1
|
Chen T, Zhao S, Liu Y, Li G, Cui Y, Qiu J, Lian J, Zhang B. Crystalline MnCO 3@Amorphous MnO x Composite as Cathode Material for High-Performance Aqueous Zinc-Ion Batteries. Inorg Chem 2024; 63:9864-9876. [PMID: 38756060 DOI: 10.1021/acs.inorgchem.4c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Rechargeable aqueous zinc-ion batteries (RAZIBs) have received extensive attention because of their advantages of low cost, high safety, and nontoxicity. However, problems such as dissolution of the active cathode material, dendrites/passivation of the zinc anode, and slow reaction kinetics hindered their further applications. In this work, a crystalline/amorphous composite-type material composed of crystalline MnCO3 and amorphous MnOx was prepared and used as the cathode material for RAZIBs. The MnCO3@amorphous MnOx (MnCO3@A-MnOx) composite possesses the merits of both the pure crystalline phase of MnCO3 and the amorphous phase of MnOx, which can deliver better electrochemical performance than the corresponding single component in repeated cycles. In addition, crystalline MnCO3 undergoes a complex phase transition to the active MnO2 during the first charge process, providing the composite with a stable structure and additional electrochemical capacity. The electrochemical measurement results indicate that the MnCO3@A-MnOx electrode can display high reversible discharge capacity at 0.1 A g-1, excellent rate performance at 5.0 A g-1, and long cycling stability over 2000 cycles, showing great potential as a cathode material for high-performance RAZIBs.
Collapse
Affiliation(s)
- Ting Chen
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
| | - Shuo Zhao
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
| | - Yuanfeng Liu
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
| | - Guochun Li
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
- Huizhou Research Institute, Sun Yat-sen University, Huizhou 516081, China
| | - Yingxue Cui
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
| | - Jingxia Qiu
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
- School of Physical and Mathematical Science, Nanjing Tech University, Nanjing 211816, China
| | - Jiabiao Lian
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
| | - Bo Zhang
- Institute for Energy Research, Zhenjiang Key Laboratory of Power Battery and Energy Storage, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
2
|
Mavioğlu Kaya M, Deveci HA, Kaya İ, Atar N, Yola ML. The Electrochemical Detection of Ochratoxin A in Apple Juice via MnCO 3 Nanostructures Incorporated into Carbon Fibers Containing a Molecularly Imprinting Polymer. BIOSENSORS 2023; 13:760. [PMID: 37622846 PMCID: PMC10452824 DOI: 10.3390/bios13080760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023]
Abstract
A novel electrochemical sensor based on MnCO3 nanostructures incorporated into carbon fibers (MnCO3NS/CF), including a molecularly imprinting polymer (MIP), was developed for the determination of Ochratoxin A (OTA). In this study, a sensitive and selective sensor design for OTA detection was successfully performed by utilizing the selectivity and catalysis properties of MIP and the synthesized MnCO3NS/CF material at the same time. MnCO3 nanostructures incorporated into carbon fibers were first characterized by using various analytical techniques. The sensor revealed a linearity towards OTA in the range of 1.0 × 10-11-1.0 × 10-9 mol L-1 with a detection limit (LOD) of 2.0 × 10-12 mol L-1. The improved electrochemical signal strategy was achieved by high electrical conductivity on the electrode surface, providing fast electron transportation. In particular, the analysis process could be finished in less than 5.0 min without complex and expensive equipment. Lastly, the molecular imprinted electrochemical sensor also revealed superior stability, repeatability and reproducibility.
