1
|
Ji M, Yuan Z, Ma H, Feng X, Ye C, Shi L, Chen X, Han F, Zhao C. Dandelion-shaped strontium-gallium microparticles for the hierarchical stimulation and comprehensive regulation of wound healing. Regen Biomater 2024; 11:rbae121. [PMID: 39544394 PMCID: PMC11561401 DOI: 10.1093/rb/rbae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/12/2024] [Accepted: 10/05/2024] [Indexed: 11/17/2024] Open
Abstract
The management of full-thickness skin injuries continues to pose significant challenges. Currently, there is a dearth of comprehensive dressings capable of integrating all stages of wound healing to spatiotemporally regulate biological processes following full-thickness skin injuries. In this study, we report the synthesis of a dandelion-shaped mesoporous strontium-gallium microparticle (GE@SrTPP) achieved through dopamine-mediated strontium ion biomineralization and self-assembly, followed by functionalization with gallium metal polyphenol networks. As a multifunctional wound dressing, GE@SrTPP can release bioactive ions in a spatiotemporal manner akin to dandelion seeds. During the early stages of wound healing, GE@SrTPP demonstrates rapid and effective hemostatic performance while also exhibiting antibacterial properties. In the inflammatory phase, GE@SrTPP promotes M2 polarization of macrophages, suppresses the expression of pro-inflammatory factors, and decreases oxidative stress in wounds. Subsequently, during the stages of proliferation and tissue remodeling, GE@SrTPP facilitates angiogenesis through the activation of the Hypoxia-inducible factor-1α/vascular endothelial growth factor (HIF-1α/VEGF) pathway. Analogous to the dispersion and rooting of dandelion seeds, the root-like new blood vessels supply essential nutrients for wound healing. Ultimately, in a rat chronic wound model, GE@SrTPP achieved successful full-thickness wound repair. In summary, these dandelion-shaped GE@SrTPP microparticles demonstrate comprehensive regulatory effects in managing full-thickness wounds, making them highly promising materials for clinical applications.
Collapse
Affiliation(s)
- Minrui Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Zaixin Yuan
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Hongdong Ma
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xian Feng
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cong Ye
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Lei Shi
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaodong Chen
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Fei Han
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Caichou Zhao
- Department of Dermatology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| |
Collapse
|
2
|
Liu Y, Yu J, Sun Y. Immobilized Dipeptidase in Manganese Ion-Loaded Polyethylenimine-Induced Calcium Phosphate Nanocrystals for Carnosine Synthesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10261-10269. [PMID: 38693862 DOI: 10.1021/acs.langmuir.4c00759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Carnosine is a natural bioactive dipeptide with important physiological functions widely used in food and medicine. Dipeptidase (PepD) from Serratia marcescens can catalyze the reverse hydrolytic reaction of β-alanine with l-histidine to synthesize carnosine in the presence of Mn2+. However, it remains challenging to practice carnosine biosynthesis due to the low activity and high cost of the enzyme. Therefore, the development of biocatalysts with high activity and stability is of significance for carnosine synthesis. Here, we proposed to chelate Mn2+ to polyethylenimine (PEI) that induced rapid formation of calcium phosphate nanocrystals (CaP), and Mn-PEI@CaP was used for PepD immobilization via electrostatic interaction. Mn-PEI@CaP as the carrier enhanced the stability of the immobilized enzyme. Moreover, Mn2+ loaded in the carrier acted as an in situ activator of the immobilized PepD for facilitating the biocatalytic process of carnosine synthesis. The as-prepared immobilized enzyme (PepD-Mn-PEI@CaP) kept similar activity with free PepD plus Mn2+ (activity recovery, 102.5%), while exhibiting elevated thermal stability and pH tolerance. Moreover, it exhibited about two times faster carnosine synthesis than the free PepD system. PepD-Mn-PEI@CaP retained 86.8% of the original activity after eight cycles of batch catalysis without the addition of free Mn2+ ions during multiple cycles. This work provides a new strategy for the co-immobilization of PepD and Mn2+, which greatly improves the operability of the biocatalysis and demonstrates the potential of the immobilized PepD system for efficient carnosine synthesis.
Collapse
Affiliation(s)
- Yujia Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jie Yu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Tan B, Wu Y, Wang R, Lee D, Li Y, Qian Z, Liao J. Biodegradable Nanoflowers with Abaloparatide Spatiotemporal Management of Functional Alveolar Bone Regeneration. NANO LETTERS 2024; 24:2619-2628. [PMID: 38350110 DOI: 10.1021/acs.nanolett.3c04977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Post-extraction alveolar bone atrophy greatly hinders the subsequent orthodontic tooth movement (OTM) or implant placement. In this study, we synthesized biodegradable bifunctional bioactive calcium phosphorus nanoflowers (NFs) loaded with abaloparatide (ABL), namely ABL@NFs, to achieve spatiotemporal management for alveolar bone regeneration. The NFs exhibited a porous hierarchical structure, high drug encapsulation efficacy, and desirable biocompatibility. ABL was initially released to recruit stem cells, followed by sustained release of Ca2+ and PO43- for in situ interface mineralization, establishing an osteogenic "biomineralized environment". ABL@NFs successfully restored morphologically and functionally active alveolar bone without affecting OTM. In conclusion, the ABL@NFs demonstrated promising outcomes for bone regeneration under orthodontic condition, which might provide a desirable reference of man-made "bone powder" in the hard tissue regeneration field.
Collapse
Affiliation(s)
- Bowen Tan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruyi Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yu Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Cai Z, Liu X, Hu M, Meng Y, Zhao J, Tan Y, Luo X, Wang C, Ma J, Sun Z, Jiang Y, Lu B, Gao R, Chen F, Zhou X. In Situ Enzymatic Reaction Generates Magnesium-Based Mineralized Microspheres with Superior Bioactivity for Enhanced Bone Regeneration. Adv Healthc Mater 2023; 12:e2300727. [PMID: 37300366 DOI: 10.1002/adhm.202300727] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/09/2023] [Indexed: 06/12/2023]
Abstract
Bone is a naturally mineralized tissue with a remarkable hierarchical structure, and the treatment of bone defects remains challenging. Microspheres with facile features of controllable size, diverse morphologies, and specific functions display amazing potentials for bone regeneration. Herein, inspired by natural biomineralization, a novel enzyme-catalyzed reaction is reported to prepare magnesium-based mineralized microspheres. First, silk fibroin methacryloyl (SilMA) microspheres are prepared using a combination of microfluidics and photo-crosslinking. Then, the alkaline phosphatase (ALP)-catalyzed hydrolysis of adenosine triphosphate (ATP) is successfully used to induce the formation of spherical magnesium phosphate (MgP) in the SilMA microspheres. These SilMA@MgP microspheres display uniform size, rough surface structure, good degradability, and sustained Mg2+ release properties. Moreover, the in vitro studies demonstrate the high bioactivities of SilMA@MgP microspehres in promoting the proliferation, migration, and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Transcriptomic analysis shows that the osteoinductivity of SilMA@MgP microspheres may be related to the activation of the PI3K/Akt signaling pathway. Finally, the bone regeneration enhancement units (BREUs) are designed and constructed by inoculating BMSCs onto SilMA@MgP microspheres. In summary, this study demonstrates a new biomineralization strategy for designing biomimetic bone repair materials with defined structures and combination functions.
