1
|
Dai L, Yuan J, Xu J, Lou J, Fan X. Reversible bacteria-killing and bacteria-releasing cotton fabric with anti-bacteria adhesion ability for potential sustainable protective clothing applications. Int J Biol Macromol 2023; 253:126580. [PMID: 37659495 DOI: 10.1016/j.ijbiomac.2023.126580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Multifunctional antibacterial surfaces are playing an essential role in various areas. Smart antibacterial materials equipped with switchable "bacteria-killing" and "bacteria-releasing" abilities have been created by scientists. However, most of them are either biologically incompatible, or complex fabricating procedures, or cannot prevent themselves from being attached by bacteria. In this work, a double-layer smart antibacterial surface was created easily by simple surface initiate atom transfer radical polymerization: the upper layer PSBMA provides anti-bacteria adhesion capacity, the NCl bond can show bacteria-killing ability and the under layer PNIPAM can exhibit bacteria-releasing property. Remarkably, the NCl bond can interconvert with the NH bond easily, which allows switching between bacteria-killing and bacteria-releasing. As a result, the functional cotton fabrics can resist about 99.66 % of bacteria attaching, kill nearly 100 % of attached bacteria after 5 min contacting and release about 99.02 % of the formerly attached bacteria. Furthermore, the functional cotton fabric kept excellent anti-bacteria adhesion ability (about 99.27 %) and bacteria-releasing capacity (about 98.30 %) after 9 cycles of re-chlorination. In general, a reversible "bacteria-killing" and "bacteria-releasing" cotton fabric was fabricated with well anti-bacteria adhesion capacity in a simple way, and this smart multifunctional cotton fabric shows a great potential application in reusable protective clothing.
Collapse
Affiliation(s)
- Li Dai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
2
|
Mahmoudi-Qashqay S, Zamani-Meymian MR, Sadati SJ. Improving antibacterial ability of Ti-Cu thin films with co-sputtering method. Sci Rep 2023; 13:16593. [PMID: 37789153 PMCID: PMC10547835 DOI: 10.1038/s41598-023-43875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023] Open
Abstract
Due to the resistance of some bacteria to antibiotics, research in the field of dealing with bacterial infections is necessary. A practical approach utilized in this study involves the preparation of an antibacterial thin film on the surfaces, which can effectively inhibit and reduce biofilm formation and bacterial adherence. In this study, we report the fabrication of bactericidal titanium (Ti) and copper (Cu) surfaces which involves a powerful co-sputtering method. This method provides a situation in which constituent elements are deposited simultaneously to control the composition of the thin film. Prepared samples were examined by energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and contact angle measurements. To evaluate antibacterial behavior, we used two bacterial strains Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). Antibacterial activity of the prepared sample was assessed by determining the number of colony-forming units per milliliter (CFU/ml) using a standard viable cell count assay. Results indicated that as the Cu concentration increased, the nanoscale surfaces became rougher, with roughness values rising from 11.85 to 49.65 nm, and the contact angle increased from 40 to 80 degrees, indicating a hydrophilic character. These factors play a significant role in the antibacterial properties of the surface. The Ti-Cu films displayed superior antibacterial ability, with a 99.9% reduction (equivalent to a 5-log reduction) in bacterial viability after 2 h compared to Ti alone against both bacterial strains. Field emission scanning electron microscopy (FE-SEM) images verified that both E. coli and S. aureus cells were physically deformed and damaged the bacterial cell ultrastructure was observed. These findings highlight that adding Cu to Ti can improve the antibacterial ability of the surface while inhibiting bacterial adherence. Therefore, the Ti14-Cu86 sample with the highest percentage of Cu had the best bactericidal rate. Investigation of toxicity of Cu-Ti thin films was conducted the using the MTT assay, which revealed their biocompatibility and absence of cytotoxicity, further confirming their potential as promising biomaterials for various applications.
Collapse
Affiliation(s)
- Samaneh Mahmoudi-Qashqay
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| | | | - Seyed Javad Sadati
- Department of Physics, Iran University of Science and Technology, P.O. Box 16846-13114, Tehran, Iran
| |
Collapse
|
3
|
Khan SA, Shakoor A. Recent Strategies and Future Recommendations for the Fabrication of Antimicrobial, Antibiofilm, and Antibiofouling Biomaterials. Int J Nanomedicine 2023; 18:3377-3405. [PMID: 37366489 PMCID: PMC10290865 DOI: 10.2147/ijn.s406078] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/06/2023] [Indexed: 06/28/2023] Open
Abstract
Biomaterials and biomedical devices induced life-threatening bacterial infections and other biological adverse effects such as thrombosis and fibrosis have posed a significant threat to global healthcare. Bacterial infections and adverse biological effects are often caused by the formation of microbial biofilms and the adherence of various biomacromolecules, such as platelets, proteins, fibroblasts, and immune cells, to the surfaces of biomaterials and biomedical devices. Due to the programmed interconnected networking of bacteria in microbial biofilms, they are challenging to treat and can withstand several doses of antibiotics. Additionally, antibiotics can kill bacteria but do not prevent the adsorption of biomacromolecules from physiological fluids or implanting sites, which generates a conditioning layer that promotes bacteria's reattachment, development, and eventual biofilm formation. In these viewpoints, we highlighted the magnitude of biomaterials and biomedical device-induced infections, the role of biofilm formation, and biomacromolecule adhesion in human pathogenesis. We then discussed the solutions practiced in healthcare systems for curing biomaterials and biomedical device-induced infections and their limitations. Moreover, this review comprehensively elaborated on the recent advances in designing and fabricating biomaterials and biomedical devices with these three properties: antibacterial (bacterial killing), antibiofilm (biofilm inhibition/prevention), and antibiofouling (biofouling inhibition/prevention) against microbial species and against the adhesion of other biomacromolecules. Besides we also recommended potential directions for further investigations.
Collapse
Affiliation(s)
- Shakeel Ahmad Khan
- Department of Applied Biology and Chemical Technology, the Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| |
Collapse
|
4
|
Liao W, Jin M. Strategies to develop α-aminoketone derivatives photoinitiators with low migration ability for UV–vis LED photopolymerization. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
5
|
High-Performance Photoinitiating Systems for LED-Induced Photopolymerization. Polymers (Basel) 2023; 15:polym15020342. [PMID: 36679223 PMCID: PMC9860695 DOI: 10.3390/polym15020342] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Currently, increasing attention has been focused on light-emitting diodes (LEDs)-induced photopolymerization. The common LEDs (e.g., LED at 365 nm and LED at 405 nm) possess narrow emission bands. Due to their light absorption properties, most commercial photoinitiators are sensitive to UV light and cannot be optimally activated under visible LED irradiation. Although many photoinitiators have been designed for LED-induced free radical polymerization and cationic polymerization, there is still the issue of the mating between photoinitiators and LEDs. Therefore, the development of novel photoinitiators, which could be applied under LED irradiation, is significant. Many photoinitiating systems have been reported in the past decade. In this review, some recently developed photoinitiators used in LED-induced photopolymerization, mainly in the past 5 years, are summarized and categorized as Type Ⅰ photoinitiators, Type Ⅱ photoinitiators, and dye-based photoinitiating systems. In addition, their light absorption properties and photoinitiation efficiencies are discussed.
