1
|
Niu J, Yu J, Wu X, Zhang YM, Chen Y, Yu Z, Liu Y. Host-guest binding between cucurbit[8]uril and amphiphilic peptides achieved tunable supramolecular aggregates for cancer diagnosis. Chem Sci 2024; 15:13779-13787. [PMID: 39211500 PMCID: PMC11351706 DOI: 10.1039/d4sc04261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024] Open
Abstract
The manipulation of biocompatible supramolecular nanostructures at subcellular and cellular levels has become one of the increasingly significant topics but remains a formidable challenge in chemical and biological science. In this work, a controllable supramolecular aggregate based on host-guest competitive binding is elaborately constructed using cucurbit[8]uril, methionine-containing amphiphilic peptide, and perylene diimide, displaying in situ oxidation-driven macrocycle-confined fluorescence enhancement for cell imaging and morphological reconstruction for cancer cell death. The experimental results demonstrate that cucurbit[8]uril possesses a high binding affinity with the methionine peptide, while this value sharply decreases after the methionine residue is oxidized to sulfoxide or sulfone. Therefore, perylene diimide can be competitively included by cucurbit[8]uril in the co-assemblies, eventually resulting in a 10-fold fluorescence enhancement and the conversion of topological morphology from nano-sized particles to micron-sized sheets. Moreover, the obtained ternary assemblies can be oxidized by endogenous reactive oxygen species in cancer cells, thus not only providing enhanced fluorescence for cell imaging, but also leading to endoplasmic reticulum dysfunction and significant cell death. Therefore, the controllable and oxidation-responsive morphological transformation based on the host-guest competitive binding in biological media can be viewed as a feasible means for efficient disease theragnosis.
Collapse
Affiliation(s)
- Jie Niu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Jie Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou Jiangsu 225002 P. R. China
| | - Ying-Ming Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zhilin Yu
- Key Laboratory of Functional Polymer Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Tianjin 300071 P. R. China
| |
Collapse
|
2
|
Saroha A, Bosco MS, Menon S, Kumari P, Maity T, Rana S, Kotak S, Mondal J, Agasti SS. Regulation of microtubule dynamics and function in living cells via cucurbit[7]uril host-guest assembly. Chem Sci 2024; 15:11981-11994. [PMID: 39092123 PMCID: PMC11290447 DOI: 10.1039/d4sc00204k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
Living systems utilize sophisticated biochemical regulators and various signal transduction mechanisms to program bio-molecular assemblies and their associated functions. Creating synthetic assemblies that can replicate the functional and signal-responsive properties of these regulators, while also interfacing with biomolecules, holds significant interest within the realms of supramolecular chemistry and chemical biology. This pursuit not only aids in understanding the fundamental design principles of life but also introduces novel capabilities that contribute to the advancements in medical and therapeutic research. In this study, we present a cucurbit[7]uril (CB[7]) host-guest system designed to regulate the dynamics and functions of microtubules (MTs) in living cells. To establish communication between MTs and CB[7] and to reversibly control MT function through host-guest recognition, we synthesized a two-faced docetaxel-p-xylenediamine (Xyl-DTX) derivative. While Xyl-DTX effectively stabilized polymerized MTs, inducing MT bundling and reducing dynamics in GFP-α-tubulin expressing cells, we observed a significant reduction in its MT-targeted activity upon threading with CB[7]. Leveraging the reversible nature of the host-guest complexation, we strategically reactivated the MT stabilizing effect by programming the guest displacement reaction from the CB[7]·Xyl-DTX complex using a suitable chemical signal, namely a high-affinity guest. This host-guest switch was further integrated into various guest activation networks, enabling 'user-defined' regulatory control over MT function. For instance, we demonstrated programmable control over MT function through an optical signal by interfacing it with a photochemical guest activation network. Finally, we showcased the versatility of this supramolecular system in nanotechnology-based therapeutic approaches, where a self-assembled nanoparticle system was employed to trigger the MT-targeted therapeutic effect from the CB[7]·Xyl-DTX complex.
Collapse
Affiliation(s)
- Akshay Saroha
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Monica Swetha Bosco
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Sneha Menon
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Pratibha Kumari
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| | - Tanmoy Maity
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science C. V. Raman Road Bangalore 560012 India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology, Indian Institute of Science 560012 Bangalore India
| | - Jagannath Mondal
- Tata Institute of Fundamental Research 36/P, Gopanpally Village Hyderabad 500046 India
| | - Sarit S Agasti
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- Chemistry & Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore Karnataka 560064 India
| |
Collapse
|
3
|
Roth E, Listyarini RV, Hofer TS, Cziferszky M. Host-Guest Interactions of Ruthenium(II) Arene Complexes with Cucurbit[7/8]uril. Inorg Chem 2024; 63:14021-14031. [PMID: 39016439 PMCID: PMC11289748 DOI: 10.1021/acs.inorgchem.4c01755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Cucurbit[n]urils (CB[n]s) have been recognized for their chemical and thermal stability, and their ability to bind many neutral and cationic guest molecules makes them excellent hosts in a range of supramolecular applications. In drug delivery, CB[n]s can enhance drug solubility, improve chemical and physical drug stability, and allow for triggered and controlled release. This study aimed to investigate the ability of CB[7] and CB[8] as molecular hosts to bind ruthenium(II) arene complexes that are current anticancer lead structures in the area of metallodrugs. Both, experimental and computational methods, led to insights into the binding preferences and geometries of [RuII(cym)Cl2]2 (1; cym = η6-p-cymene), [RuII(cym)(dmb)Cl2]) (2; cym = η6-p-cymene; dmb = 1,3-dimethylbenzimidazol-2-ylidene), and [RuII(cym)(pta)Cl2] (3, RAPTA-C; cym = η6-p-cymene; pta = 1,3,5-triaza-7-phospha-adamantane) with CB[7] and CB[8]. Competition experiments by mass spectrometry revealed clear preferences of 2 for CB[8] and 3 for CB[7]. Based on a comparison of the associated interaction energies from quantum chemical calculations as well as experimental data, 3@CB[7] clearly prefers a binding mode, where the pta ligand is located inside the cavity of the host, and the metal ion interacts with two of the carbonyl groups on the rim of CB[7]. In contrast, complex 2 binds in two different orientations with interaction energies similar to those of both CB[n]s, with the cym ligand being either inside or outside of the cavity. These findings suggest that ruthenium(II) arene complexes are able to form stable host-guest interactions with CB[n]s, which can be exploited as drug delivery vehicles in further metallodrug development to improve their chemical stability.
Collapse
Affiliation(s)
- Elisa Roth
- Institute
for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and
Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| | - Risnita Vicky Listyarini
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
- Chemistry
Education Study Program, Sanata Dharma University, Yogyakarta 55282, Indonesia
| | - Thomas S. Hofer
- Institute
of General, Inorganic and Theoretical Chemistry, Center for Chemistry
and Biomedicine, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Monika Cziferszky
- Institute
for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and
Pharmacy, University of Innsbruck, Innrain 80/82, A-6020 Innsbruck, Austria
| |
Collapse
|
4
|
Geng WC, Jiang ZT, Chen SL, Guo DS. Supramolecular interaction in the action of drug delivery systems. Chem Sci 2024; 15:7811-7823. [PMID: 38817563 PMCID: PMC11134347 DOI: 10.1039/d3sc04585d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/27/2024] [Indexed: 06/01/2024] Open
Abstract
Complex diseases and diverse clinical needs necessitate drug delivery systems (DDSs), yet the current performance of DDSs is far from ideal. Supramolecular interactions play a pivotal role in various aspects of drug delivery, encompassing biocompatibility, drug loading, stability, crossing biological barriers, targeting, and controlled release. Nevertheless, despite having some understanding of the role of supramolecular interactions in drug delivery, their incorporation is frequently overlooked in the design and development of DDSs. This perspective provides a brief analysis of the involved supramolecular interactions in the action of drug delivery, with a primary emphasis on the DDSs employed in the clinic, mainly liposomes and polymers, and recognized phenomena in research, such as the protein corona. The supramolecular interactions implicated in various aspects of drug delivery systems, including biocompatibility, drug loading, stability, spatiotemporal distribution, and controlled release, were individually analyzed and discussed. This perspective aims to trigger a comprehensive and systematic consideration of supramolecular interactions in the further development of DDSs. Supramolecular interactions embody the true essence of the interplay between the majority of DDSs and biological systems.
