1
|
Dai Y, He Q, Huang Y, Duan X, Lin Z. Solution-Processable and Printable Two-Dimensional Transition Metal Dichalcogenide Inks. Chem Rev 2024; 124:5795-5845. [PMID: 38639932 DOI: 10.1021/acs.chemrev.3c00791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) with layered crystal structures have been attracting enormous research interest for their atomic thickness, mechanical flexibility, and excellent electronic/optoelectronic properties for applications in diverse technological areas. Solution-processable 2D TMD inks are promising for large-scale production of functional thin films at an affordable cost, using high-throughput solution-based processing techniques such as printing and roll-to-roll fabrications. This paper provides a comprehensive review of the chemical synthesis of solution-processable and printable 2D TMD ink materials and the subsequent assembly into thin films for diverse applications. We start with the chemical principles and protocols of various synthesis methods for 2D TMD nanosheet crystals in the solution phase. The solution-based techniques for depositing ink materials into solid-state thin films are discussed. Then, we review the applications of these solution-processable thin films in diverse technological areas including electronics, optoelectronics, and others. To conclude, a summary of the key scientific/technical challenges and future research opportunities of solution-processable TMD inks is provided.
Collapse
Affiliation(s)
- Yongping Dai
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 99907, China
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Zhaoyang Lin
- Department of Chemistry, Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Oliveira FM, Paštika J, Plutnarová I, Mazánek V, Strutyński K, Melle-Franco M, Sofer Z, Gusmão R. 2D Layered Bimetallic Phosphorous Trisulfides M I M III P 2 S 6 (M I = Cu, Ag; M III = Sc, V, Cr, In) for Electrochemical Energy Conversion. SMALL METHODS 2023; 7:e2201358. [PMID: 36604980 DOI: 10.1002/smtd.202201358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Considerable improvements in the electrocatalytic activity of 2D metal phosphorous trichalcogenides (M2 P2 X6 ) have been achieved for water electrolysis, mostly with MII 2 [P2 X6 ]4- as catalysts for hydrogen evolution reaction (HER). Herein, MI MIII P2 S6 (MI = Cu, Ag; MIII = Sc, V, Cr, In) are synthesized and tested for the first time as electrocatalysts in alkaline media, towards oxygen reduction reaction (ORR) and HER. AgScP2 S6 follows a 4 e- pathway for the ORR at 0.74 V versus reversible hydrogen electrode; CuScP2 S6 is active for HER, exhibiting an overpotential of 407 mV and a Tafel slope of 90 mV dec-1 . Density functional theory models reveal that bulk AgScP2 S6 and CuScP2 S6 are both semiconductors with computed bandgaps of 2.42 and 2.23 eV, respectively and overall similar electronic properties. Besides composition, the largest difference in both materials is in their molecular structure, as Ag atoms sit at the midpoint of each layer alongside Sc atoms, while Cu atoms are raised to a similar height to S atoms, in the external segment of the 2D layers. This structural difference probably plays a fundamental role in the different catalytic performances of these materials. These findings show that MI (Cu, Ag) together with Sc(MIII ) leads to promising achievements in MI MIII P2 S6 materials as electrocatalysts.
Collapse
Affiliation(s)
- Filipa M Oliveira
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Jan Paštika
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Iva Plutnarová
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Vlastimil Mazánek
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Karol Strutyński
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Manuel Melle-Franco
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| | - Rui Gusmão
- Department of Inorganic Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague 6, 166 28, Czech Republic
| |
Collapse
|
3
|
Amin M, Abdullah BM, Wylie SR, Rowley-Neale SJ, Banks CE, Whitehead KA. The Voltammetric Detection of Cadaverine Using a Diamine Oxidase and Multi-Walled Carbon Nanotube Functionalised Electrochemical Biosensor. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:36. [PMID: 36615946 PMCID: PMC9824597 DOI: 10.3390/nano13010036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Cadaverine is a biomolecule of major healthcare importance in periodontal disease; however, current detection methods remain inefficient. The development of an enzyme biosensor for the detection of cadaverine may provide a cheap, rapid, point-of-care alternative to traditional measurement techniques. This work developed a screen-printed biosensor (SPE) with a diamine oxidase (DAO) and multi-walled carbon nanotube (MWCNT) functionalised electrode which enabled the detection of cadaverine via cyclic voltammetry and differential pulse voltammetry. The MWCNTs were functionalised with DAO using carbodiimide crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-Hydroxysuccinimide (NHS), followed by direct covalent conjugation of the enzyme to amide bonds. Cyclic voltammetry results demonstrated a pair of distinct redox peaks for cadaverine with the C-MWCNT/DAO/EDC-NHS/GA SPE and no redox peaks using unmodified SPEs. Differential pulse voltammetry (DPV) was used to isolate the cadaverine oxidation peak and a linear concentration dependence was identified in the range of 3-150 µg/mL. The limit of detection of cadaverine using the C-MWCNT/DAO/EDC-NHS/GA SPE was 0.8 μg/mL, and the biosensor was also found to be effective when tested in artificial saliva which was used as a proof-of-concept model to increase the Technology Readiness Level (TRL) of this device. Thus, the development of a MWCNT based enzymatic biosensor for the voltammetric detection of cadaverine which was also active in the presence of artificial saliva was presented in this study.