Collapse
|
6
|
Liao W, Liao Q, Xiong Y, Li Z, Tang H. Design, synthesis and properties of carbazole-indenedione based photobleachable photoinitiators for photopolymerization. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Verma M, Dar AI, Acharya A. Facile synthesis of biogenic silica nanomaterial loaded transparent tragacanth gum hydrogels with improved physicochemical properties and inherent anti-bacterial activity. NANOSCALE 2022; 14:11635-11654. [PMID: 35904404 DOI: 10.1039/d2nr02051c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this report, biogenic, crystalline (∼60.5 ± 2%) bowknot structured silica nanoparticles (BSNPs) of length ∼ 274 ± 7 nm and width ∼ 36 ± 2 nm were isolated from invasive species viz. Lantana camara. These were then chemically modified using nitrogen containing moieties viz. APTES and CTAB. These modified BSNPs were then used as electrostatic cross-linking agents for the formation of tragacanth gum (TG) hydrogels. The cytocompatible CTAB@BSNP-TG hydrogels documented ∼10-12 fold enhancement in anti-bacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa when compared with TG hydrogels. Disruption of the bacterial membrane by ROS generation and protein leakage were responsible for anti-bacterial activity. A cell migration assay suggested that CTAB@BSNP-TG augmented the cell proliferation of NIH-3T3 cells compared to other TG hydrogels. The present study will pave the path for the development of organic-inorganic hybrid nanocomposite-based hydrogels for anti-bacterial and cell migration applications.
Collapse
Affiliation(s)
- Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, H.P., 176061, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Cao H, Qiao S, Qin H, Jandt KD. Antibacterial Designs for Implantable Medical Devices: Evolutions and Challenges. J Funct Biomater 2022; 13:jfb13030086. [PMID: 35893454 PMCID: PMC9326756 DOI: 10.3390/jfb13030086] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/17/2022] [Indexed: 11/25/2022] Open
Abstract
The uses of implantable medical devices are safer and more common since sterilization methods and techniques were established a century ago; however, device-associated infections (DAIs) are still frequent and becoming a leading complication as the number of medical device implantations keeps increasing. This urges the world to develop instructive prevention and treatment strategies for DAIs, boosting the studies on the design of antibacterial surfaces. Every year, studies associated with DAIs yield thousands of publications, which here are categorized into four groups, i.e., antibacterial surfaces with long-term efficacy, cell-selective capability, tailored responsiveness, and immune-instructive actions. These innovations are promising in advancing the solution to DAIs; whereas most of these are normally quite preliminary “proof of concept” studies lacking exact clinical scopes. To help identify the flaws of our current antibacterial designs, clinical features of DAIs are highlighted. These include unpredictable onset, site-specific incidence, and possibly involving multiple and resistant pathogenic strains. The key point we delivered is antibacterial designs should meet the specific requirements of the primary functions defined by the “intended use” of an implantable medical device. This review intends to help comprehend the complex relationship between the device, pathogens, and the host, and figure out future directions for improving the quality of antibacterial designs and promoting clinical translations.
Collapse
Affiliation(s)
- Huiliang Cao
- Interfacial Electrochemistry and Biomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science & Technology, Shanghai 200237, China
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Shichong Qiao
- Department of Implant Dentistry, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Hui Qin
- Department of Orthopaedics, Shanghai Jiaotong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| | - Klaus D. Jandt
- Chair of Materials Science, Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, 07743 Jena, Germany
- Jena School for Microbial Communication (JSMC), Neugasse 23, 07743 Jena, Germany
- Correspondence: (H.C.); (S.Q.); (H.Q.); (K.D.J.)
| |
Collapse
|
9
|
Huang Z, Zhang D, Gu Q, Miao J, Cen X, Golodok RP, Savich VV, Ilyushchenko AP, Zhou Z, Wang R. One-step coordination of metal-phenolic networks as antibacterial coatings with sustainable and controllable copper release for urinary catheter applications. RSC Adv 2022; 12:15685-15693. [PMID: 35685702 PMCID: PMC9132196 DOI: 10.1039/d2ra01675c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) draw great concern due to increased demand for urinary catheters in hospitalization. Encrustation caused by urinary pathogens, especially Proteus mirabilis, results in blocking of the catheter lumen and further infections. In this study, a facile and low-cost surface modification strategy of urinary catheters was developed using one-step coordination of tannic acid (TA) and copper ions. The copper content of the coating could be manipulated by the number of TA-Cu (TC) layers, and the coating released copper in a pH-responsive manner. The coating exhibited high antibacterial efficiency (killed >99% of planktonic bacteria, and reduced biofilm coverage to <1% after 24 h) due to the synergistic antimicrobial effect of TA and copper ions. In vivo study with a rabbit model indicated that with two TC layers, the coated catheter could effectively inhibit bacterial growth in urine and colonization on the surface, and reduce encrustation formation. In addition, the TC-coated catheter exhibited better tissue compatibility compared to the unmodified catheter, probably due to the antibacterial performance of the coating. Such a straightforward coating strategy with good in vitro and in vivo antibacterial properties and biocompatibility holds great promise for combating CAUTIs in clinical practice.
Collapse
Affiliation(s)
- Zhimao Huang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| | - Dawei Zhang
- Department of Urology, The Southwest Hospital, Army Medical University No. 30 Gaotanyan Street, Shapingba District Chongqing 400038 China
| | - Qinwei Gu
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| | - Jiru Miao
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| | - Xiao Cen
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University No. 14, 3rd Section, South Renmin Road Chengdu 610041 China
| | - Robert Petrovich Golodok
- SSI O V Roman Powder Metallurgy Institute, National Academy of Sciences of Belarus Minsk 220005 Belarus
| | - Vadim Victorovich Savich
- SSI O V Roman Powder Metallurgy Institute, National Academy of Sciences of Belarus Minsk 220005 Belarus
| | | | - Zhansong Zhou
- Department of Urology, The Southwest Hospital, Army Medical University No. 30 Gaotanyan Street, Shapingba District Chongqing 400038 China
| | - Rong Wang
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Zhejiang Engineering Research Center for Biomedical Materials, Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo 315300 China
| |
Collapse
|
10
|
Shevtsova T, Cavallaro G, Lazzara G, Milioto S, Donchak V, Harhay K, Korolko S, Budkowski A, Stetsyshyn Y. Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128525] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Abstract
Metal nanoparticles (NPs) are increasingly being used in many areas, e.g., industry, pharmacy, and biomedical engineering. NPs can be obtained through chemical and biological synthesis or using physical methods. AgNPs, AuNPs, CuNPs, FeNPs, MgNPs, SnO2NPs, TiO2NPs, and ZnONPs are the most commonly synthesized metal nanoparticles. Many of them have anti-microbial properties and documented activity supported by many tests against some species of pathogenic bacteria, viruses, and fungi. AgNPs, which are used for the production of commercial self-sterilizing packages, are one of the best-explored nanoparticles. Moreover, the EFSA has approved the use of small doses of silver nanoparticles (0.05 mg Ag·kg−1) to food products. Recent studies have shown that metal NPs can be used for the production of coatings to prevent the spread of the SARS-CoV-2 virus, which has caused the global pandemic. Some nanoparticles (e.g., ZnONPs and MgONPs) have the Generally Recognized As Safe (GRAS) status, i.e., they are considered safe for consumption and can be used for the production of edible coatings, protecting food against spoilage. Promising results have been obtained in research on the use of more than one type of nanometals, which prevents the development of pathogen resistance through various mechanisms of inactivation thereof.