Collapse
Affiliation(s)
- Wen-Chao Geng
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Ze-Tao Jiang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Shi-Lin Chen
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University Tianjin 300071 China
| |
Collapse
|
5
|
Chen MM, Li Y, Zhu Y, Geng WC, Chen FY, Li JJ, Wang ZH, Hu XY, Tang Q, Yu Y, Sun T, Guo DS. Supramolecular 3 in 1: A Lubrication and Co-Delivery System for Synergistic Advanced Osteoarthritis Therapy. ACS NANO 2024; 18:13117-13129. [PMID: 38727027 DOI: 10.1021/acsnano.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The complexity, heterogeneity, and drug resistance of diseases necessitate a shift in therapeutic paradigms from monotherapy to combination therapy, which could augment treatment efficiency. Effective treatment of advanced osteoarthritis (OA) requires addressing three key factors contributing to its deterioration: chronic joint inflammation, lubrication dysfunction, and cartilage-tissue degradation. Herein, we present a supramolecular nanomedicine of multifunctionality via molecular recognition and self-assembly. The employed macrocyclic carrier, zwitterion-modified cavitand (CV-2), not only accurately loads various drugs but also functions as a therapeutic agent with lubricating properties for the treatment of OA. Kartogenin (KGN), a drug for articular cartilage regeneration and protection, and flurbiprofen (FP), an anti-inflammatory agent, were coloaded onto CV-2 assembly, forming a supramolecular nanomedicine KGN&FP@CV-2. The three-in-one combination therapy of KGN&FP@CV-2 addresses the three pathological features for treating OA collectively, and thus provides long-term therapeutic benefits for OA through sustained drug release and intrinsic lubrication in vivo. The multifunctional integration of macrocyclic delivery and therapeutics provides a simple, flexible, and universal platform for the synergistic treatment of diseases involving multiple drugs.
Collapse
Affiliation(s)
- Meng-Meng Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuqiao Li
- Spine Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujie Zhu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Wen-Chao Geng
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Fang-Yuan Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Juan-Juan Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Ze-Han Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xin-Yue Hu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Qiong Tang
- Department of Respiratory, Tianjin Union Medical Center, Tianjin 300121, China
| | - Yang Yu
- Center for Supramolecular Chemistry & Catalysis and Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Tianwei Sun
- Spine Surgery, Tianjin Union Medical Center, Tianjin 300121, China
| | - Dong-Sheng Guo
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), Frontiers Science Center for New Organic Matter, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, College of Chemistry and Environmental Sciences, Kashi University, Kashi 844000, China
| |
Collapse
|
6
|
Alešković M, Šekutor M. Overcoming barriers with non-covalent interactions: supramolecular recognition of adamantyl cucurbit[ n]uril assemblies for medical applications. RSC Med Chem 2024; 15:433-471. [PMID: 38389878 PMCID: PMC10880950 DOI: 10.1039/d3md00596h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/30/2023] [Indexed: 02/24/2024] Open
Abstract
Adamantane, a staple in medicinal chemistry, recently became a cornerstone of a supramolecular host-guest drug delivery system, ADA/CB[n]. Owing to a good fit between the adamantane cage and the host cavity of the cucurbit[n]uril macrocycle, formed strong inclusion complexes find applications in drug delivery and controlled drug release. Note that the cucurbit[n]uril host is not solely a delivery vehicle of the ADA/CB[n] system but rather influences the bioactivity and bioavailability of drug molecules and can tune drug properties. Namely, as host-guest interactions are capable of changing the intrinsic properties of the guest molecule, inclusion complexes can become more soluble, bioavailable and more resistant to metabolic conditions compared to individual non-complexed molecules. Such synergistic effects have implications for practical bioapplicability of this complex system and provide a new viewpoint to therapy, beyond the traditional single drug molecule approach. By achieving a balance between guest encapsulation and release, the ADA/CB[n] system has also found use beyond just drug delivery, in fields like bioanalytics, sensing assays, bioimaging, etc. Thus, chemosensing in physiological conditions, indicator displacement assays, in vivo diagnostics and hybrid nanostructures are just some recent examples of the ADA/CB[n] applicability, be it for displacements purposes or as cargo vehicles.
Collapse
Affiliation(s)
- Marija Alešković
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| | - Marina Šekutor
- Department of Organic Chemistry and Biochemistry, Ruđer Bošković Institute Bijenička 54 10 000 Zagreb Croatia
| |
Collapse
|
7
|
Du D, Liu YD, Lan JB, Hou XL, Liu JD, Shi QH, Huang QW, Xue YS, Yan CG, An L. Novel biotin-linked amphiphilic calix[4]arene-based supramolecular micelles as doxorubicin carriers for boosted anticancer activity. Chem Commun (Camb) 2023; 59:12487-12490. [PMID: 37786313 DOI: 10.1039/d3cc04102f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Supramolecular carrier-mediated chemotherapy is a highly attractive strategy for targeted drug delivery. In this study, four novel biotin-linked calix[4]arenes BPCA1-BPCA4 have been rationally designed to construct nano-complex with doxorubicin. The in vitro and in vivo assessments reveal that BPCA4-DOX with excellent stability are capable of affording significantly superior anti-tumor activity and lower side effects.
Collapse
Affiliation(s)
- Dan Du
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Yu-Dun Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Jun-Bing Lan
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Xue-Li Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Jia-Dong Liu
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Qing-Hua Shi
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Qing-Wen Huang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Yun-Sheng Xue
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
| | - Lin An
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China
- New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, P. R. China.
| |
Collapse
|
8
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
9
|
Yang X, Varini K, Godard M, Gassiot F, Sonnette R, Ferracci G, Pecqueux B, Monnier V, Charles L, Maria S, Hardy M, Ouari O, Khrestchatisky M, Lécorché P, Jacquot G, Bardelang D. Preparation and In Vitro Validation of a Cucurbit[7]uril-Peptide Conjugate Targeting the LDL Receptor. J Med Chem 2023. [PMID: 37339060 DOI: 10.1021/acs.jmedchem.3c00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Here we report the coupling of a cyclic peptide (VH4127) targeting the low density lipoprotein (LDL) receptor (LDLR) noncompetitively to cucurbit[7]uril (CB[7]) to develop a new kind of drug delivery system (DDS), namely, CB[7]-VH4127, with maintained binding affinity to the LDLR. To evaluate the uptake potential of this bismacrocyclic compound, another conjugate was prepared comprising a high-affinity group for CB[7] (adamantyl(Ada)-amine) coupled to the fluorescent tracker Alexa680 (A680). The resulting A680-Ada·CB[7]-VH4127 supramolecular complex demonstrated conserved LDLR-binding potential and improved LDLR-mediated endocytosis and intracellular accumulation potential in LDLR-expressing cells. The combination of two technologies, namely, monofunctionalized CB[7] and the VH4127 LDLR-targeting peptide, opens new avenues in terms of targeting and intracellular delivery to LDLR-expressing tissues or tumors. The versatile transport capacity of CB[7], known to bind a large spectrum of bioactive or functional compounds, makes this new DDS suitable for a wide range of therapeutic or imaging applications.
Collapse
Affiliation(s)
- Xue Yang
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | | - Géraldine Ferracci
- Aix Marseille Univ, CNRS, INP, Inst Neurophysiopathol, 13005 Marseille, France
| | | | - Valérie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, 13013 Marseille, France
| | | | | | - Micael Hardy
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | - Olivier Ouari
- Aix Marseille Univ, CNRS, ICR, 13013 Marseille, France
| | | | | | | | | |
Collapse
|
10
|
Shukla S, Sagar B, Sood AK, Gaur A, Batra S, Gulati S. Supramolecular Chemotherapy with Cucurbit[ n]urils as Encapsulating Hosts. ACS APPLIED BIO MATERIALS 2023. [PMID: 37224296 DOI: 10.1021/acsabm.3c00244] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The cucurbit[n]urils (CB[n]) belong to the field of relatively young supramolecules which act as containers for a large variety of guests and are being explored extensively for their numerous biomedical applications. This includes drug formulation and delivery, controlled drug release, photodynamic therapy, sensing for bioanalytical purposes, etc. These supramolecular host-guest systems have distinctive recognition properties and have successfully been shown to enhance the in vitro and in vivo utility of various chemotherapeutic agents. The CB[n]s are tailored to optimize their application in payload delivery and diagnostics and in lowering the toxicity of existing drugs. This review has listed the recent studies on working mechanisms and host-guest complexation of the biologically vital molecules with CB[n] and highlighted their implementation in anticancer therapeutics. Various modifications in CB-drug inclusion compounds like CB supramolecular nanoarchitectures along with application in photodynamic therapy, which has shown potential as targeted drug delivery vehicles in cancer chemotherapy, have also been discussed.
