1
|
Valluvar Oli A, Ivaturi A. Indoor Light Harvesting Perovskite Solar Cells on Conducting Oxide-Free Ultrathin Deformable Substrates. ACS APPLIED ENERGY MATERIALS 2024; 7:6096-6104. [PMID: 39148697 PMCID: PMC11322909 DOI: 10.1021/acsaem.3c02581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 03/31/2024] [Indexed: 08/17/2024]
Abstract
Perovskite solar cells (PSCs) are receiving renewed interest since they have reached high power conversion efficiency (PCE) and show potential for application not only on rigid and flexible substrates but also on mechanically deformable substrates for integration on nonplanar curvilinear surfaces. Here we demonstrate PSCs fabricated on transparent conducting oxide-free ultrathin polyethylene terephthalate substrates capable of efficiently harvesting indoor light even under compressive strain. Interface engineering with poly(bis(4-phenyl)(2,4,6-trimethylphenyl)amine) improved the shunt resistance and band alignment at the perovskite-hole transport layer interface, which resulted in enhanced charge extraction, leading to 114% improvement in PCE from 5.57 to 11.91% under 500 lx indoor white LED (4000 K) illumination. The champion device exhibited a PCE of 18.37% under 250 lx cool white LED (4000 K) light. The maximum power output (P max) of the devices varied from 13.78 to 25.38 μW/cm2 by changing the indoor light illumination from 250 to 1000 lx, respectively. Moreover, the devices showed impressive performance even after mechanical deformation and retained 83 and 76% for 1 sun and indoor light, respectively, under 30% compressive strain. Our approach paves the way for fabrication of efficient indoor light harvesting PSCs on mechanically deformable substrates for integration on nonplanar surfaces prone to compressive strain.
Collapse
Affiliation(s)
- Arivazhagan Valluvar Oli
- Smart Materials Research
and Device Technology Group, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| | - Aruna Ivaturi
- Smart Materials Research
and Device Technology Group, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XL, U.K.
| |
Collapse
|
2
|
Wang Y, Yamaguchi S, Motohashi M, Kimata H, Xue D, Zou X, Saeki A, Nakamura T, Wakamiya A, Marumoto K. Effects of the Addition of Tin Powder to Perovskite Precursor Solutions on Band Bending at PEDOT:PSS/Perovskite Interfaces in Mixed-Cation Mixed-Halide Tin Perovskite Solar Cells. J Phys Chem Lett 2024; 15:6392-6397. [PMID: 38860919 DOI: 10.1021/acs.jpclett.4c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Using electron spin resonance (ESR) spectroscopy, we investigated the effects of the addition of tin (Sn) powder to perovskite layers on band bending at the perovskite surface near poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole-transport layers in perovskite solar cells (PSCs) involving formamidinium (FA)-methylammonium (MA)-mixed-cation I-Br-mixed-halide tin perovskites. We performed dark ESR spectroscopy measurements of a PEDOT:PSS/FA0.75MA0.25Sn(I0.75Br0.25)3 stack and of a PEDOT:PSS/Sn-powder-added FA0.75MA0.25Sn(I0.75Br0.25)3 stack. The results indicate that FA0.75MA0.25Sn(I0.75Br0.25)3 layers have significant downward band bending near PEDOT:PSS layers. Such downward band bending is unfavorable for hole selectivity and surface passivation at the interface. However, the addition of Sn powder to the tin perovskite precursor solution was found to significantly prevent the downward band bending and rather cause upward band bending, which can improve the hole selectivity and field-effect passivation quality. This can be due to prevented oxidation of perovskite layers by Sn powder addition. These findings are crucial for developing highly efficient and stable tin perovskite solar cells.
