1
|
Prusty JS, Kumar A, Kumar A. Anti-fungal peptides: an emerging category with enthralling therapeutic prospects in the treatment of candidiasis. Crit Rev Microbiol 2024:1-37. [PMID: 39440616 DOI: 10.1080/1040841x.2024.2418125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024]
Abstract
Candida infections, particularly invasive candidiasis, pose a serious global health threat. Candida albicans is the most prevalent species causing candidiasis, and resistance to key antifungal drugs, such as azoles, echinocandins, polyenes, and fluoropyrimidines, has emerged. This growing multidrug resistance (MDR) complicates treatment options, highlighting the need for novel therapeutic approaches. Antifungal peptides (AFPs) are gaining recognition for their potential as new antifungal agents due to their diverse structures and functions. These natural or recombinant peptides can effectively target fungal virulence and viability, making them promising candidates for future antifungal development. This review examines infections caused by Candida species, the limitations of current antifungal treatments, and the therapeutic potential of AFPs. It emphasizes the importance of identifying novel AFP targets and their production for advancing treatment strategies. By discussing the therapeutic development of AFPs, the review aims to draw researchers' attention to this promising field. The integration of knowledge about AFPs could pave the way for novel antifungal agents with broad-spectrum activity, reduced toxicity, targeted action, and mechanisms that limit resistance in pathogenic fungi, offering significant advancements in antifungal therapeutics.
Collapse
Affiliation(s)
- Jyoti Sankar Prusty
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| | - Ashwini Kumar
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, India
| |
Collapse
|
2
|
Kurzyna JM, Kopiasz RJ, Paul M, Flont M, Baranowska P, Mierzejewska J, Drężek K, Tomaszewski W, Jastrzębska E, Jańczewski D. Unlocking the Potential: PEGylation and Molecular Weight Reduction of Ionenes for Enhanced Antifungal Activity and Biocompatibility. Macromol Biosci 2024; 24:e2400032. [PMID: 39018491 DOI: 10.1002/mabi.202400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Numerous synthetic polymers, imitating natural antimicrobial peptides, have demonstrated potent antimicrobial activity, positioning them as potential candidates for new antimicrobial drugs. However, the high activity of these molecules often comes at the cost of elevated toxicity against eukaryotic organisms. In this study, a series of cationic ionenes with varying molecular weights to assess the influence of polymer chain length on ionene activity is investigated. To enhance polymer antimicrobial activity and limit toxicity a PEG side chain is introduced into the repeating unit. The resulting molecules consistently exhibited high activity against three model organisms: E. coli, S. aureus and C. albicans. The incorporation of side PEG chain improves antifungal properties and biocompatibility, regardless of molecular weight. The most important finding of this work is that the reduction of polymer molecular mass led to increased antifungal activity and reduced cytotoxicity against HMF and MRC-5 cell lines simultaneously. As a result, the best-performing molecules reported herein displayed minimal inhibitory concentrations (MIC) as low as 2 and 0.0625 µg mL1 for C. albicans and C. tropicalis respectively, demonstrating exceptional selectivity. It is plausible that some of described herein molecules can serve as potential lead candidates for new antifungal drugs.
Collapse
Affiliation(s)
- Jan M Kurzyna
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Rafał J Kopiasz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- School of Pharmacy, University of Nottingham, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Martyna Paul
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- Laboratory of White Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warsaw, 02-106, Poland
| | - Magdalena Flont
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Patrycja Baranowska
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Karolina Drężek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Waldemar Tomaszewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| | - Elżbieta Jastrzębska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
- Centre for Advanced Materials and Technology (CEZAMAT), Warsaw University of Technology, Poleczki 19, Warsaw, 02-822, Poland
| | - Dominik Jańczewski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw, 00-664, Poland
| |
Collapse
|
3
|
Li Y, Wei Z, Guo S, Zhan Y, Fan GC, Luo X. Design of U-shaped peptides with long-lasting antifouling efficacy: Toward a feasible electrochemical aptasensor for robust detection in human serum. Anal Chim Acta 2024; 1318:342953. [PMID: 39067928 DOI: 10.1016/j.aca.2024.342953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND Developing biosensors with antifouling properties is essential for accurately detecting low-concentration biomarkers in complex biological matrix, which is imperative for effective disease diagnosis and treatment. Herein, an antifouling electrochemical aptasensor qualifying for probing targets in human serum was explored based on newly-devised peptides that could form inverted U-shaped structures with long-term stability. RESULTS The inverted U-shaped peptides (U-Pep) with two terminals of thiol groups grafted onto the Au-modified electrode showcase superior antifouling properties in terms of high stability against enzymatic hydrolysis and long acting against biofouling in actual biofluids. The construction of the outlined antifouling electrochemical aptasensor just involved the fabrication of Au-deposited poly(3,4 ethylenedioxythiophene) (Au/PEDOT) modified electrode, followed by one-step co-incubation in the peptides and the aptamer probes with the Au/PEDOT electrode. Taking a typical biomarker of alpha-fetoprotein (AFP) for detection, this elegant antifouling aptasenor demonstrated a nice response for probing the target AFP with a low detection limit of 0.27 pg/mL and a wide linear scope of 1.0 pg/mL to 1.0 μg/mL, and furthermore qualified for assaying of AFP in human serum samples with satisfactory accuracy and feasibility. SIGNIFICANCE This engineering strategy of U-Pep with long-lasting antifouling efficacy opens a new horizon for high-performance antifouling biosensors suitable for detection in complex bifluids, and it could spark more inspiration for a follow-up exploration of other featured antifouling biomaterials.
Collapse
Affiliation(s)
- Yanxin Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zhen Wei
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuyue Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yinan Zhan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Gao-Chao Fan
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
4
|
Soyhan I, Polat T, Mozioglu E, Ozal Ildenız TA, Acikel Elmas M, Cebeci S, Unubol N, Gok O. Effective Immobilization of Novel Antimicrobial Peptides via Conjugation onto Activated Silicon Catheter Surfaces. Pharmaceutics 2024; 16:1045. [PMID: 39204390 PMCID: PMC11360073 DOI: 10.3390/pharmaceutics16081045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Antibiotic-resistant microorganisms have become a serious threat to public health, resulting in hospital infections, the majority of which are caused by commonly used urinary tract catheters. Strategies for preventing bacterial adhesion to the catheters' surfaces have been potentially shown as effective methods, such as coating thesurface with antimicrobial biomolecules. Here, novel antimicrobial peptides (AMPs) were designed as potential biomolecules to prevent antibiotic-resistant bacteria from binding to catheter surfaces. Thiolated AMPs were synthesized using solid-phase peptide synthesis (SPPS), and prep-HPLC was used to obtain AMPs with purity greater than 90%. On the other side, the silicone catheter surface was activated by UV/ozone treatment, followed by functionalization with allyl moieties for conjugation to the free thiol group of cystein in AMPs using thiol-ene click chemistry. Peptide-immobilized surfaces were found to become more resistant to bacterial adhesion while remaining biocompatible with mammalian cells. The presence and site of conjugation of peptide molecules were investigated by immobilizing them to catheter surfaces from both ends (C-Pep and Pep-C). It was clearly demonstrated that AMPs conjugated to the surface via theirN terminus have a higher antimicrobial activity. This strategy stands out for its effective conjugation of AMPs to silicone-based implant surfaces for the elimination of bacterial infections.
Collapse
Affiliation(s)
- Irem Soyhan
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Tuba Polat
- Department of Medical Microbiology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Erkan Mozioglu
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Tugba Arzu Ozal Ildenız
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Merve Acikel Elmas
- Department of Histology and Embriology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Sinan Cebeci
- Department of Medical Biotechnology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| | - Nihan Unubol
- Department of Medical Microbiology, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
- Medical Laboratory Technician Program, Vocational School of Health Services, Acıbadem Mehmet Ali Aydınlar University, Atasehir, 34752 Istanbul, Turkey
| | - Ozgul Gok
- Department of Biomedical Engineering, Acibadem Mehmet Ali Aydinlar University, Atasehir, 34752 Istanbul, Turkey
| |
Collapse
|
5
|
Esposito TVF, Blackadar C, Wu L, Rodríguez-Rodríguez C, Haney EF, Pletzer D, Saatchi K, Hancock REW, Häfeli UO. Biodistribution of Native and Nanoformulated Innate Defense Regulator Peptide 1002. Mol Pharm 2024; 21:2751-2766. [PMID: 38693707 DOI: 10.1021/acs.molpharmaceut.3c01169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Innate defense regulator-1002 (IDR-1002) is a synthetic peptide with promising immunomodulatory and antibiofilm properties. An appreciable body of work exists around its mechanism of action at the cellular and molecular level, along with its efficacy across several infection and inflammation models. However, little is known about its absorption, distribution, and excretion in live organisms. Here, we performed a comprehensive biodistribution assessment with a gallium-67 radiolabeled derivative of IDR-1002 using nuclear tracing techniques. Various dose levels of the radiotracer (2-40 mg/kg) were administered into the blood, peritoneal cavity, and subcutaneous tissue, or instilled into the lungs. The peptide was well tolerated at all subcutaneous and intraperitoneal doses, although higher levels were associated with delayed absorption kinetics and precipitation of the peptide within the tissues. Low intratracheal doses were rapidly absorbed systemically, and small increases in the dose level were lethal. Intravenous doses were rapidly cleared from the blood at lower levels, and upon escalation, were toxic with a high proportion of the dose accumulating within the lung tissue. To improve biocompatibility and prolong its circulation within the blood, IDR-1002 was further formulated onto high molecular weight hyperbranched polyglycerol (HPG) polymers. Constructs prepared at 5:1 and 10:1 peptide-to-polymer ratios were colloidally stable, maintained the biological profile of the peptide payload and helped reduce red blood cell lysis. The 5:1 construct circulated well in the blood, but higher peptide loading was associated with rapid clearance by the reticuloendothelial system. Many peptides face pharmacokinetic and biocompatibility challenges, but formulations such as those with HPG have the potential to overcome these limitations.
