) to induce tumor cell apoptosis without affecting normal cells. The in vivo experiment results also demonstrated that Fc-CPT@HACD possessed higher anticancer efficiency than free CPT, accompanied by negligible side effects.
Collapse
Affiliation(s)
- Hong-Guang Fu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yu Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Tian T, Qian T, Sui X, Yu Q, Liu Y, Liu X, Chen Y, Wang YX, Hu W. Aggregation-Dependent Photoreactive Hemicyanine Assembly as a Photobactericide. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22552-22559. [PMID: 32345006 DOI: 10.1021/acsami.0c03894] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic materials that show substantial reactivity under visible light have received considerable attention due to their wide applications in chemical and biological systems. Hemicyanine pigments possess a strong intramolecular donor-acceptor structure and thereby display intense absorption in the visible spectral region. However, most excitons are consumed via the twisted intramolecular charge-transfer (TICT) process, making hemicyanines generally inert to light. Herein, we describe the development of an amphiphilic hemicyanine dye whose aggregation could be easily regulated using salt or counterions. More importantly, its intrinsic photoreactivity was successfully induced by steric restriction and cofacial arrangement within the H-aggregate, thus creating an effective photobactericide. This strategy could be extended to the development of photocatalysts for photosynthesis and a photosensitizer for photodynamic therapy.
Collapse
Affiliation(s)
- Tian Tian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Tingjuan Qian
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xinyu Sui
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qilin Yu
- Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yingxin Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Xinfeng Liu
- Division of Nanophotonics CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Yulan Chen
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yi-Xuan Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus, Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
30
|
Shao L, Pan Y, Hua B, Xu S, Yu G, Wang M, Liu B, Huang F. Constructing Adaptive Photosensitizers via Supramolecular Modification Based on Pillararene Host–Guest Interactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000338] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Shao
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Bin Hua
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine National Institute of Biomedical Imaging and Bioengineering National Institutes of Health Bethesda MD 20892 USA
| | - Mengbin Wang
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering National University of Singapore 4 Engineering Drive 4 117585 Singapore Singapore
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
31
|
Shao L, Pan Y, Hua B, Xu S, Yu G, Wang M, Liu B, Huang F. Constructing Adaptive Photosensitizers via Supramolecular Modification Based on Pillararene Host-Guest Interactions. Angew Chem Int Ed Engl 2020; 59:11779-11783. [PMID: 32324962 DOI: 10.1002/anie.202000338] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Indexed: 01/13/2023]
Abstract
In order to promote the development of photodynamic therapy (PDT), undesired side effects like low tumor specificity and the "always-on" phenomenon should be avoided. An effective solution is to construct an adaptive photosensitizer that can be activated to generate reactive oxygen species (ROS) in the tumor microenvironment. Herein, we design and synthesize a supramolecular switch based on a host-guest complex containing a water-soluble pillar[5]arene (WP5) and an AIEgen photosensitizer (G). The formation of the host-guest complex WP5⊃G quenches the fluorescence and inhibits ROS generation of G. Benefitting from the pH-responsiveness of WP5, the binding site between G and WP5 changes in an acidic environment through a shuttle movement. Consequently, fluorescence and ROS generation of the host-guest complex can be switched on at pH 5.0. This work offers a new paradigm for the construction of adaptive photosensitizers by using a supramolecular method.