Collapse
|
12
|
Elashnikov R, Ulbrich P, Vokatá B, Pavlíčková VS, Švorčík V, Lyutakov O, Rimpelová S. Physically Switchable Antimicrobial Surfaces and Coatings: General Concept and Recent Achievements. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3083. [PMID: 34835852 PMCID: PMC8619822 DOI: 10.3390/nano11113083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 11/24/2022]
Abstract
Bacterial environmental colonization and subsequent biofilm formation on surfaces represents a significant and alarming problem in various fields, ranging from contamination of medical devices up to safe food packaging. Therefore, the development of surfaces resistant to bacterial colonization is a challenging and actively solved task. In this field, the current promising direction is the design and creation of nanostructured smart surfaces with on-demand activated amicrobial protection. Various surface activation methods have been described recently. In this review article, we focused on the "physical" activation of nanostructured surfaces. In the first part of the review, we briefly describe the basic principles and common approaches of external stimulus application and surface activation, including the temperature-, light-, electric- or magnetic-field-based surface triggering, as well as mechanically induced surface antimicrobial protection. In the latter part, the recent achievements in the field of smart antimicrobial surfaces with physical activation are discussed, with special attention on multiresponsive or multifunctional physically activated coatings. In particular, we mainly discussed the multistimuli surface triggering, which ensures a better degree of surface properties control, as well as simultaneous utilization of several strategies for surface protection, based on a principally different mechanism of antimicrobial action. We also mentioned several recent trends, including the development of the to-detect and to-kill hybrid approach, which ensures the surface activation in a right place at a right time.
Collapse
Affiliation(s)
- Roman Elashnikov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Vladimíra Svobodová Pavlíčková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Oleksiy Lyutakov
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (R.E.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, Prague 6, 166 28 Prague, Czech Republic; (P.U.); (B.V.); (V.S.P.)
| |
Collapse
|
13
|
Song YY, Zhang LH, Dong LM, Li HT, Yu ZP, Liu Y, Lv GJ, Ma HL. pH-Responsive Smart Wettability Surface with Dual Bactericidal and Releasing Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46065-46075. [PMID: 34533938 DOI: 10.1021/acsami.1c08263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biomaterial-associated infections caused by pathogenic bacteria have important implications on human health. This study presents the design and preparation of a smart surface with pH-responsive wettability. The smart surface exhibited synergistic antibacterial function, with high liquid repellency against bacterial adhesion and highly effective bactericidal activity. The wettability of the surface can switch reversibly between superhydrophobicity and hydrophobicity in response to pH; this controls bacterial adhesion and release. Besides, the deposited silver nanoparticles of the surface were also responsible for bacterial inhibition. Benefiting from the excellent liquid repellency, the surface could highly resist bacterial adhesion after immersing in a bacterial suspension for 10 s (85%) and 1 h (71%). Adhered bacteria can be easily eliminated using deposited silver nanoparticles during the subsequent treatment of alkaline bacterial suspension, and the ratio of deactivated bacteria was above 75%. After the pH returned to neutral, the deactivated bacteria can be easily released from the surface. This antibacterial surface showed an improved bacterial removal efficiency of about 99%. The results shed light on future antibacterial applications of the smart surface combining both bactericidal and adhesion-resistant functionalities.
Collapse
Affiliation(s)
- Yun-Yun Song
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Li-Hui Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Li-Ming Dong
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Hai-Teng Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| | - Zhao-Peng Yu
- School of Automotive Engineering, Changshu Institute of Technology, No. 99 Hushan Road, Changshu, Suzhou 215500, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, P. R. China
| | - Guo-Jun Lv
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, P. R. China
| | - Hai-le Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, P. R. China
| |
Collapse
|
14
|
Gao D, Zhang Y, Bowers DT, Liu W, Ma M. Functional hydrogels for diabetic wound management. APL Bioeng 2021; 5:031503. [PMID: 34286170 PMCID: PMC8272650 DOI: 10.1063/5.0046682] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic wounds often have a slow healing process and become easily infected owing to hyperglycemia in wound beds. Once planktonic bacterial cells develop into biofilms, the diabetic wound becomes more resistant to treatment. Although it remains challenging to accelerate healing in a diabetic wound due to complex pathology, including bacterial infection, high reactive oxygen species, chronic inflammation, and impaired angiogenesis, the development of multifunctional hydrogels is a promising strategy. Multiple functions, including antibacterial, pro-angiogenesis, and overall pro-healing, are high priorities. Here, design strategies, mechanisms of action, performance, and application of functional hydrogels are systematically discussed. The unique properties of hydrogels, including bactericidal and wound healing promotive effects, are reviewed. Considering the clinical need, stimuli-responsive and multifunctional hydrogels that can accelerate diabetic wound healing are likely to form an important part of future diabetic wound management.
Collapse
Affiliation(s)
- Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yidan Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
15
|
Liu K, Zhang F, Wei Y, Hu Q, Luo Q, Chen C, Wang J, Yang L, Luo R, Wang Y. Dressing Blood-Contacting Materials by a Stable Hydrogel Coating with Embedded Antimicrobial Peptides for Robust Antibacterial and Antithrombus Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38947-38958. [PMID: 34433245 DOI: 10.1021/acsami.1c05167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Although dressing blood-contacting devices with robust and synergistic antibacterial and antithrombus properties has been explored for several decades, it still remains a great challenge. In order to endow materials with remarkable antibacterial and antithrombus abilities, a stable and antifouling hydrogel coating was developed via surface-initiated polymerization of sulfobetaine methacrylate and acrylic acid on a polymeric substrate followed by embedding of antimicrobial peptides (AMPs), including WR (sequence: WRWRWR-NH2) or Bac2A (sequence: RLARIVVIRVAR-NH2) AMPs. The chemical composition of the AMP-embedded hydrogel coating was determined through XPS, zeta potential, and SEM-EDS measurements. The AMP-embedded antifouling hydrogel coating showed not only good hemocompatibility but also excellent bactericidal and antiadhesion properties against Gram-positive and Gram-negative bacteria. Moreover, the hydrogel coating could protect the AMPs with long-term bioactivity and cover the positive charge of the dotted distributed AMPs, which in turn well retained the hemocompatibility and antifouling capacity of the bulk hydrogels. Furthermore, the microbiological results of animal experiments also verified the anti-infection performance in vivo. Histological and immunological data further indicated that the hydrogel coating had an excellent anti-inflammatory function. Therefore, the present study might provide a promising approach to prevent bacterial infections and thrombosis in clinical applications of blood-contacting devices and related implants.
Collapse
Affiliation(s)
- Kunpeng Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yuan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Qinsheng Hu
- West China Hospital, Sichuan University, Chengdu 610064, China
| | - Qingfeng Luo
- Center for Medical Device Evaluation of NMPA, Beijing 100081, China
| | - Chong Chen
- Laboratory of Biomechanical Engineering, Department of Applied Mechanics, College of Architecture & Environment, Sichuan University, Chengdu 610064, China
| | - Jingyu Wang
- First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Mahanta U, Khandelwal M, Deshpande AS. Antimicrobial surfaces: a review of synthetic approaches, applicability and outlook. JOURNAL OF MATERIALS SCIENCE 2021; 56:17915-17941. [PMID: 34393268 PMCID: PMC8354584 DOI: 10.1007/s10853-021-06404-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/29/2021] [Indexed: 05/08/2023]
Abstract
The rapid spread of microorganisms such as bacteria, fungi, and viruses can be extremely detrimental and can lead to seasonal epidemics or even pandemic situations. In addition, these microorganisms may bring about fouling of food and essential materials resulting in substantial economic losses. Typically, the microorganisms get transmitted by their attachment and growth on various household and high contact surfaces such as doors, switches, currency. To prevent the rapid spread of microorganisms, it is essential to understand the interaction between various microbes and surfaces which result in their attachment and growth. Such understanding is crucial in the development of antimicrobial surfaces. Here, we have reviewed different approaches to make antimicrobial surfaces and correlated surface properties with antimicrobial activities. This review concentrates on physical and chemical modification of the surfaces to modulate wettability, surface topography, and surface charge to inhibit microbial adhesion, growth, and proliferation. Based on these aspects, antimicrobial surfaces are classified into patterned surfaces, functionalized surfaces, superwettable surfaces, and smart surfaces. We have critically discussed the important findings from systems of developing antimicrobial surfaces along with the limitations of the current research and the gap that needs to be bridged before these approaches are put into practice. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-021-06404-0.