Collapse
Affiliation(s)
- Mohsin Amin
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Badr M. Abdullah
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Stephen R. Wylie
- Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Samuel J. Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| | - Kathryn A. Whitehead
- Microbiology at Interfaces Group, Manchester Metropolitan University, Manchester M15 6BH, UK
| |
Collapse
|
4
|
Jafarpour M, Nüesch F, Heier J, Abdolhosseinzadeh S. Functional Ink Formulation for Printing and Coating of Graphene and Other 2D Materials: Challenges and Solutions. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mohammad Jafarpour
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Frank Nüesch
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
- Institute of Materials Science and Engineering Swiss Federal Institute of Technology Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jakob Heier
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| | - Sina Abdolhosseinzadeh
- Laboratory for Functional Polymers Swiss Federal Laboratories for Materials Science and Technology (Empa) 8600 Dübendorf Switzerland
| |
Collapse
|
5
|
Zhu W, Liu H, Yue R, Pei Y, Zhang J, Liu X, Li R, Yin Y, Guiver MD. Fast Current-Driven Synthesis of ZIF-Derived Catalyst Layers for High-Performance Zn-Air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202660. [PMID: 35927031 DOI: 10.1002/smll.202202660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/09/2022] [Indexed: 06/15/2023]
Abstract
As a core component, the catalyst layer (CL) is widely used in fuel cell, metal-air battery, and other energy conversion devices. Herein, a highly efficient method for CL preparation via fast current-driven synthesis followed by pyrolysis is proposed. Compared with previously reported fabrication procedures of zeolite imidazolate frameworks (ZIF)-based CLs, this method directly deposits the ZIF precursor onto the conductive substrate in a very short time (≤15 min). The self-supporting CL, converted from ZIF membrane by simple single-step pyrolysis, is assembled with the gas diffusion layer to obtain cathode. Electrochemical tests exhibit a small potential gap (0.83 V) between the oxygen reduction and evolution reactions, as well as high performance and excellent stability for Zn-air battery (241 mW cm-2 at 390 mA cm-2 ), due to the unique design of a bi-continuous framework (interconnected pores and long carbon nanotubes) and Co-based active sites. This work may provide new directions for the fast fabrication of non-platinum group metal CLs for metal-air batteries or fuel cell applications.
Collapse
Affiliation(s)
- Weikang Zhu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Haotian Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Runfei Yue
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yabiao Pei
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xin Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Ran Li
- R&D center, Shenzhen CONE Technology Co. Ltd, Shenzhen, 518116, P. R. China
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Pavličková M, Lorencová L, Hatala M, Kováč M, Tkáč J, Gemeiner P. Facile fabrication of screen-printed MoS 2 electrodes for electrochemical sensing of dopamine. Sci Rep 2022; 12:11900. [PMID: 35831476 PMCID: PMC9277599 DOI: 10.1038/s41598-022-16187-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 11/09/2022] Open
Abstract
Molybdenum disulfide (MoS2) screen-printed working electrodes were developed for dopamine (DA) electrochemical sensing. MoS2 working electrodes were prepared from high viscosity screen-printable inks containing various concentrations and sizes of MoS2 particles and ethylcellulose binder. Rheological properties of MoS2 inks and their suitability for screen-printing were analyzed by viscosity curve, screen-printing simulation and oscillatory modulus. MoS2 inks were screen-printed onto conductive FTO (Fluorine-doped Tin Oxide) substrates. Optical microscopy and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM/EDX) analysis were used to characterize the homogeneity, topography and thickness of the screen-printed MoS2 electrodes. The electrochemical performance was assessed through differential pulse voltammetry. Results showed an extensive linear detection of dopamine from 1 µM to 300 µM (R2 = 0.996, sensitivity of 5.00 × 10-8 A μM-1), with the best limit of detection being 246 nM. This work demonstrated the possibility of simple, low-cost and rapid preparation of high viscosity MoS2 ink and their use to produce screen-printed FTO/MoS2 electrodes for dopamine detection.
Collapse
Affiliation(s)
- Michaela Pavličková
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Lenka Lorencová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Michal Hatala
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Miroslav Kováč
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic
| | - Ján Tkáč
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic
| | - Pavol Gemeiner
- Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37, Bratislava, Slovak Republic.
| |
Collapse
|
7
|
Guo X, Ding Y, Yang X, Du B, Zhao C, Liang C, Ou Y, Kuang D, Wu Z, He Y. 2D SnSe 2 nanoflakes decorated with 1D ZnO nanowires for ppb-level NO 2 detection at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128061. [PMID: 34953260 DOI: 10.1016/j.jhazmat.2021.128061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The detection of air pollutant nitrogen dioxide (NO2) is of great importance arising from its great harm to the ecological environment and human health. However, the detection range of most NO2 sensors is ppm-level, and it is still challenging to achieve lower concentration (ppb-level) NO2 detection. Herein, 2D tin diselenide nanoflakes decorated with 1D zinc oxide nanowires (SnSe2/ZnO) heterojunctions were first reported by facile hydrothermal and ultra-sonication methods. The response of the fabricated SnSe2/ZnO sensor enhances 3.41 times on average compared with that of pure SnSe2 sensor to 50-150 ppb NO2 with a high detection sensitivity (22.57 ppm-1) at room temperature. In addition, the SnSe2/ZnO sensor has complete recovery, negligible cross-sensitivity, and small relative standard deviation (6.98%) during the 1 month sensing test, which can meet the requirements for NO2 detection in environmental monitoring. The enhanced NO2 sensing performance can be attributed to the n-n heterojunction constructed between SnSe2 and ZnO. The as-prepared sensor based on SnSe2/ZnO hybrid significantly promotes the development of the low detection limit of the NO2 sensor at room temperature.