Collapse
Affiliation(s)
- Tullio V F Esposito
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Colin Blackadar
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Lan Wu
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, Shenyang 110016, China
| | - Cristina Rodríguez-Rodríguez
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Evan F Haney
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Asep Medical Holdings, 420 - 730 View Street, Victoria V8W 3Y7, British Columbia, Canada
| | - Daniel Pletzer
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand
| | - Katayoun Saatchi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Robert E W Hancock
- Centre for Microbial Disease and Immunity Research, Department of Microbiology and Immunology, Faculty of Science, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Urs O Häfeli
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen 1172, Denmark
| |
Collapse
|
6
|
Straus SK. Tryptophan- and arginine-rich antimicrobial peptides: Anti-infectives with great potential. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184260. [PMID: 38113954 DOI: 10.1016/j.bbamem.2023.184260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
With the increasing prevalence of multidrug resistant (MDR) bacteria, there is a need to design synthetic antimicrobial peptides (AMPs) that are effective and selective for bacteria, i.e. non-toxic to mammalian cells. One design strategy, namely the use of tryptophan- and arginine-rich AMPs, is rooted in the study of natural AMPs that are composed mainly of these amino acids, such as lactoferricin, tritrpticin, and puroindoline. A number of important studies on these AMPs by the Vogel group are reviewed here. More recent work on W-/R-rich peptides is also presented. The examples show that these peptides represent anti-infectives with great potential.
Collapse
Affiliation(s)
- Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
7
|
Gao N, Wang J, Fang C, Bai P, Sun Y, Wu W, Shan A. Combating bacterial infections with host defense peptides: Shifting focus from bacteria to host immunity. Drug Resist Updat 2024; 72:101030. [PMID: 38043443 DOI: 10.1016/j.drup.2023.101030] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
The increasing prevalence of multidrug-resistant bacterial infections necessitates the exploration of novel paradigms for anti-infective therapy. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), have garnered extensive recognition as immunomodulatory molecules that leverage natural host mechanisms to enhance therapeutic benefits. The unique immune mechanism exhibited by certain HDPs that involves self-assembly into supramolecular nanonets capable of inducing bacterial agglutination and entrapping is significantly important. This process effectively prevents microbial invasion and subsequent dissemination and significantly mitigates selective pressure for the evolution of microbial resistance, highlighting the potential of HDP-based antimicrobial therapy. Recent advancements in this field have focused on developing bio-responsive materials in the form of supramolecular nanonets. A comprehensive overview of the immunomodulatory and bacteria-agglutinating activities of HDPs, along with a discussion on optimization strategies for synthetic derivatives, is presented in this article. These optimized derivatives exhibit improved biological properties and therapeutic potential, making them suitable for future clinical applications as effective anti-infective therapeutics.
Collapse
Affiliation(s)
- Nan Gao
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Jiajun Wang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| | - Chunyang Fang
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Bai
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Yu Sun
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Wanpeng Wu
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China
| | - Anshan Shan
- Animal Science and Technology College, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
8
|
Carrera-Aubesart A, Gallo M, Defaus S, Todorovski T, Andreu D. Topoisomeric Membrane-Active Peptides: A Review of the Last Two Decades. Pharmaceutics 2023; 15:2451. [PMID: 37896211 PMCID: PMC10610229 DOI: 10.3390/pharmaceutics15102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
In recent decades, bioactive peptides have been gaining recognition in various biomedical areas, such as intracellular drug delivery (cell-penetrating peptides, CPPs) or anti-infective action (antimicrobial peptides, AMPs), closely associated to their distinct mode of interaction with biological membranes. Exploiting the interaction of membrane-active peptides with diverse targets (healthy, tumoral, bacterial or parasitic cell membranes) is opening encouraging prospects for peptides in therapeutics. However, ordinary peptides formed by L-amino acids are easily decomposed by proteases in biological fluids. One way to sidestep this limitation is to use topoisomers, namely versions of the peptide made up of D-amino acids in either canonic (enantio) or inverted (retroenantio) sequence. Rearranging peptide sequences in this fashion provides a certain degree of native structure mimicry that, in appropriate contexts, may deliver desirable biological activity while avoiding protease degradation. In this review, we will focus on recent accounts of membrane-active topoisomeric peptides with therapeutic applications as CPP drug delivery vectors, or as antimicrobial and anticancer candidates. We will also discuss the most common modes of interaction of these peptides with their membrane targets.
Collapse
Affiliation(s)
- Adam Carrera-Aubesart
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Maria Gallo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Sira Defaus
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| | - Toni Todorovski
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - David Andreu
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.C.-A.); (M.G.); (S.D.); (T.T.)
| |
Collapse
|
9
|
Etayash H, Yip F, Hancock REW. Impacts of PEGylation and Glycosylation on the Biological Properties of Host Defense Peptide IDR1018. Pharmaceutics 2023; 15:pharmaceutics15051391. [PMID: 37242633 DOI: 10.3390/pharmaceutics15051391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
The multifunctional properties of host defense peptides (HDPs) make them promising drug candidates to tackle bacterial infections and tissue inflammation. However, these peptides tend to aggregate and can harm host cells at high doses, potentially limiting their clinical use and applications. In this study, we explored the influences of both pegylation and glycosylation on the biocompatibility and biological properties of HDPs, particularly the innate defense regulator IDR1018. Two peptide conjugates were designed by attaching either polyethylene glycol (PEG6) or a glucose moiety to the peptide towards the N-terminus. Significantly, both derivatives reduced the aggregation, hemolysis, and cytotoxicity of the parent peptide by orders of magnitude. In addition, while the pegylated conjugate, PEG6-IDR1018, retained an excellent immunomodulatory profile, similar to that observed for IDR1018 itself, the glycosylated conjugate, Glc-IDR1018, significantly outperformed the parent peptide in inducing anti-inflammatory mediators, MCP1 and IL-1RA and in suppressing the level of lipopolysaccharide-induced proinflammatory cytokine IL-1β. Conversely, the conjugates led to a partial reduction in antimicrobial and antibiofilm activity. These findings underline the impacts of both pegylation and glycosylation on the biological properties of the HDP IDR1018 and indicate the potential of glycosylation to enhance the design of highly effective immunomodulatory peptides.
Collapse
Affiliation(s)
- Hashem Etayash
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Fione Yip
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
10
|
Edson CB, Liu M, Totsingan F, O’Berg E, Salvucci J, Dao U, Khare SD, Gross RA. Monomer Choice Influences N-Acryloyl Amino Acid Grafter Conversion via Protease Catalysis. Biomacromolecules 2023; 24:1798-1809. [PMID: 36996092 PMCID: PMC10139737 DOI: 10.1021/acs.biomac.3c00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
End-capped peptides modified with reactive functional groups on the N-terminus provide a route to prepare peptide-polymer conjugates for a broad range of applications. Unfortunately, current chemical methods to construct modified peptides rely largely on solid-phase peptide synthesis (SPPS), which lacks green preparative characteristics and is costly, thus limiting its applicability to specialty applications such as regenerative medicine. This work evaluates N-terminally modified N-acryloyl-glutamic acid diethyl ester, N-acryloyl-leucine ethyl ester, and N-acryloyl-alanine ethyl ester as grafters and papain as the protease for the direct addition of amino acid ethyl ester (AA-OEt) monomers via protease-catalyzed peptide synthesis (PCPS) and the corresponding formation of N-acryloyl-functionalized oligopeptides in a one-pot aqueous reaction. It was hypothesized that by building N-acryloyl grafters from AA-OEt monomers that are known to be good substrates for papain in PCPS, the corresponding grafters would yield high grafter conversions, high ratio of grafter-oligopeptide to free NH2-oligopeptide, and high overall yield. However, this work demonstrates based on the grafter/monomers studied herein that the dominant factor in N-acryloyl-AA-OEt grafter conversion is the co-monomer used in co-oligomerizations. Computational modeling using Rosetta qualitatively recapitulates the results and provides insight into the structural and energetic bases underlying substrate selectivity. The findings herein expand our knowledge of factors that determine the efficiency of preparing N-acryloyl-terminated oligopeptides by PCPS that could provide practical routes to peptide macromers for conjugation to polymers and surfaces for a broad range of applications.