Collapse
|
11
|
Jogadi W, Zheng YR. Supramolecular platinum complexes for cancer therapy. Curr Opin Chem Biol 2023; 73:102276. [PMID: 36878171 PMCID: PMC10033446 DOI: 10.1016/j.cbpa.2023.102276] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 03/06/2023]
Abstract
The rise of supramolecular chemistry offers new tools to design therapeutics and delivery platforms for biomedical applications. This review aims to highlight the recent developments that harness host-guest interactions and self-assembly to design novel supramolecular Pt complexes as anticancer agents and drug delivery systems. These complexes range from small host-guest structures to large metallosupramolecules and nanoparticles. These supramolecular complexes integrate the biological properties of Pt compounds and novel supramolecular structures, which inspires new designs of anticancer approaches that overcome problems in conventional Pt drugs. Based on the differences in Pt cores and supramolecular structures, this review focuses on five different types of supramolecular Pt complexes, and they include host-guest complexes of the FDA-approved Pt(II) drugs, supramolecular complexes of nonclassical Pt(II) metallodrugs, supramolecular complexes of fatty acid-like Pt(IV) prodrugs, self-assembled nanotherapeutics of Pt(IV) prodrugs, and self-assembled Pt-based metallosupramolecules.
Collapse
Affiliation(s)
- Wjdan Jogadi
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA
| | - Yao-Rong Zheng
- 236 Integrated Sciences Building, Department of Chemistry and Biochemistry, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
12
|
Emissive‐Dye/Cucurbit[n]uril‐Based Fluorescence Probes for Sensing Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
13
|
Saibu OA, Hammed SO, Oladipo OO, Odunitan TT, Ajayi TM, Adejuyigbe AJ, Apanisile BT, Oyeneyin OE, Oluwafemi AT, Ayoola T, Olaoba OT, Alausa AO, Omoboyowa DA. Protein-protein interaction and interference of carcinogenesis by supramolecular modifications. Bioorg Med Chem 2023; 81:117211. [PMID: 36809721 DOI: 10.1016/j.bmc.2023.117211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023]
Abstract
Protein-protein interactions (PPIs) are essential in normal biological processes, but they can become disrupted or imbalanced in cancer. Various technological advancements have led to an increase in the number of PPI inhibitors, which target hubs in cancer cell's protein networks. However, it remains difficult to develop PPI inhibitors with desired potency and specificity. Supramolecular chemistry has only lately become recognized as a promising method to modify protein activities. In this review, we highlight recent advances in the use of supramolecular modification approaches in cancer therapy. We make special note of efforts to apply supramolecular modifications, such as molecular tweezers, to targeting the nuclear export signal (NES), which can be used to attenuate signaling processes in carcinogenesis. Finally, we discuss the strengths and weaknesses of using supramolecular approaches to targeting PPIs.
Collapse
Affiliation(s)
- Oluwatosin A Saibu
- Department of Environmental Toxicology, Universitat Duisburg-Essen, NorthRhine-Westphalia, Germany
| | - Sodiq O Hammed
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oladapo O Oladipo
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| | - Tope T Odunitan
- Genomics Unit, Helix Biogen Institute, Ogbomoso, Oyo State, Nigeria; Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Temitope M Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Aderonke J Adejuyigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Oluwatoba E Oyeneyin
- Theoretical and Computational Chemistry Unit, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| | - Adenrele T Oluwafemi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Tolulope Ayoola
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Olamide T Olaoba
- Department of Molecular Pathogenesis and Therapeutics, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Abdullahi O Alausa
- Department of Molecular Biology and Biotechnology, ITMO University, St Petersburg, Russia
| | - Damilola A Omoboyowa
- Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
| |
Collapse
|
14
|
Ding YF, Xu X, Li J, Wang Z, Luo J, Mok GSP, Li S, Wang R. Hyaluronic Acid-based Supramolecular Nanomedicine with Optimized Ratio of Oxaliplatin/Chlorin e6 for Combined Chemotherapy and O2-Economized Photodynamic Therapy. Acta Biomater 2023; 164:397-406. [PMID: 37004784 DOI: 10.1016/j.actbio.2023.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Dual- or multi-modality combination therapy has become one of the most effective strategies to overcome drug resistance in cancer therapy, and the optimized ratio of the therapeutic agents working on the tumor greatly affects the therapeutic outcomes. However, the absence of a facile method to optimize the ratio of therapeutic agents in nanomedicine has, at least in part, impaired the clinical potential of combination therapy. Herein, a new cucurbit[7]uril (CB[7])-conjugated hyaluronic acid (HA) based nanomedicine was developed, in which both chlorin e6 (Ce6) and oxaliplatin (OX) were co-loaded non-covalently at an optimized ratio via facile host-guest complexation, for optimal, combined photodynamic therapy (PDT)/chemotherapy. To maximize the therapeutic efficacy, a mitochondrial respiration inhibitor, atovaquone (Ato), was also loaded into the nanomedicine to limit consumption of oxygen by the solid tumor, sparing oxygen for more efficient PDT. Additionally, HA on the surface of nanomedicine allowed targeted delivery to cancer cells with over-expressed CD44 receptors (such as CT26 cell lines). Thus, this supramolecular nanomedicine platform with an optimal ratio of photosensitizer and chemotherapeutic agent not only provides an important new tool for enhanced PDT/chemotherapy of solid tumors, but also offers a CB[7]-based host-guest complexation strategy to facilely optimize the ratio of therapeutic agents for multi-modality nanomedicine. STATEMENT OF SIGNIFICANCE: Chemotherapy remains the most common modality for cancer treatment in clinical practice. Combination therapy by co-delivery of two or more therapeutic agents has been recognized as one of the most effective strategies to improve therapeutic outcome of cancer treatment. However, the ratio of loaded drugs could not be facilely optimized, which may greatly affect the combination efficiency and overall therapeutic outcome. Herein, we developed a hyaluronic acid based supramolecular nanomedicine with facile method to optimize the ratio of two therapeutic agents for improved therapeutic outcome. This supramolecular nanomedicine not only provides an important new tool for enhanced photodynamic therapy/chemotherapy of solid tumors, but also offers insights in using macrocyclic molecule-based host-guest complexation to facilely optimize the ratio of therapeutic agents in multi-modality nanomedicine.
Collapse
Affiliation(s)
- Yuan-Fu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau SAR, China
| | - Xun Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Junyan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | | | - Greta S P Mok
- Biomedical Imaging Laboratory (BIG), Department of Electrical and Computer Engineering, University of Macau, Taipa, Macau SAR, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China; MoE Frontier Centre for Precision Oncology, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
15
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
16
|
Priya TJ, Sugumar RW, Harini M, Prasad NR. Host-Guest Complex of Cucurbituril with 5-Fluorouracil: Structural Study, Effect on Cytotoxicity, and Intracellular ROS Generation. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02824-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
17
|
Yang H, Duan Z, Liu F, Zhao Z, Liu S. Cucurbit[7]uril-Based Supramolecular DNA Nanogel for Targeted Codelivery of Chemo/Photodynamic Drugs. ACS Macro Lett 2023; 12:295-301. [PMID: 36779651 DOI: 10.1021/acsmacrolett.2c00763] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Nanodrug delivery systems for the delivery of combination therapeutics have shown their exceptionally potential clinical application by facilitating better synergistic anticancer effects. Herein, we developed a universal strategy to fabricate supramolecular DNA nanogels from DNA tetrahedron skeleton and cucurbit[7]uril-based host-guest interaction for codelivery the chemo and photodynamic therapy drugs. The constructed supramolecular DNA nanogels showed the size tunability, host-guest competition and DNA enzyme responsibility. The cell uptake and MTT experiments demonstrated that the nanogel has excellent biocompatibility and specificity, and achieved the enrichment and slow release of drug in cells. Finally, the combined chemo/photodynamic therapy was realized by coloading doxorubicin hydrochloride and methylene blue. It was proven to be a better stragety to promote apoptosis of cancer cells compared to single chemotherapy or photodynamic therapy. These results suggest that our proposed supramolecular nanogels have provided an effective nanoplatform for drug delivery in the combinational therapy for cancer.