Collapse
Affiliation(s)
- Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yutong Pan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Bin Hua
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Shidang Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Mengbin Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
32
|
Cheng P, Pu K. Activatable Phototheranostic Materials for Imaging-Guided Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5286-5299. [PMID: 31730329 DOI: 10.1021/acsami.9b15064] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cancer theranostics, which combines diagnostic and therapeutic effects into one entity, holds promise in precision medicine. Conventional theranostic agents possess always-on imaging signals and cytotoxic effects and thus often encounter poor selectivity or specificity in cancer treatment. To tackle this issue, activatable phototheranostic materials (PMs) have been developed to simultaneously and specifically turn on their diagnostic signals (fluorescence/self-luminescence/photoacoustic signals) and photothermal/photodynamic effects in response to cancer hallmarks. This Review summarizes the recent progress in the design, synthesis and proof-of-concept applications of activatable PMs. The molecular engineering strategy to increase tumor accumulation and enhance treatment efficacy are highlighted. Current challenges and future perspectives in this emerging field are also discussed.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 70 Nanyang Drive , 637457 Singapore
| |
Collapse
|
33
|
Yang K, Zhang Z, Du J, Li W, Pei Z. Host–guest interaction based supramolecular photodynamic therapy systems: a promising candidate in the battle against cancer. Chem Commun (Camb) 2020; 56:5865-5876. [DOI: 10.1039/d0cc02001j] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article summarizes recent advances in the development of supramolecular photodynamic therapy based on host–guest interactions.
Collapse
Affiliation(s)
- Kui Yang
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhihua Zhang
- Chimie ParisTech
- PSL University
- CNRS
- Institut de Recherche de Chimie Paris
- 75231 Paris
| | - Jie Du
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Wei Li
- Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education
- Key Laboratory of Chemical Biology of Hebei Province
- College of Chemistry and Environmental Science
- Hebei University
- Baoding 071002
| | - Zhichao Pei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling 712100
- P. R. China
| |
Collapse
|
34
|
Jana P, Mukherjee T, Khurana R, Barooah N, Soppina V, Mohanty J, Kanvah S. Fluorescence enhancement of cationic styrylcoumarin-cucurbit[7]uril complexes: Enhanced stability and cellular membrane localization. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112062] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Peng M, Wang XQ, Zhang Y, Li CX, Zhang M, Cheng H, Zhang XZ. Mitochondria-Targeting Thermosensitive Initiator with Enhanced Anticancer Efficiency. ACS APPLIED BIO MATERIALS 2019; 2:4656-4666. [PMID: 35021424 DOI: 10.1021/acsabm.9b00739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As one of the most important organelles in cells, the mitochondrion has been reported to exhibit higher temperatures and is vulnerable to free radicals, especially in cancer cells. Here, we report on the use of a mitochondria-targeted thermosensitive radical initiator for cancer cell killing. The thermal-sensitive radical initiator, V044 (2,2'-azobis [2-(2-imidazolin-2-yl)propane]dihydrochloride), was applied as a radical source, which was linked with a mitochondrial targeting moiety, triphenylphosphine (TPP), to construct the mitochondria-targeting radical initiator (TPPV). Mitochondria were applied as the endogenous thermal source of cells, which accelerated the free radical generation of TPPV. Results showed that TPPV could effectively generate free radicals in the mitochondrial area, and the released free radicals effectively damaged mitochondria, exhibiting an enhanced anticancer efficiency. This therapy based on endogenous mitochondrial heat avoids tissue penetration limits and offers a target for mitochondria-targeting systems.
Collapse
Affiliation(s)
- Mengyun Peng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xiao-Qiang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.,School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yu Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Chu-Xin Li
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Mingkang Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Han Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, China.,The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Xiao B, Wang Q, Zhang S, Li XY, Long SQ, Xiao Y, Xiao S, Ni XL. Cucurbit[7]uril-anchored polymer vesicles enhance photosensitization in the nucleus. J Mater Chem B 2019; 7:5966-5971. [PMID: 31524915 DOI: 10.1039/c9tb01526d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effective photosensitizers (PSs) are highly desirable in many applications, such as photodynamic therapy and catalytic chemistry. Here, we demonstrated that vesicles of cucurbit[7]uril (Q[7] or CB[7])-anchored polymers enhanced photosensitization in the nucleus. The polyacrylic acid chain spacer triggered Q[7] polymers on the surfaces of the vesicles at a regular distance, thus not only leading to efficient inhibition of the aggregation induced self-quenching of the porphyrin based cationic PS in aqueous solution but also maintaining the PS at high concentration on the nanoscale via stable host-guest interactions. Further experiments indicated that Q[7] polymer based vesicles as a PS loading vehicle had a high penetration depth, entering the nuclei of cancer cells. Therefore, highly enhanced photosensitization and efficient anticancer effects were achieved.