Collapse
Affiliation(s)
- Xuezheng Guo
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yanqiao Ding
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xi Yang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Bingsheng Du
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Chengjiu Zhao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Chengyao Liang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Yi Ou
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Delin Kuang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Zhilin Wu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamic and Control, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
8
|
Shimizu FM, Pasqualeti AM, Nicoliche CYN, Gobbi AL, Santhiago M, Lima RS. Alcohol-Triggered Capillarity through Porous Pyrolyzed Paper-Based Electrodes Enables Ultrasensitive Electrochemical Detection of Phosphate. ACS Sens 2021; 6:3125-3132. [PMID: 34399053 DOI: 10.1021/acssensors.1c01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sensing field has shed light on an urgent necessity for field-deployable, user-friendly, sensitive, and scalable platforms that are able to translate solutions into the real world. Here, we attempt to meet these requests by addressing a simple, low-cost, and fast electrochemical approach to provide sensitive assays that consist of dropping a small volume (0.5 μL) of off-the-shelf alcohols on pyrolyzed paper-based electrodes before adding the sample (150 μL). This method was applied in the detection of phosphate after the formation of the phosphomolybdate complex (250-860 nm in size). Prior drops of isopropanol allow for the fast penetration of the sample through pores of this hydrophobic paper, delivering hindrance-free redox reactions across increasing active areas and ultimately improving the detection performance. The sensitivity (-1.9 10-6 mA cm-2 ppb-1) and limit of detection (1.1 ppb) were improved, respectively, by factors of 33 and 99 over the data achieved without the addition of isopropanol, listing among the lowest values when compared with those results reported in the literature for phosphate (expressed in terms of the concentration of phosphorus). The approach enabled the quantification of this analyte in real samples with accuracies ranging from 87 to 103%. Furthermore, preliminary measurements demonstrated the successful performance of the electrodes with prior addition of other widely used alcohols, that is, methanol and ethanol. These results may extend the applicability of the method. In special, the scalability and eco-friendly character of the electrode fabrication combined with the sensitivity and simplicity of the analyses make the developed platform a promising alternative that may help to pave the way for a new generation of disposable sensors toward the daily monitoring of phosphate in water samples, thus contributing to prevent ecological side effects.
Collapse
Affiliation(s)
- Flavio M. Shimizu
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Anielli M. Pasqualeti
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Caroline Y. N. Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Angelo L. Gobbi
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
| | - Murilo Santhiago
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Renato S. Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
| |
Collapse
|
9
|
Crapnell RD, Banks CE. Electroanalytical overview: utilising micro- and nano-dimensional sized materials in electrochemical-based biosensing platforms. Mikrochim Acta 2021; 188:268. [PMID: 34296349 PMCID: PMC8298255 DOI: 10.1007/s00604-021-04913-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/02/2021] [Indexed: 12/19/2022]
Abstract
Research into electrochemical biosensors represents a significant portion of the large interdisciplinary field of biosensing. The drive to develop reliable, sensitive, and selective biosensing platforms for key environmental and medical biomarkers is ever expanding due to the current climate. This push for the detection of vital biomarkers at lower concentrations, with increased reliability, has necessitated the utilisation of micro- and nano-dimensional materials. There is a wide variety of nanomaterials available for exploration, all having unique sets of properties that help to enhance the performance of biosensors. In recent years, a large portion of research has focussed on combining these different materials to utilise the different properties in one sensor platform. This research has allowed biosensors to reach new levels of sensitivity, but we note that there is room for improvement in the reporting of this field. Numerous examples are published that report improvements in the biosensor performance through the mixing of multiple materials, but there is little discussion presented on why each nanomaterial is chosen and whether they synergise well together to warrant the inherent increase in production time and cost. Research into micro-nano materials is vital for the continued development of improved biosensing platforms, and further exploration into understanding their individual and synergistic properties will continue to push the area forward. It will continue to provide solutions for the global sensing requirements through the development of novel materials with beneficial properties, improved incorporation strategies for the materials, the combination of synergetic materials, and the reduction in cost of production of these nanomaterials.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
10
|
Zavanelli N, Kim J, Yeo WH. Recent Advances in High-Throughput Nanomaterial Manufacturing for Hybrid Flexible Bioelectronics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2973. [PMID: 34072779 PMCID: PMC8197924 DOI: 10.3390/ma14112973] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/27/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Hybrid flexible bioelectronic systems refer to integrated soft biosensing platforms with tremendous clinical impact. In this new paradigm, electrical systems can stretch and deform with the skin while previously hidden physiological signals can be continuously recorded. However, hybrid flexible bioelectronics will not receive wide clinical adoption until these systems can be manufactured at industrial scales cost-effectively. Therefore, new manufacturing approaches must be discovered and studied under the same innovative spirit that led to the adoption of novel materials and soft structures. Recent works have taken mature manufacturing approaches from the graphics industry, such as gravure, flexography, screen, and inkjet printing, and applied them to fully printed bioelectronics. These applications require the cohesive study of many disparate parts. For instance, nanomaterials with optimal properties for each specific application must be dispersed in printable inks with rheology suited to each printing method. This review summarizes recent advances in printing technologies, key nanomaterials, and applications of the manufactured hybrid bioelectronics. We also discuss the existing challenges of the available nanomanufacturing methods and the areas that need immediate technological improvements.