Collapse
Affiliation(s)
- Hai Yang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zongze Duan
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fengbo Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zhiyong Zhao
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Simin Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.,Institute of Advanced Materials and Nanotechnology, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
18
|
Sabin C, Sam S, Hrishikes A, Salin B, Vigneshkumar PN, George J, John F. Supramolecular Drug Delivery Systems Based on Host‐Guest Interactions for Nucleic Acid Delivery. ChemistrySelect 2022. [DOI: 10.1002/slct.202203644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Christeena Sabin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Samanta Sam
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - A. Hrishikes
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Biyatris Salin
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - P. N. Vigneshkumar
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
- Department of Chemistry The University of British Columbia Okanagan Vancouver BC V6T 1Z4 Canada
| | - Jinu George
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| | - Franklin John
- Bioorganic Chemistry Laboratory Department of Chemistry Sacred Heart College (Autonomous), Thevara Kochi Kerala India 682013
| |
Collapse
|
19
|
Chang J, Wang K, Chen J, Chang Y. Binding behavior and in vitro cytotoxicity of inclusion complexes between aminopterin and cucurbit[7]uril. J INCL PHENOM MACRO 2022. [DOI: 10.1007/s10847-022-01175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Liu C, Liu C, Bai Y, Wang J, Tian W. Drug Self-Delivery Systems: Molecule Design, Construction Strategy, and Biological Application. Adv Healthc Mater 2022; 12:e2202769. [PMID: 36538727 DOI: 10.1002/adhm.202202769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/29/2022] [Indexed: 02/01/2023]
Abstract
Drug self-delivery systems (DSDSs) offer new ways to create novel drug delivery systems (DDSs). In typical DSDSs, therapeutic reagents are not considered passive cargos but active delivery agents of actionable targets. As an advanced drug delivery strategy, DSDSs with positive cooperativity of both free drugs and nanocarriers exhibit the clear merits of unprecedented drug-loading capacity, minimized systemic toxicity, and flexible preparation of nanoscale deliverables for passive targeted therapy. This review highlights the recent advances and future trends in DSDSs on the basis of two differently constructed structures: covalent and noncovalent bond-based DSDSs. Specifically, various chemical and architectural designs, fabrication strategies, and responsive and functional features are comprehensively discussed for these two types of DSDSs. In addition, additional comments on the current development status of DSDSs and the potential applications of their molecular designs are presented in the corresponding discussion. Finally, the promising potential of DSDSs in biological applications is revealed and the relationship between preliminary molecular design of DSDSs and therapeutic effects of subsequent DSDSs biological applications is clarified.
Collapse
Affiliation(s)
- Chengfei Liu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Caiping Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yang Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jingxia Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
21
|
Zhou H, Meng Q, Li B, Liu Y, Li Z, Li X, Sun Z, Chen Y. Supramolecular Combination Chemotherapy: Cucurbit[8]uril Complex Enhanced Platinum Drug Infiltration and Modified Nanomechanical Property of Colorectal Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14326-14334. [PMID: 36355865 DOI: 10.1021/acs.langmuir.2c02388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Combination chemotherapy is recognized as a vital medical treatment for cancer, but it has not achieved clinical ideal effects of combination therapy. Herein, we designed a supramolecular combination chemotherapy strategy based on cucurbit[8]uril (CB[8]), which can be facilely assembled into dual platinum drugs. Interestingly, employing the CB[8] carrier led to a greater than 10-fold intracellular Pt content compared to that of dual drugs at 4 h, and the CB[8] complex (CLE) can enhance the infiltration of platinum drugs in colorectal tumor cells tremendously. The platinum drugs can be released from CLE through consuming more tumor biomarker spermidine. Through analyzing the nanomechanical property of the colorectal tumor cellular surface by bioscope AFM, it was revealed that CLE modified the property by decreasing the adhesion and increasing the stiffness. This study provided a facile and sensitive strategy for improving combination chemotherapy by supramolecular materials.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Qingtao Meng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yikai Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Zhaoxiang Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Xiaobo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
- Key Laboratory of Environmental Medicine Engineering Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, P. R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
22
|
Li Y, Su Y, Li Z, Chen Y. Supramolecular Combination Cancer Therapy Based on Macrocyclic Supramolecular Materials. Polymers (Basel) 2022; 14:polym14224855. [PMID: 36432982 PMCID: PMC9696801 DOI: 10.3390/polym14224855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Supramolecular combination therapy adopts supramolecular materials to design intelligent drug delivery systems with different strategies for cancer treatments. Thereinto, macrocyclic supramolecular materials play a crucial role in encapsulating anticancer drugs to improve anticancer efficiency and decrease toxicity towards normal tissue by host-guest interaction. In general, chemotherapy is still common therapy for solid tumors in clinics. However, supramolecular combination therapy can overcome the limitations of the traditional single-drug chemotherapy in the laboratory findings. In this review, we summarized the combination chemotherapy, photothermal chemotherapy, and gene chemotherapy based on macrocyclic supramolecular materials. Finally, the application prospects in supramolecular combination therapy are discussed.
Collapse
|
23
|
Ding YF, Wei J, Quan X, Gu W, Xi L, Zheng Y, Zhao Y, Luo J, Li S, Mok GS, Wang R. Hyaluronic acid-based supramolecular medicine with polyamines sequestration capability for cooperative anti-psoriasis. Carbohydr Polym 2022; 296:119968. [DOI: 10.1016/j.carbpol.2022.119968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
|
24
|
Lu B, Wang L, Ran X, Tang H, Cao D. Recent Advances in Fluorescent Methods for Polyamine Detection and the Polyamine Suppressing Strategy in Tumor Treatment. BIOSENSORS 2022; 12:bios12080633. [PMID: 36005029 PMCID: PMC9405807 DOI: 10.3390/bios12080633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 12/22/2022]
Abstract
The biogenic aliphatic polyamines (spermine, spermidine, and putrescine) are responsible for numerous cell functions, including cell proliferation, the stabilization of nucleic acid conformations, cell division, homeostasis, gene expression, and protein synthesis in living organisms. The change of polyamine concentrations in the urine or blood is usually related to the presence of malignant tumors and is regarded as a biomarker for the early diagnosis of cancer. Therefore, the detection of polyamine levels in physiological fluids can provide valuable information in terms of cancer diagnosis and in monitoring therapeutic effects. In this review, we summarize the recent advances in fluorescent methods for polyamine detection (supramolecular fluorescent sensing systems, fluorescent probes based on the chromophore reaction, fluorescent small molecules, and fluorescent nanoparticles). In addition, tumor polyamine-suppressing strategies (such as polyamine conjugate, polyamine analogs, combinations that target multiple components, spermine-responsive supramolecular chemotherapy, a combination of polyamine consumption and photodynamic therapy, etc.) are highlighted. We hope that this review promotes the development of more efficient polyamine detection methods and provides a comprehensive understanding of polyamine-based tumor suppressor strategies.
Collapse
Affiliation(s)
- Bingli Lu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
- Correspondence:
| | - Xueguang Ran
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, State Key Laboratory of Livestock and Poultry Breeding, Guangzhou 510641, China
| | - Hao Tang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, China
| |
Collapse
|
25
|
Assaf KI. Host-guest complexation between cucurbit[7]uril and doxepin induced supramolecular assembly. Org Biomol Chem 2022; 20:5796-5802. [PMID: 35833381 DOI: 10.1039/d2ob01065h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The supramolecular complexation of doxepin (DOX) with cucurbit[7]uril (CB7) was investigated in aqueous solution. The results indicated the formation of a host-guest complex, as verified by complexation-induced chemical shifts in the NMR experiments and supported by quantum-chemical calculations, in which the alkylammonium tail of DOX was found to be encapsulated inside the CB7 cavity, while the tricyclic moiety remained exposed to bulk water. Isothermal titration calorimetry and dye-displacement experiments provided a moderate binding affinity (104 M-1). Interestingly, the partial encapsulation of DOX by the CB7 macrocycle led to the development of a supramolecular assembly at a low millimolar concentration, as verified by NMR and dynamic light scattering (DLS) measurements, which showed homogeneous size distributions with an average diameter of 1700 nm.
Collapse
Affiliation(s)
- Khaleel I Assaf
- Department of Chemistry, Faculty of Science, Al-Balqa Applied University, Al-Salt 19117, Jordan.
| |
Collapse
|
26
|
Ji QT, Hu DK, Mu XF, Tian XX, Zhou L, Yao S, Wang XH, Xiang SZ, Ye HJ, Fan LJ, Wang PY. Cucurbit[7]uril-Mediated Supramolecular Bactericidal Nanoparticles: Their Assembly Process, Controlled Release, and Safe Treatment of Intractable Plant Bacterial Diseases. NANO LETTERS 2022; 22:4839-4847. [PMID: 35667033 DOI: 10.1021/acs.nanolett.2c01203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A safe, biocompatible, and stimuli-responsive cucurbit[7]uril-mediated supramolecular bactericidal nanoparticle was fabricated by encapsulating a highly bioactive carbazole-decorated imidazolium salt (A1, EC50 = 0.647 μg/mL against phytopathogen Xanthomonas oryzae pv oryzae) into the host cucurbit[7]uril (CB[7]), thereby leading to self-assembled topographies from microsheets (A1) to nanospheroidal architectures (A1@CB[7]). The assembly behaviors were elucidated by acquired single-crystal structures, 1H NMR, ITC, and X-ray powder diffraction experiments. Complex A1@CB[7] displayed lower phytotoxicity and could efficiently switch on its potent antibacterial ability via introducing a simple competitor 1-adamantanamine hydrochloride (AD). In vivo antibacterial trials against rice bacterial blight revealed that A1@CB[7] could relieve the disease symptoms after being triggered by AD and provide a workable control efficiency of 42.6% at 100 μg/mL, which was superior to bismerthiazol (33.4%). These materials can provide a viable platform for fabricating diverse stimuli-responsive supramolecular bactericides for managing bacterial infections with improved safety.