Collapse
Affiliation(s)
- Bo Xiao
- Department of Chemistry, School of Basic Medical Science, Guizhou Medical University, Guiyang 550025, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Zhang X, Wu W, Tao Z, Ni XL. Host-guest interactions in nor- seco-cucurbit[10]uril: novel guest-dependent molecular recognition and stereoisomerism. Beilstein J Org Chem 2019; 15:1705-1711. [PMID: 31435444 PMCID: PMC6664405 DOI: 10.3762/bjoc.15.166] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/09/2019] [Indexed: 12/15/2022] Open
Abstract
The unique monomer and excimer fluorescence emissions of pyrene were first exploited as distinctly photophysical signals to identify the possible diastereomers of guests within nor-seco-cucurbit[10]uril (NS-CB[10]) cavities. Further experiments revealed that balancing the hydrophilic and hydrophobic effects of the guest in aqueous solution can improve the molecular recognition and binding ability of NS-CB[10].
Collapse
Affiliation(s)
- Xiaodong Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Wei Wu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| | - Xin-Long Ni
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang 550025, China
| |
Collapse
|
38
|
Wu J, Xia L, Liu Z, Xu Z, Cao H, Zhang W. Fabrication of a Dual‐Stimuli‐Responsive Supramolecular Micelle from a Pillar[5]arene‐Based Supramolecular Diblock Copolymer for Photodynamic Therapy. Macromol Rapid Commun 2019; 40:e1900240. [DOI: 10.1002/marc.201900240] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/16/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Jian Wu
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Lei Xia
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zhu Liu
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Zhiguang Xu
- China‐Australia Institute for Advanced Materials and ManufacturingJiaxing University Jiaxing 314001 China
| | - Hongliang Cao
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry Shanghai 200237 China
- East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
39
|
Khurana R, Kakatkar AS, Chatterjee S, Barooah N, Kunwar A, Bhasikuttan AC, Mohanty J. Supramolecular Nanorods of (N-Methylpyridyl) Porphyrin With Captisol: Effective Photosensitizer for Anti-bacterial and Anti-tumor Activities. Front Chem 2019; 7:452. [PMID: 31294017 PMCID: PMC6598724 DOI: 10.3389/fchem.2019.00452] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/05/2019] [Indexed: 01/02/2023] Open
Abstract
Porphyrins, especially the 5,10,15,20-tetrakis(4-N-methylpyridyl) porphyrin (TMPyP), are well-accepted as photosensitizers due to strong absorption from visible to near-infrared region, good singlet oxygen quantum yields as well as chemical versatility, all of which can be further modulated through planned supramolecular strategies. In this study, we report the construction of supramolecular nanorods of TMPyP dye/drug with captisol [sulfobutylether-β-cyclodextrin (SBE7βCD)] macrocycle through host-guest interaction. The availability of four cationic N-methylpyridyl groups favors multiple binding interaction with the captisol host, building an extended supramolecular assembly of captisol and TMPyP. In addition to the spectroscopic characterizations for the assembly formation, the same has been pictured in SEM and FM images as nanorods of ~10 μm in length or more. Complexation of TMPyP has brought out beneficial features over the uncomplexed TMPyP dye; enhanced singlet oxygen yield, improved photostability, and better photosensitizing effect, all supportive of efficient photodynamic therapy activity. The Captisol:TMPyP complex displayed enhanced antibacterial activity toward E. coli under white light irradiation as compared to TMPyP alone. Cell viability studies performed in lung carcinoma A549 cells with light irradiation documented increased cytotoxicity of the complex toward the cancer cells whereas reduced dark toxicity is observed toward normal CHO cells. All these synergistic effects of supramolecular nanorods of Captisol-TMPyP complex make the system an effective photosensitizer and a superior antibacterial and antitumor agent.