Collapse
Affiliation(s)
- Urbashi Mahanta
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana India
| | - Mudrika Khandelwal
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana India
| | - Atul Suresh Deshpande
- Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502285 Telangana India
| |
Collapse
|
17
|
Li S, Fan Y, Liu Y, Niu S, Han Z, Ren L. Smart Bionic Surfaces with Switchable Wettability and Applications. JOURNAL OF BIONIC ENGINEERING 2021; 18:473-500. [PMID: 34131422 PMCID: PMC8193597 DOI: 10.1007/s42235-021-0038-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In order to satisfy the needs of different applications and more complex intelligent devices, smart control of surface wettability will be necessary and desirable, which gradually become a hot spot and focus in the field of interface wetting. Herein, we review interfacial wetting states related to switchable wettability on superwettable materials, including several classical wetting models and liquid adhesive behaviors based on the surface of natural creatures with special wettability. This review mainly focuses on the recent developments of the smart surfaces with switchable wettability and the corresponding regulatory mechanisms under external stimuli, which is mainly governed by the transformation of surface chemical composition and geometrical structures. Among that, various external stimuli such as physical stimulation (temperature, light, electric, magnetic, mechanical stress), chemical stimulation (pH, ion, solvent) and dual or multi-triggered stimulation have been sought out to realize the regulation of surface wettability. Moreover, we also summarize the applications of smart surfaces in different fields, such as oil/water separation, programmable transportation, anti-biofouling, detection and delivery, smart soft robotic etc. Furthermore, current limitations and future perspective in the development of smart wetting surfaces are also given. This review aims to offer deep insights into the recent developments and responsive mechanisms in smart biomimetic surfaces with switchable wettability under external various stimuli, so as to provide a guidance for the design of smart surfaces and expand the scope of both fundamental research and practical applications.
Collapse
Affiliation(s)
- Shuyi Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yuyan Fan
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130022 China
| |
Collapse
|
18
|
Lishchynskyi O, Stetsyshyn Y, Raczkowska J, Awsiuk K, Orzechowska B, Abalymov A, Skirtach AG, Bernasik A, Nastyshyn S, Budkowski A. Fabrication and Impact of Fouling-Reducing Temperature-Responsive POEGMA Coatings with Embedded CaCO 3 Nanoparticles on Different Cell Lines. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1417. [PMID: 33804043 PMCID: PMC8001162 DOI: 10.3390/ma14061417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/28/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.
Collapse
Affiliation(s)
- Ostap Lishchynskyi
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Yurij Stetsyshyn
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
| | - Joanna Raczkowska
- Department of Organic Chemistry, Lviv Polytechnic National University, St. George’s Square 2, 79-013 Lviv, Ukraine;
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland;
| | - Anatolii Abalymov
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andre G. Skirtach
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (A.A.); (A.G.S.)
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH—University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland;
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland; (K.A.); (S.N.); (A.B.)
| |
Collapse
|
19
|
Ren L, Chen J, Lu Q, Han J, Wu H. Anti-biofouling nanofiltration membrane constructed by in-situ photo-grafting bactericidal and hydrophilic polymers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118658] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Tallet L, Gribova V, Ploux L, Vrana NE, Lavalle P. New Smart Antimicrobial Hydrogels, Nanomaterials, and Coatings: Earlier Action, More Specific, Better Dosing? Adv Healthc Mater 2021; 10:e2001199. [PMID: 33043612 DOI: 10.1002/adhm.202001199] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/01/2020] [Indexed: 12/21/2022]
Abstract
To fight against antibiotic-resistant bacteria adhering and developing on medical devices, which is a growing problem worldwide, researchers are currently developing new "smart" materials and coatings. They consist in delivery of antimicrobial agents in an intelligent way, i.e., only when bacteria are present. This requires the use of new and sophisticated tools combining antimicrobial agents with lipids or polymers, synthetic and/or natural. In this review, three classes of innovative materials are described: hydrogels, nanomaterials, and thin films. Moreover, smart antibacterial materials can be classified into two groups depending on the origin of the stimulus used: those that respond to a nonbiological stimulus (light, temperature, electric and magnetic fields) and those that respond to a biological stimulus related to the presence of bacteria, such as changes in pH or bacterial enzyme secretion. The bacteria presence can induce a pH change that constitutes a first potential biological trigger allowing the system to become active. A second biological trigger signal consists in enzymes produced by bacteria themselves. A complete panel of recent studies will be given focusing on the design of such innovative smart materials that are sensitive to biological triggers.
Collapse
Affiliation(s)
- Lorène Tallet
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Varvara Gribova
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
| | - Lydie Ploux
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- Centre national de la recherche Scientifique CNRS 23 rue du Loess Strasbourg 67200 France
| | - Nihal Engin Vrana
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg Cedex 67100 France
| | - Philippe Lavalle
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 Biomaterials and Bioengineering 11 rue Humann Strasbourg Cedex 67085 France
- Faculté de Chirurgie Dentaire Université de Strasbourg Strasbourg 67000 France
- SPARTHA Medical 14B Rue de la Canardiere Strasbourg Cedex 67100 France
| |
Collapse
|
21
|
Zhu Y, Lin L, Chen Y, Song Y, Lu W, Guo Y. Extreme Temperature-Tolerant Conductive Gel with Antibacterial Activity for Flexible Dual-Response Sensors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:56470-56479. [PMID: 33270426 DOI: 10.1021/acsami.0c17242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Flexible sensors based on conductive hydrogel show great potential in electronic skin and human-machine interface. However, pure water in hydrogel inevitably freezes or rapidly evaporates under extreme temperatures, leading to inadequate fulfillment of sensor performances. Herein, a well-designed strategy is reported for fabricating extreme temperature-tolerant gel-based sensors. By immersing a gelatin/polyacrylamide (PAAm)-clay composite (GC) hydrogel into a ZnCl2/water/glycerol system, a phase-transition-tunable gel (PTTGC gel) is obtained with outstanding antifreezing (-82 °C) and long-lasting moisture (70 °C, more than 40 days) properties. Meanwhile, the gel also presents good antibacterial activity and biocompatibility attributing to Zn2+ and gelatin, respectively. Then, a dual-response sensor with a wide operating temperature (-60 to 60 °C) is proposed, presenting high stress and temperature sensitivities and long-term stability. The sensor will meet the needs of the human-machine interface for scientific investigation and data monitoring in polar, desert, etc.
Collapse
Affiliation(s)
- Yi Zhu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Lin
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yu Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yeping Song
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
| | - Weipeng Lu
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Material, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Hangzhou 310000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Bai R, Peng L, Sun Q, Zhang Y, Zhang L, Wei Y, Han B. Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. MATERIALS 2020; 13:ma13204594. [PMID: 33076495 PMCID: PMC7658793 DOI: 10.3390/ma13204594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
- Correspondence: (Y.W.); (B.H.); Tel.: +86-010-82195584 (Y.W.); +86-010-82195381 (B.H.)
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
- Correspondence: (Y.W.); (B.H.); Tel.: +86-010-82195584 (Y.W.); +86-010-82195381 (B.H.)
| |
Collapse
|
23
|
Huang DN, Wang J, Ren KF, Ji J. Functionalized biomaterials to combat biofilms. Biomater Sci 2020; 8:4052-4066. [PMID: 32500875 DOI: 10.1039/d0bm00526f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogenic microbial biofilms that readily form on implantable medical devices or human tissues have posed a great threat to worldwide healthcare. Hopes are focused on preventive strategies towards biofilms, leaving a thought-provoking question: how to tackle the problem of established biofilms? In this review, we briefly summarize the functionalized biomaterials to combat biofilms and highlight current approaches to eradicate pre-existing biofilms. We believe that all of these strategies, alone or in combination, could represent a blueprint for fighting biofilm-associated infections in the postantibiotic era.