Collapse
Affiliation(s)
- Müge Mavioğlu Kaya
- Department of Molecular Biology and Genetic, Faculty of Arts and Sciences, Kafkas University, Kars 36000, Turkey;
| | - Haci Ahmet Deveci
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Gaziantep University, Gaziantep 27000, Turkey;
| | - İnan Kaya
- Department of Biology, Faculty of Arts and Sciences, Kafkas University, Kars 36000, Turkey;
| | - Necip Atar
- Department of Chemical Engineering, Faculty of Engineering, Pamukkale University, Denizli 20000, Turkey;
| | - Mehmet Lütfi Yola
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hasan Kalyoncu University, Gaziantep 27000, Turkey
| |
Collapse
|
3
|
Natarajan S, Akshay M, Aravindan V. MnCO 3 Cuboids from Spent LIBs: A New Age Displacement Anode to Build High-Performance Li-Ion Capacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206226. [PMID: 36693780 DOI: 10.1002/smll.202206226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
The advantage of hybridizing battery and supercapacitor electrodes has succeeded recently in designing hybrid charge storage systems such as lithium-ion capacitors (LICs) with the benefits of higher energy than supercapacitors and more power density than batteries. However, sluggish Li-ion diffusion of battery anode is one of the main barriers and hampers the development of high-performance LICs. Herein, is introduced a new conversion/displacement type anode, MnCO3 , via effectively recycling spent Li-ion batteries cathodes for LICs applications. The MnCO3 cuboids are regenerated from the spent LiMn2 O4 cathodes by organic acid lixiviation process, and hydrothermal treatment displays excellent reversibility of 535 mAh g-1 after 50 cycles with a Coulombic efficiency of >99%. Later, LIC is assembled with the regenerated MnCO3 cubes in pre-lithiated form (Mn0 + Li2 CO3 ) as anode and commercial activated carbon (AC) as the cathode, delivering a maximum energy density of 169.4 Wh kg-1 at 25 °C with ultra-long durability of 15,000 cycles. Even at various atmospheres like -5 and 50 °C, this LIC can offer a energy densities of 53.8 and 119.5 Wh kg-1 , respectively. Remarkably, the constructed AC/Mn0 + Li2 CO3 -based LIC exhibits a good cycling performance for a continuous 1000 cycles with >91% retention invariably for all temperature conditions.
Collapse
Affiliation(s)
- Subramanian Natarajan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India
| | - Manohar Akshay
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India
| | - Vanchiappan Aravindan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
4
|
Echavarri-Bravo V, Amari H, Hartley J, Maddalena G, Kirk C, Tuijtel MW, Browning ND, Horsfall LE. Selective bacterial separation of critical metals: towards a sustainable method for recycling lithium ion batteries. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2022; 24:8512-8522. [PMID: 36353209 PMCID: PMC9621301 DOI: 10.1039/d2gc02450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The large scale recycling of lithium ion batteries (LIBs) is essential to satisfy global demands for the raw materials required to implement this technology as part of a clean energy strategy. However, despite what is rapidly becoming a critical need, an efficient and sustainable recycling process for LIBs has yet to be developed. Biological reactions occur with great selectivity under mild conditions, offering new avenues for the implementation of more environmentally sustainable processes. Here, we demonstrate a sequential process employing two bacterial species to recover Mn, Co and Ni, from vehicular LIBs through the biosynthesis of metallic nanoparticles, whilst Li remains within the leachate. Moreover the feasibility of Mn recovery from polymetallic solutions was demonstrated at semi-pilot scale in a 30 L bioreactor. Additionally, to provide insight into the biological process occurring, we investigated selectivity between Co and Ni using proteomics to identify the biological response and confirm the potential of a bio-based method to separate these two essential metals. Our approach determines the principles and first steps of a practical bio-separation and recovery system, underlining the relevance of harnessing biological specificity for recycling and up-cycling critical materials.