Collapse
Affiliation(s)
- Raman Khurana
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Aarti S Kakatkar
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai, India
| | | | - Nilotpal Barooah
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Kunwar
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Achikanath C Bhasikuttan
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| | - Jyotirmayee Mohanty
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Training School Complex, Mumbai, India
| |
Collapse
|
40
|
Yu G, Chen X. Host-Guest Chemistry in Supramolecular Theranostics. Theranostics 2019; 9:3041-3074. [PMID: 31244941 PMCID: PMC6567976 DOI: 10.7150/thno.31653] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/24/2019] [Indexed: 12/12/2022] Open
Abstract
Macrocyclic hosts, such as cyclodextrins, calixarenes, cucurbiturils, and pillararenes, exhibit unparalleled advantages in disease diagnosis and therapy over the past years by fully taking advantage of their host-guest molecular recognitions. The dynamic nature of the non-covalent interactions and selective host-guest complexation endow the resultant nanomaterials with intriguing properties, holding promising potentials in theranostic fields. Interestingly, the differences in microenvironment between the abnormal and normal cells/tissues can be employed as the stimuli to modulate the host-guest interactions, realizing the purpose of precise diagnosis and specific delivery of drugs to lesion sites. In this review, we summarize the progress of supramolecular theranostics on the basis of host-guest chemistry benefiting from their fantastic topological structures and outstanding supramolecular chemistry. These state-of-the-art examples provide new methodologies to overcome the obstacles faced by the traditional theranostic systems, promoting their clinical translations.
Collapse
Affiliation(s)
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
41
|
Li X, Xiao B, Guo Y, Xiao Y, Xiao S. Cucurbit[7]uril enhances photosensitization of porphyrins in Neuroblastoma cells. Photodiagnosis Photodyn Ther 2019; 25:364-368. [DOI: 10.1016/j.pdpdt.2019.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 01/10/2023]
|
42
|
Chen WH, Luo GF, Zhang XZ. Recent Advances in Subcellular Targeted Cancer Therapy Based on Functional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802725. [PMID: 30260521 DOI: 10.1002/adma.201802725] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/19/2018] [Indexed: 05/24/2023]
Abstract
Recently, diverse functional materials that take subcellular structures as therapeutic targets are playing increasingly important roles in cancer therapy. Here, particular emphasis is placed on four kinds of therapies, including chemotherapy, gene therapy, photodynamic therapy (PDT), and hyperthermal therapy, which are the most widely used approaches for killing cancer cells by the specific destruction of subcellular organelles. Moreover, some non-drug-loaded nanoformulations (i.e., metal nanoparticles and molecular self-assemblies) with a fatal effect on cells by influencing the subcellular functions without the use of any drug molecules are also included. According to the basic principles and unique performances of each treatment, appropriate strategies are developed to meet task-specific applications by integrating specific materials, ligands, as well as methods. In addition, the combination of two or more therapies based on multifunctional nanostructures, which either directly target specific subcellular organelles or release organelle-targeted therapeutics, is also introduced with the intent of superadditive therapeutic effects. Finally, the related challenges of critical re-evaluation of this emerging field are presented.
Collapse
Affiliation(s)
- Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Guo-Feng Luo
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
43
|
Jenni S, Sour A, Bolze F, Ventura B, Heitz V. Tumour-targeting photosensitisers for one- and two-photon activated photodynamic therapy. Org Biomol Chem 2019; 17:6585-6594. [DOI: 10.1039/c9ob00731h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Efficient receptor-mediated delivery of a folate-targeted photosensitiser to kill cancer cells following two-photon excitation in the near-infrared is demonstrated.
