1
|
Shi HL, Shi QQ, Zhan H, Ai JJ, Chen YT, Wang JN. High-Strength Carbon Nanotube Fibers from Purity Control by Atomized Catalytic Pyrolysis and Alignment Improvement by Continuous Large Prestraining. NANO LETTERS 2023. [PMID: 37987831 DOI: 10.1021/acs.nanolett.3c02707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Transferring the high strength of individual carbon nanotubes (CNTs) to macroscopic fibers is still a major technical challenge. In this study, CNT fibers are wound from a hollow cylindrical assembly. In particular, atomized catalytic pyrolysis is utilized to produce the fiber and control its purity. The pristine fiber is then continuously prestrained to have a highly aligned structure for subsequent full densification. Experimental measurements show that the final fiber possesses a high tensile strength (8.0 GPa), specific strength (5.54 N tex-1 (tex: the weight (g) of a fiber of 1 km long)), Young's modulus (350 GPa), and elongation at break (4%). Such an excellent combination is superior to that of any other existing fiber and attributed to the efficient stress transfer among the highly aligned and packed CNTs. Our study provides a new strategy involving atomized catalysis for developing superstrong CNT assemblies such as fibers and films for practical applications.
Collapse
Affiliation(s)
- Hong Liang Shi
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiang Qiang Shi
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Hang Zhan
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jin Jin Ai
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Ting Chen
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jian Nong Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
2
|
Meshot ER, Baker A, Malone D, Hayes S, Hamza H, Wang C, Marcus MA, Lepró X. High-Resolution X-ray Spectromicroscopy Reveals Process-Structure Correlations in sub-5-μm Diameter Carbon Nanotube-Polymer Composite Dry-Spun Yarns. ACS NANO 2023. [PMID: 37186946 DOI: 10.1021/acsnano.3c01537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A persistent lack of detailed and quantitative structural analysis of these hierarchical carbon nanotube (CNT) ensembles precludes establishing processing-structure-property relationships that are essential to enhance macroscale performance (e.g., in mechanical, electrical, thermal applications). Here, we use scanning transmission X-ray microscopy (STXM) to analyze the hierarchical, twisted morphology of dry-spun CNT yarns and their composites, quantifying key structural characteristics such as density, porosity, alignment, and polymer loading. As the yarn twist density increases (15,000 to 150,000 turns per meter), the yarn diameter decreased (4.4-1.4 μm) and density increased (0.55-1.26 g·cm-3), as intuitively expected. Yarn density, ρ, ubiquitously scaled with diameter d according to ρ ∼ d-2 for all parameters studied here. Spectromicroscopy probes with 30 nm resolution and elemental specificity were employed to analyze the radial and longitudinal distribution of the oxygen-containing polymer content (∼30% weight fraction), demonstrating nearly perfect filling of the voids between CNTs with a vapor-phase polymer coating and cross-linking process. These quantitative correlations highlight the intimate connections between processing conditions and yarn structure with important implications for translating the nanoscale properties of CNTs to the macroscale.
Collapse
Affiliation(s)
- Eric R Meshot
- Materials Engineering Division, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Alexander Baker
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Daniel Malone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Sean Hayes
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Haley Hamza
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Xavier Lepró
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
| |
Collapse
|
3
|
Lei J, Bets KV, Penev ES, Yakobson BI. Floating Fe Catalyst Formation and Effects of Hydrogen Environment in the Growth of Carbon Nanotubes. J Phys Chem Lett 2023; 14:4266-4272. [PMID: 37126735 DOI: 10.1021/acs.jpclett.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hydrocarbon conversion to advanced carbon nanomaterials with concurrent hydrogen production holds promise for clean energy technologies. This has been largely enabled by the floating catalyst chemical vapor deposition (FCCVD) growth of carbon nanotubes (CNTs), where commonly catalytic iron nanoparticles are formed from ferrocene decomposition. However, the catalyst formation mechanism and the effect of the chemical environment, especially hydrogen, remain elusive. Here, by employing atomistic simulations, we demonstrate how (i) hydrogen accelerates the ferrocene decomposition and (ii) prevents catalyst encapsulation. A subsequent catalytic dehydrogenation of methane on a liquid Fe nanoparticle showed that carbon dimers tend to be the dominant on-surface species. Such atomistic insights help us better understand the catalyst formation and CNT nucleation in the early stages of the FCCVD growth process and optimize it for potential scaleup.