Collapse
Affiliation(s)
- Yihuang Wang
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Seira Yamaguchi
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Institute of Quantum Science and Technology (IQST), University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Mayu Motohashi
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Haru Kimata
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Dong Xue
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Xiangtao Zou
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoya Nakamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuhiro Marumoto
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Institute of Quantum Science and Technology (IQST), University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
3
|
Wu J, Gu M, Travaglini L, Lauto A, Ta D, Wagner P, Wagner K, Zeglio E, Savva A, Officer D, Mawad D. Organic Mixed Ionic-Electronic Conductors Based on Tunable and Functional Poly(3,4-ethylenedioxythiophene) Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28969-28979. [PMID: 38778796 DOI: 10.1021/acsami.4c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Organic mixed ionic-electronic conductors (OMIECs) are being explored in applications such as bioelectronics, biosensors, energy conversion and storage, and optoelectronics. OMIECs are largely composed of conjugated polymers that couple ionic and electronic transport in their structure as well as synthetic flexibility. Despite extensive research, previous studies have mainly focused on either enhancing ion conduction or enabling synthetic modification. This limited the number of OMIECs that excel in both domains. Here, a series of OMIECs based on functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) copolymers that combine efficient ion/electron transport with the versatility of post-functionalization were developed. EDOT monomers bearing sulfonic (EDOTS) and carboxylic acid (EDOTCOOH) groups were electrochemically copolymerized in different ratios on oxygen plasma-treated conductive substrates. The plasma treatment enabled the synthesis of copolymers containing high ratios of EDOTS (up to 68%), otherwise not possible with untreated substrates. This flexibility in synthesis resulted in the fabrication of copolymers with tunable properties in terms of conductivity (2-0.0019 S/cm) and ion/electron transport, for example, as revealed by their volumetric capacitances (122-11 F/cm3). The importance of the organic nature of the OMIECs that are amenable to synthetic modification was also demonstrated. EDOTCOOH was successfully post-functionalized without influencing the ionic and electronic transport of the copolymers. This opens a new way to tailor the properties of the OMIECs to specific applications, especially in the field of bioelectronics.
Collapse
Affiliation(s)
- Jiaxin Wu
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Modi Gu
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Lorenzo Travaglini
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Antonio Lauto
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Daniel Ta
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, New South Wales 2751, Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Klaudia Wagner
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Erica Zeglio
- Wallenberg Initiative Materials Science for Sustainability, Department of Materials and Environmental Chemistry, Stockholm University, 114 18 Stockholm, Sweden
- AIMES - Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Digital Futures, Stockholm SE-100 44, Sweden
| | - Achilleas Savva
- Bioelectronics Section, Department of Microelectronics, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Mekelweg 4, Delft 2628 CD, The Netherlands
| | - David Officer
- Intelligent Polymer Research Institute and ARC Centre of Excellence for Electromaterials Science, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Damia Mawad
- School of Materials Science and Engineering, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Yang G, Zhang D, Wang R, Wu M, Yu J. Flexible Broadband Organic Photodetectors with Ternary Planar-Mixed Heterojunction Semiconductors and Solution-Processed Polymeric Electrode. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659248 DOI: 10.1021/acsami.3c18894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Flexible organic photodetectors (OPDs) hold immense promise in health monitoring sensors, flexible imaging sensors, and portable optical communication. Nevertheless, the actualization of high-performance flexible electronics has been hindered by rigid electrodes such as metals or metal oxides. In this work, we constructed a flexible broadband organic photodetector using a solution-processed polymeric electrode, which exhibits flexibility surpassing that of conventional indium tin oxide (ITO) electrodes. Additionally, we employed a planar-mixed heterojunction (PMHJ) through a sequential deposition method and introduced PC71BM as the third constituent into the PM6/Y6 binary active layer, resulting in enhanced photodetection performance and a broadend spectral range. The optimized OPDs demonstrated remarkable detectivity (D*) exceeding 1012 Jones in brodband from 300 to 900 nm, with a champion D* of 6.31 × 1012 Jones at 790 nm. Furthermore, after undergoing 500 cycles of bending, the D* retained approximately 78% of its original performance, highlighting the outstanding mechanical stability. This work presents a promising pathway toward the development of flexible broadband OPDs using a straightforward method, offering enhanced compatibility in diverse application scenarios and propelling the frontier of flexible optoelectronic research.