Collapse
Affiliation(s)
- Qing-Tian Ji
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - De-Kun Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xian-Fu Mu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Xue Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Si Yao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiao-Hui Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shu-Zhen Xiang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao-Jie Ye
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Jun Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
27
|
Wang L, Xu M, Zhou H, Yan K, Duan S, Xue D, Wang Y, Di B, Hu C. Teaching PCR for Simultaneous Sensing of Gene Transcription and Downstream Metabolites by Cucurbit[8]uril-Mediated Intervention of Polymerase Activity. Anal Chem 2022; 94:8715-8723. [PMID: 35671188 DOI: 10.1021/acs.analchem.2c01103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The target of typical PCR analysis is restricted to nucleic acids. To this end, we report here a novel strategy to simultaneously detect genetic and metabolic markers using commercial PCR kits with cucurbit[8]urils (CB[8]) implemented to manipulate the activity of Taq DNA polymerase. CB[8] binds with the nonionic surfactants and displaces them from the polymerase surface, resulting in decreased enzyme activity. Meanwhile, the inhibited enzyme can be reversibly activated when spermine, the downstream metabolite of ornithine decarboxylase (ODC), is present in the sample, which competitively binds to CB[8] and recovers polymerase activity. CB[8] was implemented in conventional PCR kits not only to reduce false-positive results but also to extend the detection range of PCR technology. With this novel method to detect ODC in cell lysates containing both the nucleotides and intracellular metabolites, positive results were only observed in highly active HEK 293T cells, whereas silent cells treated with ODC inhibitor showed negative readouts, therefore providing a simple but elegant dual-modality PCR method for precision diagnosis.
Collapse
Affiliation(s)
- Lancheng Wang
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Mingjie Xu
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Huimin Zhou
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Kun Yan
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Shiqi Duan
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Dandan Xue
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Youmei Wang
- Key Laboratory of Drug Monitoring and Control, Drug Intelligence and Forensic Center, Ministry of Public Security, No. 18 Dongbeiwang West Road, Beijing 100193, China
| | - Bin Di
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| | - Chi Hu
- China National Narcotics Control Commission, China Pharmaceutical University, Joint Laboratory on Key Technologies of Narcotics Control, No. 24 Tongjiaxiang Road, Nanjing 210009, China
| |
Collapse
|
28
|
Li MP, Yang N, Xu WR. Synthesis of a new water-soluble hexacarboxylated tribenzotriquinacene derivative and its competitive host-guest interaction for drug delivery. Beilstein J Org Chem 2022; 18:539-548. [PMID: 35615534 PMCID: PMC9112186 DOI: 10.3762/bjoc.18.56] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
A new water-soluble hexacarboxylated tribenzotriquinacene derivative (TBTQ-CB6) was synthesized and used as a supramolecular drug carrier to load the model anticancer drugs dimethyl viologen (MV) and doxorubicin (DOX) via host-guest interactions. The drugs could be effectively released by spermine (SM), a molecule overexpressed in cancer cells, through host-guest competitive substitution since TBTQ-CB6 has a stronger binding affinity toward SM than MV and DOX. The host-guest interactions of the complexes of TBTQ-CB6 with MV, DOX and SM were investigated by NMR spectroscopy and fluorescence spectroscopy. The association stoichiometry of the complexes of TBTQ-CB6 with MV, DOX, and SM was found to be 1:1 with association constants of K a = (7.67 ± 0.34) × 104 M-1, K a = (6.81 ± 0.33) × 104 M-1, and K a = (5.09 ± 0.98) × 105 M-1, respectively. The competitive substitution process was visualized by NMR titration. This novel TBTQ-based host-guest drug delivery system may have potential use in supramolecular chemotherapy.
Collapse
Affiliation(s)
- Man-Ping Li
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Nan Yang
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| | - Wen-Rong Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, Department of Chemistry, School of Science or School of Chemical Engineering and Technology, Hainan University, Haikou, 570228, China
| |
Collapse
|
29
|
Saji VS. Recent Updates on Supramolecular-Based Drug Delivery - Macrocycles and Supramolecular Gels. CHEM REC 2022; 22:e202200053. [PMID: 35510981 DOI: 10.1002/tcr.202200053] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Indexed: 11/09/2022]
Abstract
Supramolecules-based drug delivery has attracted significant recent research attention as it could enhance drug solubility, retention time, targeting, and stimuli responsiveness. Among the different supramolecules and assemblies, the macrocycles and the supramolecular hydrogels are the two important categories investigated to a greater extent. Here, we provide the most recent advancements in these categories. Under macrocycles, reports on drug delivery by cyclodextrins, cucurbiturils, calixarenes/pillararenes, crown ethers and porphyrins are detailed. The second category discusses the supramolecular hydrogels of macrocycles/polymers and low molecular weight gelators. The updated information provided could be helpful to advance R & D in this vital area.
Collapse
Affiliation(s)
- Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
30
|
Advances of supramolecular interaction systems for improved oil recovery (IOR). Adv Colloid Interface Sci 2022; 301:102617. [PMID: 35217257 DOI: 10.1016/j.cis.2022.102617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 01/07/2023]
Abstract
Improved oil recovery (IOR) includes enhanced oil recovery (EOR) and other technologies (i.e. fracturing, water injection optimization, etc.), have become important methods to increase the oil/gas production in petroleum industry. However, conventional flooding systems always encounter the problems of low efficiency, high cost and complicated synthetic procedures for harsh reservoirs conditions. In recent decades, the supramolecular interactions are introduced into IOR processes to simplify the synthetic procedures, alter their structures and properties with bespoke functionalities and responsiveness suitable for different conditions. Herein, we primarily review the fundamentals of several supramolecular interactions, including hydrophobic association, hydrogen bond, electrostatic interaction, host-guest recognition, metal-ligand coordination and dynamic covalent bond from intrinsic principles and extrinsic functions. Then, the descriptions of supramolecular interactions in IOR processes from categories and advances are focused on the following variables: polymer, surfactant, surfactant/polymer (SP) complex for EOR and viscoelasticity surfactant (VES) for clean hydraulic fracturing aspects. Finally, the field applications, challenges and prospects for supramolecular interactions in IOR processes are involved and systematically addressed. The development of supramolecular interactions can open the way toward adaptive and evolutive IOR technology, a further step towards the cost-effective production of petroleum industry.
Collapse
|
31
|
Solis-Egaña F, Lavín-Urqueta N, Guerra Díaz D, Mariño-Ocampo N, Faúndez MA, Fuentealba D. Supramolecular co-encapsulation of a photosensitizer and chemotherapeutic drug in cucurbit[8]uril for potential chemophototherapy. Photochem Photobiol Sci 2022; 21:349-359. [PMID: 35088367 DOI: 10.1007/s43630-022-00174-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
Supramolecular strategies as well as combinatorial approaches have been proposed to improve cancer therapeutics. In this work, we investigated the encapsulation of the photosensitizer acridine orange (AO) and the chemotherapeutic drug oxaliplatin (OxPt) in cucurbit[8]uril (CB[8]), and tested their effect both separate and combined on tumoral cells cultivated in vitro. Binding constants and enthalpies of reaction for the AO@CB[8], (AO)2@CB[8] and OxPt@CB[8] complexes were determined by isothermal titration calorimetry. In the case of AO, a negative cooperativity for the binding of the second AO molecule was found, in agreement with previous fluorescence titration data. We show herein that the AO@CB[8] complex was effectively incorporated within the cells and showed important phototoxicity, while the OxPt@CB[8] complex was cytotoxic only at long incubation times (24 h). Pre-treatment of the cells with the OxPt@CB[8] complex for 24 h inhibited any photodynamic action by the later treatment with the AO@CB[8] complex. However, when both complexes were co-incubated for 90 min, the combined cytotoxicity/phototoxicity was superior to any of the treatments individually. A cooperative effect was identified that added up to an extra 30% cytotoxicity/phototoxicity. The results point to an interesting system where a photosensitizer and chemotherapeutic drug are co-encapsulated in a macrocycle to develop chemophototherapy applications.
Collapse
Affiliation(s)
- Fresia Solis-Egaña
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nicole Lavín-Urqueta
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Daniel Guerra Díaz
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Nory Mariño-Ocampo
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Mario A Faúndez
- Escuela de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile
| | - Denis Fuentealba
- Laboratorio de Química Supramolecular y Fotobiología, Departamento de Química Física, Escuela de Química, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, Chile.
| |
Collapse
|
32
|
Mao W, Wang S, Mao D, Liu Y, Li L, Ma D. Supramolecular complexation with kinetic stabilization: cucurbit[6]uril encapsulated doxorubicin-based prodrugs for pH-responsive controlled release. NEW J CHEM 2022. [DOI: 10.1039/d1nj06237a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Kinetically-stabilized host–guest complexation for the construction of a pH-responsive drug delivery system.