Collapse
Affiliation(s)
- Cody B. Edson
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Melinda Liu
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Filbert Totsingan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Evan O’Berg
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - John Salvucci
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Uyen Dao
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| | - Sagar D. Khare
- Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, New Jersey 08854, United States
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8 St. Troy, NY 12180
| |
Collapse
|
11
|
Liu S, Cong H, Yu B, Shen Y. Screening of a short chain antimicrobial peptide-LKLHI and its application in hydrogels for wound healing. Int J Biol Macromol 2023; 238:124056. [PMID: 36948339 DOI: 10.1016/j.ijbiomac.2023.124056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/02/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Antibacterial peptides have been widely used in the field of antibacterial due to their biocompatibility. In this work, owing to quickly screen out peptides with antibacterial effects, the bacterial membranes of E. coli and S. aureus were extracted and fixed on self-made silica gel microspheres to prepare bacterial membrane chromatography stationary phase. We successfully screened antimicrobial peptides from a peptide library composed of one-bead-one-compound by bacterial membrane chromatography. The antibacterial peptide has an effective defense effect on gram-positive bacteria, gram-negative bacteria, and fungi. In addition, the antibacterial peptide has almost no hemolysis and cytotoxicity and other excellent biocompatibility and has excellent properties such as stability, broad-spectrum antibacterial, and promotion of wound healing,and HA hydrogel carrier loaded with antimicrobial peptides was prepared, which provided the application direction of antimicrobial dressings for antimicrobial peptides. In summary, this method can screen out polypeptides with antibacterial effects, and the screened-out antibacterial peptides are expected to be applied in clinical applications.
Collapse
Affiliation(s)
- Shixiang Liu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, PR China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| |
Collapse
|
12
|
Liu J, Xu Y, Lin X, Ma N, Zhu Q, Yang K, Li X, Liu C, Feng N, Zhao Y, Li X, Zhang W. Immobilization of poly-L-lysine brush via surface initiated polymerization for the development of long-term antibacterial coating for silicone catheter. Colloids Surf B Biointerfaces 2022; 221:113015. [DOI: 10.1016/j.colsurfb.2022.113015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
13
|
Zhao S, Qiao X, Chen M, Li Y, Wang X, Xu Z, Wu Y, Luo X. d-Amino Acid-Based Antifouling Peptides for the Construction of Electrochemical Biosensors Capable of Assaying Proteins in Serum with Enhanced Stability. ACS Sens 2022; 7:1740-1746. [PMID: 35616064 DOI: 10.1021/acssensors.2c00518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The susceptibility of peptides to proteolytic degradation in human serum significantly hindered the potential application of peptide-based antifouling biosensors for long-term assaying of clinical samples. Herein, a robust antifouling biosensor with enhanced stability was constructed based on peptides composed of d-amino acids (d-peptide) with prominent proteolytic resistance. The electrode was electropolymerized with poly(3,4-ehtylenedioxythiophene) and electrodeposited with Au nanoparticles (AuNPs), and the d-peptide was then immobilized onto the AuNPs, and a typical antibody specific for immunoglobulin M (IgM) was immobilized. Because of the effect of d-amino acids, the d-peptide-modified electrode surface showed prominent antifouling capability and high tolerance to enzymatic hydrolysis. Moreover, the d-peptide-modified electrode exhibited much stronger long-term stability, as well as antifouling ability in human serum than the electrode modified with normal peptides. The electrochemical biosensor exhibited a sensitive response to IgM linearly within the range of 100 pg mL-1 to 1.0 μg mL-1 and a very low detection limit down to 37 pg mL-1, and it was able to detect IgM in human serum with good accuracy. This work provided a new strategy to develop robust peptide-based biosensors to resist the proteolytic degradation for practical application in complex clinical samples.
Collapse
Affiliation(s)
- Shuju Zhao
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiujuan Qiao
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Min Chen
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yanxin Li
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xin Wang
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhenying Xu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yumin Wu
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiliang Luo
- State Key Laboratory Base of Eco-chemical Engineering, Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
14
|
Patil PJ, Sutar SS, Usman M, Patil DN, Dhanavade MJ, Shehzad Q, Mehmood A, Shah H, Teng C, Zhang C, Li X. Exploring bioactive peptides as potential therapeutic and biotechnology treasures: A contemporary perspective. Life Sci 2022; 301:120637. [PMID: 35568229 DOI: 10.1016/j.lfs.2022.120637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 12/21/2022]
Abstract
In preceding years, bioactive peptides (BAPs) have piqued escalating attention owing to their multitudinous biological features. To date, many potential BAPs exhibiting anti-cancer activities have been documented; yet, obstacles such as their safety profiles and consumer acceptance continue to exist. Moreover, BAPs have been discovered to facilitate the suppression of Coronavirus Disease 2019 (CoVID-19) and maybe ideal for treating the CoVID-19 infection, as stated by published experimental findings, but their widespread knowledge is scarce. Likewise, there is a cornucopia of BAPs possessing neuroprotective effects that mend neurodegenerative diseases (NDs) by regulating gut microbiota, but they remain a subject of research interest. Additionally, a plethora of researchers have attempted next-generation approaches based on BAPs, but they need scientific attention. The text format of this critical review is organized around an overview of BAPs' versatility and diverse bio functionalities with emphasis on recent developments and novelties. The review is alienated into independent sections, which are related to either BAPs based disease management strategies or next-generation BAPs based approaches. BAPs based anti-cancer, anti-CoVID-19, and neuroprotective strategies have been explored, which may offer insights that could help the researchers and industries to find an alternate regimen against the three aforementioned fatal diseases. To the best of our knowledge, this is the first review that has systematically discussed the next-generation approaches in BAP research. Furthermore, it can be concluded that the BAPs may be optimal for the management of cancer, CoVID-19, and NDs; nevertheless, experimental and preclinical studies are crucial to validate their therapeutic benefits.
Collapse
Affiliation(s)
- Prasanna J Patil
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Shubham S Sutar
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| | - Muhammad Usman
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Devashree N Patil
- Department of Biotechnology, Shivaji University, Vidyanagar, Kolhapur, Maharashtra 416004, India
| | - Maruti J Dhanavade
- Department of Microbiology, Bharati Vidyapeeth's Dr. Patangrao Kadam Mahavidyalaya, Sangli, Maharashtra 416416, India
| | - Qayyum Shehzad
- National Engineering Laboratory for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Haroon Shah
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China
| | - Chao Teng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China
| | - Chengnan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiuting Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China; School of Food and Health, Beijing Technology and Business University, No. 11, Fucheng Road, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, School of Food and Chemical Technology, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
15
|
Molecular Research on Oral Diseases and Related Biomaterials: A Journey from Oral Cell Models to Advanced Regenerative Perspectives. Int J Mol Sci 2022; 23:ijms23095288. [PMID: 35563679 PMCID: PMC9105421 DOI: 10.3390/ijms23095288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 02/05/2023] Open
Abstract
Oral diseases such as gingivitis, periodontitis, and oral cancer affect millions of people worldwide. Much research has been conducted to understand the pathogenetic mechanisms of these diseases and translate this knowledge into therapeutics. This review aims to take the reader on a journey from the initial molecular discoveries to complex regenerative issues in oral medicine. For this, a semi-systematic literature search was carried out in Medline and Web of Science databases to retrieve the primary literature describing oral cell models and biomaterial applications in oral regenerative medicine. First, an in vitro cell model of gingival keratinocytes is discussed, which illustrates patho- and physiologic principles in the context of oral epithelial homeostasis and carcinogenesis and represents a cellular tool to understand biomaterial-based approaches for periodontal tissue regeneration. Consequently, a layered gradient nonwoven (LGN) is described, which demonstrates that the key features of biomaterials serve as candidates for oral tissue regeneration. LGN supports proper tissue formation and obeys the important principles for molecular mechanotransduction. Furthermore, current biomaterial-based tissue regeneration trends, including polymer modifications, cell-based treatments, antimicrobial peptides and optogenetics, are introduced to represent the full spectrum of current approaches to oral disease mitigation and prevention. Altogether, this review is a foray through established and new concepts in oral regenerative medicine and illustrates the process of knowledge translation from basic molecular and cell biological research to future clinical applications.