Collapse
Affiliation(s)
- Genjie Yang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Dayong Zhang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Rui Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Mengge Wu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, People's Republic of China
| |
Collapse
|
5
|
Zhang J, Hu XG, Ji K, Zhao S, Liu D, Li B, Hou PX, Liu C, Liu L, Stranks SD, Cheng HM, Silva SRP, Zhang W. High-performance bifacial perovskite solar cells enabled by single-walled carbon nanotubes. Nat Commun 2024; 15:2245. [PMID: 38472279 DOI: 10.1038/s41467-024-46620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Bifacial perovskite solar cells have shown great promise for increasing power output by capturing light from both sides. However, the suboptimal optical transmittance of back metal electrodes together with the complex fabrication process associated with front transparent conducting oxides have hindered the development of efficient bifacial PSCs. Here, we present a novel approach for bifacial perovskite devices using single-walled carbon nanotubes as both front and back electrodes. single-walled carbon nanotubes offer high transparency, conductivity, and stability, enabling bifacial PSCs with a bifaciality factor of over 98% and a power generation density of over 36%. We also fabricate flexible, all-carbon-electrode-based devices with a high power-per-weight value of 73.75 W g-1 and excellent mechanical durability. Furthermore, we show that our bifacial devices have a much lower material cost than conventional monofacial PSCs. Our work demonstrates the potential of SWCNT electrodes for efficient, stable, and low-cost bifacial perovskite photovoltaics.
Collapse
Affiliation(s)
- Jing Zhang
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Xian-Gang Hu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
- Advanced Interdisciplinary Research Center for Flexible Electronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, 710071, PR China
| | - Kangyu Ji
- Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Songru Zhao
- Centre for Environment and Sustainability, Thomas Telford (AA) building, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Dongtao Liu
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Bowei Li
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China.
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China
| | - Lirong Liu
- Centre for Environment and Sustainability, Thomas Telford (AA) building, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, 19 J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, UK
| | - Hui-Ming Cheng
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, PR China.
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, 291 Louming Road, Shenzhen, 518107, PR China.
- Shenzhen Key Lab of Energy Materials for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Road, Shenzhen, 518055, PR China.
| | - S Ravi P Silva
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Wei Zhang
- Advanced Technology Institute (ATI), University of Surrey, Guildford, Surrey, GU2 7XH, UK.
- State Centre for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
6
|
Kimata H, Yamaguchi S, Gotanda T, Xue D, Asai H, Shimazaki A, Wakamiya A, Marumoto K. Open-Circuit-Voltage Improvement Mechanism of Perovskite Solar Cells Revealed by Operando Spin Observation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58539-58547. [PMID: 38055892 DOI: 10.1021/acsami.3c16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Organic-inorganic hybrid perovskite solar cells have attracted much attention as important next-generation solar cells. Their solar cell performance is known to change during operation, but the root cause of the instability remains unclear. This report describes an investigation using electron spin resonance (ESR) to evaluate an improvement mechanism for the open-circuit voltage, VOC, of inverted perovskite solar cells at the initial stage of device operation. The ESR study revealed electron transfer at the interface from the perovskite layer to the hole-transport layer not only under dark conditions but also under light irradiation, where electrons are subsequently trapped in the hole-transport layer. An electron barrier is enhanced at the perovskite/hole-transport-layer interface, improving field-effect passivation at the interface. Thereby, the interface recombination velocity is reduced, and thus the VOC improves. These findings are crucially important for elucidating the mechanisms of device performance changes under operation. They reveal a relation between charge transfer and performance improvement, which is valuable for the further development of efficient perovskite solar cells.