Collapse
Affiliation(s)
- Nathan Zavanelli
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Jihoon Kim
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Center for Human-Centric Interfaces and Engineering at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA 30332, USA; (N.Z.); (J.K.)
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Neural Engineering Center, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
11
|
Hughes JP, Rowley-Neale S, Banks C. Enhancing the efficiency of the hydrogen evolution reaction utilising Fe 3P bulk modified screen-printed electrodes via the application of a magnetic field. RSC Adv 2021; 11:8073-8079. [PMID: 35423332 PMCID: PMC8695104 DOI: 10.1039/d0ra10150h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 11/24/2022] Open
Abstract
We report the fabrication and optimisation of Fe3P bulk modified screen-printed electrochemical platforms (SPEs) for the hydrogen evolution reaction (HER) within acidic media. We optimise the achievable current density towards the HER of the Fe3P SPEs by utilising ball-milled Fe3P variants and increasing the mass percentage of Fe3P incorporated into the SPEs. Additionally, the synergy of the application of a variable weak (constant) external magnetic field (330 mT to 40 mT) beneficially augments the current density output by 56%. This paper not only highlights the benefits of physical catalyst optimisation but also demonstrates a methodology to further enhance the cathodic efficiency of the HER with the facile application of a weak (constant) magnetic field.
Collapse
Affiliation(s)
- Jack P Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Samuel Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Craig Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK +44 (0)1612476831 +44 (0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
12
|
Nanocomposites Prepared from Carbon Nanotubes and the Transition Metal Dichalcogenides WS 2 and MoS 2 via Surfactant-Assisted Dispersions as Electrocatalysts for Oxygen Reactions. MATERIALS 2021; 14:ma14040896. [PMID: 33668549 PMCID: PMC7918728 DOI: 10.3390/ma14040896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/23/2022]
Abstract
Fuel cells are emerging devices as clean and renewable energy sources, provided their efficiency is increased. In this work, we prepared nanocomposites based on multiwalled carbon nanotubes (MWNTs) and transition metal dichalcogenides (TMDs), namely WS2 and MoS2, and evaluated their performance as electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), relevant to fuel cells. The one- and two-dimensional (1D and 2D) building blocks were initially exfoliated and non-covalently functionalized by surfactants of opposite charge in aqueous media (tetradecyltrimethylammonium bromide, TTAB, for the nanotubes and sodium cholate, SC, for the dichalcogenides), and thereafter, the three-dimensional (3D) MoS2@MWNT and WS2@MWNT composites were assembled via surfactant-mediated electrostatic interactions. The nanocomposites were characterized by scanning electron microscopy (SEM) and structural differences were found. WS2@MWNT and MoS2@MWNT show moderate ORR performance with potential onsets of 0.71 and 0.73 V vs. RHE respectively, and diffusion-limiting current densities of -1.87 and -2.74 mA·cm-2, respectively. Both materials present, however, better tolerance to methanol crossover when compared to Pt/C and good stability. Regarding OER performance, MoS2@MWNT exhibits promising results, with η10 and jmax of 0.55 V and 17.96 mA·cm-2, respectively. The fabrication method presented here is cost-effective, robust and versatile, opening the doors for the optimization of electrocatalysts' performance.
Collapse
|
13
|
Hassan K, Nine MJ, Tung TT, Stanley N, Yap PL, Rastin H, Yu L, Losic D. Functional inks and extrusion-based 3D printing of 2D materials: a review of current research and applications. NANOSCALE 2020; 12:19007-19042. [PMID: 32945332 DOI: 10.1039/d0nr04933f] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Graphene and related 2D materials offer an ideal platform for next generation disruptive technologies and in particular the potential to produce printed electronic devices with low cost and high throughput. Interest in the use of 2D materials to create functional inks has exponentially increased in recent years with the development of new ink formulations linked with effective printing techniques, including screen, gravure, inkjet and extrusion-based printing towards low-cost device manufacturing. Exfoliated, solution-processed 2D materials formulated into inks permits additive patterning onto both rigid and conformable substrates for printed device design with high-speed, large-scale and cost-effective manufacturing. Each printing technique has some sort of clear advantages over others that requires characteristic ink formulations according to their individual operational principles. Among them, the extrusion-based 3D printing technique has attracted heightened interest due to its ability to create three-dimensional (3D) architectures with increased surface area facilitating the design of a new generation of 3D devices suitable for a wide variety of applications. There still remain several challenges in the development of 2D material ink technologies for extrusion printing which must be resolved prior to their translation into large-scale device production. This comprehensive review presents the current progress on ink formulations with 2D materials and their broad practical applications for printed energy storage devices and sensors. Finally, an outline of the challenges and outlook for extrusion-based 3D printing inks and their place in the future printed devices ecosystem is presented.