Collapse
Affiliation(s)
- Jincheng Lei
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Ksenia V Bets
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Evgeni S Penev
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Boris I Yakobson
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
4
|
Continuously processing waste lignin into high-value carbon nanotube fibers. Nat Commun 2022; 13:5755. [PMID: 36180457 PMCID: PMC9525656 DOI: 10.1038/s41467-022-33496-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
High value utilization of renewable biomass materials is of great significance to the sustainable development of human beings. For example, because biomass contains large amounts of carbon, they are ideal candidates for the preparation of carbon nanotube fibers. However, continuous preparation of such fibers using biomass as carbon source remains a huge challenge due to the complex chemical structure of the precursors. Here, we realize continuous preparation of high-performance carbon nanotube fibers from lignin by solvent dispersion, high-temperature pyrolysis, catalytic synthesis, and assembly. The fibers exhibit a tensile strength of 1.33 GPa and an electrical conductivity of 1.19 × 105 S m-1, superior to that of most biomass-derived carbon materials to date. More importantly, we achieve continuous production rate of 120 m h-1. Our preparation method is extendable to other biomass materials and will greatly promote the high value application of biomass in a wide range of fields.
Collapse
|
5
|
Carbon nanotube as an emerging theranostic tool for oncology. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Bulmer JS, Kaniyoor A, Elliott JA. A Meta-Analysis of Conductive and Strong Carbon Nanotube Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008432. [PMID: 34278614 PMCID: PMC11469326 DOI: 10.1002/adma.202008432] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/19/2021] [Indexed: 06/13/2023]
Abstract
A study of 1304 data points collated over 266 papers statistically evaluates the relationships between carbon nanotube (CNT) material characteristics, including: electrical, mechanical, and thermal properties; ampacity; density; purity; microstructure alignment; molecular dimensions and graphitic perfection; and doping. Compared to conductive polymers and graphitic intercalation compounds, which have exceeded the electrical conductivity of copper, CNT materials are currently one-sixth of copper's conductivity, mechanically on-par with synthetic or carbon fibers, and exceed all the other materials in terms of a multifunctional metric. Doped, aligned few-wall CNTs (FWCNTs) are the most superior CNT category; from this, the acid-spun fiber subset are the most conductive, and the subset of fibers directly spun from floating catalyst chemical vapor deposition are strongest on a weight basis. The thermal conductivity of multiwall CNT material rivals that of FWCNT materials. Ampacity follows a diameter-dependent power-law from nanometer to millimeter scales. Undoped, aligned FWCNT material reaches the intrinsic conductivity of CNT bundles and single-crystal graphite, illustrating an intrinsic limit requiring doping for copper-level conductivities. Comparing an assembly of CNTs (forming mesoscopic bundles, then macroscopic material) to an assembly of graphene (forming single-crystal graphite crystallites, then carbon fiber), the ≈1 µm room-temperature, phonon-limited mean-free-path shared between graphene, metallic CNTs, and activated semiconducting CNTs is highlighted, deemphasizing all metallic helicities for CNT power transmission applications.