Collapse
Affiliation(s)
- Weipeng Mao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Shuyi Wang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Dake Mao
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yamin Liu
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Libai Li
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Da Ma
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Jiaojiang, Zhejiang 318000, China
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
33
|
Çeşme M, Muslu H, Tumer M, Güngör Ö, Altunbek M, Culha M, Golcu A. New metal-based drugs: spectral, electrochemical, DNA-binding and anticancer activity properties. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.2015385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mustafa Çeşme
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Harun Muslu
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
- Afsin Vocational High School, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mehmet Tumer
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Özge Güngör
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mine Altunbek
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Mustafa Culha
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey
| | - Aysegul Golcu
- Department of Chemistry, Faculty of Science and Letters, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
- Department of Chemistry, Faculty of Arts and Sciences, Istanbul Technical University, Istanbul
| |
Collapse
|
34
|
Luo Z, Gao Y, Duan Z, Yi Y, Wang H. Mitochondria-Targeted Self-Assembly of Peptide-Based Nanomaterials. Front Bioeng Biotechnol 2021; 9:782234. [PMID: 34900970 PMCID: PMC8664541 DOI: 10.3389/fbioe.2021.782234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria are well known to serve as the powerhouse for cells and also the initiator for some vital signaling pathways. A variety of diseases are discovered to be associated with the abnormalities of mitochondria, including cancers. Thus, targeting mitochondria and their metabolisms are recognized to be promising for cancer therapy. In recent years, great efforts have been devoted to developing mitochondria-targeted pharmaceuticals, including small molecular drugs, peptides, proteins, and genes, with several molecular drugs and peptides enrolled in clinical trials. Along with the advances of nanotechnology, self-assembled peptide-nanomaterials that integrate the biomarker-targeting, stimuli-response, self-assembly, and therapeutic effect, have been attracted increasing interest in the fields of biotechnology and nanomedicine. Particularly, in situ mitochondria-targeted self-assembling peptides that can assemble on the surface or inside mitochondria have opened another dimension for the mitochondria-targeted cancer therapy. Here, we highlight the recent progress of mitochondria-targeted peptide-nanomaterials, especially those in situ self-assembly systems in mitochondria, and their applications in cancer treatments.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Yujuan Gao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
| | - Zhongyu Duan
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
35
|
Kwong CHT, Mu J, Li S, Fang Y, Liu Q, Zhang X, Kam H, Lee SMY, Chen Y, Deng F, Zhou X, Wang R. Reviving chloroquine for anti-SARS-CoV-2 treatment with cucurbit[7]uril-based supramolecular formulation. CHINESE CHEM LETT 2021; 32:3019-3022. [PMID: 33840982 PMCID: PMC8019245 DOI: 10.1016/j.cclet.2021.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/08/2023]
Abstract
The wide-spreading SARS-CoV-2 virus has put the world into boiling water for more than a year, however pharmacological therapies to act effectively against coronavirus disease 2019 (COVID-19) remain elusive. Chloroquine (CQ), an antimalarial drug, was found to exhibit promising antiviral activity in vitro and in vivo at a high dosage, thus CQ was approved by the FDA for the emergency use authorization (EUA) in the fight against COVID-19 in the US, but later was revoked the EUA status due to the severe clinical toxicity. Herein, we show that supramolecular formulation of CQ by a macrocyclic host, curcurbit[7]uril (CB[7]), reduced its non-specific toxicity and improved its antiviral activity against coronavirus, working in synergy with CB[7]. CB[7] was found to form 1:1 host-guest complexes with CQ, with a binding constant of ∼104 L/mol. The CQ-CB[7] formulation decreased the cytotoxicity of CQ against Vero E6 and L-02 cell lines. In particular, the cytotoxicity of CQ (60 μmol/L) against both Vero E6 cell line and L-02 cell lines was completely inhibited in the presence of 300 μmol/L and 600 μmol/L CB[7], respectively. Furthermore, the CB[7] alone showed astonishing antiviral activity in SARS-CoV-2 infected Vero E6 cells and mouse hepatitis virus strain A59 (MHV-A59) infected N2A cells, and synergistically improved the antiviral activity of CQ-CB[7], suggesting that CB[7]-based CQ formulation has a great potential as a safe and effective antiviral agent against SARS-CoV-2 and other coronavirus.
Collapse
Affiliation(s)
- Cheryl H T Kwong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Jingfang Mu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yaohui Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Qianyun Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangjun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Hiotong Kam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Simon M Y Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Yu Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| |
Collapse
|
36
|
Understanding the guest binding in the cucurbit[7]uril inclusion complexes of CDK4/6 inhibitors, palbociclib, and ribociclib from a combined experimental and computational study. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Sun C, Wang Z, Yang K, Yue L, Cheng Q, Ma YL, Lu S, Chen G, Wang R. Polyamine-Responsive Morphological Transformation of a Supramolecular Peptide for Specific Drug Accumulation and Retention in Cancer Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101139. [PMID: 34114343 DOI: 10.1002/smll.202101139] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
The precise accumulation and extended retention of nanomedicines in the tumor tissue has been highly desired for cancer therapy. Here a novel supramolecular-peptide derived nanodrug (SPN) that can be transformed to microfibers in response to intracellular polyamine in cancer cells for significantly enhanced tumor specific accumulation and retention is developed. The supramolecular-peptide is constructed via the non-covalent interactions between cucurbit[7]uril (CB[7]) and Phe on Phe-Phe-Val-Leu-Lys-camptothecin conjugates (FFVLK-CPT, PC). The resultant amphiphilic supramolecular complex subsequently self-assembles into nanoparticles with a hydrodynamic diameter of 164.2 ± 3.7 nm. Upon internalization into spermine-overexpressed cancer cells, the CB[7]-Phe host-guest pairs can be competitively dissociated by spermine and can release free PC, which immediately form β-sheet structures and subsequently reorganize into microfibers, leading to dramatically improved accumulation, retention, and sustained release of CPT in tumor cells for highly effective cancer therapy. Accordingly, this SPN exhibit rather low toxicity against non-cancerous cells due to the morphological stability and fast exocytosis of the nanodrugs in those cells without abundant spermine. This study reports the first supramolecular peptide capable of polyamine-responsive "nanoparticle-to-microfiber" transformation for specific tumor therapy with minimal side effects. This work also offers novel insights to the design and development of stimuli-responsive nanomaterials as precision medicine.
Collapse
Affiliation(s)
- Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ziyi Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Kuikun Yang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Yan-Long Ma
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Guosong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, 999078, China
| |
Collapse
|
38
|
Pan YC, Yue YX, Hu XY, Li HB, Guo DS. A Supramolecular Antidote to Macromolecular Toxins Prepared through Coassembly of Macrocyclic Amphiphiles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104310. [PMID: 34418189 DOI: 10.1002/adma.202104310] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Poisoning is a leading cause of admission to medical emergency departments and intensive care units. Supramolecular detoxification, which involves injecting supramolecular receptors that bind with toxins to suppress their biological activity, is an emerging strategy for poisoning treatment; it has few requirements and a broad application scope. However, it is still a formidable challenge to design supramolecular therapeutic materials as an antidote to macromolecular toxins, because the large size, flexible conformation, and presence of multiple and diverse binding sites of biomacromolecules hinder their recognition. Herein, a supramolecular antidote to macromolecular toxins is developed through the coassembly of macrocyclic amphiphiles, relying on heteromultivalent recognition between the coassembled components and toxic macromolecules. The coassembly of amphiphilic cyclodextrin and calixarene strongly and selectively captures melittin, a toxin studied herein; this imparts various therapeutic effects such as inhibiting the interactions of melittin with cell membranes, alleviating melittin cytotoxicity and hemolytic toxicity, reducing the mortality rate of melittin-poisoned mice, and mitigating damage to major organs. The use of the proposed antidote overcomes the limitation of supramolecular detoxification applicability to only small-molecular toxins. The antidote can also detoxify other macromolecular toxins as long as selective and strong binding is achieved because of the coassembling tunability.
Collapse
Affiliation(s)
- Yu-Chen Pan
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Yu-Xin Yue
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
39
|
Tian HW, Chang YX, Hu XY, Shah MR, Li HB, Guo DS. Supramolecular imaging of spermine in cancer cells. NANOSCALE 2021; 13:15362-15368. [PMID: 34498658 DOI: 10.1039/d1nr04328e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an important biomarker, the overexpressed spermine has been widely investigated for cancer diagnosis and treatment. However, bioimaging of spermine in living cells is still a formidable challenge. Herein, we design a supramolecular imaging ensemble for spermine by the host-guest complexation of amphiphilic sulfonatocalix[5]arene (SC5A12C) assembly with lucigenin (LCG). Strong binding ability and complexation-induced fluorescence quenching properties enable SC5A12C to quench the fluorescence of LCG dramatically and to recover it completely due to the competition of overexpressed spermine in cancer cells. SC5A12C also exhibits excellent biocompatibility and promotes cellular uptake due to its ability to form ultra-stable assembly. Co-assembling folate further promotes the cellular uptake of folate receptor overexpressed cancer cells, contributing to enhanced bioimaging.