Collapse
Affiliation(s)
- Kamrul Hassan
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Md Julker Nine
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Tran Thanh Tung
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Nathan Stanley
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Pei Lay Yap
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Hadi Rastin
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Le Yu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia. and ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
14
|
Scremin J, Joviano Dos Santos IV, Hughes JP, García-Miranda Ferrari A, Valderrama E, Zheng W, Zhong X, Zhao X, Sartori EJR, Crapnell RD, Rowley-Neale SJ, Banks CE. Platinum nanoparticle decorated vertically aligned graphene screen-printed electrodes: electrochemical characterisation and exploration towards the hydrogen evolution reaction. NANOSCALE 2020; 12:18214-18224. [PMID: 32856624 DOI: 10.1039/d0nr04336b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We present the fabrication of platinum (Pt0) nanoparticle (ca. 3 nm average diameter) decorated vertically aligned graphene (VG) screen-printed electrodes (Pt/VG-SPE) and explore their physicochemical characteristics and electrocatalytic activity towards the hydrogen evolution reaction (HER) in acidic media (0.5 M H2SO4). The Pt/VG-SPEs exhibit remarkable HER activity with an overpotential (recorded at -10 mA cm-2) and Tafel value of 47 mV (vs. RHE) and 27 mV dec-1. These values demonstrate the Pt/VG-SPEs as significantly more electrocatalytic than a bare/unmodified VG-SPE (789 mV (vs. RHE) and 97 mV dec-1). The uniform coverage of Pt0 nanoparticles (ca. 3 nm) upon the VG-SPE support results in a low loading of Pt0 nanoparticles (ca. 4 μg cm-2), yet yields comparable HER activity to optimal Pt based catalysts reported in the literature, with the advantages of being comparatively cheap, highly reproducible and tailorable platforms for HER catalysis. In order to test any potential dissolution of Pt0 from the Pt/VG-SPE surface, which is a key consideration for any HER catalyst, we additively manufactured (AM) a bespoke electrochemical flow cell that allowed for the electrolyte to be collected at regular intervals and analysed via inductively coupled plasma optical emission spectroscopy (ICP-OES). The AM electrochemical cell can be rapidly tailored to a plethora of geometries making it compatible with any size/shape of electrochemical platform. This work presents a novel and highly competitive HER platform and a novel AM technique for exploring the extent of Pt0 nanoparticle dissolution upon the electrode surface, making it an essential study for those seeking to test the stability/catalyst discharge of their given electrochemical platforms.
Collapse
Affiliation(s)
- Jessica Scremin
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Alzakia FI, Jonhson W, Ding J, Tan SC. Ultrafast Exfoliation of 2D Materials by Solvent Activation and One-Step Fabrication of All-2D-Material Photodetectors by Electrohydrodynamic Printing. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28840-28851. [PMID: 32469199 DOI: 10.1021/acsami.0c06279] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Large-scale liquid exfoliation of two-dimensional materials such as molybdenum disulfide, tungsten disulfide, and graphene for the synthesis of printable inks is still inefficient due to many hours of exfoliation time needed to achieve a highly concentrated dispersion that is useful for printing. Here, we report that soaking the bulk 2D material powders in a variety of solvents (water, ethanol, isopropanol, acetone, methanol, dimethylformamide, N-methyl pyrrolidone, and hexane) briefly as short as 5 min "activates" them to be much more easily exfoliated afterward. The unsoaked powder yielded a negligible concentration of dispersed nanosheets (less than 0.01 mg/mL) even after long hours of sonication, while the powders soaked in water resulted in dispersed nanosheets of 1.21 mg/mL for MoS2 and 1.28 mg/mL for WS2 after 6 and 4 h of sonication, respectively, a more than 100 time increase. For graphene, soaking in methanol for 5 min prior to sonication for 6 h yielded an increase in the dispersed nanosheet concentration to 0.13 mg/mL, a more than 10 time increase in concentration. The enhanced exfoliation is originated not from the intercalated solvent molecules but from the slightly increased d-spacing of the bulk powders during soaking due to the different dielectric environments in the solvents, which assists in the exfoliation afterward. We further fabricated MoS2 and WS2 photodetectors with graphene as electrodes by one-step electrohydrodynamic (EHD) printing using highly concentrated inks (>2 mg/mL) obtained by ultrafast liquid exfoliation, which have light sensitivity down to 0.05 sun. We believe that this ultrafast exfoliation technique combined with the one-step device printing technique enables a big step toward the mass production of functional devices fabricated from solution-processed 2D material inks.