Collapse
Affiliation(s)
- Dan-Ni Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | | | | | | |
Collapse
|
24
|
Song B, Zhang E, Han X, Zhu H, Shi Y, Cao Z. Engineering and Application Perspectives on Designing an Antimicrobial Surface. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21330-21341. [PMID: 32011846 PMCID: PMC7534184 DOI: 10.1021/acsami.9b19992] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Infections, contaminations, and biofouling resulting from micro- and/or macro-organisms remained a prominent threat to the public health, food industry, and aqua-/marine-related applications. Considering environmental and drug resistance concerns as well as insufficient efficacy on biofilms associated with conventional disinfecting reagents, developing an antimicrobial surface potentially improved antimicrobial performance by directly working on the microbes surrounding the surface area. Here we provide an engineering perspective on the logic of choosing materials and strategies for designing antimicrobial surfaces, as well as an application perspective on their potential impacts. In particular, we analyze and discuss requirements and expectations for specific applications and provide insights on potential misconnection between the antimicrobial solution and its targeted applications. Given the high translational barrier for antimicrobial surfaces, future research would benefit from a comprehensive understanding of working mechanisms for potential materials/strategies, and challenges/requirements for a targeted application.
Collapse
Affiliation(s)
- Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan, 48202, USA
| |
Collapse
|
25
|
Krywko-Cendrowska A, di Leone S, Bina M, Yorulmaz-Avsar S, Palivan CG, Meier W. Recent Advances in Hybrid Biomimetic Polymer-Based Films: from Assembly to Applications. Polymers (Basel) 2020; 12:E1003. [PMID: 32357541 PMCID: PMC7285097 DOI: 10.3390/polym12051003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Biological membranes, in addition to being a cell boundary, can host a variety of proteins that are involved in different biological functions, including selective nutrient transport, signal transduction, inter- and intra-cellular communication, and cell-cell recognition. Due to their extreme complexity, there has been an increasing interest in developing model membrane systems of controlled properties based on combinations of polymers and different biomacromolecules, i.e., polymer-based hybrid films. In this review, we have highlighted recent advances in the development and applications of hybrid biomimetic planar systems based on different polymeric species. We have focused in particular on hybrid films based on (i) polyelectrolytes, (ii) polymer brushes, as well as (iii) tethers and cushions formed from synthetic polymers, and (iv) block copolymers and their combinations with biomacromolecules, such as lipids, proteins, enzymes, biopolymers, and chosen nanoparticles. In this respect, multiple approaches to the synthesis, characterization, and processing of such hybrid films have been presented. The review has further exemplified their bioengineering, biomedical, and environmental applications, in dependence on the composition and properties of the respective hybrids. We believed that this comprehensive review would be of interest to both the specialists in the field of biomimicry as well as persons entering the field.
Collapse
Affiliation(s)
| | | | | | | | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (A.K.-C.); (S.d.L.); (M.B.); (S.Y.-A.)
| |
Collapse
|
26
|
Nastyshyn S, Raczkowska J, Stetsyshyn Y, Orzechowska B, Bernasik A, Shymborska Y, Brzychczy-Włoch M, Gosiewski T, Lishchynskyi O, Ohar H, Ochońska D, Awsiuk K, Budkowski A. Non-cytotoxic, temperature-responsive and antibacterial POEGMA based nanocomposite coatings with silver nanoparticles. RSC Adv 2020; 10:10155-10166. [PMID: 35498562 PMCID: PMC9050227 DOI: 10.1039/c9ra10874b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/28/2020] [Indexed: 12/23/2022] Open
Abstract
Non-cytotoxic, temperature-responsive and antibacterial poly(di(ethylene glycol)methyl ether methacrylate) - POEGMA188 based nanocomposite coatings attached to a glass surface were successfully prepared using ATRP polymerization. The thickness, morphology and wettability of the resulting coatings were analyzed using ellipsometry, AFM and contact angle measurements, respectively. The strong impact of the thicknesses of the POEGMA188 grafted brush coatings and content of AgNPs on the morphology and temperature-induced wettability changes of the nanocomposite was demonstrated. In addition to the strong temperature-dependent antibacterial activity, the proposed nanocomposite coatings have no significant cytotoxic effect towards normal cells. Moreover, the slight anti-cancer effect of AgNPs may be suggested.
Collapse
Affiliation(s)
- Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Barbara Orzechowska
- Institute of Nuclear Physics Polish Academy of Sciences Radzikowskiego 152 31-342 Kraków Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology Al. Mickiewicza 30 30-049 Kraków Poland
| | - Yana Shymborska
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Halyna Ohar
- Lviv Polytechnic National University St. George's Square 2 79013 Lviv Ukraine
| | - Dorota Ochońska
- Chair of Microbiology, Department of Molecular Medical Microbiology, Faculty of Medicine, Jagiellonian University Medical College Czysta 18 31-121 Kraków Poland
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University Łojasiewicza 11 30-348 Kraków Poland
| |
Collapse
|
27
|
Xu J, Zhao H, Xie Z, Ruppel S, Zhou X, Chen S, Liang JF, Wang X. Stereochemical Strategy Advances Microbially Antiadhesive Cotton Textile in Safeguarding Skin Flora. Adv Healthc Mater 2019; 8:e1900232. [PMID: 31183997 PMCID: PMC8754253 DOI: 10.1002/adhm.201900232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/23/2019] [Indexed: 12/16/2022]
Abstract
Microbial contamination on cotton textiles (CT) negatively affects people's health as well as the textile itself during use and storage. Using antimicrobial CT in a body-safe manner is currently still a challenge because it is difficult to balance killing microbes and protecting skin flora. Herein, a borneol-decorated CT (BDCT) through coupling of borneol 4-formylbenzoate molecules onto the amino-modified CT is reported. This BDCT shows strong and broad-spectrum microbially antiadhesive activities against gram-positive bacteria (Staphylococcus aureus and S. epidermidis), gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), and fungi (Aspergillus niger, Mucor racemosus, and Candida albicans). Because of its unique stereochemical microbial antiadhesion mechanism, BDCT is harmless to skin flora. In addition, BDCT exhibits prominent durability of microbially antiadhesive capability by bearing 50 times of accelerated laundering. Therefore, this stereochemical BDCT strategy shows great potential for applications in the new generation of textiles, food packaging, and medical protection.
Collapse
Affiliation(s)
- Jiangqi Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Hongjuan Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zixu Xie
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Scott Ruppel
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Shuang Chen
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Jun F. Liang
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | - Xing Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- Department of Biomedical Engineering, Chemistry, and Biological Sciences, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| |
Collapse
|
28
|
Raczkowska J, Stetsyshyn Y, Awsiuk K, Brzychczy-Włoch M, Gosiewski T, Jany B, Lishchynskyi O, Shymborska Y, Nastyshyn S, Bernasik A, Ohar H, Krok F, Ochońska D, Kostruba A, Budkowski A. "Command" surfaces with thermo-switchable antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109806. [PMID: 31349441 DOI: 10.1016/j.msec.2019.109806] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 01/11/2023]
Abstract
In the presented work "smart" antibacterial surfaces based on silver nanoparticles (AgNPs) embedded in temperature-responsive poly(di(ethylene glycol)methyl ether methacrylate) - (POEGMA188) as well as poly(4-vinylpyridine) - (P4VP) coatings attached to a glass surface were successfully prepared. The composition, thickness, morphology and wettability of the resulting coatings were analyzed using ToF-SIMS, XPS, EDX, ellipsometry, AFM, SEM and CA measurements, respectively. Temperature-switched killing of the bacteria was tested against Escherichia coli ATCC 25922 (representative of Gram-negative bacteria) and Staphylococcus aureus ATCC 25923 (representative of Gram-positive bacteria) at 4 and 37 °C. In general at 4 °C no significant difference was observed between the amounts of bacteria accounted on the grafted brush coatings and within the control sample. In contrast, at 37 °C almost no bacteria were visible for temperature-responsive coating with AgNPs, whereas the growth of bacteria remains not disturbed for "pure" coating, indicating strong temperature-dependent antibacterial properties of AgNPs integrated into brushes.