Collapse
Affiliation(s)
- Han-Wen Tian
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Yu-Xuan Chang
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Xin-Yue Hu
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi 75270, Pakistan
| | - Hua-Bin Li
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| | - Dong-Sheng Guo
- College of Chemistry, Key Laboratory of Functional Polymer Materials (Ministry of Education), State Key Laboratory of Elemento-Organic Chemistry, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University, Tianjin 300071, China.
| |
Collapse
|
40
|
Huang X, Chen T, Mu N, Lam HW, Sun C, Yue L, Cheng Q, Gao C, Yuan Z, Wang R. Supramolecular micelles as multifunctional theranostic agents for synergistic photodynamic therapy and hypoxia-activated chemotherapy. Acta Biomater 2021; 131:483-492. [PMID: 34265471 DOI: 10.1016/j.actbio.2021.07.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT), where a photosensitizer (under light irradiation) converts molecular oxygen to singlet oxygen to elicit programmed cell death, is a promising cancer treatment modality with a high temporal and spatial resolution. However, only limited cancer treatment efficacy has been achieved in clinical PDT due to the hypoxic conditions of solid tumor microenvironment that limits the generation of singlet oxygen, and PDT process often leads to even more hypoxic microenvironment due to the consumption of oxygens during therapy. Herein, we designed novel supramolecular micelles to co-deliver photosensitizer and hypoxia-responsive prodrug to improve the overall therapeutic efficacy. The supramolecular micelles (CPC) were derived from a polyethylene glycol (PEG) system dually tagged with hydrophilic cucurbit[7]uril (CB[7]) and hydrophobic Chlorin e6 (Ce6), respectively on each end, for synergistic antitumor therapy via PDT of Ce6 and chemotherapy of a hypoxia-responsive prodrug, banoxantrone (AQ4N), loaded into the cavity of CB[7]. In addition, CPC was further modularly functionalized by folate (FA) via strong host-guest interaction between folate-amantadine (FA-ADA) and CB[7] to produce a novel nanoplatform, AQ4N@CPC-FA, for targeted delivery. AQ4N@CPC-FA exhibited enhanced cellular uptake, negligible cytotoxicity and good biocompatibility, and improved intracellular reactive oxygen species (ROS) generation efficiency. More importantly, in vivo evaluation of AQ4N@CPC-FA revealed a synergistic antitumor efficacy between PDT of Ce6 and hypoxia-activated chemotherapy of AQ4N (that can be converted to chemotherapeutic AQ4 for tumor chemotherapy in response to the strengthened hypoxic tumor microenvironment during PDT treatment). This study not only provides a new nanoplatform for synergistic photodynamic-chemotherapeutic treatment, but also offers important new insights to design and development of multifunctional supramolecular drug delivery system. STATEMENT OF SIGNIFICANCE: Photodynamic therapy (PDT) has exhibited a variety of advantages for cancer phototherapy as compared to traditional chemotherapy. However, the unsatisfactory therapeutic efficacy by PDT alone as a result of the enhanced tumor hypoxia during PDT has limited its clinical application. Herein, we designed multifunctional supramolecular micelles to co-deliver photosensitizer and hypoxia-responsive prodrug to improve the overall therapeutic efficacy. The supramolecular micelles are biocompatible and possess strong red absorption, controlled drug release profile, and ultimately enhanced therapeutic outcome via PDT-chemotherapy. This study not only provides a new nanoplatform for synergistic photodynamic-chemotherapeutic treatment of cancer, but also offers important new insights to design and development of multifunctional supramolecular drug delivery tool for multi-modality cancer therapy.
Collapse
Affiliation(s)
- Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
| | - Tunan Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Ning Mu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, The Third Military Medical University (Army Military Medical University), Chongqing 400038, China
| | - Hou Wang Lam
- Faculty of Life Science and Medicine, King's College London, London, United Kingdom
| | - Chen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Ludan Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Zhen Yuan
- Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China.
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, and MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China.
| |
Collapse
|
41
|
Chen Y, Jing L, Meng Q, Li B, Chen R, Sun Z. Supramolecular Chemotherapy: Noncovalent Bond Synergy of Cucurbit[7]uril against Human Colorectal Tumor Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9547-9552. [PMID: 34333979 DOI: 10.1021/acs.langmuir.1c01422] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Supramolecular chemotherapy has drawn increasing interest due to its ability to improve the efficiency of antitumor drugs and fewer associated toxic side effects. In this study, the smart supramolecular cargo, the doxorubicin-ZnO-cucurbit[7]uril (CDZ) nanocomplex, was constructed through ion-dipole interactions between cucurbit[7]uril {CB[7]} and doxorubicin-ZnO (dox-ZnO). The binding affinity of CB[7] and dox-ZnO was determined to be 104 M-1 by isothermal titration calorimetry. Importantly, spermine had a stronger binding affinity (106 M-1) with CB[7] than dox-ZnO through host-guest interactions. In the tumor microenvironment, spermine disassembled the CDZ nanocomplex, and dox was released from the nanocomplex by XRD, UV-visible spectra, and contact angle analysis. Compared to the single drug dox, the CDZ nanocomplex was demonstrated to possess higher activity of killing colorectal tumor cells by confocal laser scanning microscopy and cytotoxicity, which could be attributed to spermine concentration, spermine synthase, free radical damage, and G1 cell cycle arrest. Overall, the supramolecular delivery of dox can enhance the inhibition of human colorectal tumor cell proliferation and reduce cytotoxicity in human myocardial cells through the noncovalent bond synergy of {CB[7]}.
Collapse
Affiliation(s)
- Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Li Jing
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Qingtao Meng
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Bin Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Rui Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, and Beijing Key Laboratory of Environment Toxicology, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
42
|
Ryu KR, Ha JW. Chemical Interface Damping of
Silver‐coated
Gold Nanorods Using Supramolecular
Host–Guest
Chemistry. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kyeong Rim Ryu
- Department of Chemistry University of Ulsan Ulsan 44610 Republic of Korea
| | - Ji Won Ha
- Department of Chemistry University of Ulsan Ulsan 44610 Republic of Korea
| |
Collapse
|
43
|
Wu H, Wang H, Qi F, Xia T, Xia Y, Xu JF, Zhang X. An Activatable Host-Guest Conjugate as a Nanocarrier for Effective Drug Release through Self-Inclusion. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33962-33968. [PMID: 34279919 DOI: 10.1021/acsami.1c09823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
There is a challenge in supramolecular chemotherapy for constructing a system equipped with both sufficient protection and high-efficiency release of drugs. To this end, a new strategy of an activatable host-guest conjugate with self-inclusion property is proposed. Based on the binding affinity gain of intramolecular host-guest self-inclusion, an activatable host-guest conjugate was designed, bearing cucurbit[7]uril as the host, an alkyl ammonium moiety as the guest, and the redox-responsive disulfide linkage. Oxaliplatin, a clinical antitumor drug, could be firmly encapsulated by the activatable host-guest conjugate to form the supramolecular drug with high stability. Moreover, oxaliplatin loaded in the activatable host-guest conjugate could be almost completely released by self-inclusion triggered by glutathione in a tumor microenvironment, thus exhibiting comparable antitumor bioactivity with naked oxaliplatin through in vitro cell experiments. It is highly anticipated that this line of research may open new horizons for programmable and on-demand supramolecular chemotherapy with high antitumor efficiency.
Collapse
Affiliation(s)
- Han Wu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Feilong Qi
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Tian Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Chen C, Chen Y, Dai X, Li J, Jia S, Wang S, Liu Y. Multicharge β-cyclodextrin supramolecular assembly for ATP capture and drug release. Chem Commun (Camb) 2021; 57:2812-2815. [PMID: 33605284 DOI: 10.1039/d1cc00292a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A hyaluronidase-responsive polysaccharide supramolecular assembly was constructed from an amphiphilic β-cyclodextrin bearing seven hexylimidazolium units (AMCD), adamantyl-grafted hyaluronic acid, and chlorambucil, which showed specific cancer cell targeting and controlled drug release abilities. Interestingly, ternary supramolecular assembly can disassemble in the presence of hyaluronidase, and the released AMCD can assemble with ATP to form a stable 1 : 1 complex, which enhanced the efficacy of chlorambucil on cancer chemotherapy by inhibiting ATP hydrolysis.