Collapse
Affiliation(s)
- Fuad Indra Alzakia
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Win Jonhson
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Jun Ding
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117574
| |
Collapse
|
16
|
Amin M, Rowley-Neale S, Shalamanova L, Lynch S, Wilson-Nieuwenhuis JT, El Mohtadi M, Banks CE, Whitehead KA. Molybdenum Disulfide Surfaces to Reduce Staphylococcus aureus and Pseudomonas aeruginosa Biofilm Formation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21057-21069. [PMID: 32289218 DOI: 10.1021/acsami.0c02278] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The reduction of bacteria and biofilm formation is important when designing surfaces for use in industry. Molybdenum disulfide surfaces (MoS2SUR) were produced using MoS2 particle (MoS2PAR) sizes of 90 nm, 2 μm, and 6 μm containing MoS2PAR concentrations of 5%, 10%, 15%, and 20%. These were tested to determine the efficacy of the MoS2SUR to impede bacterial retention and biofilm formation of two different types of bacteria, Staphylococcus aureus and Pseudomonas aeruginosa. The MoS2SUR were characterized using Fourier transform infrared spectroscopy, ion-coupled plasma atomic emission spectroscopy, scanning electron microscopy, optical profilometry, and water contact angles. The MoS2SUR made with the smaller 90 nm MoS2PAR sizes demonstrated smaller topographical-shaped features. As the size of the incorporated MoS2PAR increased, the MoS2SUR demonstrated wider surface features, and they were less wettable. The increase in MoS2PAR concentration within the MoS2SUR groups did not affect the surface topography but did increase wettability. However, the increase in MoS2PAR size increased both the surface topography and wettability. The MoS2SUR with the smaller topographical-shaped features influenced the retention of the S. aureus bacteria. Increased MoS2SUR topography and wettability resulted in the greatest reduction in bacterial retention, and the bacteria became more heterogeneously dispersed and less clustered across the surfaces. The surfaces that exhibited decreased bacterial retention (largest particle sizes, largest features, greatest roughness, and most wettable) resulted in decreased biofilm formation. Cytotoxicity testing of the surface using cell viability demonstrated that the MoS2SUR were not toxic against HK-2 cells at MoS2PAR sizes of 90 nm and 2 μm. This work demonstrated that individual surface variables (MoS2SUR topographic shape and roughness, MoS2PAR size, and concentration) decreased bacterial loading on the surfaces, which then decreased biofilm formation. By optimizing MoS2SUR properties, it was possible to impede bacterial retention and subsequent biofilm formation.
Collapse
Affiliation(s)
- Mohsin Amin
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, U.K
| | - Samuel Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, U.K
| | - Liliana Shalamanova
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, U.K
| | - Stephen Lynch
- Department of Computing and Mathematics, Manchester Metropolitan University, Manchester, U.K
| | | | - Mohamed El Mohtadi
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, U.K
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, U.K
| | - Kathryn A Whitehead
- Microbiology at Interfaces, Manchester Metropolitan University, Manchester, U.K
| |
Collapse
|
17
|
Rohaizad N, Mayorga-Martinez CC, Sofer Z, Webster RD, Pumera M. Niobium-doped TiS 2: Formation of TiS 3 nanobelts and their effects in enzymatic biosensors. Biosens Bioelectron 2020; 155:112114. [PMID: 32217336 DOI: 10.1016/j.bios.2020.112114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/31/2020] [Accepted: 02/19/2020] [Indexed: 12/26/2022]
Abstract
There is an assortment of layered transition metal dichalcogenides (TMDs), about 40 reported compounds, each with its unique polymorph and properties. Group 4 TMD, titanium disulfide (TiS2), possess high electronic conductivity and light weight amongst other attractive features. In consideration for electrochemical and thermoelectrical applications, doping is a promising approach to enhance its practicability. The introduction of foreign atoms or compositional variance may improve existing properties or grant access to new ones. Moving away from the more intensively studied and successfully doped group 6 MoS2 and WS2, TiS2 is doped with varying levels of niobium (Nb) via controlled heating of stoichiometric amounts to yield Ti1-xNbxS2 where x = 0.05, 0.1, 0.2. Structural effects are discussed together with two doping parameters, nature and concentration of dopant. Characterisation data reveal retention of 1T-phase polymorph despite formation of TiS3 nanobelts upon doping. Fundamental electrochemical properties such as heterogenous electron transfer rates and its charge transfer resistance are compared amongst the materials of interest. A selective and sensitive 2nd generation electrochemical biosensor is prepared using Ti0.95Nb0.05S2/GOx/GTA since it is the most superior material in glucose detection.
Collapse
Affiliation(s)
- Nasuha Rohaizad
- NTU Institute for Health Technologies, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic
| | - Zdeněk Sofer
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic
| | - Richard D Webster
- Division of Chemistry & Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Czech Republic; Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea; Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung, Taiwan; Future Energy and Innovation Lab, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno, CZ-616 00, Czech Republic.