Collapse
Affiliation(s)
- Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Yurij Stetsyshyn
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine.
| | - Kamil Awsiuk
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Monika Brzychczy-Włoch
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Tomasz Gosiewski
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Benedykt Jany
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Yana Shymborska
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Svyatoslav Nastyshyn
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Al. Mickiewicza 30, 30-049 Kraków, Poland
| | - Halyna Ohar
- Lviv Polytechnic National University, St. George's Square 2, 79013 Lviv, Ukraine
| | - Franciszek Krok
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Dorota Ochońska
- Chair of Microbiology, Department of Molecular Medical Microbiology Faculty of Medicine, Jagiellonian University Medical College, 31-121 Krakow, Czysta 18 Street, Poland
| | - Andrij Kostruba
- Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, Pekarska 50, 79000 Lviv, Ukraine
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
29
|
Wei T, Yu Q, Chen H. Responsive and Synergistic Antibacterial Coatings: Fighting against Bacteria in a Smart and Effective Way. Adv Healthc Mater 2019; 8:e1801381. [PMID: 30609261 DOI: 10.1002/adhm.201801381] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/13/2018] [Indexed: 01/12/2023]
Abstract
Antibacterial coatings that eliminate initial bacterial attachment and prevent subsequent biofilm formation are essential in a number of applications, especially implanted medical devices. Although various approaches, including bacteria-repelling and bacteria-killing mechanisms, have been developed, none of them have been entirely successful due to their inherent drawbacks. In recent years, antibacterial coatings that are responsive to the bacterial microenvironment, that possess two or more killing mechanisms, or that have triggered-cleaning capability have emerged as promising solutions for bacterial infection and contamination problems. This review focuses on recent progress on three types of such responsive and synergistic antibacterial coatings, including i) self-defensive antibacterial coatings, which can "turn on" biocidal activity in response to a bacteria-containing microenvironment; ii) synergistic antibacterial coatings, which possess two or more killing mechanisms that interact synergistically to reinforce each other; and iii) smart "kill-and-release" antibacterial coatings, which can switch functionality between bacteria killing and bacteria releasing under a proper stimulus. The design principles and potential applications of these coatings are discussed and a brief perspective on remaining challenges and future research directions is presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 199 Ren'ai Road Suzhou 215123 P. R. China
| |
Collapse
|
30
|
Yu M, Ding X, Zhu Y, Wu S, Ding X, Li Y, Yu B, Xu FJ. Facile Surface Multi-Functionalization of Biomedical Catheters with Dual-Microcrystalline Broad-Spectrum Antibacterial Drugs and Antifouling Poly(ethylene glycol) for Effective Inhibition of Bacterial Infections. ACS APPLIED BIO MATERIALS 2019; 2:1348-1356. [DOI: 10.1021/acsabm.9b00049] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Manman Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| | - Xuejia Ding
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| | - Yiwen Zhu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| | - Shuangmei Wu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| | - Xiaokang Ding
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| | - Yang Li
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| | - Bingran Yu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| | - Fu-Jian Xu
- Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
| |
Collapse
|
31
|
Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Dang M, Deng QL, Fang GZ, Zhang DD, Li HJ, Liu JM, Wang S. Bifunctional supported ionic liquid-based smart films for dyes adsorption and photodegradation. J Colloid Interface Sci 2018; 530:302-311. [DOI: 10.1016/j.jcis.2018.06.098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 06/19/2018] [Accepted: 06/29/2018] [Indexed: 01/23/2023]
|
33
|
Ren T, Yang M, Wang K, Zhang Y, He J. CuO Nanoparticles-Containing Highly Transparent and Superhydrophobic Coatings with Extremely Low Bacterial Adhesion and Excellent Bactericidal Property. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25717-25725. [PMID: 30036033 DOI: 10.1021/acsami.8b09945] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Human health and industrial instruments have been suffering from bacterial colonization on the surface of materials for a long time. Recently, antibacterial coatings are regarded as the new strategy to resist bacterial pathogens. In this work, novel highly transparent and superhydrophobic coatings with extremely low bacterial adhesion and bactericidal performance were prepared by spray-coating hydrophobic silica sol and CuO nanoparticles. The coated glass showed high transmittance in 300-2500 nm with a maximum value of 96.6%. Compared with bare glass, its superhydrophobic characteristics resulted in a reduction in adhesion of bacteria ( Escherichia coli, E. coli) by up to 3.2 log cells/cm2. Additionally, the live/dead staining test indicated that the as-prepared coating exhibited excellent bactericidal performance against E. coli. Moreover, the as-prepared coating could maintain their superhydrophobicity after the sand impact test. The proposed method to fabricate such coatings could be applied on various substrates. Therefore, this novel hybrid surface with the abilities to reduce bacterial adhesion and kill attached bacteria make it a promising candidate for biosensors, microfluidics, bio-optical devices, household facilities, lab-on-chips, and touchscreen devices.
Collapse
Affiliation(s)
- Tingting Ren
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Zhongguancundonglu 29 , Haidianqu, Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Mingqing Yang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Zhongguancundonglu 29 , Haidianqu, Beijing 100190 , China
| | - Kaikai Wang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Zhongguancundonglu 29 , Haidianqu, Beijing 100190 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yue Zhang
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Zhongguancundonglu 29 , Haidianqu, Beijing 100190 , China
| | - Junhui He
- Functional Nanomaterials Laboratory, Center for Micro/Nanomaterials and Technology and Key Laboratory of Photochemical Conversion and Optoelectronic Materials , Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Zhongguancundonglu 29 , Haidianqu, Beijing 100190 , China
| |
Collapse
|
34
|
Tan M, Horvàth L, Brunetto PS, Fromm KM. Trithiocarbonate-Functionalized PNiPAAm-Based Nanocomposites for Antimicrobial Properties. Polymers (Basel) 2018; 10:E665. [PMID: 30966699 PMCID: PMC6404129 DOI: 10.3390/polym10060665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/08/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022] Open
Abstract
In this study, four trithiocarbonate-functionalized PNiPAAms with different molecular weights were synthesized and used as a matrix to form composites with silver nanoparticles. Nanocomposites with several polymer-to-silver ratios P:Ag⁺ were prepared in order to evaluate the influence of silver loading. UV studies showed a thermoresponsive behavior of the nanocomposites with a thermo-reversibility according to cooling-heating cycles. Release kinetics demonstrated that the release of silver ions is mainly influenced by the size of the silver nanoparticles (AgNPs), which themselves depend on the polymer length. Antimicrobial tests against E. coli and S. aureus showed that some of the nanocomposites are antimicrobial and even full killing could be induced.