Collapse
Affiliation(s)
- Haru Kimata
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Seira Yamaguchi
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Takeshi Gotanda
- Corporate Research & Development Center, Toshiba Corporation, Kawasaki, Kanagawa 230-0024, Japan
- Toshiba Energy Systems & Solutions Corporation, Kawasaki, Kanagawa 212-8585, Japan
| | - Dong Xue
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Haruka Asai
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
| | - Ai Shimazaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Atsushi Wakamiya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuhiro Marumoto
- Department of Materials Science, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8573, Japan
- Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
7
|
Wu W, Zeng H, Zhang W, Zhang W, Jiang H, Wu G, Li Z, Wang X, Huang Y, Lei Z. Aqueous in‐situ electrosynthesis and electrochromic performance of
PEDOT
:
PSS
/Reline film. J Appl Polym Sci 2022. [DOI: 10.1002/app.53211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wei Wu
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
| | - Hailan Zeng
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
| | - Weiran Zhang
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
| | - Weili Zhang
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
| | - Haiyun Jiang
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
- National & Local Joint Engineering Research Center for Advanced Packaging Material and Technology Zhuzhou Hunan China
| | - Guohua Wu
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
| | - Ziyu Li
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
| | - Xiang Wang
- School of Packaging and Materials Engineering Hunan University of Technology Zhuzhou Hunan China
| | - Yiyang Huang
- Shenzhen Glareway Technology Co., Ltd Shenzhen Guangdong China
| | - Zhiyong Lei
- Shenzhen Glareway Technology Co., Ltd Shenzhen Guangdong China
| |
Collapse
|
8
|
Pasternak G, de Rosset A, Tyszkiewicz N, Widera B, Greenman J, Ieropoulos I. Prevention and removal of membrane and separator biofouling in bioelectrochemical systems - a comprehensive review. iScience 2022; 25:104510. [PMID: 35720268 PMCID: PMC9204736 DOI: 10.1016/j.isci.2022.104510] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bioelectrochemical systems (BESs) have made significant progress in recent years in all aspects of their technology. BESs usually work with a membrane or a separator, which is one of their most critical components affecting performance. Quite often, biofilm from either the anolyte or catholyte forms on the membrane, which can negatively affect its performance. In critical cases, the long-term power performance observed for microbial fuel cells (MFCs) has dropped by over 90%. Surface modification and composite material approaches as well as chemical and physical cleaning techniques involving surfactants, acids, hydroxides, and ultrasounds have been successfully implemented to combat biofilm formation. Surface modifications produced up to 6–7 times higher power performance in the long-term, whereas regeneration strategies resulted in up to 100% recovery of original performance. Further studies include tools such as fluid dynamics-based design and plasma cleaning. The biofouling area is still underexplored in the field of bioelectrochemistry and requires systematic improvement. Therefore, this review summarizes the most recent knowledge with the aim of helping the research and engineering community select the best strategy and discuss further perspectives for combating the undesirable biofilm.
Collapse
Affiliation(s)
- Grzegorz Pasternak
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
- Corresponding author
| | - Aleksander de Rosset
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
| | - Natalia Tyszkiewicz
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
| | - Bartosz Widera
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, 50-344 Wrocław, Poland
| | - John Greenman
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, BS16 1QY Bristol, UK
| | - Ioannis Ieropoulos
- Centre for Research in Biosciences, Department of Applied Sciences, University of the West of England, BS16 1QY Bristol, UK
- Water and Environmental Engineering Group, University of Southampton, SO17 1BJ Southampton, UK
| |
Collapse
|
9
|
Xu Y, Lin Z, Wei W, Hao Y, Liu S, Ouyang J, Chang J. Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. NANO-MICRO LETTERS 2022; 14:117. [PMID: 35488940 PMCID: PMC9056588 DOI: 10.1007/s40820-022-00859-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/30/2022] [Indexed: 05/21/2023]
Abstract
Flexible perovskite solar cells (FPSCs) have attracted enormous interest in wearable and portable electronics due to their high power-per-weight and low cost. Flexible and efficient perovskite solar cells require the development of flexible electrodes compatible with the optoelectronic properties of perovskite. In this review, the recent progress of flexible electrodes used in FPSCs is comprehensively reviewed. The major features of flexible transparent electrodes, including transparent conductive oxides, conductive polymer, carbon nanomaterials and nanostructured metallic materials are systematically compared. And the corresponding modification strategies and device performance are summarized. Moreover, flexible opaque electrodes including metal films, opaque carbon materials and metal foils are critically assessed. Finally, the development directions and difficulties of flexible electrodes are given.