Collapse
|
16
|
PEGylation enhances the antibacterial and therapeutic potential of amphibian host defence peptides. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2022; 1864:183806. [PMID: 34656552 DOI: 10.1016/j.bbamem.2021.183806] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022]
Abstract
Aurein 2.1, aurein 2.6 and aurein 3.1 are amphibian host defence peptides that kill bacteria via the use of lytic amphiphilic α-helical structures. The C-terminal PEGylation of these peptides led to decreased antibacterial activity (Minimum Lethal Concentration (MLCs) ↓ circa one and a half to threefold), reduced levels of amphiphilic α-helical structure in solvents (α-helicity ↓ circa 15.0%) and lower surface activity (Δπ ↓ > 1.5 mN m-1). This PEGylation of aureins also led to decreased levels of amphiphilic α-helical structure in the presence of anionic membranes and zwitterionic membranes (α-helicity↓ > 10.0%) as well as reduced levels of penetration (Δπ ↓ > 3.0 mN m-1) and lysis (lysis ↓ > 10.0%) of these membranes. Based on these data, it was proposed that the antibacterial action of PEGylated aureins involved the adoption of α-helical structures that promote the lysis of bacterial membranes, but with lower efficacy than their native counterparts. However, PEGylation also reduced the haemolytic activity of native aureins to negligible levels (haemolysis ↓ from circa 10% to 3% or less) and improved their relative therapeutic indices (RTIs ↑ circa three to sixfold). Based on these data, it is proposed that PEGylated aureins possess the potential for therapeutic development; for example, to combat infections due to multi-drug resistant strains of S. aureus, designated as high priority by the World Health Organization.
Collapse
|
17
|
Matthyssen T, Li W, Holden JA, Lenzo JC, Hadjigol S, O’Brien-Simpson NM. The Potential of Modified and Multimeric Antimicrobial Peptide Materials as Superbug Killers. Front Chem 2022; 9:795433. [PMID: 35083194 PMCID: PMC8785218 DOI: 10.3389/fchem.2021.795433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/24/2021] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) are found in nearly all living organisms, show broad spectrum antibacterial activity, and can modulate the immune system. Furthermore, they have a very low level of resistance induction in bacteria, which makes them an ideal target for drug development and for targeting multi-drug resistant bacteria 'Superbugs'. Despite this promise, AMP therapeutic use is hampered as typically they are toxic to mammalian cells, less active under physiological conditions and are susceptible to proteolytic degradation. Research has focused on addressing these limitations by modifying natural AMP sequences by including e.g., d-amino acids and N-terminal and amino acid side chain modifications to alter structure, hydrophobicity, amphipathicity, and charge of the AMP to improve antimicrobial activity and specificity and at the same time reduce mammalian cell toxicity. Recently, multimerisation (dimers, oligomer conjugates, dendrimers, polymers and self-assembly) of natural and modified AMPs has further been used to address these limitations and has created compounds that have improved activity and biocompatibility compared to their linear counterparts. This review investigates how modifying and multimerising AMPs impacts their activity against bacteria in planktonic and biofilm states of growth.
Collapse
Affiliation(s)
- Tamara Matthyssen
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Wenyi Li
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - James A. Holden
- Centre for Oral Health Research, The University of Melbourne, Melbourne Dental School, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Jason C. Lenzo
- Centre for Oral Health Research, The University of Melbourne, Melbourne Dental School, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Sara Hadjigol
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| | - Neil M. O’Brien-Simpson
- ACTV Research Group, The University of Melbourne, Melbourne Dental School, Centre for Oral Health Research, Royal Dental Hospital, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Silva ARP, Guimarães M, Rabelo J, Belen L, Perecin C, Farias J, Picado Madalena Santos JH, Rangel-Yagui CO. Recent advances in the design of antimicrobial peptide conjugates. J Mater Chem B 2022; 10:3587-3600. [DOI: 10.1039/d1tb02757c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antimicrobial peptides (AMPs) are ubiquitous host defense peptides characterized by antibiotic activity and lower propensity for developing resistance compared to classic antibiotics. While several AMPs have shown activity against antibiotic-sensitive...
Collapse
|
19
|
Drayton M, Alford MA, Pletzer D, Haney EF, Machado Y, Luo HD, Overall CM, Kizhakkedathu JN, Hancock REW, Straus SK. Enzymatically releasable polyethylene glycol - host defense peptide conjugates with improved activity and biocompatibility. J Control Release 2021; 339:220-231. [PMID: 34597746 DOI: 10.1016/j.jconrel.2021.09.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/13/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Host defense peptides (HDPs) have been the subject of great interest for the treatment of multidrug-resistant bacterial infections due to their multimodal activity and low induction of resistance. However, aggregation, toxicity, and short biological half-life have limited their applicability for clinical treatment. Many methods have been explored to alleviate these issues, such as polymer (e.g., polyethylene glycol (PEG)) conjugation, but these are often accompanied by reductions in the activity of the HDP. Here, we detail the design of a novel PEG-HDP conjugate incorporating an enzymatic cleavage sequence targeting matrix metalloproteinases (MMPs) that accumulate at sites of inflammation and infection. Addition of the cleavage sequence onto either the N- or the C-terminal region of the parent peptide (peptide 73, a derivative of the HDP aurein 2.2) was explored to determine the location for optimal antimicrobial activity following MMP cleavage; furthermore, the susceptibility of the peptide to MMP cleavage after conjugation to 2 kDa or 5 kDa PEG was examined. The top candidate, L73, utilized an N-terminal cleavage site that was subsequently conjugated to a 2 kDa PEG polymer. Both L73 and the conjugate exhibited no antimicrobial activity in vitro until cleaved by purified MMP, which liberated a peptide fragment with 16- or 63-fold improved activity, respectively, corresponding to a minimum inhibitory concentration (MIC) of 8 μg/mL, comparable to that of peptide 73 (4 μg/mL). Furthermore, PEG conjugation improved the blood compatibility and reduced the aggregation tendency of the HDP in vitro, indicating enhanced biocompatibility. When administered as a single subcutaneous dose (~3.6 mg, or a peptide concentration of 142 mg/kg) in a mouse abscess model of high-density methicillin-resistant Staphylococcus aureus (MRSA) infection, the conjugate displayed strong activity, reducing abscess size and bacterial load by 73.3% and 58-fold, respectively. This activity was completely lost when the cleavage site was rendered resistant to MMPs by the substitution of two d-amino acids, supporting the hypothesis that antimicrobial activity was dependent on cleavage by MMPs, which were shown here to increasingly accumulate at the abscess site up to 18 h post infection. Finally, the conjugate displayed biocompatibility in vivo, with no identifiable toxicity or aggregation.
Collapse
Affiliation(s)
- Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Morgan A Alford
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of Otago, 720 Cumberland St, Dunedin, New Zealand
| | - Evan F Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Yoan Machado
- Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Haiming D Luo
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada; Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Christopher M Overall
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Vancouver V6T 1Z3, Canada; The School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, BC V6T 1Z4, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
20
|
Judzewitsch PR, Corrigan N, Wong EHH, Boyer C. Photo-Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021; 60:24248-24256. [PMID: 34453390 DOI: 10.1002/anie.202110672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Indexed: 12/14/2022]
Abstract
This work presents the synthesis of a novel photosensitive acrylate monomer for use as both a self-catalyst in the photoinduced electron/energy transfer-reversible addition fragmentation chain transfer (PET-RAFT) polymerisation process and a photosensitiser (PS) for antibacterial applications. Hydrophilic, cationic, and antimicrobial formulations are explored to compare the antibacterial effects between charged and non-charged polymers. Covalent attachment of the catalyst to well-defined linear polymer chains has no effect on polymerisation control or singlet oxygen generation. The addition of the PS to polymers provides activity against S. aureus for all polymer formulations, resulting in up to a 99.99999 % killing efficacy in 30 min. Antimicrobial peptide mimetic polymers previously active against P. aeruginosa, but not S. aureus, gain significant bactericidal activity against S. aureus through the inclusion of PS groups, with 99.998 % killing efficiency after 30 min incubation with light. Thus, a broader spectrum of antimicrobial activity is achieved using two distinct mechanisms of bactericidal activity via the incorporation of a photosensitiser monomer into an antimicrobial polymer.
Collapse
Affiliation(s)
- Peter R Judzewitsch
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Nathaniel Corrigan
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Edgar H H Wong
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW, 2052, Australia
| |
Collapse
|
21
|
Clem CM, Sharma B, Striegler S. Structure–Activity-Relationship Studies to Elucidate Sources of Antibacterial Activity of Modular Polyacrylate Microgels. ACS APPLIED BIO MATERIALS 2021; 4:7578-7586. [DOI: 10.1021/acsabm.1c00831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carlie M. Clem
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Babloo Sharma
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Susanne Striegler
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
22
|
Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action. Int J Mol Sci 2021; 22:ijms222011172. [PMID: 34681833 PMCID: PMC8538224 DOI: 10.3390/ijms222011172] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 12/14/2022] Open
Abstract
The rapid rise of multidrug-resistant (MDR) bacteria has once again caused bacterial infections to become a global health concern. Antimicrobial peptides (AMPs), also known as host defense peptides (HDPs), offer a viable solution to these pathogens due to their diverse mechanisms of actions, which include direct killing as well as immunomodulatory properties (e.g., anti-inflammatory activity). HDPs may hence provide a more robust treatment of bacterial infections. In this review, the advent of and the mechanisms that lead to antibiotic resistance will be described. HDP mechanisms of antibacterial and immunomodulatory action will be presented, with specific examples of how the HDP aurein 2.2 and a few of its derivatives, namely peptide 73 and cG4L73, function. Finally, resistance that may arise from a broader use of HDPs in a clinical setting and methods to improve biocompatibility will be briefly discussed.