Collapse
Affiliation(s)
- Milène Tan
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Lenke Horvàth
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Priscilla S Brunetto
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| | - Katharina M Fromm
- Department of Chemistry, University of Fribourg, Chemin du Musée, 9, 1700 Fribourg, Switzerland.
| |
Collapse
|
35
|
Xu J, Bai Y, Wan M, Liu Y, Tao L, Wang X. Antifungal Paper Based on a Polyborneolacrylate Coating. Polymers (Basel) 2018; 10:polym10040448. [PMID: 30966483 PMCID: PMC6415209 DOI: 10.3390/polym10040448] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 01/12/2023] Open
Abstract
Paper documents and products are very susceptible to microbial contamination and damage. Fungi are mainly responsible for those biodeterioration processes. Traditional microbicidal strategies constitute a serious health risk even when microbes are dead. Ideal methods should not be toxic to humans and should have no adverse effects on paper, but should own a broad spectrum, good chemical stability and low cost. In this work, we utilize an advanced antimicrobial strategy of surface stereochemistry by applying a coating of a shallow layer of polyborneolacrylate (PBA), resulting in the desired antifungal performance. The PBA-coated paper is challenged with the most common air-borne fungi growing on paper, Aspergillus niger and Penicillium sp. Ten percent by weight of the coating concentration or a 19-μm infiltration of PBA is sufficient to keep the paper spotless. The PBA coating also exhibits significant inhibition of spores’ germination. After PBA coating, both physicochemical properties (paper whiteness, pH, mechanical strength) and inking performance display only slight changes, which are acceptable for general utilization. This PBA coating method is nontoxic, rapid and cost-effective, thus demonstrating great potential for applications in paper products.
Collapse
Affiliation(s)
- Jiangqi Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yujia Bai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Meijiao Wan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yanhui Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Xing Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
36
|
Li X, Wu B, Chen H, Nan K, Jin Y, Sun L, Wang B. Recent developments in smart antibacterial surfaces to inhibit biofilm formation and bacterial infections. J Mater Chem B 2018; 6:4274-4292. [PMID: 32254504 DOI: 10.1039/c8tb01245h] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since their development over 70 years, antibiotics are still the most effective strategy to treat bacterial biofilms and infections.
Collapse
Affiliation(s)
- Xi Li
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Biao Wu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Kaihui Nan
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| | - Yingying Jin
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Lin Sun
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University
- Wenzhou
- China
- Wenzhou Institute of Biomaterials and Engineering, Chinese Academy of Sciences
- Wenzhou
| |
Collapse
|
37
|
Ramasamy S, Samathanam B, Reuther H, Adyanpuram MNMS, Enoch IVMV, Potzger K. Molecular encapsulator on the surface of magnetic nanoparticles. Controlled drug release from calcium Ferrite/Cyclodextrin–tethered polymer hybrid. Colloids Surf B Biointerfaces 2018; 161:347-355. [DOI: 10.1016/j.colsurfb.2017.10.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 10/03/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
|
38
|
Li M, Liu X, Tan L, Cui Z, Yang X, Li Z, Zheng Y, Yeung KWK, Chu PK, Wu S. Noninvasive rapid bacteria-killing and acceleration of wound healing through photothermal/photodynamic/copper ion synergistic action of a hybrid hydrogel. Biomater Sci 2018; 6:2110-2121. [DOI: 10.1039/c8bm00499d] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bacterial infection often delays healing of wounded tissues and so it is essential to improve the antibacterial efficiency in situ.
Collapse
|
39
|
He M, Wang Q, Zhang J, Zhao W, Zhao C. Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44782-44791. [PMID: 29035025 DOI: 10.1021/acsami.7b13238] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a Ag-nanoparticle (AgNP)-based substrate-independent bactericidal hydrogel coating with thermoresponsive antibacterial property. To attach the hydrogel coating onto model substrate, we first coated ene-functionalized dopamine on the substrate, and then the hydrogel thin layer was formed on the surface via the UV light initiated surface cross-linking copolymerization of N-isopropylacrylamide (NIPAAm) and sodium acrylate (AANa). Then, Ag ions were adsorbed into the hydrogel layers and reduced to AgNPs by sodium borohydride. The coating showed robust bactericidal ability against Escherichia coli and Staphylococcus aureus toward both contacted bacteria and the bacteria in the surrounding. Upon a reduction of the temperature below the LCST of PNIPAAm, the improved surface hydrophilicity and swollen PNIPAAm could detach the attached dead bacteria. Meanwhile, the long-lasting and regenerable antibacterial properties could be achieved by repeatedly loading AgNPs. By precisely controlling the AgNP loading amounts, the coating showed excellent hemocompatibility and no cytotoxity. Additionally, the coating could be applied to modify cell culture plate, since it could support cell adhesion and proliferation at 37 °C, while detach the cell by changing the temperature below lower critical solution temperature without the treatment of proteases. The study thus presents a promising way to fabricate thermoresponsive and regenerable antibacterial surfaces on diverse materials and devices for biomedical applications.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Jue Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, People's Republic of China
| |
Collapse
|
40
|
Yang H, Xi W. Nucleobase-Containing Polymers: Structure, Synthesis, and Applications. Polymers (Basel) 2017; 9:E666. [PMID: 30965964 PMCID: PMC6418729 DOI: 10.3390/polym9120666] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/25/2017] [Accepted: 11/27/2017] [Indexed: 01/07/2023] Open
Abstract
Nucleobase interactions play a fundamental role in biological functions, including transcription and translation. Natural nucleic acids like DNA are also widely implemented in material realm such as DNA guided self-assembly of nanomaterials. Inspired by that, polymer chemists have contributed phenomenal endeavors to mimic both the structures and functions of natural nucleic acids in synthetic polymers. Similar sequence-dependent responses were observed and employed in the self-assembly of these nucleobase-containing polymers. Here, the structures, synthetic approaches, and applications of nucleobase-containing polymers are highlighted and a brief look is taken at the future development of these polymers.
Collapse
Affiliation(s)
- Haitao Yang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China.
| | - Weixian Xi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA 90095, USA.
- Department of Orthopedic Surgery, University of California Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
41
|
Chen Z, Mo M, Fu F, Shang L, Wang H, Liu C, Zhao Y. Antibacterial Structural Color Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38901-38907. [PMID: 29027783 DOI: 10.1021/acsami.7b11258] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Structural color hydrogels with lasting survivability are important for many applications, but they still lack anti-biodegradation capability. Thus, we herein present novel antibacterial structural color hydrogels by simply integrating silver nanoparticles (AgNPs) in situ into the hydrogel materials. Because the integrated AgNPs possessed wide and excellent antibacterial abilities, the structural color hydrogels could prevent bacterial adhesion, avoid hydrogel damage, and maintain their vivid structural colors during their application and storage. It was demonstrated that the AgNP-tagged poly(N-isopropylacrylamide) structural color hydrogels could retain their original thermal-responsive color transition even when the AgNP-free hydrogels were degraded by bacteria and that the AgNP-integrated self-healing structural color protein hydrogels could save their self-repairing property instead of being degraded by bacteria. These features indicated that the antibacterial structural color hydrogels could be amenable to a variety of practical biomedical applications.