Collapse
Affiliation(s)
- Changhui Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jingjing Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shanshan Jia
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuaipeng Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
45
|
Pashkina E, Aktanova A, Mirzaeva I, Kovalenko E, Andrienko I, Knauer N, Pronkina N, Kozlov V. The Effect of Cucurbit[7]uril on the Antitumor and Immunomodulating Properties of Oxaliplatin and Carboplatin. Int J Mol Sci 2021; 22:ijms22147337. [PMID: 34298956 PMCID: PMC8303694 DOI: 10.3390/ijms22147337] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Cucurbit[7]uril (CB[7]) is a molecular container that may form host–guest complexes with platinum(II) anticancer drugs and modulate their efficacy and safety. In this paper, we report our studies of the effect of CB[7]–oxaliplatin complex and the mixture of CB[7] and carboplatin (1:1) on viability and proliferation of a primary cell culture (peripheral blood mononuclear cells), two tumor cell lines (B16 and K562) and their activity in the animal model of melanoma. At the same time, we studied the impact of platinum (II) drugs with CB[7] on T cells and B cells in vitro. Although the stable CB[7]–carboplatin complex was not formed, the presence of cucurbit[7]uril affected the biological properties of carboplatin. In vivo, CB[7] increased the antitumor effect of carboplatin, but, at the same time, increased its acute toxicity. Compared to free oxaliplatin, its complex with CB[7] shows a greater cytotoxic effect on tumor cell lines B16 and K562, while in vivo, the effects of the free drug and encapsulated drug were comparable. However, in vivo studies also demonstrated that the encapsulation of oxaliplatin in CB[7] lowered the toxicity of the drug.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52 Krasny Prospect, 630091 Novosibirsk, Russia
- Correspondence:
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Irina Mirzaeva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Ekaterina Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Irina Andrienko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave, 630090 Novosibirsk, Russia; (I.M.); (E.K.); (I.A.)
| | - Nadezhda Knauer
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Natalya Pronkina
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintsevskaya St, 630099 Novosibirsk, Russia; (A.A.); (N.K.); (N.P.); (V.K.)
- Department of Clinical Immunology, Novosibirsk State Medical University, 52 Krasny Prospect, 630091 Novosibirsk, Russia
| |
Collapse
|
46
|
Pashkina EA, Grishina LV, Aktanova AA, Kozlov VA. Antitumor activity of supramolecular complexes of cucurbituril with platinum(II) compounds. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Li W, Wang L, Sun T, Tang H, Bui B, Cao D, Wang R, Chen W. Characterization of nanoparticles combining polyamine detection with photodynamic therapy. Commun Biol 2021; 4:803. [PMID: 34211094 PMCID: PMC8249666 DOI: 10.1038/s42003-021-02317-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Polyamine detection and depletion have been extensively investigated for cancer prevention and treatment. However, the therapeutic efficacy is far from satisfactory, mainly due to a polyamine compensation mechanism from the systemic circulation in the tumor environment. Herein, we explore a new solution for improving polyamine detection as well as a possible consumption therapy based on a new photosensitizer that can efficiently consume polyamines via an irreversible chemical reaction. The new photosensitizer is pyrrolopyrroleaza-BODIPY pyridinium salt (PPAB-PyS) nanoparticles that can react with the over-expressed polyamine in cancer cells and produce two photosensitizers with enhanced phototoxicity on cancer destruction. Meanwhile, PPAB-PyS nanoparticles provide a simultaneous ratiometric fluorescence imaging of intracellular polyamine. This combination polyamine consumption with a chemical reaction provides a new modality to enable polyamine detection along with photodynamic therapy as well as a putative depletion of polyamines for cancer treatment and prevention.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Lingyun Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| | - Tianlei Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Hao Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR, China
| | - Brian Bui
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA
| | - Derong Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, SAR, China.
| | - Wei Chen
- Department of Physics, University of Texas at Arlington, Arlington, TX, USA.
| |
Collapse
|
48
|
Quan J, Zhang X, Ding Y, Li S, Qiu Y, Wang R, Zhou X. Cucurbit[7]uril as a Broad-Spectrum Antiviral Agent against Diverse RNA Viruses. Virol Sin 2021; 36:1165-1176. [PMID: 34037947 DOI: 10.1007/s12250-021-00404-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/27/2022] Open
Abstract
The emergence and re-emergence of RNA virus outbreaks highlight the urgent need for the development of broad-spectrum antivirals. Polyamines are positively-charged small molecules required for the infectivity of a wide range of RNA viruses, therefore may become good antiviral targets. Cucurbit[7]uril (CB[7]), a synthetic macrocyclic molecule, which can bind with amine-based organic compounds with high affinity, has been shown to regulate bioactive molecules through competitive binding. In this study, we tested the antiviral activity of CB[7] against diverse RNA viruses, including a panel of enteroviruses (i.e. human enterovirus A71, coxsackievirus A16, coxsackievirus B3, and echovirus 11), some flaviviruses (i.e. dengue virus and Zika virus), and an alphavirus representative Semliki forest virus. CB[7] can inhibit virus replications in a variety of cell lines, and its mechanism of action is through the competitive binding with polyamines. Our findings not only for the first time provide evidence that CB[7] can be a promising broad-spectrum antiviral agent, but more importantly, offer a novel therapeutic strategy to fight against RNA viruses by supramolecular sequestration of polyamines.
Collapse
Affiliation(s)
- Jia Quan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiangjun Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yuanfu Ding
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China.
| | - Xi Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
49
|
Wang Z, Shui M, Wyman IW, Zhang QW, Wang R. Cucurbit[8]uril-based supramolecular hydrogels for biomedical applications. RSC Med Chem 2021; 12:722-729. [PMID: 34124671 PMCID: PMC8152811 DOI: 10.1039/d1md00019e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/01/2021] [Indexed: 11/21/2022] Open
Abstract
As a member of the cucurbit[n]uril family (where n denotes the number of glycoluril units), cucurbit[8]uril (CB[8]) possesses a large cavity volume and is able to accommodate two guests simultaneously. Therefore, CB[8] has been adapted as a dynamic noncovalent crosslinker to form various supramolecular hydrogels. These CB[8]-based hydrogels have been investigated for various biomedical applications due to their good biocompatibility and dynamic properties afforded by host-guest interactions. In this review, we summarize the hydrogels that have been dynamically fabricated via supramolecular crosslinking of polymers by CB[8] reported during the past decade, and discuss their design principles, innovative applications in biomedical science and their future prospects.
Collapse
Affiliation(s)
- Zeyu Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau 999078 China
| | - Mingju Shui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau 999078 China
| | - Ian W Wyman
- Department of Chemistry, Queen's University Kingston ON K7L 3N6 Canada
| | - Qing-Wen Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau 999078 China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Macau 999078 China
| |
Collapse
|
50
|
Aktanova A, Abramova T, Pashkina E, Boeva O, Grishina L, Kovalenko E, Kozlov V. Assessment of the Biocompatibility of Cucurbiturils in Blood Cells. NANOMATERIALS 2021; 11:nano11061356. [PMID: 34063763 PMCID: PMC8223778 DOI: 10.3390/nano11061356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/29/2022]
Abstract
Currently, cucurbiturils are being actively researched all over the world. Research is focused on the ways of improving the solubility and selectivity of cucurbiturils, increasing the stability of the complexes with other particles in various media and enhancing their ability to bind and release various substances. The most significant area of our research is the assessment of safety, studying the biological properties and synergistic effects of cucurbiturils during complexation with drugs. In this article, the hemocompatibility of erythrocytes and leukocytes with cucurbiturils was investigated. We demonstrated that cucurbiturils have no cytotoxic effect, even at high concentrations (1 mM) and do not affect the viability of PBMCs. However, cucurbiturils can increase the level of the early apoptosis of lymphocytes and cucurbit[7]uril enhances hemolysis in biologically relevant media. Despite this, cucurbiturils are fairly safe organic molecules in concentrations up to 0.3 mM. Thus, we believe that it will become possible to use polymer nanostructures as drug delivery systems in clinical practice, since cucurbiturils can be modified to improve pharmacological properties.
Collapse
Affiliation(s)
- Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 6300099 Novosibirsk, Russia; (A.A.); (T.A.); (O.B.); (L.G.); (V.K.)
| | - Tatjana Abramova
- Research Institute of Fundamental and Clinical Immunology, 6300099 Novosibirsk, Russia; (A.A.); (T.A.); (O.B.); (L.G.); (V.K.)
| | - Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 6300099 Novosibirsk, Russia; (A.A.); (T.A.); (O.B.); (L.G.); (V.K.)
- Correspondence:
| | - Olga Boeva
- Research Institute of Fundamental and Clinical Immunology, 6300099 Novosibirsk, Russia; (A.A.); (T.A.); (O.B.); (L.G.); (V.K.)
- Department of Medicine, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Lyubov Grishina
- Research Institute of Fundamental and Clinical Immunology, 6300099 Novosibirsk, Russia; (A.A.); (T.A.); (O.B.); (L.G.); (V.K.)
| | - Ekaterina Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 630090 Novosibirsk, Russia;
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 6300099 Novosibirsk, Russia; (A.A.); (T.A.); (O.B.); (L.G.); (V.K.)
| |
Collapse
|