Collapse
Affiliation(s)
- John S. Bulmer
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Adarsh Kaniyoor
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - James A. Elliott
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| |
Collapse
|
7
|
Liang Y, Luo X, Weng W, Hu Z, Zhang Y, Xu W, Bi Z, Zhu M. Activated Carbon Nanotube Fiber Fabric as a High-Performance Flexible Electrode for Solid-State Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28433-28441. [PMID: 34114814 DOI: 10.1021/acsami.1c02758] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Owing to their features of excellent mechanical flexibility, high conductivity, and light weight, carbon-based fiber fabrics (CBFFs) are highly attractive as flexible electrodes for flexible solid-state supercapacitors (SCs). However, the achieved areal capacitance of most CBFFs is still unsatisfactory. Carbon nanotube fiber fabric (CNTFF) is a new kind of CBFF and could provide a potential alternative to high-performance flexible electrodes. Herein, we report the activation of CNTFF using a facile thermal oxidation and acid treatment process. The activated CNTFF shows an exceptional combination of large areal capacitance (1988 mF cm-2 at 2 mA cm-2), excellent rate performance (45% capacitance reservation at 100 mA cm-2), and outstanding cycle life (only 3% capacitance decay after 10,000 cycles). The constructed solid-state SC reaches a maximum energy density of 143 μWh cm-2 at 1000 μW cm-2 and a maximum power density of 30,600 μW cm-2 at 82 μWh cm-2. Additionally, this device possesses good rate performance along with superb cycle stability and excellent mechanical flexibility under various bending conditions. Our present work therefore offers a new opportunity in developing high-performance flexible electrodes for flexible energy storage.
Collapse
Affiliation(s)
- Yunxia Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Xiaogang Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou 215123, China
| | - Wei Weng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Yang Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Wenting Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Zejia Bi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| |
Collapse
|
8
|
Jamali V, Mirri F, Biggers EG, Pinnick RA, Liberman L, Cohen Y, Talmon Y, MacKintosh FC, van der Schoot P, Pasquali M. Enhanced ordering in length-polydisperse carbon nanotube solutions at high concentrations as revealed by small angle X-ray scattering. SOFT MATTER 2021; 17:5122-5130. [PMID: 33735362 DOI: 10.1039/d0sm02253e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions.
Collapse
Affiliation(s)
- Vida Jamali
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang X, Lu W, Zhou G, Li Q. Understanding the Mechanical and Conductive Properties of Carbon Nanotube Fibers for Smart Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902028. [PMID: 31250496 DOI: 10.1002/adma.201902028] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/15/2019] [Indexed: 05/23/2023]
Abstract
The development of fiber-based smart electronics has provoked increasing demand for high-performance and multifunctional fiber materials. Carbon nanotube (CNT) fibers, the 1D macroassembly of CNTs, have extensively been utilized to construct wearable electronics due to their unique integration of high porosity/surface area, desirable mechanical/physical properties, and extraordinary structural flexibility, as well as their novel corrosion/oxidation resistivity. To take full advantage of CNT fibers, it is essential to understand their mechanical and conductive properties. Herein, the recent progress regarding the intrinsic structure-property relationship of CNT fibers, as well as the strategies of enhancing their mechanical and conductive properties are briefly summarized, providing helpful guidance for scouting ideally structured CNT fibers for specific flexible electronic applications.
Collapse
Affiliation(s)
- Xiaohua Zhang
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Weibang Lu
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Gengheng Zhou
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qingwen Li
- Division of Advanced Nano-Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
10
|
Synergetic Toughening Effect of Carbon Nanotubes and β-Nucleating Agents on the Polypropylene Random Copolymer/Styrene-Ethylene-Butylene- Styrene Block Copolymer Blends. Polymers (Basel) 2018; 11:polym11010029. [PMID: 30960013 PMCID: PMC6401747 DOI: 10.3390/polym11010029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 12/20/2018] [Accepted: 12/23/2018] [Indexed: 12/03/2022] Open
Abstract
Polypropylene random co-polymer (PPR)/styrene-ethylene-butylene-styrene (SBS) block copolymer blends with high toughness and favorable tensile properties were successfully obtained by blending with traces of multi-wall carbon nanotubes (MWCNTs) and β-nucleating agents (β-NAs). β-NAs can effectively induce the ductile β-form crystal in the PPR matrix. Although the addition of MWCNTs was reported to be only benefit for the tensile strength of PPR and relatively disadvantageous for the toughness, the obviously synergistic toughening effect in PPR/SBS blends was found when MWCNTs and β-NAs coexisted. The notched izod impact strength of PPR/30 wt % SBS blend with MWCNTs and β-NAs increased from 11.3 to 58.9 kJ/m2; more than 5-fold increment compared with pure PPR. Meanwhile, the tensile strength retention of this PPR blend is still above 72.2%. The micro-morphology indicated that the MWCNTs can act as bridges between SBS particle and PPR matrix, effectively transferring the stress and absorbing impact energy among SBS particles.