| |
Collapse
|
18
|
Hughes JP, Blanco FD, Banks CE, Rowley-Neale SJ. Mass-producible 2D-WS 2 bulk modified screen printed electrodes towards the hydrogen evolution reaction. RSC Adv 2019; 9:25003-25011. [PMID: 35528637 PMCID: PMC9069938 DOI: 10.1039/c9ra05342e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/01/2019] [Indexed: 11/21/2022] Open
Abstract
A screen-printable ink that contained varying percentage mass incorporations of two dimensional tungsten disulphide (2D-WS2) was produced and utilized to fabricate bespoke printed electrodes (2D-WS2-SPEs). These WS2-SPEs were then rigorously tested towards the Hydrogen Evolution Reaction (HER) within an acidic media. The mass incorporation of 2D-WS2 into the 2D-WS2-SPEs was found to critically affect the observed HER catalysis with the larger mass incorporations resulting in more beneficial catalysis. The optimal (largest possible mass of 2D-WS2 incorporation) was the 2D-WS2-SPE40%, which displayed a HER onset potential, Tafel slope value and Turn over Frequency (ToF) of -214 mV (vs. RHE), 51.1 mV dec-1 and 2.20 , respectively. These values significantly exceeded the HER catalysis of a bare/unmodified SPE, which had a HER onset and Tafel slope value of -459 mV (vs. RHE) and 118 mV dec-1, respectively. Clearly, indicating a strong electrocatalytic response from the 2D-WS2-SPEs. An investigation of the signal stability of the 2D-WS2-SPEs was conducted by performing 1000 repeat cyclic voltammograms (CVs) using a 2D-WS2-SPE10% as a representative example. The 2D-WS2-SPE10% displayed remarkable stability with no variance in the HER onset potential of ca. -268 mV (vs. RHE) and a 44.4% increase in the achievable current over the duration of the 1000 CVs. The technique utilized to fabricate these 2D-WS2-SPEs can be implemented for a plethora of different materials in order to produce large numbers of uniform and highly reproducible electrodes with bespoke electrochemical signal outputs.
Collapse
Affiliation(s)
- Jack P Hughes
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK www.craigbanksresearch.com +44(0)1612476831 +44(0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Felipe D Blanco
- University of São Paulo Prof. Lineu Prestes Avenue, Butantã São Paulo 05508-000 SP Brazil
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK www.craigbanksresearch.com +44(0)1612476831 +44(0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| | - Samuel J Rowley-Neale
- Faculty of Science and Engineering, Manchester Metropolitan University Chester Street Manchester M1 5GD UK www.craigbanksresearch.com +44(0)1612476831 +44(0)1612471196
- Manchester Fuel Cell Innovation Centre, Manchester Metropolitan University Chester Street Manchester M1 5GD UK
| |
Collapse
|
19
|
Lee C, Ozden S, Tewari CS, Park OK, Vajtai R, Chatterjee K, Ajayan PM. MoS 2 -Carbon Nanotube Porous 3 D Network for Enhanced Oxygen Reduction Reaction. CHEMSUSCHEM 2018; 11:2960-2966. [PMID: 29858561 DOI: 10.1002/cssc.201800982] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/30/2018] [Indexed: 06/08/2023]
Abstract
Future generation power requirement triggers the increasing search for electrocatalysts towards oxygen reduction, which is the pivotal part to enhance the activity of metal-air batteries and fuel cells. The present article reports a novel 3 D composite structure weaving 1 D carbon nanotubes (CNT) and 2 D MoS2 nanosheets. The MoS2 -CNT composite exhibits excellent electrocatalytic activity for the oxygen reduction reaction (ORR) in alkaline environment. Measurements show better methanol immunity and higher durability than Pt/C, which is considered the state-of-the-art catalyst for ORR. Experimental results suggest that the hybridization of 1 D functionalized multiwalled CNTs (MWCNTs) and exfoliated 2 D MoS2 nanosheet results significant synergistic effect, which greatly promotes the ORR activity. This work presents a new avenue to rationally design a 3 D porous composite out of 1 D and 2 D interlaced components and demonstrate appreciable electrochemical performance of the materials towards ORR activity for fuel cells as well as metal-air batteries.