Collapse
Affiliation(s)
- Zhuyun Cai
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Xiaohao Liu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Miao Hu
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Yichen Meng
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Jianquan Zhao
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Yixuan Tan
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Xiong Luo
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Ce Wang
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Jun Ma
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
- Translational Research Center of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Zhongyi Sun
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Yingying Jiang
- Musculoskeletal Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, 200444, P. R. China
| | - Bingqiang Lu
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Rui Gao
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
| | - Feng Chen
- Center for Orthopedic Science and Translational Medicine, Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, P. R. China
| | - Xuhui Zhou
- Department of Orthopedics, Second Affiliated Hospital, Naval Medical University, Shanghai, 200003, P. R. China
- Translational Research Center of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| |
Collapse
|
5
|
Xu H, Liang H. Chitosan-regulated biomimetic hybrid nanoflower for efficiently immobilizing enzymes to enhance stability and by-product tolerance. Int J Biol Macromol 2022; 220:124-134. [PMID: 35961558 DOI: 10.1016/j.ijbiomac.2022.08.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/18/2022] [Accepted: 08/07/2022] [Indexed: 11/17/2022]
Abstract
Organic-inorganic hybrid nano-materials have been considered to be promising immobilization matrixes for enzymes due to their significantly enhanced reusability and stability of enzymes. Herein, we constructed a novel organic-inorganic hybrid nanoflower via biomacromolecule-regulated biomimetic mineralization to immobilize sucrose phosphorylase (SPase). It was found that chitosan (CS) effectively regulated the biomimetic mineralization of calcium phosphate (CaP), leading to the formation of flower-like hybrid materials for the entrapment of SPase via self-assembly to establish a nano-biocatalyst (CS-CaP@SPase). Upon immobilization, the obtained CS-CaP@SPase exhibited excellent pH, by-product and organic solvents tolerance, and storage stability. Specifically, at acidic condition (pH 4), CS-CaP@SPase performed over 80 % of initial activity, which was 2.42-folds higher than that of free SPase. The catalytic activity of free SPase was severely inhibited about 30 % in the presence of fructose (1.2 M), but CS-CaP@SPase only lost 5 % relative activity. The CS-CaP@SPase retained over 80 % of its relative activity, while the free SPase maintained <20 % of its relative activity in acetonitrile. The relative activity of CS-CaP@SPase was still retained about 80 % after 10 cycles and maintained 75 % after 15 days. Based on Raman spectra analysis, it was also found that the increased β-folding component of SPase in the secondary structure after immobilization was the main factor for its enhanced stability. It is reasonable to believe that biomacromolecule-regulated biomimetic mineralization could be potentially used as a promising method to immobilize enzymes with excellent stability and recyclability, thereby facilitating the preparation of highly efficient catalysts for industrial biocatalysts, biosensing, and biomedicine.
Collapse
Affiliation(s)
- Haichang Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
6
|
Hu S, Chen H, Zhou F, Liu J, Qian Y, Hu K, Yan J, Gu Z, Guo Z, Zhang F, Gu N. Superparamagnetic core-shell electrospun scaffolds with sustained release of IONPs facilitating in vitro and in vivo bone regeneration. J Mater Chem B 2021; 9:8980-8993. [PMID: 34494055 DOI: 10.1039/d1tb01261d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering (BTE) is a promising approach to recover insufficient bone in dental implantations. However, the clinical application of BTE scaffolds is limited by their low mechanical strength and lack of osteoinduction. In an attempt to circumvent these limitations and improve osteogenesis, we introduced magnetic iron oxide nanoparticles (IONPs) into a core-shell porous electrospun scaffold and evaluated their impact on the physical, mechanical, and biological properties of the scaffold. We used poly(lactic-co-glycolic acid)/polycaprolactone/beta-tricalcium phosphate (PPT) scaffolds with and without γ-Fe2O3 encapsulation, namely PPT-Fe scaffolds and PPT scaffolds, respectively. The γ-Fe2O3 used in the PPT-Fe scaffolds was coated with polyglucose sorbitol carboxymethylether and was biocompatible. Structurally, PPT-Fe scaffolds showed uniform iron distribution encapsulated within the resorbable PPT scaffolds, and these scaffolds supported sustainable iron release. Furthermore, compared with PPT scaffolds, PPT-Fe scaffolds showed significantly better physical and mechanical properties, including wettability, superparamagnetism, hardness, tensile strength, and elasticity modulus. In vitro tests of rat adipose-derived mesenchymal stem cells (rADSCs) seeded onto the scaffolds showed increased expression of integrin β1, alkaline phosphatase, and osteogenesis-related genes. In addition, enhanced in vivo bone regeneration was observed after implanting PPT-Fe scaffolds in rat calvarial bone defects. Thus, we can conclude that the incorporation of IONPs into porous scaffolds for long-term release can provide a new strategy for BTE scaffold optimization and is a promising approach that can offer enhanced osteogenic capacity in clinical applications.
Collapse
Affiliation(s)
- Shuying Hu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Hanbang Chen
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Fang Zhou
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Jun Liu
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Yunzhu Qian
- Center of Stomatology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ke Hu
- Laboratory of Oral Regenerative Medicine Technology, School of Biomedical Engineering and Informatics, Department of Biomedical Engineering, Nanjing Medical University, Nanjing 210000, China
| | - Jia Yan
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Zhuxiao Gu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing 211189, China
| | - Zhaobin Guo
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, 21218, USA
| | - Feimin Zhang
- Jiangsu Province Key Laboratory of Oral Diseases, Department of Prosthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Ning Gu
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, China
| |
Collapse
|
7
|
Sun N, Jia Y, Wang C, Xia J, Dai L, Li J. Dopamine-Mediated Biomineralization of Calcium Phosphate as a Strategy to Facilely Synthesize Functionalized Hybrids. J Phys Chem Lett 2021; 12:10235-10241. [PMID: 34647744 DOI: 10.1021/acs.jpclett.1c02748] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic-inorganic hybrid materials have been considered to be promising carriers or immobilization matrixes for biomolecules due to their high efficiency and significantly enhanced activities and stabilities of biomolecules. Here, the well-defined dopamine/calcium phosphate organic-inorganic hybrids (DACaPMFs) are fabricated via one-pot dopamine-mediated biomineralization, and their structure and properties are also characterized. Direct stochastic optical reconstruction microscopy (dSTORM) is first used to probe the distribution of organic components in these hybrids. Combined with spectroscopic data, the direct observation of dopamine in the hybrids helps to understand the formation of a physical chemistry mechanism of the biomineralization. The obtained DACaPMFs with multiple-level pores allow the loading of doxorubicin with a high loading efficiency and a pH-responsive property. Furthermore, thrombin is entrapped by the hybrids to prove the controlled release. It is expected that such organic-inorganic hybrid materials may hold great promise for application in drug delivery as well as scaffold materials in bone tissue engineering and hemostatic material.
Collapse
Affiliation(s)
- Nan Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenlei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Jiarui Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luru Dai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Junbai Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Liang X, Liu Y, Wen K, Jiang W, Li Q. Immobilized enzymes in inorganic hybrid nanoflowers for biocatalytic and biosensing applications. J Mater Chem B 2021; 9:7597-7607. [PMID: 34596205 DOI: 10.1039/d1tb01476e] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Enzyme immobilization has been accepted as a powerful technique to solve the drawbacks of free enzymes such as limited activity, stability and recyclability under harsh conditions. Different from the conventional immobilization methods, enzyme immobilization in inorganic hybrid nanoflowers was executed in a biomimetic mineralization manner with the advantages of mild reaction conditions, and thus it was beneficial to obtain ideal biocatalysts with superior characteristics. The key factors influencing the formation of enzyme-based inorganic hybrid nanoflowers were elucidated to obtain a deeper insight into the mechanism for achieving unique morphology and improved properties of immobilized enzymes. To date, immobilized enzymes in inorganic hybrid nanoflowers have been successfully applied in biocatalysis for preparing medical intermediates, biodiesel and biomedical polymers, and solving the environmental or food industrial issues such as the degradation of toxic dyes, pollutants and allergenic proteins. Moreover, they could be used in the development of various biosensors, which provide a promising platform to detect toxic substances in the environment or biomarkers associated with various diseases. We hope that this review will promote the fundamental research and wide applications of immobilized enzymes in inorganic hybrid nanoflowers for expanding biocatalysis and biosensing.