Collapse
|
11
|
Effect of alignment and packing density on the stress relaxation process of carbon nanotube fibers spun from floating catalyst chemical vapor deposition method. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Abstract
Carbon nanotubes are unique one-dimensional materials which can experience a modification in their optical properties as the chemical composition of their ambient environment varies. One of the ways to interrogate these variations in optical properties is through the use of optical fibres. As such, their integration with optical fibre technology would potentially allow for the development of devices for various chemical sensing applications.
Collapse
|
13
|
A Multi-Scale Modeling Approach for Simulating Crack Sensing in Polymer Fibrous Composites Using Electrically Conductive Carbon Nanotube Networks. Part II: Meso- and Macro-Scale Analyses. AEROSPACE 2018. [DOI: 10.3390/aerospace5040106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This is the second of a two-paper series describing a multi-scale modeling approach developed to simulate crack sensing in polymer fibrous composites by exploiting interruption of electrically conductive carbon nanotube (CNT) networks. The approach is based on the finite element (FE) method. Numerical models at three different scales, namely the micro-scale, the meso-scale and the macro-scale, have been developed using the ANSYS APDL environment. In the present paper, the meso- and macro-scale analyses are described. In the meso-scale, a two-dimensional model of the CNT/polymer matrix reinforced by carbon fibers is used to develop a crack sensing methodology from a parametric study which relates the crack position and length with the reduction of current flow. In the meso-model, the effective electrical conductivity of the CNT/polymer computed from the micro-scale is used as input. In the macro-scale, the final implementation of the crack sensing methodology is performed on a CNT/polymer/carbon fiber composite volume using as input the electrical response of the cracked CNT/polymer derived at the micro-scale and the crack sensing methodology. Analyses have been performed for cracks of two different lengths. In both cases, the numerical model predicts with good accuracy both the length and position of the crack. These results highlight the prospect of conductive CNT networks to be used as a localized structural health monitoring technique.
Collapse
|
14
|
Lepak-Kuc S, Boncel S, Szybowicz M, Nowicka AB, Jozwik I, Orlinski K, Gizewski T, Koziol K, Jakubowska M, Lekawa-Raus A. The operational window of carbon nanotube electrical wires treated with strong acids and oxidants. Sci Rep 2018; 8:14332. [PMID: 30254234 PMCID: PMC6156409 DOI: 10.1038/s41598-018-32663-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/12/2018] [Indexed: 11/09/2022] Open
Abstract
Conventional metal wires suffer from a significant degradation or complete failure in their electrical performance, when subjected to harsh oxidizing environments, however wires constructed from Carbon Nanotubes (CNTs) have been found to actually improve in their electrical performance when subjected to these environments. These opposing reactions may provide new and interesting applications for CNT wires. Yet, before attempting to move to any real-world harsh environment applications, for the CNT wires, it is essential that this area of their operation be thoroughly examined. To investigate this, CNT wires were treated with multiple combinations of the strongest acids and halogens. The wires were then subjected to conductivity measurements, current carrying capacity tests, as well as Raman, microscopy and thermogravimetric analysis to enable the identification of both the limits of oxidative conductivity boosting and the onset of physical damage to the wires. These experiments have led to two main conclusions. Firstly, that CNT wires may operate effectively in harsh oxidizing environments where metal wires would easily fail and secondly, that the highest conductivity increase of the CNT wires can be achieved through a process of annealing, acetone and HCl purification followed by either H2O2 and HClO4 or Br2 treatment.