Collapse
Affiliation(s)
- Sébastien Jenni
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels
- Institut de Chimie de Strasbourg UMR 7177/CNRS
- Université de Strasbourg
- 67000 Strasbourg
- France
| | - Angélique Sour
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels
- Institut de Chimie de Strasbourg UMR 7177/CNRS
- Université de Strasbourg
- 67000 Strasbourg
- France
| | - Frédéric Bolze
- CAMB
- UMR 7199
- UdS/CNRS
- Faculté de Pharmacie
- Université de Strasbourg
| | | | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels
- Institut de Chimie de Strasbourg UMR 7177/CNRS
- Université de Strasbourg
- 67000 Strasbourg
- France
| |
Collapse
|
44
|
Affiliation(s)
- Cheng‐Yi Zhu
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Mei Pan
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Cheng‐Yong Su
- Lehn Institute of Functional MaterialsSchool of ChemistrySun Yat-Sen University Guangzhou 510275 People's Republic of China
| |
Collapse
|
45
|
Callaghan S, Senge MO. The good, the bad, and the ugly - controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy. Photochem Photobiol Sci 2018; 17:1490-1514. [PMID: 29569665 DOI: 10.1039/c8pp00008e] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Singlet oxygen, although integral to photodynamic therapy, is notoriously uncontrollable, suffers from poor selectivity and has fast decomposition rates in biological media. Across the scientific community, there is a conscious effort to refine singlet oxygen interactions and initiate selective and controlled release to produce a consistent and reproducible therapeutic effect in target tissue. This perspective aims to provide an insight into the contemporary design principles behind photosensitizers and drug delivery systems that depend on a singlet oxygen response or controlled release. The discussion will be accompanied by in vitro and in vivo examples, in an attempt to highlight advancements in the field and future prospects for the more widespread application of photodynamic therapy.
Collapse
Affiliation(s)
- Susan Callaghan
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, 152-160 Pearse Street, Dublin 2, Ireland and Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
46
|
Hovan A, Datta S, Kruglik SG, Jancura D, Miskovsky P, Bánó G. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part I. Theory. J Phys Chem B 2018; 122:5147-5153. [DOI: 10.1021/acs.jpcb.8b00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Sergei G. Kruglik
- Laboratoire Jean Perrin, Sorbonne Universités, UPMC Univ. Paris 6, CNRS UMR 8237, 4 Place Jussieu, 75005 Paris, France
| | | | | | | |
Collapse
|
47
|
Gao J, Li J, Geng WC, Chen FY, Duan X, Zheng Z, Ding D, Guo DS. Biomarker Displacement Activation: A General Host–Guest Strategy for Targeted Phototheranostics in Vivo. J Am Chem Soc 2018; 140:4945-4953. [DOI: 10.1021/jacs.8b02331] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Affiliation(s)
- Stephan Sinn
- Institute of Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland/Germany
| | - Frank Biedermann
- Institute of Nanotechnology (INT); Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland/Germany
| |
Collapse
|
49
|
Al-Burtomani SKS, Suliman FO. Experimental and theoretical study of the inclusion complexes of epinephrine with β-cyclodextrin, 18-crown-6 and cucurbit[7]uril. NEW J CHEM 2018. [DOI: 10.1039/c7nj04766e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Experimental and molecular dynamics techniques suggested that stable complexes of epinephrine with 18C6, βCD and CB7 might enhance aggregation.
Collapse
|
50
|
Koc A, Tuncel D. Supramolecular Assemblies of Cucurbiturils with Photoactive, π-conjugated Chromophores. Isr J Chem 2017. [DOI: 10.1002/ijch.201700114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ahmet Koc
- Department of Chemistry; Bilkent University; Ankara 06800 Turkey
| | - Dönüs Tuncel
- Department of Chemistry; Bilkent University; Ankara 06800 Turkey
- UNAM-National Nanotechnology Research Center, Institute of Materials Science and Nanotechnology; Bilkent University; Ankara 06800 Turkey
| |
Collapse
|