Collapse
Affiliation(s)
- Zhuoyue Chen
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, and ‡Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing 210096, China
| | - Min Mo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, and ‡Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, and ‡Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing 210096, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, and ‡Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing 210096, China
| | - Huan Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, and ‡Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing 210096, China
| | - Cihui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, and ‡Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, and ‡Department of Critical Care Medicine, Zhong-Da Hospital, School of Medicine, Southeast University , Nanjing 210096, China
| |
Collapse
|
42
|
Hwang G, Koltisko B, Jin X, Koo H. Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38270-38280. [PMID: 29020439 DOI: 10.1021/acsami.7b11558] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Surface-grown bacteria and production of an extracellular polymeric matrix modulate the assembly of highly cohesive and firmly attached biofilms, making them difficult to remove from solid surfaces. Inhibition of cell growth and inactivation of matrix-producing bacteria can impair biofilm formation and facilitate removal. Here, we developed a novel nonleachable antibacterial composite with potent antibiofilm activity by directly incorporating polymerizable imidazolium-containing resin (antibacterial resin with carbonate linkage; ABR-C) into a methacrylate-based scaffold (ABR-modified composite; ABR-MC) using an efficient yet simplified chemistry. Low-dose inclusion of imidazolium moiety (∼2 wt %) resulted in bioactivity with minimal cytotoxicity without compromising mechanical integrity of the restorative material. The antibiofilm properties of ABR-MC were assessed using an exopolysaccharide-matrix-producing (EPS-matrix-producing) oral pathogen (Streptococcus mutans) in an experimental biofilm model. Using high-resolution confocal fluorescence imaging and biophysical methods, we observed remarkable disruption of bacterial accumulation and defective 3D matrix structure on the surface of ABR-MC. Specifically, the antibacterial composite impaired the ability of S. mutans to form organized bacterial clusters on the surface, resulting in altered biofilm architecture with sparse cell accumulation and reduced amounts of EPS matrix (versus control composite). Biofilm topology analyses on the control composite revealed a highly organized and weblike EPS structure that tethers the bacterial clusters to each other and to the surface, forming a highly cohesive unit. In contrast, such a structured matrix was absent on the surface of ABR-MC with mostly sparse and amorphous EPS, indicating disruption in the biofilm physical stability. Consistent with lack of structural organization, the defective biofilm on the surface of ABR-MC was readily detached when subjected to low shear stress, while most of the biofilm biomass remained on the control surface. Altogether, we demonstrate a new nonleachable antibacterial composite with excellent antibiofilm activity without affecting its mechanical properties, which may serve as a platform for development of alternative antifouling biomaterials.
Collapse
Affiliation(s)
- Geelsu Hwang
- Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania , 240 South 40th Street, Levy Building Room 417, Philadelphia, Pennsylvania 19104, United States
| | - Bernard Koltisko
- Dentsply Sirona , 38 West Clarke Avenue, Milford, Delaware 19963, United States
| | - Xiaoming Jin
- Dentsply Sirona , 38 West Clarke Avenue, Milford, Delaware 19963, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, Department of Orthodontics and Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania , 240 South 40th Street, Levy Building Room 417, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
43
|
Wei T, Tang Z, Yu Q, Chen H. Smart Antibacterial Surfaces with Switchable Bacteria-Killing and Bacteria-Releasing Capabilities. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37511-37523. [PMID: 28992417 DOI: 10.1021/acsami.7b13565] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The attachment and subsequent colonization of bacteria on the surfaces of synthetic materials and devices lead to serious problems in both human healthcare and industrial applications. Therefore, antibacterial surfaces that can prevent bacterial attachment and biofilm formation have been a long-standing focus of considerable interest and research efforts. Recently, a promising "kill-release" strategy has been proposed and applied to construct so-called smart antibacterial surfaces, which can kill bacteria attached to their surface and then undergo on-demand release of the dead bacteria and other debris to reveal a clean surface under an appropriate stimulus, thereby maintaining effective long-term antibacterial activity. This Review focuses on the recent progress (particularly over the past 5 years) on such smart antibacterial surfaces. According to the different design strategies, these surfaces can be divided into three categories: (i) "K + R"-type surfaces, which have both a killing unit and a releasing unit; (ii) "K → R"-type surfaces, which have a surface-immobilized killing unit that can be switched to perform a releasing function; and (iii) "K + (R)"-type surfaces, which have only a killing unit but can release dead bacteria upon the addition of a release solution. In the end, a brief perspective on future research directions and the major challenges in this promising field is also presented.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Zengchao Tang
- Jiangsu Biosurf Biotech Company Ltd. , 218 Xinghu Street, Suzhou, 215123, PR China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou, 215123, PR China
| |
Collapse
|
44
|
Wei T, Zhan W, Yu Q, Chen H. Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25767-25774. [PMID: 28726386 DOI: 10.1021/acsami.7b06483] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
45
|
Wu B, Zhang L, Huang L, Xiao S, Yang Y, Zhong M, Yang J. Salt-Induced Regenerative Surface for Bacteria Killing and Release. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7160-7168. [PMID: 28658955 DOI: 10.1021/acs.langmuir.7b01333] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibacterial surfaces with both bacteria killing and release functions show great promise in biological and biomedical applications, in particular for reusable medical devices. However, these surfaces either require a sophisticated technique to create delicate structures or need rigorous stimuli to trigger the functions, greatly limiting their practical application. In this study, we made a step forward by developing a simple system based on a salt-responsive polyzwitterionic brush. Specifically, the salt-responsive brush of poly(3-(dimethyl (4-vinylbenzyl) ammonium) propyl sulfonate) (polyDVBAPS) was endowed with bactericidal function by grafting an effective bactericide, i.e., triclosan (TCS). This simple functionalization successfully integrated the bacteria attach/release function of polyDVBAPS and bactericidal function of TCS. As a result, the surface could kill more than 95% attached bacteria and, subsequently, could rapidly detach ∼97% bacteria after gently shaking in 1.0 M NaCl for 10 min. More importantly, such high killing efficiency and release rate could be well retained (unchanged effectiveness of both killing and release after four severe killing/release cycles), indicating the highly efficient regeneration and long-term reusability of this system. This study not only contributes zwitterionic polymers by conferring new functions but also provides a new, highly efficient and reliable surface for "killing-release" antibacterial strategy.
Collapse
Affiliation(s)
- Bozhen Wu
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Lixun Zhang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Lei Huang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Shengwei Xiao
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Yin Yang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Mingqiang Zhong
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| | - Jintao Yang
- College of Materials Science & Engineering Zhejiang University of Technology , Hangzhou 310014, P. R. China
| |
Collapse
|
46
|
He M, Wang Q, Wang R, Xie Y, Zhao W, Zhao C. Design of Antibacterial Poly(ether sulfone) Membranes via Covalently Attaching Hydrogel Thin Layers Loaded with Ag Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15962-15974. [PMID: 28440618 DOI: 10.1021/acsami.7b03176] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To inhibit bacteria attachment and the subsequent formation of biofilms on poly(ether sulfone) (PES) membranes, poly(sulfobetaine methacrylate)/poly(sodium acrylate) antibacterial hydrogel thin layers were covalently attached onto the membranes, followed by loading with Ag nanoparticles. In our strategy, double bonds were firstly introduced onto the PES membrane surfaces to provide anchoring sites, and then the hydrogel layers were synthesized on the membrane surfaces via UV light-initiated crosslinking copolymerization. Then, Ag ions were adsorbed into the hydrogel layers and reduced to Ag nanoparticles by sodium borohydride. The amounts of the adsorbed Ag ions were controlled by the mole ratios of carboxylate groups in the hydrogel layers. After attaching the hydrogel layers, a typical 3D porous structure was observed by scanning electron microscopy, and the surface chemical composition variations were characterized by attenuated total reflection-Fourier transform infrared spectroscopy. The live/dead staining, inhibition zone, and the optical degree of co-culture solution demonstrated that the designed surfaces could not only effectively resist bacteria attachment but also kill the surrounding bacteria Escherichia coli and Staphylococcus aureus. It was noteworthy that the strong antibacterial ability could be maintained for more than 5 weeks. Additionally, the excellent hemocompatibility of the modified membranes was confirmed by undetectable plasma protein adsorption, suppressed platelet adhesion, prolonged clotting time, low hemolysis ratio, and suppressed blood-related complement activation. Cell culture tests indicated that the membranes showed no cytotoxicity, but strong anti-cell adhesion properties. The proposed method to fabricate antibacterial hydrogel thin layers has great potential to be widely used to inhibit the formation of biofilms on various biomedical devices.
Collapse
Affiliation(s)
- Min He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Qian Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Rui Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Yi Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Weifeng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu 610065, P. R. China
| |
Collapse
|
47
|
Yang H, Stansbury JW, Ai X, Hu R, Tang H, Maitlo I, Nie J. Nanostructure Superhydrophobic Surface Prepared by Photopolymerization. CHEM LETT 2017. [DOI: 10.1246/cl.161052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|