Collapse
|
23
|
Photo‐Enhanced Antimicrobial Activity of Polymers Containing an Embedded Photosensitiser. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
|
25
|
Cui Z, Luo Q, Bannon MS, Gray VP, Bloom TG, Clore MF, Hughes MA, Crawford MA, Letteri RA. Molecular engineering of antimicrobial peptide (AMP)-polymer conjugates. Biomater Sci 2021; 9:5069-5091. [PMID: 34096936 PMCID: PMC8493962 DOI: 10.1039/d1bm00423a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As antimicrobial resistance becomes an increasing threat, bringing significant economic and health burdens, innovative antimicrobial treatments are urgently needed. While antimicrobial peptides (AMPs) are promising therapeutics, exhibiting high activity against resistant bacterial strains, limited stability and toxicity to mammalian cells has hindered clinical development. Attaching AMPs to polymers provides opportunities to present AMPs in a way that maximizes bacterial killing while enhancing compatibility with mammalian cells, stability, and solubility. Conjugation of an AMP to a linear hydrophilic polymer yields the desired improvements in stability, mammalian cell compatibility, and solubility, yet often markedly reduces bactericidal effects. Non-linear polymer architectures and supramolecular assemblies that accommodate multiple AMPs per polymer chain afford AMP-polymer conjugates that strike a superior balance of antimicrobial activity, mammalian cell compatibility, stability, and solubility. Therefore, we review the design criteria, building blocks, and synthetic strategies for engineering AMP-polymer conjugates, emphasizing the connection between molecular architecture and antimicrobial performance to inspire and enable further innovation to advance this emerging class of biomaterials.
Collapse
Affiliation(s)
- Zixian Cui
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA, 22903, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv Drug Deliv Rev 2021; 175:113818. [PMID: 34090965 DOI: 10.1016/j.addr.2021.05.028] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/30/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides hold promise to supplement small molecules antibiotics and combat the multidrug resistant microbes. There are however technical hurdles towards the clinical applications, largely due to the inherent limitations of peptides including stability, cytotoxicity and bioavailability. Here we review recent studies concerning the delivery and formulation of antimicrobial peptides, by categorizing the different strategies as driven by physical interactions or chemical conjugation reactions, and carriers ranging from inorganic based ones (including gold, silver and silica based solid nanoparticles) to organic ones (including micelle, liposome and hydrogel) are covered. Besides, targeted delivery of antimicrobial peptides or using antimicrobial peptides as the targeting moiety, and responsive release of the peptides after delivery are also reviewed. Lastly, strategies towards the increase of oral bioavailability, from both physical or chemical methods, are highlighted. Altogether, this article provides a comprehensive review of the recent progress of the delivery and formulation of antimicrobial peptides towards clinical application.
Collapse
Affiliation(s)
- Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Tingting Hong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Pengfei Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region.
| |
Collapse
|
27
|
Wang S, Sun Y, Xu S, Liu H. Novel Peptide-Polymer Conjugate with pH-Responsive Targeting/Disrupting Effects on Biomembranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8840-8846. [PMID: 34264682 DOI: 10.1021/acs.langmuir.1c01238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Conjugating polymers to peptides has become a new strategy of designing functional antitumor agents for their improved stability and enhanced activity. In this paper, a novel peptide-polymer conjugate PEPc-PMAA with pH responsiveness was designed and synthesized. The isoelectric point of PEPc was studied by dynamic light scattering for the targeting effect. Also, the transmittances of PMAA at different pHs were measured using an ultraviolet-visible spectrophotometer for determining the triggering pH of the disrupting effect. The results showed that PEPc-PMAA was hydrophilic under neutral conditions and changed to be amphiphilic composed of positively charged PEPc and hydrophobic PMAA under acidic conditions. The interactions between PEPc-PMAA and mimic cells were investigated by the measurements of membrane fluidity and cargo leakage from 1,2-dipalmitoyl-sn-glycerol-3-phosphocholine and 1,2-dipalmitoyl-sn-glycerol-3-phospho-(1-rac-glycerol) (DPPG) liposomes. It proved that PEPc-PMAA caused a distinct membrane disturbance of the DPPG liposome at pH 5.5, resulting in more serious cargo leakage. Because of its targeting and disrupting effects on negatively charged biomembranes under acidic conditions, PEPc-PMAA showed its good potential as an antitumor agent.
Collapse
Affiliation(s)
- Sijia Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yue Sun
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Shouhong Xu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Honglai Liu
- Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
28
|
Zhao S, Liu N, Wang W, Xu Z, Wu Y, Luo X. An electrochemical biosensor for alpha-fetoprotein detection in human serum based on peptides containing isomer D-Amino acids with enhanced stability and antifouling property. Biosens Bioelectron 2021; 190:113466. [PMID: 34214764 DOI: 10.1016/j.bios.2021.113466] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 10/21/2022]
Abstract
The development of antifouling biosensors capable of detecting biomarkers at low concentrations in complex bio-fluids with many interference components is of great importance in the diagnosis and treatment of diseases. Certain zwitterionic peptides composed of natural L-amino acids have been used for the construction of low fouling biosensors and demonstrated excellent antifouling performances, but they are prone to enzymatic degradation in biological media, such as serum that contains a variety of enzymes. In this work, a novel antifouling peptide with the sequence of cppPPEKEKEkek was designed, and three unnatural D-amino acids were set at both ends of the peptide to enhance its tolerance to enzymatic degradation. An electrochemical biosensor was constructed by coupling the antifouling peptide with a conducting polymer polyaniline (PANI) to achieve accurate detection of alpha-fetoprotein (AFP) in clinical samples. Owing to the presence of the designed peptide with partial D-amino acids (pD-peptide), the biosensing interface showed significantly high antifouling performance and enhanced stability in human serum. Meanwhile, the pD-peptide based biosensor exhibited high sensitivity toward the target AFP, with the linear range from 0.1 fg mL-1 to 1.0 ng mL-1 and the limit of detection of 0.03 fg mL-1 (S/N = 3). This strategy of enhancing the stability (tolerance to enzymolysis) of antifouling peptides in biological samples provided an effective way to develop antifouling biosensors for practical applications.
Collapse
Affiliation(s)
- Shuju Zhao
- State Key Laboratory Base of Eco-chemical Engineering; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Nianzu Liu
- State Key Laboratory Base of Eco-chemical Engineering; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenqi Wang
- State Key Laboratory Base of Eco-chemical Engineering; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Zhenying Xu
- State Key Laboratory Base of Eco-chemical Engineering; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yumin Wu
- State Key Laboratory Base of Eco-chemical Engineering; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xiliang Luo
- State Key Laboratory Base of Eco-chemical Engineering; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
29
|
Kim J, Lee JY, Park HY, Kim H, Kang JH, Kim HJ, Jeong W. Combination of peptides with biological, organic, and inorganic materials for synergistically enhanced diagnostics and therapeutics. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joo‐Young Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Jae Yun Lee
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Ha Yeon Park
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyunji Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Jeon Hyeong Kang
- Department of Biological Engineering Inha University Incheon Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| | - Woo‐Jin Jeong
- Department of Biological Engineering Inha University Incheon Republic of Korea
- Department of Biological Sciences and Bioengineering Inha University Incheon Republic of Korea
| |
Collapse
|
30
|
Martin J, Desfoux A, Martinez J, Amblard M, Mehdi A, Vezenkov L, Subra G. Bottom-up strategies for the synthesis of peptide-based polymers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
31
|
Sarikaya R, Song L, Yuca E, Xie SX, Boone K, Misra A, Spencer P, Tamerler C. Bioinspired multifunctional adhesive system for next generation bio-additively designed dental restorations. J Mech Behav Biomed Mater 2021; 113:104135. [PMID: 33160267 PMCID: PMC8101502 DOI: 10.1016/j.jmbbm.2020.104135] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/17/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Resin-based composite has overtaken dental amalgam as the most popular material for the repair of lost or damaged tooth structure. In spite of the popularity, the average composite lifetime is about half that of amalgam restorations. The leading cause of composite-restoration failure is decay at the margin where the adhesive is applied. The adhesive is intended to seal the composite/tooth interface, but the adhesive seal to dentin is fragile and readily degraded by acids, enzymes and other oral fluids. The inherent weakness of this material system is attributable to several factors including the lack of antimicrobial properties, remineralization capabilities and durable mechanical performance - elements that are central to the integrity of the adhesive/dentin (a/d) interfacial seal. Our approach to this problem offers a transition from a hybrid to a biohybrid structure. Discrete peptides are tethered to polymers to provide multi-bio-functional adhesive formulations that simultaneously achieve antimicrobial and remineralization properties. The bio-additive materials design combines several functional properties with the goal of providing an adhesive that will serve as a durable barrier to recurrent decay at the composite/tooth interface. This article provides an overview of our multi-faceted approach which uses peptides tethered to polymers and new polymer chemistries to achieve the next generation adhesive system - an adhesive that provides antimicrobial properties, repair of defective dentin and enhanced mechanical performance.