Collapse
Affiliation(s)
- S Lepak-Kuc
- Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
| | - S Boncel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - M Szybowicz
- Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - A B Nowicka
- Faculty of Technical Physics, Poznan University of Technology, Poznan, Poland
| | - I Jozwik
- Institute of Electronic Materials Technology, Warsaw, Poland
| | - K Orlinski
- Institute of Electronic Materials Technology, Warsaw, Poland
| | - T Gizewski
- Faculty of Electrical Engineering and Computer Science, Lublin University of Technology, Lublin, Poland
| | - K Koziol
- Enhanced Composites & Structures Centre, Cranfield University, Cranfield, UK
| | - M Jakubowska
- Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland
| | - A Lekawa-Raus
- Faculty of Mechatronics, Warsaw University of Technology, Warsaw, Poland.
| |
Collapse
|
15
|
Otaegi I, Aramburu N, Müller AJ, Guerrica-Echevarría G. Novel Biobased Polyamide 410/Polyamide 6/CNT Nanocomposites. Polymers (Basel) 2018; 10:polym10090986. [PMID: 30960911 PMCID: PMC6403815 DOI: 10.3390/polym10090986] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/28/2018] [Accepted: 08/31/2018] [Indexed: 11/30/2022] Open
Abstract
Biobased polyamide 410 (PA410)/multiwall carbon nanotube (CNT) nanocomposites (NCs) were obtained by melt-mixing in a twin screw extruder a Polyamide 6 (PA6)-based masterbatch (with 15 wt % CNT content) with neat PA410. Directly mixed PA410/CNT NCs were also obtained for comparison purposes. Transmision Electronic Microscopy (TEM) observation and conductivity measurements demonstrated that a good dispersion of CNTs was obtained, which was probably induced by the full miscibility between PA410 and PA6 (in the concentration range employed here), as ascertained by Differential Scanning Calorimetry (DSC) tests. As a result, the PA410/PA6/CNT NCs showed superior mechanical behaviour (≈10% Young’s modulus increase with a 4 wt % CNT content) than the binary PA410/CNT NCs (≈5% Young’s modulus increase with a 6 wt % CNT content), as well as superior electrical behaviour, with maximum conductivity values of approximately three orders of magnitude higher than in the binary PA410/CNT system, and lower percolation threshold values (0.65 wt % CNT content vs. 3.98 wt % CNT). The good dispersion and enhanced mechanical and electrical properties of these novel biobased nanocomposites, broadens their potential applications, such as electrical and electronics (E&E) or automotive industries.
Collapse
Affiliation(s)
- Itziar Otaegi
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Nora Aramburu
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - Alejandro J Müller
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Gonzalo Guerrica-Echevarría
- POLYMAT and Polymer Science and Technology Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| |
Collapse
|
16
|
Nguyen N, Zhang S, Oluwalowo A, Park JG, Yao K, Liang R. High-Performance and Lightweight Thermal Management Devices by 3D Printing and Assembly of Continuous Carbon Nanotube Sheets. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27171-27177. [PMID: 30020763 DOI: 10.1021/acsami.8b07556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Free-standing carbon nanotube films or buckypaper can provide a significant platform to develop practical applications of nanocarbon materials. For this research, buckypaper with high thermal conductivity (20 W/m K) and large surface area (350 m2/g) was mass produced in-house to investigate for use in lightweight thermal management devices. Floating catalyst chemical vapor deposition carbon nanotube sheets were also studied in this work. We introduced two manufacturing techniques to use the sheets for heat dissipation: (1) printing conductive composite ink on the sheets to make lightweight thermal devices, such as heat sinks and (2) assembling the sheets directly into 3D structures that were mounted on the back of heat-generating devices. These manufacturing techniques resulted in extremely lightweight, high-performance heat dissipation devices compared with other heat sink materials.