Collapse
Affiliation(s)
- Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Yong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Kai Wen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Wei Jiang
- Academy of Medical Science, Zhengzhou University, Zhengzhou 450052, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Hughes EAB, Jones‐Salkey O, Forey P, Chipara M, Grover LM. Exploring the Formation of Calcium Orthophosphate‐Pyrophosphate Chemical Gardens. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Erik A. B. Hughes
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
- NIHR Surgical Reconstruction and Microbiology Research Centre Queen Elizabeth Hospital Birmingham UK
| | - Owen Jones‐Salkey
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Prescillia Forey
- Ensaia Université De Lorraine 34 Cours Léopold, CS 25233 F-54052 Nancy France
| | - Miruna Chipara
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| | - Liam M. Grover
- School of Chemical Engineering University of Birmingham Birmingham B15 2TT UK
| |
Collapse
|
10
|
Wu Y, Zhang X, Zhao Q, Tan B, Chen X, Liao J. Role of Hydrogels in Bone Tissue Engineering: How Properties Shape Regeneration. J Biomed Nanotechnol 2020; 16:1667-1686. [PMID: 33485397 DOI: 10.1166/jbn.2020.2997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone defect that resulted from trauma, tumors, and other reasons is believed as a common clinical problem, which exists mainly in post-traumatic healing. Additionally, autologous/allogeneic transplantation, bone tissue engineering attracts increasing attention due to the existing problem of the limited donor. The applications of biomaterials can be considered as a rising and promising strategy for bone regeneration. Especially, hydrogel is featured with hydrophilic characteristic, good biocompatibility, and porous structure, which shows unique properties for bone regeneration. The main properties of hydrogel such as surface property, adhesive property, mechanical property, porosity, and degradation property, generally present influences on the migration, proliferation, and differentiation of mesenchymal stem cells exclusively or in combination, which consequently affect the regeneration of bones. This review mainly focuses on the theme: "how properties of hydrogel shape bone regeneration." Moreover, the latest progress achieved in the above mentioned direction is further discussed. Despite the fascinating advances researchers have made, certain potential challenges continue to exist in the research field, which need to be addressed for accelerating the clinical translation of hydrogel in bone regeneration.
Collapse
|
11
|
Zhou M, Gao S, Zhang X, Zhang T, Zhang T, Tian T, Li S, Lin Y, Cai X. The protective effect of tetrahedral framework nucleic acids on periodontium under inflammatory conditions. Bioact Mater 2020; 6:1676-1688. [PMID: 33313447 PMCID: PMC7708773 DOI: 10.1016/j.bioactmat.2020.11.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023] Open
Abstract
Periodontitis is a common disease that causes periodontium defects and tooth loss. Controlling inflammation and tissue regeneration are two key strategies in the treatment of periodontitis. Tetrahedral framework nucleic acids can modulate multiple biological behaviors, and thus, their biological applications have been widely explored. In this study, we investigated the effect of tFNAs on periodontium under inflammatory conditions. Lipopolysaccharide and silk ligature were used to induce inflammation in vivo and in vitro. The results displayed that tFNAs decreased the release of pro-inflammatory cytokines and levels of cellular reactive oxygen species in periodontal ligament stem cells, which promoted osteogenic differentiation. Furthermore, animal experiments showed that tFNAs ameliorated the inflammation of the periodontium and protect periodontal tissue, especially reducing alveolar bone absorption by decreasing inflammatory infiltration and inhibiting osteoclast formation. These findings suggest that tFNAs can significantly improve the therapeutic effect of periodontitis and have the great potential significance in the field of periodontal tissue regeneration. tFNAs decreased the release of pro-inflammatory cytokines and promoted osteogenic differentiation. tFNAs ameliorated the inflammation of the periodontium and protect periodontal tissue. tFNAs can significantly improve the therapeutic effect of periodontitis.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Shaojingya Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,College of Biomedical Engineering, Sichuan University, Chengdu, 610041, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
12
|
Zhu J, Zhang M, Gao Y, Qin X, Zhang T, Cui W, Mao C, Xiao D, Lin Y. Tetrahedral framework nucleic acids promote scarless healing of cutaneous wounds via the AKT-signaling pathway. Signal Transduct Target Ther 2020; 5:120. [PMID: 32678073 PMCID: PMC7366912 DOI: 10.1038/s41392-020-0173-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 02/05/2023] Open
Abstract
While the skin is considered the first line of defense in the human body, there are some vulnerabilities that render it susceptible to certain threats, which is an issue that is recognized by both patients and doctors. Cutaneous wound healing is a series of complex processes that involve many types of cells, such as fibroblasts and keratinocytes. This study showed that tetrahedral framework nucleic acids (tFNAs), a type of self-assembled nucleic-acid material, have the ability to promote keratinocyte(HaCaT cell line) and fibroblast(HSF cell line) proliferation and migration in vitro. In addition, tFNAs increased the secretion of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF) in HSF cells and reduced the production of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in HaCaT cells by activating the AKT-signaling pathway. During in vivo experiments, tFNA treatments accelerated the healing process in skin wounds and decreased the development of scars, compared with the control treatment that did not use tFNAs. This is the first study to demonstrate that nanophase materials with the biological features of nucleic acids accelerate the healing of cutaneous wounds and reduce scarring, which indicates the potential application of tFNAs in skin tissue regeneration.
Collapse
Affiliation(s)
- Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Chenchen Mao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, 610041, Chengdu, P.R. China.
| |
Collapse
|
13
|
Li X, Chen M, Wang P, Yao Y, Han X, Liang J, Jiang Q, Sun Y, Fan Y, Zhang X. A highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel enhances osteoinductivity and mineralization. NANOSCALE 2020; 12:12869-12882. [PMID: 32520065 DOI: 10.1039/d0nr01824d] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of bioactive hydroxyapatite (HAp) with biomimetic bone matrix biomaterials as bone filling scaffolds is a promising strategy for bone regeneration, but the undesirable dispersion of HAp and its interfacial interaction result in inefficient mineralization, mechanical instability, incomplete osteointegration, and even repair failure. Herein, the size dispersion and stabilization of nano-hydroxyapatite (nHAp) in aqueous media were obviously improved by hydrophilic solubilisation and strong negatively charged thiolated hyaluronic acid (HA-SH). Furthermore, the highly interweaved HA-SS-nHAp/collagen hybrid fibering hydrogel exhibited significantly improved mechanical properties and structural stability due to its thickened and densified interweaved fiber network, which ensured the homogeneous dispersion of nHAp in the matrix materials and its integration with the hydrogel network structure completely by covalent self-crosslinking among the sulfhydryl groups derived from the free HA-SH polymer and the mercapto functional groups on the surface of nHAp. Compared with the physically combined micro-hydroxyapatite (μHAp) (d≤25 μm) and nHAp (∼530 nm) with injectable bionic HA-SH and collagen type I biopolymers, HA-SS-nHAp/collagen achieved the maximum efficiency in facilitating rabbit bone marrow stromal cell (rBMSC) adhesion, proliferation and osteogenic differentiation in vitro. The in vivo murine dorsal subcutaneous implantation results further confirmed that the interweaved fiber network structure in HA-SS-nHAp/collagen significantly promoted osteoinductivity and mineralization. This work provides novel insights for the development of new low invasive bone filling biomaterials.
Collapse
Affiliation(s)
- Xing Li
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Golda-Cepa M, Riedlová K, Kulig W, Cwiklik L, Kotarba A. Functionalization of the Parylene C Surface Enhances the Nucleation of Calcium Phosphate: Combined Experimental and Molecular Dynamics Simulations Approach. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12426-12435. [PMID: 32098467 PMCID: PMC7497617 DOI: 10.1021/acsami.9b20877] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Interactions at the solid-body fluid interfaces play a vital role in bone tissue formation at the implant surface. In this study, fully atomistic molecular dynamics (MD) simulations were performed to investigate interactions between the physiological components of body fluids (Ca2+, HPO42-, H2PO4-, Na+, Cl-, and H2O) and functionalized parylene C surface. In comparison to the native parylene C (-Cl surface groups), the introduction of -OH, -CHO, and -COOH surface groups significantly enhances the interactions between body fluid ions and the polymeric surface. The experimentally observed formation of calcium phosphate nanocrystals is discussed in terms of MD simulations of the calcium phosphate clustering. Surface functional groups promote the clustering of calcium and phosphate ions in the following order: -OH > -CHO > -Cl (parent parylene C) ≈ -COO-. This promoting role of surface functional groups is explained as stimulating the number of Ca2+ and HPO42- surface contacts as well as ion chemisorption. The molecular mechanism of calcium phosphate cluster formation at the functionalized parylene C surface is proposed.