Collapse
Affiliation(s)
- Rizacan Sarikaya
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Linyong Song
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Esra Yuca
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Molecular Biology and Genetics, Yildiz Technical University, Istanbul, 34210, Turkey
| | - Sheng-Xue Xie
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Kyle Boone
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Anil Misra
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Civil, Environmental and Architectural Engineering Department, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA
| | - Paulette Spencer
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA
| | - Candan Tamerler
- Institute for Bioengineering Research (IBER), University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Department of Mechanical Engineering, University of Kansas (KU), 1530 W. 15th St, Lawrence, KS, 66045, USA; Bioengineering Program, University of Kansas, 1530 W. 15th St, University of Kansas (KU), Lawrence, KS, 66045, USA.
| |
Collapse
|
32
|
Ortiz-Gómez V, Rodríguez-Ramos VD, Maldonado-Hernández R, González-Feliciano JA, Nicolau E. Antimicrobial Polymer-Peptide Conjugates Based on Maximin H5 and PEG to Prevent Biofouling of E. coli and P. aeruginosa. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46991-47001. [PMID: 32937073 PMCID: PMC8177746 DOI: 10.1021/acsami.0c13492] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Many pathogens, such as Pseudomonas aeruginosa and Escherichia coli bacteria can easily attach to surfaces and form stable biofilms. The formation of such biofilms in surfaces presents a problem in environmental, biomedical, and industrial processes, among many others. Aiming to provide a plausible solution to this issue, the anionic and hydrophobic peptide Maximin H5 C-terminally deaminated isoform (MH5C) has been modified with a cysteine in the C-terminal (MH5C-Cys) and coupled to polyethylene glycol (PEG) polymers of varying sizes (i.e., 2 kDa and 5 kDa) to serve as a surface protective coating. Briefly, the MH5C-Cys was bioconjugated to PEG and purified by size exclusion chromatography while the reaction was confirmed via SDS-PAGE and MALDI ToF. Moreover, the preventive antimicrobial activity of the MH5C-Cys-PEG conjugates was performed via the growth curves method, showing inhibition of bacterial growth after 24 h. The efficacy of these peptide-polymer conjugates was extensively characterized via scanning electron microscopy (SEM), minimum inhibition concentration (MIC), minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC) assays to evaluate their ability to eradicate and prevent the biofilms. Interestingly, this work demonstrated a critical PEG polymer weight of 5 kDa as ideal when coupled to the peptide to achieve inhibition and eradication of the biofilm formation in both bacteria strains. According to the MICs (40 μM) and MBICs (300 μM), we can conclude that this conjugate (MH5C-Cys-5 kDa) has an action that prevents/inhibits the formation of biofilms and the eradication of biofilms (MBEC 500 μM). In contrast, the MH5C-Cys peptide with PEG polymer of 2 kDa did not show inhibition or eradication of the biofilms.
Collapse
Affiliation(s)
- Valerie Ortiz-Gómez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, 17 Avenido, Universidad Suite 1701, San Juan, Puerto Rico 00925-2537
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De Leon Avenido, Suite 2, San Juan Puerto Rico 00931-3346
| | - Victor D Rodríguez-Ramos
- Department of Biology, University of Puerto Rico, Río Piedras Campus, 17 Avenido, Universidad Suite 1701, San Juan, Puerto Rico 00925-2537
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De Leon Avenido, Suite 2, San Juan Puerto Rico 00931-3346
| | - Rafael Maldonado-Hernández
- Department of Biology, University of Puerto Rico, Río Piedras Campus, 17 Avenido, Universidad Suite 1701, San Juan, Puerto Rico 00925-2537
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De Leon Avenido, Suite 2, San Juan Puerto Rico 00931-3346
| | - José A González-Feliciano
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De Leon Avenido, Suite 2, San Juan Puerto Rico 00931-3346
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Río Piedras Campus, 17 Avenido, Universidad Suite 1701, San Juan, Puerto Rico 00925-2537
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De Leon Avenido, Suite 2, San Juan Puerto Rico 00931-3346
| |
Collapse
|
33
|
Yang Y, Zhang H, Wanyan Y, Liu K, Lv T, Li M, Chen Y. Effect of Hydrophobicity on the Anticancer Activity of Fatty-Acyl-Conjugated CM4 in Breast Cancer Cells. ACS OMEGA 2020; 5:21513-21523. [PMID: 32905373 PMCID: PMC7469384 DOI: 10.1021/acsomega.0c02093] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 05/12/2023]
Abstract
Antimicrobial peptides (AMPs) are important anticancer resources, and exploring AMP conjugates as highly effective and selective anticancer agents would represent new progress in cancer treatment. In this study, we synthesized C4-C16 fatty-acyl-conjugated AMP CM4 and investigated its physiochemical properties and cytotoxicity activity in breast cancer cells. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high-performance liquid chromatography (RP-HPLC) showed that long-chain fatty acyl (≥C12) conjugation prevented N-acyl-CM4 from trypsin hydrolysis. RP-HPLC and circular dichroism (CD) spectra showed that the hydrophobicity and helical content of N-acyl-CM4 increased with the acyl length. The acyl chain length was positively related to the cytotoxicity of C8-C16 conjugates, and C12-C16 fatty acyl conjugates exhibited significant cytotoxicity against MX-1, MCF-7, and MDA-MB-231 cells, with IC50 values <8 μM. Flow cytometry and confocal laser scanning microscopy results showed that N-acylated conjugation significantly increased the membrane affinity in breast cancer cells, and C12-C16 acyl conjugates were capable of translocating to the intracellular space, thereby targeting mitochondria and inducing apoptosis. N-acyl-CM4 showed low cytotoxicity against normal mammalian cells and erythrocytes, especially ≤C12 fatty acyl conjugates, exhibiting selective cytotoxicity to breast cancer cells. The current work indicated that increasing hydrophobicity by attaching long fatty acyl (≥C12) to AMPs may be an effective method to improve the anticancer activity, together with selectivity and resistance to trypsin hydrolysis. This finding provides a good strategy to develop AMPs as effective anticancer agents in the future.
Collapse
|
34
|
Bhattacharjya S, Straus SK. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. Int J Mol Sci 2020; 21:ijms21165773. [PMID: 32796755 PMCID: PMC7460851 DOI: 10.3390/ijms21165773] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
In an era where the pipeline of new antibiotic development is drying up, the continuous rise of multi-drug resistant (MDR) and extensively drug resistant (XDR) bacteria are genuine threats to human health. Although antimicrobial peptides (AMPs) may serve as promising leads against drug resistant bacteria, only a few AMPs are in advanced clinical trials. The limitations of AMPs, namely their low in vivo activity, toxicity, and poor bioavailability, need to be addressed. Here, we review engineering of frog derived short α-helical AMPs (aurein, temporins) and lipopolysaccharide (LPS) binding designed β-boomerang AMPs for further development. The discovery of novel cell selective AMPs from the human proprotein convertase furin is also discussed.
Collapse
Affiliation(s)
- Surajit Bhattacharjya
- School of Biological Sciences, 60 Nanyang Drive, Nanyang Technological University, Singapore 637551, Singapore
- Correspondence: (S.B.); (S.K.S.)
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- Correspondence: (S.B.); (S.K.S.)
| |
Collapse
|
35
|
Drayton M, Kizhakkedathu JN, Straus SK. Towards Robust Delivery of Antimicrobial Peptides to Combat Bacterial Resistance. Molecules 2020; 25:molecules25133048. [PMID: 32635310 PMCID: PMC7412191 DOI: 10.3390/molecules25133048] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
Antimicrobial peptides (AMPs), otherwise known as host defence peptides (HDPs), are naturally occurring biomolecules expressed by a large array of species across the phylogenetic kingdoms. They have great potential to combat microbial infections by directly killing or inhibiting bacterial activity and/or by modulating the immune response of the host. Due to their multimodal properties, broad spectrum activity, and minimal resistance generation, these peptides have emerged as a promising response to the rapidly concerning problem of multidrug resistance (MDR). However, their therapeutic efficacy is limited by a number of factors, including rapid degradation, systemic toxicity, and low bioavailability. As such, many strategies have been developed to mitigate these limitations, such as peptide modification and delivery vehicle conjugation/encapsulation. Oftentimes, however, particularly in the case of the latter, this can hinder the activity of the parent AMP. Here, we review current delivery strategies used for AMP formulation, focusing on methodologies utilized for targeted infection site release of AMPs. This specificity unites the improved biocompatibility of the delivery vehicle with the unhindered activity of the free AMP, providing a promising means to effectively translate AMP therapy into clinical practice.