Collapse
Affiliation(s)
- Virginia Echavarri-Bravo
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Houari Amari
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool Liverpool L69 3GQ UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Jennifer Hartley
- School of Chemistry, University of Leicester Leicester LE1 7RH UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Giovanni Maddalena
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| | - Caroline Kirk
- School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| | - Maarten W Tuijtel
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
| | - Nigel D Browning
- Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool Liverpool L69 3GQ UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
- Sivananthan Laboratories 590 Territorial Drive Bolingbrook IL 60440 USA
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory P.O. Box 999 Richland WA 99352 USA
| | - Louise E Horsfall
- School of Biological Sciences, University of Edinburgh Edinburgh EH9 3FF UK
- Faraday Institution (ReLiB project) Quad One Harwell Science and Innovation Campus Didcot UK
| |
Collapse
|
5
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
6
|
Hao R, Wang J, Yao S, Lan Y, Li D, Feng X. The 3D networked MnCO3-C composite as anode materials for lithium ion batteries. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Brugman SJT, Ottenbros AB, Megens F, van Enckevort WJP, Vlieg E. Epitaxy of Rhodochrosite (MnCO 3) on Muscovite Mica and Its Relation with Calcite (CaCO 3). CRYSTAL GROWTH & DESIGN 2020; 20:4802-4810. [PMID: 33828440 PMCID: PMC8016177 DOI: 10.1021/acs.cgd.0c00578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Indexed: 06/12/2023]
Abstract
The flatness of muscovite mica makes it a convenient substrate to study epitaxy. We have analyzed the growth of rhodochrosite (MnCO3) crystals in solution and on muscovite mica. Growth at high supersaturations occurs via the formation of amorphous MnCO3, which over time transforms into the crystalline form. In the presence of muscovite mica, epitaxial rhodochrosite crystals with a size of approximately 1 μm form. These crystals are kinetically roughened, because of the high supersaturation. The lattice match between MnCO3 and muscovite was found not to be the main reason for epitaxy. If the growth experiment is performed twice, the original epitaxial MnCO3 crystals are overgrown by many small crystallites. Similarly, spherical MnCO3 crystals with many overgrown facets can be formed on a muscovite surface that is exposed to humidity or by using a higher MnCO3 supersaturation. A comparison with calcite shows that epitaxy strongly depends on initial supersaturation for both carbonates. In contrast to previous studies, we find that at the right supersaturation, epitaxial calcite crystal growth is possible on freshly cleaved muscovite.
Collapse
|
8
|
Alagar S, Madhuvilakku R, Mariappan R, Karuppiah C, Yang CC, Piraman S. Ultra-stable Mn 1-xNi xCO 3 nano/sub-microspheres positive electrodes for high-performance solid-state asymmetric supercapacitors. Sci Rep 2020; 10:8871. [PMID: 32483292 PMCID: PMC7264220 DOI: 10.1038/s41598-020-64867-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/21/2019] [Indexed: 11/17/2022] Open
Abstract
Long-term cycling performance of electrodes for application in supercapcitor has received large research interest in recent years. Ultra-stable Mn1-xNixCO3 (x-0, 0.20, 0.25 and 0.30) nano/sub-microspheres were synthesized via simple co-precipitation method and the Mn1-xNixCO3 was confirmed by XRD, FT-IR, XPS and their morphology was studied by SEM and TEM analysis. Among the various Mn1-xNixCO3 electrodes, the Mn0.75Ni0.25CO3 electrode exhibited the higher specific capacitance (364 F g-1 at 1 A g-1) with capacity retention of 96% after 7500 cycles at 5 A g-1. Moreover, the assembled solid-state asymmetric supercapacitor based on Mn0.75Ni0.25CO3//graphene nanosheets performed a high specific capacity of 46 F g-1 and energy density of 25 Wh kg-1 at a power density of 499 W kg-1 along with high capacity retention of 87.7% after 7500 cycles. The improved electrochemical performances are mainly owing to the intrinsic conductivity and electrochemical activity of MnCO3 after Mn1-xNixCO3 (x-0.20, 0.25 and 0.30) with appropriate Ni concentration. This study highlights the potentiality of the Mn0.75Ni0.25CO3//GNS asymmetric supercapacitor device for promising energy storage applications.