Collapse
Affiliation(s)
- Nam Nguyen
- High-Performance Materials Institute, Florida State University , 2005 Levy Avenue , Tallahassee , Florida 32310 , United States
| | - Songlin Zhang
- High-Performance Materials Institute, Florida State University , 2005 Levy Avenue , Tallahassee , Florida 32310 , United States
| | - Abiodun Oluwalowo
- High-Performance Materials Institute, Florida State University , 2005 Levy Avenue , Tallahassee , Florida 32310 , United States
| | - Jin Gyu Park
- High-Performance Materials Institute, Florida State University , 2005 Levy Avenue , Tallahassee , Florida 32310 , United States
| | - Kang Yao
- High-Performance Materials Institute, Florida State University , 2005 Levy Avenue , Tallahassee , Florida 32310 , United States
| | - Richard Liang
- High-Performance Materials Institute, Florida State University , 2005 Levy Avenue , Tallahassee , Florida 32310 , United States
| |
Collapse
|
17
|
Characterization of a Novel Polypyrrole (PPy) Conductive Polymer Coated Patterned Vertical CNT (pvCNT) Dry ECG Electrode. CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6030027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Conventional electrode-based technologies, such as the electrocardiogram (ECG), capture physiological signals using an electrolyte solution or gel that evaporates shortly after exposure, resulting in a decrease in the quality of the signal. Previously, we reported a novel dry impedimetric electrode using patterned vertically-aligned Carbon NanoTubes (pvCNT) for biopotential measurement applications. The mechanical adhesion strength of the pvCNT electrode to the substrate was weak, hence, we have improved this electrode using a thin coating of the conductive polymer polypyrrole (PPy) that strengthens its mechanical properties. Multiwall CNTs were grown vertically on a circular stainless-steel disc (⌀ = 10 mm) substrate of 50 µm thickness forming patterned pillars on a square base (100 µm × 100 µm) with an inter-pillar spacing of 200 µm and height up to 1.5 mm. The PPy coating procedure involves applying 10 µL of PPy mixed with 70% ethyl alcohol solution and rapid drying at 300 °C using a hot air gun at a distance of 10 cm. A comparative study demonstrated that the coated pvCNT had higher impedance compared to a non-coated pvCNT but lower impedance compared to the standard gel electrode. The PPy-coated pvCNT had comparable signal capture quality but stronger mechanical adhesion to the substrate.
Collapse
|
18
|
The Rotating Flow of Magneto Hydrodynamic Carbon Nanotubes over a Stretching Sheet with the Impact of Non-Linear Thermal Radiation and Heat Generation/Absorption. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8040482] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Khoshnevis H, Mint SM, Yedinak E, Tran TQ, Zadhoush A, Youssefi M, Pasquali M, Duong HM. Super high-rate fabrication of high-purity carbon nanotube aerogels from floating catalyst method for oil spill cleaning. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Mirri F, Ashkar R, Jamali V, Liberman L, Pinnick RA, van der Schoot P, Talmon Y, Butler PD, Pasquali M. Quantification of Carbon Nanotube Liquid Crystal Morphology via Neutron Scattering. Macromolecules 2018; 51:10.1021/acs.macromol.8b01017. [PMID: 38855633 PMCID: PMC11160348 DOI: 10.1021/acs.macromol.8b01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Liquid phase assembly is among the most industrially attractive routes for scalable carbon nanotube (CNT) processing. Chlorosulfonic acid (CSA) is known to be an ideal solvent for CNTs, spontaneously dissolving them without compromising their properties. At typical processing concentrations, CNTs form liquid crystals in CSA; however, the morphology of these phases and their concentration dependence are only qualitatively understood. Here, we use small-angle neutron scattering (SANS), combined with polarized light microscopy and cryogenic transmission electron microscopy to study solution morphology over a range of concentrations and two different CNT lengths. Our results show that at the highest concentration studied the long CNTs form a highly ordered fully nematic phase, while short CNTs remain in a biphasic regime. Upon dilution, long CNTs undergo a 2D lattice expansion, whereas short CNTs seem to have an intermediate expansion between 2D and 3D probably due to the biphasic nature of the system. The average spacing between the CNTs scaled by the CNT diameter is the same in both systems, as expected for infinitely long aligned rods.
Collapse
Affiliation(s)
- Francesca Mirri
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
| | - Rana Ashkar
- NIST Center for Neutron Research, National Institute of Standard and Technology (NIST), Gaithersburg, Maryland 20899, United States
- Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742, United States
- Physics Department, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Vida Jamali
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Lucy Liberman
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Robert A. Pinnick
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Paul van der Schoot
- Theory of Polymers and Soft Matter Group, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Theoretical Physics, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Yeshayahu Talmon
- Department of Chemical Engineering and the Russell Berrie Nanotechnology Institute (RBNI), Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Paul D. Butler
- NIST Center for Neutron Research, National Institute of Standard and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Matteo Pasquali
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|