Collapse
Affiliation(s)
- Matthew Drayton
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
| | - Jayachandran N. Kizhakkedathu
- Department of Pathology and Laboratory Medicine, and Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, BC V6T 1Z3, Canada;
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada;
- Correspondence: ; Tel.: +1-604-822-2537
| |
Collapse
|
36
|
Taylor PA, Jayaraman A. Molecular Modeling and Simulations of Peptide–Polymer Conjugates. Annu Rev Chem Biomol Eng 2020; 11:257-276. [DOI: 10.1146/annurev-chembioeng-092319-083243] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Peptide–polymer conjugates are a class of soft materials composed of covalently linked blocks of protein/polypeptides and synthetic/natural polymers. These materials are practically useful in biological applications, such as drug delivery, DNA/gene delivery, and antimicrobial coatings, as well as nonbiological applications, such as electronics, separations, optics, and sensing. Given their broad applicability, there is motivation to understand the molecular and macroscale structure, dynamics, and thermodynamic behavior exhibited by such materials. We focus on the past and ongoing molecular simulation studies aimed at obtaining such fundamental understanding and predicting molecular design rules for the target function. We describe briefly the experimental work in this field that validates or motivates these computational studies. We also describe the various models (e.g., atomistic, coarse-grained, or hybrid) and simulation methods (e.g., stochastic versus deterministic, enhanced sampling) that have been used and the types of questions that have been answered using these computational approaches.
Collapse
Affiliation(s)
- Phillip A. Taylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
37
|
Insights into the mechanism of action of two analogues of aurein 2.2. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183262. [DOI: 10.1016/j.bbamem.2020.183262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 01/28/2023]
|
38
|
|
39
|
Xie SX, Song L, Yuca E, Boone K, Sarikaya R, VanOosten SK, Misra A, Ye Q, Spencer P, Tamerler C. Antimicrobial Peptide-Polymer Conjugates for Dentistry. ACS APPLIED POLYMER MATERIALS 2020; 2:1134-1144. [PMID: 33834166 PMCID: PMC8026165 DOI: 10.1021/acsapm.9b00921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Bacterial adhesion and growth at the composite/adhesive/tooth interface remain the primary cause of dental composite restoration failure. Early colonizers, including Streptococcus mutans, play a critical role in the formation of dental caries by creating an environment that reduces the adhesive's integrity. Subsequently, other bacterial species, biofilm formation, and lactic acid from S. mutans demineralize the adjoining tooth. Because of their broad spectrum of antibacterial activity and low risk for antibiotic resistance, antimicrobial peptides (AMPs) have received significant attention to prevent bacterial biofilms. Harnessing the potential of AMPs is still very limited in dentistry-a few studies have explored peptide-enabled antimicrobial adhesive copolymer systems using mainly nonspecific adsorption. In the current investigation, to avoid limitations from nonspecific adsorption and to prevent potential peptide leakage out of the resin, we conjugated an AMP with a commonly used monomer for dental adhesive formulation. To tailor the flexibility between the peptide and the resin material, we designed two different spacer domains. The spacer-integrated antimicrobial peptides were conjugated to methacrylate (MA), and the resulting MA-AMP monomers were next copolymerized into dental adhesives as AMP-polymer conjugates. The resulting bioactivity of the polymethacrylate-based AMP conjugated matrix activity was investigated. The antimicrobial peptide conjugated to the resin matrix demonstrated significant antimicrobial activity against S. mutans. Secondary structure analyses of conjugated peptides were applied to understand the activity differential. When mechanical properties of the adhesive system were investigated with respect to AMP and cross-linking concentration, resulting AMP-polymer conjugates maintained higher compressive moduli compared to hydrogel analogues including polyHEMA. Overall, our result provides a robust approach to develop a fine-tuned bioenabled peptide adhesive system with improved mechanical properties and antimicrobial activity. The results of this study represent a critical step toward the development of peptide-conjugated dentin adhesives for treatment of secondary caries and the enhanced durability of dental composite restorations.
Collapse
Affiliation(s)
| | | | - Esra Yuca
- University of Kansas (KU), Lawrence, Kansas, and Yildiz Technical University, Istanbul, Turkey
| | - Kyle Boone
- University of Kansas (KU), Lawrence, Kansas
| | | | | | - Anil Misra
- University of Kansas (KU), Lawrence, Kansas
| | - Qiang Ye
- University of Kansas (KU), Lawrence, Kansas
| | | | | |
Collapse
|
40
|
Raheem N, Straus SK. Mechanisms of Action for Antimicrobial Peptides With Antibacterial and Antibiofilm Functions. Front Microbiol 2019; 10:2866. [PMID: 31921046 PMCID: PMC6927293 DOI: 10.3389/fmicb.2019.02866] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The antibiotic crisis has led to a pressing need for alternatives such as antimicrobial peptides (AMPs). Recent work has shown that these molecules have great potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, anti-cancer agents and anti-inflammatories. A better understanding of the mechanism of action (MOA) of AMPs is an important part of the discovery of more potent and less toxic AMPs. Many models and techniques have been utilized to describe the MOA. This review will examine how biological assays and biophysical methods can be utilized in the context of the specific antibacterial and antibiofilm functions of AMPs.
Collapse
Affiliation(s)
- Nigare Raheem
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
41
|
Liu T, Li J, Wu X, Zhang S, Lu Z, Li G, Li J, Chen S. Transferrin-targeting redox hyperbranched poly(amido amine)-functionalized graphene oxide for sensitized chemotherapy combined with gene therapy to nasopharyngeal carcinoma. Drug Deliv 2019; 26:744-755. [PMID: 31340676 PMCID: PMC6711081 DOI: 10.1080/10717544.2019.1642421] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 02/08/2023] Open
Abstract
A drug and gene co-delivery system with chemotherapeutic sensibilization was prepared and used for nasopharyngeal carcinoma therapy. For this purpose, the graphene oxide (GO) was conjugated with the redox hyperbranched poly(amido amine) (HPAA) and then the targeting molecule, transferrin (Tf), was also conjugated. The obtained Tf-HPAA-GO could co-deliver docetaxel (DOC) and MMP-9 shRNA plasmid (pMMP-9) effectively and showed the targeting effect to HNE-1 cells. The co-delivery system showed the effective drug and gene delivery ability with high cytotoxicity and gene transfection efficiency. Besides that, Tf-HPAA-GO/DOC also showed the chemotherapeutic sensibilization effect, the formulation containing HPAA segments showed much higher cytotoxicity than free DOC. Benefiting from the sensibilization effect and DOC/pMMP-9 co-delivery strategy, this Tf-HPAA-GO/DOC/pMMP-9 co-delivery system exhibited the significantly improved therapeutic efficacy to HNE-1 tumor in a combined manner which was confirmed by in vitro and in vivo assays. This strategy provided an easily delivery system combining the drug/gene co-delivery, chemotherapeutic sensibilization, and targeting into one single platform, which showed a promising application in cancer therapy.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jingzhen Li
- Department of Nephrology, Ningbo Yinzhou Second Hospital, Ningbo, China
| | - Xidong Wu
- Department of Pharmacology, Jiangxi Testing Center of Medical Instruments, Nanchang, China
| | - Siyi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhongming Lu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guanxue Li
- Department of Pediatric Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Junzheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Dongguan Hospital of Jinan University, Dongguan, China
| | - Shaohua Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
42
|
Martin-Serrano Á, Gómez R, Ortega P, de la Mata FJ. Nanosystems as Vehicles for the Delivery of Antimicrobial Peptides (AMPs). Pharmaceutics 2019; 11:E448. [PMID: 31480680 PMCID: PMC6781550 DOI: 10.3390/pharmaceutics11090448] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Recently, antimicrobial peptides (AMPs), also called host defence peptides (HDPs), are attracting great interest, as they are a highly viable alternative in the search of new approaches to the resistance presented by bacteria against antibiotics in infectious diseases. However, due to their nature, they present a series of disadvantages such as low bioavailability, easy degradability by proteases, or low solubility, among others, which limits their use as antimicrobial agents. For all these reasons, the use of vehicles for the delivery of AMPs, such as polymers, nanoparticles, micelles, carbon nanotubes, dendrimers, and other types of systems, allows the use of AMPs as a real alternative to treatment with antibiotics.
Collapse
Affiliation(s)
- Ángela Martin-Serrano
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
| | - Rafael Gómez
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Paula Ortega
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain.
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. Del Río" (IQAR), University of Alcalá, 28805 Madrid, Spain.
- Institute Ramón y Cajal for Health Research (IRYCIS), 28034 Madrid, Spain.