Collapse
Affiliation(s)
- Monika Golda-Cepa
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamila Riedlová
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
- Faculty
of Science, Department of Physical and Macromolecular Chemistry, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Waldemar Kulig
- Department
of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Lukasz Cwiklik
- J.
Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Andrzej Kotarba
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| |
Collapse
|
15
|
Fan W, Li Y, Sun Q, Tay FR, Fan B. Quaternary ammonium silane, calcium and phosphorus-loaded PLGA submicron particles against Enterococcus faecalis infection of teeth: An in vitro and in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110856. [PMID: 32279748 DOI: 10.1016/j.msec.2020.110856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/14/2020] [Accepted: 03/14/2020] [Indexed: 01/05/2023]
Abstract
Refractory root canal infection of human teeth is the primary cause of dental treatment failure. Enterococcus faecalis is the major cause of refractory root canal infection. In the present study, poly(D,L-lactic-co-glycolide) (PLGA) submicron particles were used as carriers to deliver an antimicrobial quaternary ammonium silane (code-named K21) as well as calcium and phosphorus elements. The release profiles, antibacterial ability against E. faecalis, extent of infiltration into dentinal tubules, biocompatibility and in vitro mineralization potential of the particles were investigated. In addition, the antimicrobial effects of the particles against E. faecalis infection were evaluated in vivo in the teeth of beagle dogs. The encapsulated components were released from the PLGA particles in a sustained-release manner. The particles also displayed good biocompatibility, in vitro mineralization ability and antibacterial activity against E. faecalis. The particles could be driven into dentinal tubules of dentin slices by ultrasonic activation and inhibited E. faecalis colonization. In the root canals of beagle dogs, PLGA submicron particles loaded with K21, calcium and phosphorus demonstrated strong preventive effects against E. faecalis infection. The system may be developed into a new intracanal disinfectant for root canal treatment.
Collapse
Affiliation(s)
- Wei Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yanyun Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Franklin R Tay
- Department of Endodontics, The Dental College of Georgia, Augusta University, Augusta, GA, USA
| | - Bing Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
16
|
Paré A, Charbonnier B, Tournier P, Vignes C, Veziers J, Lesoeur J, Laure B, Bertin H, De Pinieux G, Cherrier G, Guicheux J, Gauthier O, Corre P, Marchat D, Weiss P. Tailored Three-Dimensionally Printed Triply Periodic Calcium Phosphate Implants: A Preclinical Study for Craniofacial Bone Repair. ACS Biomater Sci Eng 2020; 6:553-563. [PMID: 32158932 PMCID: PMC7064275 DOI: 10.1021/acsbiomaterials.9b01241] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Finding alternative strategies for the regeneration of craniofacial bone defects (CSD), such as combining a synthetic ephemeral calcium phosphate (CaP) implant and/or active substances and cells, would contribute to solving this reconstructive roadblock. However, CaP's architectural features (i.e., architecture and composition) still need to be tailored, and the use of processed stem cells and synthetic active substances (e.g., recombinant human bone morphogenetic protein 2) drastically limits the clinical application of such approaches. Focusing on solutions that are directly transposable to the clinical setting, biphasic calcium phosphate (BCP) and carbonated hydroxyapatite (CHA) 3D-printed disks with a triply periodic minimal structure (TPMS) were implanted in calvarial critical-sized defects (rat model) with or without addition of total bone marrow (TBM). Bone regeneration within the defect was evaluated, and the outcomes were compared to a standard-care procedure based on BCP granules soaked with TBM (positive control). After 7 weeks, de novo bone formation was significantly greater in the CHA disks + TBM group than in the positive controls (3.33 mm3 and 2.15 mm3, respectively, P=0.04). These encouraging results indicate that both CHA and TPMS architectures are potentially advantageous in the repair of CSDs and that this one-step procedure warrants further clinical investigation.
Collapse
Affiliation(s)
- Arnaud Paré
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Baptiste Charbonnier
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Tournier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Caroline Vignes
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Joëlle Veziers
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Julie Lesoeur
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Boris Laure
- Service de Chirurgie Maxillo faciale, Plastique et Brulés, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37170, France
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
| | - Hélios Bertin
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - Gonzague De Pinieux
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Grégory Cherrier
- Université de Tours, UFR Médecine, 2 boulevard Tonnellé, Tours F - 37000, France
- Service d’Anatomo-cyto-pathologie, Hôpital Trousseau, CHU de Tours, Avenue de la République, Chambray-lès-Tours F – 37000, France
| | - Jérome Guicheux
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| | - Olivier Gauthier
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- ONIRIS Nantes-Atlantic College of Veterinary Medicine, Centre de rechecherche et d’investigation préclinique (CRIP), 101 route de Gachet, Nantes F - 44300, France
| | - Pierre Corre
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
- Service de chirurgie Maxillo-faciale et stomatologie, CHU de Nantes, 1 place Alexis Ricordeau, Nantes F - 44093, France
| | - David Marchat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, INSERM, U 1059 Sainbiose, Centre CIS, 158 Cours Fauriel, CS 62362, Saint-Etienne F – 42023, France
| | - Pierre Weiss
- INSERM, U 1229, Laboratoire Regenerative Medicine and Skeleton (RMeS), 1 place Alexis Ricordeau, Nantes F - 44042, France
- Université́ de Nantes, UFR Odontologie, 1 place Alexis Ricordeau, Nantes F - 44042, France
| |
Collapse
|
17
|
Yang D, Xiao J, Wang B, Li L, Kong X, Liao J. The immune reaction and degradation fate of scaffold in cartilage/bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109927. [DOI: 10.1016/j.msec.2019.109927] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
|
18
|
Cui W, Zhan Y, Shao X, Fu W, Xiao D, Zhu J, Qin X, Zhang T, Zhang M, Zhou Y, Lin Y. Neuroprotective and Neurotherapeutic Effects of Tetrahedral Framework Nucleic Acids on Parkinson’s Disease in Vitro. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32787-32797. [PMID: 31424187 DOI: 10.1021/acsami.9b10308] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weitong Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yuxi Zhan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Wei Fu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Junyao Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Tianyi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Yi Zhou
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
19
|
Liu N, Zhang X, Li N, Zhou M, Zhang T, Li S, Cai X, Ji P, Lin Y. Tetrahedral Framework Nucleic Acids Promote Corneal Epithelial Wound Healing in Vitro and in Vivo. SMALL 2019; 15:e1901907. [PMID: 31192537 DOI: 10.1002/smll.201901907] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/25/2019] [Indexed: 02/05/2023]
Abstract
Poor post-traumatic wound healing can affect the normal function of damaged tissues and organs. For example, poor healing of corneal epithelial injuries may lead to permanent visual impairment. It is of great importance to find a therapeutic way to promote wound closure. Tetrahedral framework nucleic acids (tFNAs) are new promising nanomaterials, which can affect the biological behavior of cells. In the experiment, corneal wound healing is used as an example to explore the effect of tFNAs on wound healing. Results show that the proliferation and migration of human corneal epithelial cells are enhanced by exposure to tFNAs in vitro, possibly relevant to the activation of P38 and ERK1/2 signaling pathway. An animal model of corneal alkali burn is established to further identify the facilitation effect of tFNAs on corneal wound healing in vivo. Clinical evaluations and histological analyses show that tFNAs can improve the corneal transparency and accelerate the re-epithelialization of wounds. Both in vitro and in vivo experiments show that tFNAs can play a positive role in corneal epithelial wound healing.