Collapse
Affiliation(s)
- Cheesung Lee
- Department of Material Science and NanoEngineering, Rice University, Houston, Texas, 77005, United States
| | - Sehmus Ozden
- Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Chandra S Tewari
- Department of Material Science and NanoEngineering, Rice University, Houston, Texas, 77005, United States
- Materials Science and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Ok-Kyung Park
- Department of Material Science and NanoEngineering, Rice University, Houston, Texas, 77005, United States
| | - Robert Vajtai
- Department of Material Science and NanoEngineering, Rice University, Houston, Texas, 77005, United States
| | - Kuntal Chatterjee
- Department of Material Science and NanoEngineering, Rice University, Houston, Texas, 77005, United States
- Department of Physics and Technophysics, Vidyasagar University, Midnapore, 721102, India
| | - Pulickel M Ajayan
- Department of Material Science and NanoEngineering, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
20
|
Rowley-Neale S, Ratova M, Fugita LTN, Smith GC, Gaffar A, Kulczyk-Malecka J, Kelly PJ, Banks CE. Magnetron Sputter-Coated Nanoparticle MoS 2 Supported on Nanocarbon: A Highly Efficient Electrocatalyst toward the Hydrogen Evolution Reaction. ACS OMEGA 2018; 3:7235-7242. [PMID: 31458885 PMCID: PMC6644582 DOI: 10.1021/acsomega.8b00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/07/2018] [Indexed: 05/11/2023]
Abstract
The design and fabrication of inexpensive highly efficient electrocatalysts for the production of hydrogen via the hydrogen evolution reaction (HER) underpin a plethora of emerging clean energy technologies. Herein, we report the fabrication of highly efficient electrocatalysts for the HER based on magnetron-sputtered MoS2 onto a nanocarbon support, termed MoS2/C. Magnetron sputtering time is explored as a function of its physiochemical composition and HER performance; increased sputtering times give rise to materials with differing compositions, i.e., Mo4+ to Mo6+ and associated S anions (sulfide, elemental, and sulfate), and improved HER outputs. An optimized sputtering time of 45 min was used to fabricate the MoS2/C material. This gave rise to an optimal HER performance with regard to its HER onset potential, achievable current, and Tafel value, which were -0.44 (vs saturated calomel electrode (SCE)), -1.45 mV s-1, and 43 mV dec-1, respectively, which has the highest composition of Mo4+ and sulfide (MoS2). Electrochemical testing toward the HER via drop casting MoS2/C upon screen-printed electrodes (SPEs) to electrically wire the nanomaterial is found to be mass coverage dependent, where the current density increases up to a critical mass (ca. 50 μg cm-2), after which a plateau is observed. To allow for a translation of the bespoke fabricated MoS2/C from laboratory to new industrial applications, MoS2/C was incorporated into the bulk ink utilized in the fabrication of SPEs (denoted as MoS2/C-SPE), thus allowing for improved electrical wiring to the MoS2/C and resulting in the production of scalable and reproducible electrocatalytic platforms. The MoS2/C-SPEs displayed far greater HER catalysis with a 450 mV reduction in the HER onset potential and a 1.70 mA cm-2 increase in the achievable current density (recorded at -0.75 V (vs SCE)), compared to a bare/unmodified graphitic SPE. The approach of using magnetron sputtering to modify carbon with MoS2 facilitates the production of mass-producible, stable, and effective electrode materials for possible use in electrolyzers, which are cost competitive to Pt and mitigate the need to use time-consuming and low-yield exfoliation techniques typically used to fabricate pristine MoS2.
Collapse
Affiliation(s)
- Samuel
J. Rowley-Neale
- Faculty
of Science and Engineering and Manchester Fuel Cell Innovation
Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Marina Ratova
- Faculty
of Science and Engineering and Manchester Fuel Cell Innovation
Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Lucas T. N. Fugita
- University
of São Paulo, 580, Prof. Lineu Prestes Avenue, Butantã, São Paulo 05508-000, SP, Brazil
| | - Graham C. Smith
- Department
of Natural Sciences, Faculty of Science and Engineering, University of Chester, Thornton Science Park, Pool Lane,
Ince, Chester CH2 4NU, U.K.
| | - Amer Gaffar
- Faculty
of Science and Engineering and Manchester Fuel Cell Innovation
Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Justyna Kulczyk-Malecka
- Faculty
of Science and Engineering and Manchester Fuel Cell Innovation
Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Peter J. Kelly
- Faculty
of Science and Engineering and Manchester Fuel Cell Innovation
Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
| | - Craig E. Banks
- Faculty
of Science and Engineering and Manchester Fuel Cell Innovation
Centre, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, U.K.
- E-mail: . Tel: ++(0)1612471196. Fax: ++(0)1612476831. Website: www.craigbanksresearch.com
| |
Collapse
|
21
|
Hu G, Kang J, Ng LWT, Zhu X, Howe RCT, Jones CG, Hersam MC, Hasan T. Functional inks and printing of two-dimensional materials. Chem Soc Rev 2018; 47:3265-3300. [PMID: 29667676 DOI: 10.1039/c8cs00084k] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Graphene and related two-dimensional materials provide an ideal platform for next generation disruptive technologies and applications. Exploiting these solution-processed two-dimensional materials in printing can accelerate this development by allowing additive patterning on both rigid and conformable substrates for flexible device design and large-scale, high-speed, cost-effective manufacturing. In this review, we summarise the current progress on ink formulation of two-dimensional materials and the printable applications enabled by them. We also present our perspectives on their research and technological future prospects.
Collapse
Affiliation(s)
- Guohua Hu
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Bonacin JA, Dos Santos PL, Katic V, Foster CW, Banks CE. Use of Screen-printed Electrodes Modified by Prussian Blue and Analogues in Sensing of Cysteine. ELECTROANAL 2017. [DOI: 10.1002/elan.201700628] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Juliano A. Bonacin
- Institute of Chemistry; University of Campinas; P. O. Box 6154, 13083-970 Campinas, SP Brazil
| | - Pãmyla L. Dos Santos
- Institute of Chemistry; University of Campinas; P. O. Box 6154, 13083-970 Campinas, SP Brazil
| | - Vera Katic
- Institute of Chemistry; University of Campinas; P. O. Box 6154, 13083-970 Campinas, SP Brazil
| | - Christopher W. Foster
- Faculty of Science and Engineering; Manchester Metropolitan University; Chester Street Manchester M15 GD UK
| | - Craig E. Banks
- Faculty of Science and Engineering; Manchester Metropolitan University; Chester Street Manchester M15 GD UK
| |
Collapse
|