- Networking Research Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
43
|
Acosta S, Quintanilla L, Alonso M, Aparicio C, Rodríguez-Cabello JC. Recombinant AMP/Polypeptide Self-Assembled Monolayers with Synergistic Antimicrobial Properties for Bacterial Strains of Medical Relevance. ACS Biomater Sci Eng 2019; 5:4708-4716. [DOI: 10.1021/acsbiomaterials.9b00247] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sergio Acosta
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Luis Quintanilla
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Matilde Alonso
- Bioforge lab, CIBER-BBN, Edificio LUCIA, University of Valladolid, Paseo Belén 19, Valladolid 47011, Spain
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, 16-250A Moos Tower, 515 Delaware Street Southeast, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
44
|
Zheng Y, Liu W, Chen Y, Li C, Jiang H, Wang X. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J Colloid Interface Sci 2019; 546:1-10. [DOI: 10.1016/j.jcis.2019.03.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 12/18/2022]
|
45
|
Yuan P, Qiu X, Wang X, Tian R, Wang L, Bai Y, Liu S, Chen X. Substrate-Independent Coating with Persistent and Stable Antifouling and Antibacterial Activities to Reduce Bacterial Infection for Various Implants. Adv Healthc Mater 2019; 8:e1801423. [PMID: 30828999 DOI: 10.1002/adhm.201801423] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/28/2018] [Indexed: 12/18/2022]
Abstract
Implantation of biomedical devices accompanying infections has caused severe problems to public health that require feasible solutions. In this study, a simple approach is reported to fabricate a antimicrobial and antifouling dual-functional coating. This coating consists of a substrate-independent layer-by-layer (LBL) film formed by poly (diallyldimethylammonium) (PDDA) and poly (styrenesulfonate) (PSS), where parts of PSS and PDDA are physically substituted by hetero-bifunctional polyethylene glycol (PEG) ending with a carboxyl group and antimicrobial peptide (ε-Poly-l-lysine, ε-PL). This design (ε-PL-PEG-(PDDA/PSS)9 coating) exhibits not only potent antimicrobial activity against Gram-positive/negative bacteria but also superior antifouling activity on various substrates, including glass and plastic. Moreover, the antifouling and antibacterial performance can be maintained for a longer period of time under physiological environments even after physical damage of the surface due to the homogeneous interspersion and free migration of ε-PL-PEG-COOH in the LBL film. This allows the supplement of these molecules to the surface against molecule loss during usage. Both in vitro and in vivo (rodent subcutaneous infection model) studies show obvious reduction of the bacteria on the coated substrate and in the surrounding tissues with up to 3.2-log reduction, even after repeated usage. The inflammation around the implantation area is also significantly inhibited.
Collapse
Affiliation(s)
- Pingyun Yuan
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Xinyu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyFourth Military Medical University Xi'an Shaanxi 710032 P. R. China
| | - Xinran Wang
- College of Chemistry & PharmacyNorthwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Ran Tian
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Lin Wang
- College of Chemistry & PharmacyNorthwest A&F University Yangling Shaanxi 712100 P. R. China
| | - Yongkang Bai
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an 710049 P. R. China
| | - Shiyu Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral DiseasesCenter for Tissue EngineeringSchool of StomatologyFourth Military Medical University Xi'an Shaanxi 710032 P. R. China
| | - Xin Chen
- School of Chemical Engineering and TechnologyShaanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an 710049 P. R. China
| |
Collapse
|
46
|
Kumar P, Pletzer D, Haney EF, Rahanjam N, Cheng JTJ, Yue M, Aljehani W, Hancock REW, Kizhakkedathu JN, Straus SK. Aurein-Derived Antimicrobial Peptides Formulated with Pegylated Phospholipid Micelles to Target Methicillin-Resistant Staphylococcus aureus Skin Infections. ACS Infect Dis 2019; 5:443-453. [PMID: 30565465 DOI: 10.1021/acsinfecdis.8b00319] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antimicrobial peptides have been the focus of considerable research; however, issues associated with toxicity and aggregation have the potential to limit clinical applications. Here, a derivative of a truncated version of aurein 2.2 (aurein 2.2Δ3), namely peptide 73, was investigated, along with its d-amino acid counterpart (D-73) and a retro-inverso version (RI-73). A version that incorporated a cysteine residue to the C-terminus (73c) was also generated, as this form is required to covalently attach antimicrobial peptides to polymers (e.g., polyethylene glycol (PEG) or hyperbranched polyglycerol (HPG)). The antimicrobial activity of the 73-derived peptides was enhanced 2- to 8-fold, and all the derivatives eradicated preformed Staphylococcus aureus biofilms. Formulation of the peptides with compatible polyethylene glycol (PEG)-modified phospholipid micelles alleviated toxicity toward human cells and reduced aggregation. When evaluated in vivo, the unformulated d-enantiomers aggregated when injected under the skin of mice, but micelle encapsulated peptides were well absorbed. Pegylated micelle formulated peptides were investigated for their potential as therapeutic agents for treating high-density infections in a murine cutaneous abscess model. Formulated peptide 73 reduced abscess size by 36% and bacterial loads by 2.2-fold compared to the parent peptide aurein 2.2Δ3. Micelle encapsulated peptides 73c and D-73 exhibited superior activity, further reducing abscess sizes by 85% and 63% and lowering bacterial loads by 510- and 9-fold compared to peptide 73.
Collapse
Affiliation(s)
- Prashant Kumar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Daniel Pletzer
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Evan F. Haney
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Negin Rahanjam
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - John T. J. Cheng
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Marty Yue
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Waleed Aljehani
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, 2259 Lower Mall Research Station, Vancouver, British Columbia, Canada, V6T 1Z4
| | - Jayachandran N. Kizhakkedathu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
- Centre for Blood Research, Department of Pathology and Laboratory Medicine, University of British Columbia, 2350 Health Sciences Mall, Life Sciences Centre, Vancouver, British Columbia, Canada, V6T 1Z3
| | - Suzana K. Straus
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, Canada, V6T 1Z1
| |
Collapse
|
47
|
Haney EF, Straus SK, Hancock REW. Reassessing the Host Defense Peptide Landscape. Front Chem 2019; 7:43. [PMID: 30778385 PMCID: PMC6369191 DOI: 10.3389/fchem.2019.00043] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022] Open
Abstract
Current research has demonstrated that small cationic amphipathic peptides have strong potential not only as antimicrobials, but also as antibiofilm agents, immune modulators, and anti-inflammatories. Although traditionally termed antimicrobial peptides (AMPs) these additional roles have prompted a shift in terminology to use the broader term host defense peptides (HDPs) to capture the multi-functional nature of these molecules. In this review, we critically examined the role of AMPs and HDPs in infectious diseases and inflammation. It is generally accepted that HDPs are multi-faceted mediators of a wide range of biological processes, with individual activities dependent on their polypeptide sequence. In this context, we explore the concept of chemical space as it applies to HDPs and hypothesize that the various functions and activities of this class of molecule exist on independent but overlapping activity landscapes. Finally, we outline several emerging functions and roles of HDPs and highlight how an improved understanding of these processes can potentially be leveraged to more fully realize the therapeutic promise of HDPs.
Collapse
Affiliation(s)
- Evan F Haney
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Suzana K Straus
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
48
|
Beharaj A, Ekladious I, Grinstaff MW. Poly(Alkyl Glycidate Carbonate)s as Degradable Pressure-Sensitive Adhesives. Angew Chem Int Ed Engl 2019; 58:1407-1411. [PMID: 30516857 DOI: 10.1002/anie.201811894] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Indexed: 12/27/2022]
Abstract
Insertion of CO2 into the polyacrylate backbone, forming poly(carbonate) analogues, provides an environmentally friendly and biocompatible alternative. The synthesis of five poly(carbonate) analogues of poly(methyl acrylate), poly(ethyl acrylate), and poly(butyl acrylate) is described. The polymers are prepared using the salen cobalt(III) complex catalyzed copolymerization of CO2 and a derivatized oxirane. All the carbonate analogues possess higher glass-transition temperatures (Tg =32 to -5 °C) than alkyl acrylates (Tg =10 to -50 °C), however, the carbonate analogues (Td ≈230 °C) undergo thermal decomposition at lower temperatures than their acrylate counterparts (Td ≈380 °C). The poly(alkyl carbonates) exhibit compositional-dependent adhesivity. The poly(carbonate) analogues degrade into glycerol, alcohol, and CO2 in a time- and pH-dependent manner with the rate of degradation accelerated at higher pH conditions, in contrast to poly(acrylate)s.
Collapse
Affiliation(s)
- Anjeza Beharaj
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| | - Iriny Ekladious
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| | - Mark W Grinstaff
- Departments of Chemistry, Biomedical Engineering, and Medicine, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
49
|
Beharaj A, Ekladious I, Grinstaff MW. Poly(Alkyl Glycidate Carbonate)s as Degradable Pressure‐Sensitive Adhesives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anjeza Beharaj
- Departments of Chemistry Biomedical Engineering, and Medicine Boston University Boston MA 02215 USA
| | - Iriny Ekladious
- Departments of Chemistry Biomedical Engineering, and Medicine Boston University Boston MA 02215 USA
| | - Mark W. Grinstaff
- Departments of Chemistry Biomedical Engineering, and Medicine Boston University Boston MA 02215 USA
| |
Collapse
|
50
|
Pranantyo D, Xu LQ, Kang ET, Chan-Park MB. Chitosan-Based Peptidopolysaccharides as Cationic Antimicrobial Agents and Antibacterial Coatings. Biomacromolecules 2018; 19:2156-2165. [DOI: 10.1021/acs.biomac.8b00270] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dicky Pranantyo
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Li Qun Xu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - En-Tang Kang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Kent Ridge, Singapore 117585
| | - Mary B. Chan-Park
- Centre of Antimicrobial Bioengineering School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| |
Collapse
|