Collapse
Affiliation(s)
- Srinivasan Alagar
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630002, Tamil Nadu, India
| | - Rajesh Madhuvilakku
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630002, Tamil Nadu, India
| | - Ramalakshmi Mariappan
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630002, Tamil Nadu, India
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, ROC, Taiwan
| | - Chun-Chen Yang
- Battery Research Center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, ROC, Taiwan
| | - Shakkthivel Piraman
- Sustainable Energy and Smart Materials Research Lab, Department of Nanoscience and Technology, Science Campus, Alagappa University, Karaikudi, 630002, Tamil Nadu, India.
| |
Collapse
|
9
|
Vardhan Palem V, Balarabe Idris M, Subramaniam T, Sappani D. The Charge Storage Mechanism of MnCO
3
in Aqueous Electrolytes. ChemistrySelect 2020. [DOI: 10.1002/slct.201904720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vishnu Vardhan Palem
- Department of Chemistry, Centre for Energy Storage & Conversion, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
- Department of Biotechnology, Saveetha School of EngineeringSaveetha Institute of Medical and Technical Sciences (SIMATS) Chennai 602105 India
| | - Mustapha Balarabe Idris
- Department of Chemistry, Centre for Energy Storage & Conversion, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - Thiruvenkatam Subramaniam
- Department of Chemistry, Centre for Energy Storage & Conversion, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| | - Devaraj Sappani
- Department of Chemistry, Centre for Energy Storage & Conversion, School of Chemical and Biotechnology SASTRA Deemed University Thanjavur 613401 India
| |
Collapse
|
10
|
Zhao Y, Mu Y, Wang L, Liu M, Lai X, Bi J, Gao D, Chen Y. MnCO3-RGO composite anode materials: In-situ solvothermal synthesis and electrochemical performances. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Nickel self-doped iron oxide/manganese carbonate hierarchical 2D/3D structures for electrochemical energy storage. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Recent Progress and Challenges of Micro-/Nanostructured Transition Metal Carbonate Anodes for Lithium Ion Batteries. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800853] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Boosting the lithium-ion storage performance of dense MnCO3 microsphere anodes via Sb-substitution and construction of neural-like carbon nanotube networks. J APPL ELECTROCHEM 2018. [DOI: 10.1007/s10800-018-1212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
14
|
Effect of Ni content in Ni Mn1-CO3 (x = 0, 0.20, 0.25, 0.33) submicrospheres on the performances of rechargeable lithium ion batteries. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Different solid electrolyte interface and anode performance of CoCO3 microspheres due to graphene modification and LiCoO2||CoCO3@rGO full cell study. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Chang JH, Cheong JY, Yuk JM, Kim C, Kim SJ, Seo HK, Kim ID, Lee JY. Direct Realization of Complete Conversion and Agglomeration Dynamics of SnO 2 Nanoparticles in Liquid Electrolyte. ACS OMEGA 2017; 2:6329-6336. [PMID: 31457239 PMCID: PMC6645017 DOI: 10.1021/acsomega.7b01046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/22/2017] [Indexed: 05/07/2023]
Abstract
The conversion reaction is important in lithium-ion batteries because it governs the overall battery performance, such as initial Coulombic efficiency, capacity retention, and rate capability. Here, we have demonstrated in situ observation of the complete conversion reaction and agglomeration of nanoparticles (NPs) upon lithiation by using graphene liquid cell transmission electron microscopy. The observation reveals that the Sn NPs are nucleated from the surface of SnO2, followed by merging with each other. We demonstrate that the agglomeration has a stepwise process, including rotation of a NP, formation of necks, and subsequent merging of individual NPs.
Collapse
Affiliation(s)
- Joon Ha Chang
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jun Young Cheong
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jong Min Yuk
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Chanhoon Kim
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Sung Joo Kim
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Hyeon Kook Seo
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Il-Doo Kim
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
- E-mail: (I.-D.K.)
| | - Jeong Yong Lee
- Center
for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), 1689 Yuseong Dae-ro 70, Daejeon 305-701, Republic of Korea
- Department
of Materials Science & Engineering, Korea Advanced Institute of Science & Technology, 335 Science Road, Daejeon 305-701, Republic of Korea
- E-mail: (J.Y.L.)
| |
Collapse
|
17
|
Mu Y, Wang L, Zhao Y, Liu M, Zhang W, Wu J, Lai X, Fan G, Bi J, Gao D. 3D flower-like MnCO3 microcrystals: evolution mechanisms of morphology and enhanced electrochemical performances. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.08.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|