Collapse
Affiliation(s)
- Nanxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.,Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xiaolin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ni Li
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Tianxu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Songhang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
20
|
Zhou M, Liu N, Zhang Q, Tian T, Ma Q, Zhang T, Cai X. Effect of tetrahedral DNA nanostructures on proliferation and osteogenic differentiation of human periodontal ligament stem cells. Cell Prolif 2019; 52:e12566. [PMID: 30883969 PMCID: PMC6536416 DOI: 10.1111/cpr.12566] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To explore the effects and underlying biological mechanisms of tetrahedral DNA nanostructures (TDNs) on the proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). MATERIALS AND METHODS Real-time cell analysis (RTCA) and CCK8 were used to screen the best concentration of TDN for PDLSCs. Cell proliferation and osteogenic differentiation were assessed after PDLSCs were treated with TDN. Data were analysed using one-way ANOVA. RESULTS Tetrahedral DNA nanostructures could play a crucial role in accelerating the proliferation of PDLSCs and had the strongest promotive effect on PDLSCs at a concentration of 250 nmol/L. Simultaneously, the osteogenic differentiation of PDLSCs could be promoted significantly by TDNs and the finding displayed that the Wnt/β-catenin signalling pathway might be the underlying biological mechanisms of TDNs on promoting the osteogenic differentiation of PDLSCs. CONCLUSION Tetrahedral DNA nanostructure treatment facilitated the proliferation of PDLSCs, significantly promoted osteogenic differentiation by regulating the Wnt/β-catenin signalling pathway. Therefore, TDNs could be a novel nanomaterial with great potential for application to PDLSC-based bone tissue engineering.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Nanxin Liu
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Qi Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Taoran Tian
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Quanquan Ma
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Tao Zhang
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral DiseasesWest China Hospital of Stomatology, Sichuan UniversityChengduChina
| |
Collapse
|
21
|
Wei Y, Jin X, Kong T, Zhang W, Zhu B. The endocytic pathways of carbon dots in human adenoid cystic carcinoma cells. Cell Prolif 2019; 52:e12586. [PMID: 30997713 PMCID: PMC6536404 DOI: 10.1111/cpr.12586] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/14/2019] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES This study aimed at investigating cellular uptake pathways of carbon dots (CDs) in human adenoid cystic carcinoma cell line ACC-2. MATERIALS AND METHODS We synthesized CDs using a hydrothermal method with citric acid and polyethylenimine (PEI, Mw = 25 000). The CDs incubated with the ACC-2 cells showed their bioimaging capabilities using a confocal microscopy test. Flow cytometry was used to analyse cellular uptake pathways of CDs in ACC-2 cells. RESULTS Our findings indicated that CDs possessed good biocompatibility in ACC-2 cells. CDs were endocytosed mainly via micropinocytosis and energy-dependent pathways. CONCLUSIONS In general, these findings suggested that CDs had excellent biomedical imaging properties for ACC-2 cells and there was a potential opportunity to develop biomedical applications.
Collapse
Affiliation(s)
- Yuanyuan Wei
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Xiaoye Jin
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| | - Tingting Kong
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Wenqing Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of StomatologyXi’an Jiaotong UniversityXi’anChina
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of StomatologyXi’an Jiaotong UniversityXi’anChina
- Department of Forensic GeneticsSchool of Forensic MedicineSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
22
|
Li Y, Zhang Q, Xie X, Xiao D, Lin Y. Review of craniofacial regeneration in China. J Oral Rehabil 2019; 47 Suppl 1:107-117. [PMID: 30868603 DOI: 10.1111/joor.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023]
Abstract
AIM Tissue engineering has been recognised as one of the most effective means to form a new viable tissue for medical purpose. Tissue engineering involves a combination of scaffolds, cells, suitable biochemical and physicochemical factors, and engineering and materials methods. This review covered some biomedicine, such as biomaterials, bioactive factors, and stem cells, and manufacturing technologies used in tissue engineering in the oral maxillofacial region, especially in China. MATERIALS AND METHODS Data for this review were identified by searches of Web of Science and PubMed, and references from relevant articles using the search terms "biomaterials", "oral tissue regeneration", "bioactive factors" and "stem cells". Only articles published in English between 2013 and 2018 were included. CONCLUSION The combination of stem cells, bioactive factors and 3D scaffolds could be of far-reaching significance for the future therapies in tissue repair or tissue regeneration. Furthermore, the review also mentions issues that need to be solved in the application of these biomedicines.
Collapse
Affiliation(s)
- Yanjing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Li X, Song T, Chen X, Wang M, Yang X, Xiao Y, Zhang X. Osteoinductivity of Porous Biphasic Calcium Phosphate Ceramic Spheres with Nanocrystalline and Their Efficacy in Guiding Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3722-3736. [PMID: 30629405 DOI: 10.1021/acsami.8b18525] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Conventional biphasic calcium phosphate (BCP) bioceramics are facing many challenges to meet the demands of regenerative medicine, and their biological properties are limited to a large extent due to the large grain size in comparison with nanocrystalline of natural bone mineral. Herein, this study aimed to fabricate porous BCP ceramic spheres with nanocrystalline (BCP-N) by combining alginate gelatinizing with microwave hybrid sintering methods and investigated their in vitro and in vivo combinational osteogenesis potential. For comparison, spherical BCP granules with microcrystalline (BCP-G) and commercially irregular BCP granules (BAM, BCP-I) were selected as control. The obtained BCP-N with specific nanotopography could well initiate and regulate in vitro biological response, such as degradation, protein adsorption, bone-like apatite formation, cell behaviors, and osteogenic differentiation. In vivo canine intramuscular implantation and rabbit mandible critical-sized bone defect repair further confirmed that nanotopography in BCP-N might be responsible for the stronger osteoinductivity and bone regenerative ability than BCP-G and BCP-I. Collectedly, due to nanotopographic similarities with nature bone apatite, BCP-N has excellent efficacy in guiding bone regeneration and holds great potential to become a potential alternative to standard bone grafts in bone defect filling applications.
Collapse
Affiliation(s)
- Xiangfeng Li
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Tao Song
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Menglu Wang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Yumei Xiao
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
24
|
Wei PF, Yuan ZY, Jing W, Guan BB, Liu ZH, Zhang X, Mao JP, Chen DF, Cai Q, Yang XP. Regenerating infected bone defects with osteocompatible microspheres possessing antibacterial activity. Biomater Sci 2019; 7:272-286. [PMID: 30467569 DOI: 10.1039/c8bm00903a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Treatment of infected bone defects still remains a formidable clinical challenge, and the design of bone implants with both anti-bacterial activity and osteogenesis effects is nowadays regarded as a powerful strategy for infection control and bone healing.
Collapse
Affiliation(s)
- Peng-Fei Wei
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Zuo-Ying Yuan
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Wei Jing
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Bin-Bin Guan
- Department of Stomatology
- Tianjin Medical University General Hospital
- Tianjin 300052
- P.R. China
| | - Zi-Hao Liu
- Department of Endodontics
- School and Hospital of Stomatology
- Tianjin Medical University
- Tianjin 300070
- P.R. China
| | - Xu Zhang
- Department of Endodontics
- School and Hospital of Stomatology
- Tianjin Medical University
- Tianjin 300070
- P.R. China
| | - Jian-Ping Mao
- Department of Spine Surgery
- Beijing Jishuitan Hospital
- Beijing 100035
- P.R. China
| | - Da-Fu Chen
- Laboratory of Bone Tissue Engineering
- Beijing Research institute of Traumatology and Orthopaedics
- Beijing Jishuitan Hospital
- Beijing 100035
- P.R. China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| | - Xiao-Ping Yang
- State Key Laboratory of Organic-Inorganic Composites; Beijing Laboratory of Biomedical Materials; Beijing University of Chemical Technology
- Beijing 100029
- P.R. China
| |
Collapse
|
25
|
Xue C, Huang Q, Zhang T, Zhao D, Ma Q, Tian T, Cai X. Matrix stiffness regulates arteriovenous differentiation of endothelial progenitor cells during vasculogenesis in nude mice. Cell Prolif 2018; 52:e12557. [PMID: 30485569 PMCID: PMC6495479 DOI: 10.1111/cpr.12557] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Objectives The aim of the study was to investigate the effect of matrix stiffness on arteriovenous differentiation of endothelial progenitor cells (EPCs) during vasculogenesis in nude mice. Materials and methods Dextran hydrogels of differing stiffnesses were first prepared by controlling the crosslinking reaction to generate different thioether bonds. Hydrogels with stiffnesses matching those of the arterial extracellular matrix and venous extracellular matrix were separately combined with mouse bone marrow‐derived EPCs and subcutaneously implanted on either side of the backs of nude mice. After 14 days, artery‐specific marker Efnb2 and vein‐specific marker Ephb4 in the neovasculature were detected to determine the effect of matrix stiffness on the arteriovenous differentiation of EPCs in vivo. Results Fourteen days after the implantation of the EPC‐loaded dextran hydrogels, new blood vessels were observed in both types of hydrogels. We further verified that matrix stiffness regulated the arteriovenous differentiation of EPCs during vasculogenesis via the Ras/Mek pathway. Conclusions Matrix stiffness regulates the arteriovenous differentiation of EPCs during vasculogenesis in nude mice through the Ras/Mek pathway.
Collapse
Affiliation(s)
- Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Qian Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Zhu J, Wen M, Wen W, Du D, Zhang X, Wang S, Lin Y. Recent progress in biosensors based on organic-inorganic hybrid nanoflowers. Biosens Bioelectron 2018; 120:175-187. [DOI: 10.1016/j.bios.2018.08.058] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 12/31/2022]
|
27
|
Hou Y, Xie W, Achazi K, Cuellar-Camacho JL, Melzig MF, Chen W, Haag R. Injectable degradable PVA microgels prepared by microfluidic technology for controlled osteogenic differentiation of mesenchymal stem cells. Acta Biomater 2018; 77:28-37. [PMID: 29981495 DOI: 10.1016/j.actbio.2018.07.003] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 05/23/2018] [Accepted: 07/02/2018] [Indexed: 12/25/2022]
Abstract
The direct injection of bone marrow mesenchymal stem cells (hMSCs) is a promising strategy for bone tissue engineering applications. Herein, we have developed injectable degradable poly(vinyl alcohol) (PVA) microgels loaded with hMSCs and growth factors and prepared by a high-throughput microfluidic technology. The PVA-based microgels with tunable mechanical and degradable properties were composed of vinyl ether acrylate-functionalized PVA (PVA-VEA) and thiolated PVA-VEA (PVA-VEA-SH) through a Michael-type crosslinking reaction under mild conditions. The hMSCs sustain high viability in PVA microgels, and cell proliferation and migration behaviors can easily be adjusted by varying crosslinking densities of PVA microgels. Additionally, bone morphogenetic protein-2 (BMP-2) co-encapsulated into the microgel environments enhanced osteogenic differentiation of hMSCs as indicated by a significant increase in alkaline phosphatase activity, calcium content, and Runx2 and OPN gene expression levels. These results demonstrate the degradable PVA microgels with tailored stem cell microenvironments and controlled release profile of the growth factor to promote and direct differentiation. These PVA-based microgels have promising potential as ideal cell vehicles for applications in regenerative medicine. STATEMENT OF SIGNIFICANCE Stem cell transplantation by an injectable, minimally invasive method has great and promising potential for various injuries, diseases, and tissue regeneration. However, its applications are largely limited owing to the low cell retention and engraftment at the lesion location after administration. We have developed an injectable degradable poly(vinyl alcohol) (PVA) microgel prepared by a high-throughput microfluidic technology and co-loaded with bone marrow mesenchymal stem cells (hMSCs) and growth factor to protect the stem cells from harsh environmental stress and realize controlled cell differentiation in well-defined microenvironments for bone regeneration. We demonstrated that these degradable PVA microgels can be used as stem cell scaffolds with tailored cell microenvironments and controlled release profile of growth factor to promote and direct differentiation. We are convinced that these PVA-based microgels have promising potential in the future as cellular scaffolds for applications in regenerative medicine.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Stasse 2-4, 14195 Berlin, Germany
| | - Katharina Achazi
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Jose Luis Cuellar-Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany
| | - Matthias F Melzig
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Stasse 2-4, 14195 Berlin, Germany
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, Berlin 14195, Germany.
| |
Collapse
|
28
|
Liu N, Zhou M, Zhang Q, Yong L, Zhang T, Tian T, Ma Q, Lin S, Zhu B, Cai X. Effect of substrate stiffness on proliferation and differentiation of periodontal ligament stem cells. Cell Prolif 2018; 51:e12478. [PMID: 30039894 DOI: 10.1111/cpr.12478] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to understand the effect of substrate stiffness (a mechanical factor of the extracellular matrix) on periodontal ligament stem cells (PDLSCs) and its underlying mechanism. MATERIALS AND METHODS Elastic substrates were fabricated by mixing 2 components, a base and curing agent in proportions of 10:1, 20:1, 30:1 or 40:1. PDLSC morphology was observed using scanning electron microscopy (SEM). Cell proliferation and differentiation were assessed after PDLSCs was cultured on various elastic substrates. Data were analysed using one-way ANOVA. RESULTS SEM revealed variations in the morphology of PDLSCs cultured on elastic substrates. PDLSC proliferation increased with substrate stiffness (P < .05). Osteogenic differentiation of PDLSCs was higher on stiff substrates. Notch pathway markers were up-regulated in PDLSCs cultured on stiff substrates. CONCLUSIONS Results suggested that the osteogenic differentiation of PDLSCs might be promoted by culturing them in a stiffness-dependent manner, which regulates the Notch pathway. This might provide a new method of enhancing osteogenesis in PDLSCs.
Collapse
Affiliation(s)
- Nanxin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Yong
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
29
|
Abstract
Craniofacial bones, separate from the appendicular skeleton, bear a significant amount of strain and stress generated from mastication-related muscles. Current research on the regeneration of craniofacial bone focuses on the reestablishment of an elaborate vascular network. In this review, current challenges and efforts particularly in advances of scaffold properties and techniques for vascularization remodeling in craniofacial bone tissue engineering will be discussed. A microenvironment of ischemia and hypoxia in the biomaterial core drives propagation and reorganization of endothelial progenitor cells (EPCs) to assemble into a primitive microvascular framework. Co-culture strategies and delivery of vasculogenic molecules enhance EPCs' differentiation and stimulate the host regenerative response to promote vessel sprouting and strength. To optimize structural and vascular integration, well-designed microstructures of scaffolds are biologically considered. Proper porous structures, matrix stiffness, and surface morphology of scaffolds have a profound influence on cell behaviors and thus affect revascularization. In addition, advanced techniques facilitating angiogenesis and vaculogenesis have also been discussed. Oxygen delivery biomaterials, scaffold-free cell sheet techniques, and arteriovenous loop-induced axial vascularization strategies bring us new understanding and powerful strategies to manage revascularization of large craniofacial bone defects. Although promising histological results have been achieved, the efficient perfusion and functionalization of newly formed vessels are still challenging.
Collapse
Affiliation(s)
- T Tian
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T Zhang
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Lin
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Cai
- 1 State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
30
|
Pokrowiecki R, Pałka K, Mielczarek A. Nanomaterials in dentistry: a cornerstone or a black box? Nanomedicine (Lond) 2018; 13:639-667. [DOI: 10.2217/nnm-2017-0329] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aim: The studies on tooth structure provided basis for nanotechnology-based dental treatment approaches known as nanodentistry which aims at detection and treatment of oral pathologies, such as dental caries and periodontal diseases, insufficiently being treated by conventional materials or drugs. This review aims at defining the role of nanodentistry in the medical area, its potential and hazards. Materials & methods: To validate these issues, current literature on nanomaterials for dental applications was critically reviewed. Results: Nanomaterials for teeth restoration, bone regeneration and oral implantology exhibit better mechanical properties and provide more efficient esthetic outcome. However, still little is known about influence of long-term function of such biomaterials in the living organism. Conclusion: As application of nanomaterials in industry and medical-related sciences is still expanding, more information is needed on how such nano-dental materials may interfere with oral cavity, GI tract and general health.
Collapse
Affiliation(s)
- Rafał Pokrowiecki
- Department of Head & Neck Surgery – Maxillofacial Surgery, Otolaryngology & Ophthalmology, Prof Stanislaw Popowski Voivoid Children Hospital, Żołnierska 18 A10-561 Olsztyn, Poland
| | - Krzysztof Pałka
- Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
| | - Agnieszka Mielczarek
- Department of Conservative Dentistry, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
31
|
Zhou M, Liu NX, Shi SR, Li Y, Zhang Q, Ma QQ, Tian TR, Ma WJ, Cai XX, Lin YF. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1227-1236. [PMID: 29458214 DOI: 10.1016/j.nano.2018.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
Dental pulp stem cells (DPSCs) derived from the human dental pulp tissue have multiple differentiation capabilities, such as osteo/odontogenic differentiation. Therefore, DPSCs are deemed as ideal stem cell sources for tissue regeneration. As new nanomaterials based on DNA, tetrahedral DNA nanostructures (TDNs) have tremendous potential for biomedical applications. Here, the authors aimed to explore the part played by TDNs in proliferation and osteo/odontogenic differentiation of DPSCs, and attempted to investigate if these cellular responses could be driven by activating the canonical Notch signaling pathway. Upon exposure to TDNs, proliferation and osteo/odontogenic differentiation of DPSCs were dramatically enhanced, accompanied by up regulation of Notch signaling. In general, our study suggested that TDNs can significantly promote proliferation and osteo/odontogenic differentiation of DPSCs, and this remarkable discovery can be applied in tissue engineering and regenerative medicine to develop a significant and novel method for bone and dental tissue regeneration.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan-Xin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si-Rong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan-Quan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao-Ran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Juan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Xiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
32
|
Zhao D, Li Q, Liu M, Ma W, Zhou T, Xue C, Cai X. Substrate stiffness regulated migration and invasion ability of adenoid cystic carcinoma cells via RhoA/ROCK pathway. Cell Prolif 2018; 51:e12442. [PMID: 29424004 DOI: 10.1111/cpr.12442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Human salivary adenoid cystic carcinoma (SACC) is one of the most common malignant tumours of the salivary gland and has strong migratory and invasive ability, which often lead to poor prognosis and lower survival rate. Tumour tissue tends to stiffen during solid tumour progression. This study aimed to investigate the influence of various substrate stiffness on the migration and invasion of SACC. METHODS Salivary adenoid cystic carcinoma cell line ACC2 cells were cultured on polydimethylsiloxane substrates (PDMS) with varying stiffness for investigating the effects of substrate stiffness on the activities of MMPs and TIMPs. The underlying mechanism was also explored. RESULTS When ACC2 cells were cultured on various stiffness of PDMS, the expressions of matrix metalloproteinases 2 (MMP2), MMP9, MMP14, RhoA, Rac1, Rho-associated protein kinase 1 (ROCK1) and ROCK2 were up-regulated with increasing substrate stiffness, whereas that of tissue inhibitor of matrix metalloproteinase 1 (TIMP1), TIMP2 and TIMP4 were down-regulated with increasing substrate stiffness. CONCLUSIONS Our results showed that substrate stiffness regulated the activities of MMPs and TIMPs and then modulate migratory and invasive ability of ACC2 cells via RhoA/ROCK pathway. This work indicate that matrix stiffness played an important role in progression of SACC, which not only can help understand the strong invasive ability of SACC, but also suggested that therapeutically targeting matrix stiffness may help reduce migration and invasion of SACC and improve effective therapies.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Zhang Q, Lin S, Shi S, Zhang T, Ma Q, Tian T, Zhou T, Cai X, Lin Y. Anti-inflammatory and Antioxidative Effects of Tetrahedral DNA Nanostructures via the Modulation of Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3421-3430. [PMID: 29300456 DOI: 10.1021/acsami.7b17928] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are a new type of nanomaterials that have recently attracted attention in the field of biomedicine. However, the practical application of nanomaterials is often limited owing to the host immune response. Here, the response of RAW264.7 macrophages to TDNs was comprehensively evaluated. The results showed that TDNs had no observable cytotoxicity and could induce polarization of RAW264.7 cells to the M1 type. TDNs attenuated the expression of NO IL-1β (interleukin-1β), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α) in LPS-induced RAW264.7 cells by inhibiting MAPK phosphorylation. In addition, TDNs inhibited LPS-induced reactive oxygen species (ROS) production and cell apoptosis by up-regulating the mRNA expression of antioxidative enzyme heme oxygenase-1 (HO-1). The findings of this study demonstrated that TDNs have great potential as a novel theranostic agent because of their anti-inflammatory and antioxidant activities, high bioavailability, and ease of targeting.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| |
Collapse
|
34
|
Liu N, Zhou M, Zhang Q, Zhang T, Tian T, Ma Q, Xue C, Lin S, Cai X. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway. Cell Prolif 2018; 51:e12435. [PMID: 29341308 DOI: 10.1111/cpr.12435] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Researches showed that stiffness of the extracellular matrix can affect the differentiation of many stem cells. Dental pulp stem cells (DPSCs) are a promising type of adult stem cell. However, we know little about whether and how the behaviour of DPSCs is influenced by stiffness. MATERIALS AND METHODS We carried out a study that cultured DPSCs on tunable elasticity polydimethylsiloxane substrates to investigate the influence on morphology, proliferation, osteogenic/odontogenic differentiation and its possible mechanism. RESULTS Soft substrates changed the cell morphology and inhibited the proliferation of DPSCs. Expression of markers related to osteogenic/odontogenic differentiation was significantly increased as the substrate stiffness increased, including ALP (alkaline phosphatase), OCN (osteocalcin), OPN (osteopontin), RUNX-2 (runt-related transcription factor-2), BMP-2 (bone morphogenetic protein-2), DSPP (dentin sialophosphoprotein) and DMP-1 (dentin matrix protein-1). Mechanical properties promote the function of DPSCs related to the Wnt signalling pathway. CONCLUSIONS Our results showed that mechanical factors can regulate the proliferation and differentiation of DPSCs via the WNT signalling pathway. This provides theoretical basis to optimize dental or bone tissue regeneration through increasing stiffness of extracelluar matrix.
Collapse
Affiliation(s)
- Nanxin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
35
|
Yu Z, Xiao C, Huang Y, Chen M, Wei W, Yang X, Zhou H, Bi X, Lu L, Ruan J, Fan X. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites. RSC Adv 2018; 8:17860-17877. [PMID: 35542061 PMCID: PMC9080497 DOI: 10.1039/c8ra00383a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022] Open
Abstract
Tissue engineering approaches combine a bioscaffold with stem cells to provide biological substitutes that can repair bone defects and eventually improve tissue functions. The prospective bioscaffold should have good osteoinductivity. Surface chemical and roughness modifications are regarded as valuable strategies for developing bioscaffolds because of their positive effects on enhancing osteogenic differentiation. However, the synergistic combination of the two strategies is currently poorly studied. In this work, a nanoengineered scaffold with surface chemistry (oxygen-containing groups) and roughness (Rq = 74.1 nm) modifications was fabricated by doping nanohydroxyapatite (nHA), chemically crosslinked graphene oxide (GO) and carboxymethyl chitosan (CMC). The biocompatibility and osteoinductivity of the nanoengineered CMC/nHA/GO scaffold was evaluated in vitro and in vivo, and the osteogenic differentiation mechanism of the nanoengineered scaffold was preliminarily investigated. Our data demonstrated that the enhanced osteoinductivity of CMC/nHA/GO may profit from the surface chemistry and roughness, which benefit the β1 integrin interactions with the extracellular matrix and activate the FAK–ERK signaling pathway to upregulate the expression of osteogenic special proteins. This study indicates that the nanocomposite scaffold with surface chemistry and roughness modifications could serve as a novel and promising bone substitute for tissue engineering. The CMC/nHA/GO scaffold with the surface chemistry and roughness dual effects and the release of phosphate and calcium ions synergistically assist the mineralization and facilitate the bone regeneration.![]()
Collapse
|
36
|
Huang X, Hou Y, Zhong L, Huang D, Qian H, Karperien M, Chen W. Promoted Chondrogenesis of Cocultured Chondrocytes and Mesenchymal Stem Cells under Hypoxia Using In-situ Forming Degradable Hydrogel Scaffolds. Biomacromolecules 2017; 19:94-102. [PMID: 29211452 DOI: 10.1021/acs.biomac.7b01271] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated the effects of different oxygen tension (21% and 2.5% O2) on the chondrogenesis of different cell systems cultured in pH-degradable PVA hydrogels, including human articular chondrocytes (hACs), human mesenchymal stem cells (hMSCs), and their cocultures with a hAC/hMSC ratio of 20/80. These hydrogels were prepared with vinyl ether acrylate-functionalized PVA (PVA-VEA) and thiolated PVA-VEA (PVA-VEA-SH) via Michael-type addition reaction. The rheology tests determined the gelation of the hydrogels was controlled within 2-7 min, dependent on the polymer concentrations. The different cell systems were cultured in the hydrogel scaffolds for 5 weeks, and the safranin O and GAG assay showed that hypoxia (2.5% O2) greatly promoted the cartilage matrix production with an order of hAC > hAC/hMSC > hMSC. The real time quantitative PCR (RT-PCR) revealed that the hMSC group exhibited the highest hypertrophic marker gene expression (COL10A1, ALPL, MMP13) as well as the dedifferentiated marker gene expression (COL1A1) under normoxia conditions (21% O2), while these expressions were greatly inhibited by coculturing with a 20% amount of hACs and significantly further repressed under hypoxia conditions, which was comparative to the sole hAC group. The enzyme-linked immunosorbent assay (ELISA) also showed that coculture of hMSC/hAC greatly reduced the catabolic gene expression of MMP1 and MMP3 compared with the hMSC group. It is obvious that the hypoxia conditions promoted the chondrogenesis of hMSC by adding a small amount of hACs, and also effectively inhibited their hypotrophy. We are convinced that coculture of hAC/hMSC using in situ forming hydrogel scaffolds is a promising approach to producing cell source for cartilage engineering without the huge needs of primary chondrocyte harvest and expansion.
Collapse
Affiliation(s)
- Xiaobin Huang
- Department of Developmental BioEngineering, MIRA-Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, Berlin 14195, Germany
| | - LeiLei Zhong
- Department of Developmental BioEngineering, MIRA-Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Marcel Karperien
- Department of Developmental BioEngineering, MIRA-Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University , Nanjing 210009, People's Republic of China.,Institute of Chemistry and Biochemistry, Freie Universität Berlin , Takustrasse 3, Berlin 14195, Germany
| |
Collapse
|
37
|
Kimira Y, Odaira H, Nomura K, Taniuchi Y, Inoue N, Nakatani S, Shimizu J, Wada M, Mano H. Collagen-derived dipeptide prolyl-hydroxyproline promotes osteogenic differentiation through Foxg1. Cell Mol Biol Lett 2017; 22:27. [PMID: 29213293 PMCID: PMC5710072 DOI: 10.1186/s11658-017-0060-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/21/2017] [Indexed: 11/12/2022] Open
Abstract
Prolyl-hydroxyproline (Pro-Hyp) is one of the major constituents of collagen-derived dipeptides. We previously reported that Pro-Hyp promotes the differentiation of osteoblasts by increasing Runx2, osterix and Col1α1 mRNA expression levels. Here, to elucidate the mechanism of Pro-Hyp promotion of osteoblast differentiation, we focus on the involvement of Foxo1 in osteoblast differentiation via Runx2 regulation and the role of Foxg1 in Foxo1 regulation. The addition of Pro-Hyp had no effect on MC3T3-E1 cell proliferation in Foxo1- or Foxg1-knockdown cells. In Foxo1-knockdown cells, the addition of Pro-Hyp increased ALP activity, but in Foxg1-knockdown cells, it had no effect on ALP activity. An enhancing effect of Pro-Hyp on the Runx2 and osterix expression levels was observed in Foxo1-knockdown cells. However, no enhancing effect of Pro-Hyp on osteoblastic gene expression was observed when Foxg1 was knocked down. These results demonstrate that Pro-Hyp promotes osteoblastic MC3T3-E1 cell differentiation and upregulation of osteogenic genes via Foxg1 expression.
Collapse
Affiliation(s)
- Yoshifumi Kimira
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| | - Haruka Odaira
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| | - Kaho Nomura
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| | - Yuri Taniuchi
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| | - Naoki Inoue
- Nitta Gelatin Inc., Peptide Division, 2-22 Futamata, Yao, Osaka, 581-0024 Japan
| | - Sachie Nakatani
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| | - Jun Shimizu
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| | - Masahiro Wada
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| | - Hiroshi Mano
- Faculty of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295 Japan
| |
Collapse
|
38
|
Zhou T, Li G, Lin S, Tian T, Ma Q, Zhang Q, Shi S, Xue C, Ma W, Cai X, Lin Y. Electrospun Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Graphene Oxide Scaffold: Enhanced Properties and Promoted in Vivo Bone Repair in Rats. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42589-42600. [PMID: 29148704 DOI: 10.1021/acsami.7b14267] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tengfei Zhou
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Guo Li
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Shiyu Lin
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Taoran Tian
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Quanquan Ma
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Qi Zhang
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Sirong Shi
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Changyue Xue
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Wenjuan Ma
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| | - Yunfeng Lin
- State Key Laboratory of Oral
Diseases, National Clinical Research Center for Oral Diseases, West
China Hospital of Stomatology, Sichuan University, Chengdu 610000, China
| |
Collapse
|
39
|
Li Q, Zhao D, Shao X, Lin S, Xie X, Liu M, Ma W, Shi S, Lin Y. Aptamer-Modified Tetrahedral DNA Nanostructure for Tumor-Targeted Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2017; 9:36695-36701. [PMID: 28991436 DOI: 10.1021/acsami.7b13328] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are considered promising drug delivery carriers because they are able to permeate cellular membrane and are biocompatible and biodegradable. Furthermore, they can be modified by functional groups. To improve the drug-delivering ability of TDNs, we chose anticancer aptamer AS1411 to modify TDNs for tumor-targeted drug delivery. AS1411 can specifically bind to nucleolin, which is overexpressed on the cell membrane of tumor cells. Furthermore, AS1411 can inhibit NF-κB signaling and reduce the expression of bcl-2. In this study, we compared the intracellular localization of AS1411-modified TDNs (Apt-TDNs) with that of TDNs in different cells under hypoxic condition. Furthermore, we compared the effects of Apt-TDNs and TDNs on cell growth and cell cycle under hypoxic condition. A substantial amount of Apt-TDNs entered and accumulated in the nucleus of MCF-7 cells; however, the amount of Apt-TDNs that entered L929 cells was comparatively less. TDNs entered in much lower quantity in MCF-7 cells than Apt-TDNs. Moreover, there was little difference in the amount of TDNs that entered L929 cells and MCF-7 cells. Apt-TDNs can inhibit MCF-7 cell growth and promote L929 cell growth, while TDNs can promote both MCF-7 and L929 cell growth. Thus, the results indicate that Apt-TDNs are more effective tumor-targeted drug delivery vehicles than TDNs, with the ability to specifically inhibit tumor cell growth.
Collapse
Affiliation(s)
- Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Xiaoru Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Xueping Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, PR China
| |
Collapse
|