Collapse
Affiliation(s)
- Yumeng Xu
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Zhenhua Lin
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| | - Wei Wei
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Yue Hao
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China
| | - Shengzhong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute for Advanced Energy Materials, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore, 117574, Singapore
| | - Jingjing Chang
- State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, School of Microelectronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
- Advanced Interdisciplinary Research Center for Flexible Electronics, Xidian University, 2 South Taibai Road, Xi'an, 710071, People's Republic of China.
| |
Collapse
|
10
|
Schmode P, Hochgesang A, Goel M, Meichsner F, Mohanraj J, Fried M, Thelakkat M. A Solution‐Processable Pristine PEDOT Exhibiting Excellent Conductivity, Charge Carrier Mobility, and Thermal Stability in the Doped State. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Philip Schmode
- Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| | - Adrian Hochgesang
- Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| | - Mahima Goel
- Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| | - Florian Meichsner
- Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| | - John Mohanraj
- Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| | - Martina Fried
- Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
- Bavarian Polymer Institute University of Bayreuth Universitätsstr. 30 95440 Bayreuth Germany
| |
Collapse
|
11
|
Ai R, Boukouvala C, Lewis G, Wang H, Zhang H, Lai Y, Huang H, Ringe E, Shao L, Wang J. Facet- and Gas-Dependent Reshaping of Au Nanoplates by Plasma Treatment. ACS NANO 2021; 15:9860-9870. [PMID: 34114456 PMCID: PMC8223482 DOI: 10.1021/acsnano.1c00861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The reshaping of metal nanocrystals on substrates is usually realized by pulsed laser irradiation or ion-beam milling with complex procedures. In this work, we demonstrate a simple method for reshaping immobilized Au nanoplates through plasma treatment. Au nanoplates can be reshaped gradually with nearly periodic right pyramid arrays formed on the surface of the nanoplates. The gaseous environment in the plasma-treatment system plays a significant role in the reshaping process with only nitrogen-containing environments leading to reshaping. The reshaping phenomenon is facet-dependent, with right pyramids formed only on the exposed {111} facets of the Au nanoplates. The morphological change of the Au nanoplates induced by the plasma treatment leads to large plasmon peak redshifts. The reshaped Au nanoplates possess slightly higher refractive index sensitivities and largely increased surface-enhanced Raman scattering intensities compared to the flat, untreated nanoplates. Our results offer insights for studying the interaction mechanism between plasma and the different facets of noble metal nanocrystals and an approach for reshaping light-interacting noble metal nanocrystals.
Collapse
Affiliation(s)
- Ruoqi Ai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR China
| | - Christina Boukouvala
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - George Lewis
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Hao Wang
- Shenzhen
JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Han Zhang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR China
| | - Yunhe Lai
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR China
| | - He Huang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR China
| | - Emilie Ringe
- Department
of Materials Science and Metallurgy, University
of Cambridge, Cambridge CB3 0FS, United Kingdom
- Department
of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom
| | - Lei Shao
- Shenzhen
JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Jianfang Wang
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, Hong Kong SAR China
| |
Collapse
|
12
|
Preparation of CsSnBr3 perovskite film and its all-inorganic solar cells with planar heterojunction. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Ignashevich AN, Shavrina TV, Shklyaeva EV, Abashev GG. Synthesis and Optical Properties of New Chalcones Containing a 3,4-Ethylenedioxythiophene Fragment. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020110056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Gong C, Cheng S, Meng X, Hu X, Chen Y. Recent Advances of PEDOT in Flexible Energy Conversion and Storage Devices. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21030106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Wang J, Yu H, Hou C, Zhang J. Solution-Processable PEDOT:PSS:α-In 2Se 3 with Enhanced Conductivity as a Hole Transport Layer for High-Performance Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2020; 12:26543-26554. [PMID: 32403929 DOI: 10.1021/acsami.0c02489] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) nanosheets have attracted significant attention in photovoltaic devices in recent years owing to their outstanding photoelectric properties. Herein, 2D α-In2Se3 nanosheets with high conductivity and suitable work function are synthesized by liquid-phase exfoliation method. To ameliorate the low conductivity of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) (2.21 × 10-3 S cm-1), α-In2Se3 nanosheets are directly added into PEDOT:PSS to obtain the PEDOT:PSS:α-In2Se3 composite film. The composite film exhibits excellent optical transmittance, suitable work function, and enhanced conductivity (1.54 × 10-2 S cm-1). To profoundly investigate the mechanism of conductivity improvement, X-ray photoelectron spectroscopy, Raman spectroscopy, electron paramagnetic resonance, and atomic force microscopy are conducted. The results show that the synergistic effect of 2D α-In2Se3 nanosheets and isopropyl alcohol/deionized water cosolvent screens the Coulombic attraction among PEDOT and PSS. The screening effect results in the partial removal of PSS and the benzoid-quinoid transition of PEDOT. In addition, α-In2Se3 nanosheets may serve as physical linkers for PEDOT chains. Both these effects are beneficial to increase the interfacial contact area between PEDOT chains and form a larger conductive network of PEDOT, leading to an enhanced conductivity. The composite film is first employed as a hole transport layer (HTL) in polymer solar cells (PSCs). The power conversion efficiency (PCE) of the poly[2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene)-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)benzo[1,2-c:4,5-c']dithiophene-4,8-dione)] (PBDB-T):3,9-bis(2-methylene(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)dithieno-[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']dithiophene (ITIC)-based device with composite HTL is 10% higher than that of the unmodified PBDB-T:ITIC-based device, and the maximum PCE of 15.89% is achieved in the (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))] (PM6):(2,2'-((2Z,2Z)-((12,13-bis(2-ethylhexyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2,″3″:4',50]thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno[3,2-b]indole-2,10-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile) (Y6) system. More interestingly, the stability of devices with composite HTL is improved owing to the partial removal of PSS. Thus, the PEDOT:PSS:α-In2Se3 composite can be a potential HTL material in PSCs.
Collapse
Affiliation(s)
- Jianming Wang
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
- School of Materials Science & Engineering, South China University of Technology, 510640 Guangzhou, China
| | - Huangzhong Yu
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
- South China Institute of Collaborative Innovation, 523808 Dongguan, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, 510640 Guangzhou, China
| | - Chunli Hou
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Jiang Zhang
- School of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| |
Collapse
|
16
|
Kahoush M, Behary N, Cayla A, Mutel B, Guan J, Nierstrasz V. Influence of remote plasma on PEDOT:PSS‐coated carbon felt for improved activity of glucose oxidase. J Appl Polym Sci 2020. [DOI: 10.1002/app.48521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- May Kahoush
- Textile Materials Technology, Department of Textile TechnologyThe Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås SE‐501 90 Borås Sweden
- ENSAIT, GEMTEX – Laboratoire de Génie et Matériaux Textiles F‐59000 Lille France
- Université de Lille F‐59000 Lille Nord de France France
- College of Textile and Clothing Engineering, Soochow University Suzhou Jiangsu 215006 China
| | - Nemeshwaree Behary
- ENSAIT, GEMTEX – Laboratoire de Génie et Matériaux Textiles F‐59000 Lille France
- Université de Lille F‐59000 Lille Nord de France France
| | - Aurélie Cayla
- ENSAIT, GEMTEX – Laboratoire de Génie et Matériaux Textiles F‐59000 Lille France
- Université de Lille F‐59000 Lille Nord de France France
| | - Brigitte Mutel
- Université de Lille F‐59000 Lille Nord de France France
- IEMN, Equipe P2M, UMR 8520, Université de Lille F‐59655 Villeneuve d'Ascq France
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University Suzhou Jiangsu 215006 China
| | - Vincent Nierstrasz
- Textile Materials Technology, Department of Textile TechnologyThe Swedish School of Textiles, Faculty of Textiles, Engineering and Business, University of Borås SE‐501 90 Borås Sweden
| |
Collapse
|
17
|
Tsai JH, Cheng IC, Hsu CC, Chen JZ. Low-Temperature (<40 °C) Atmospheric-Pressure Dielectric-Barrier-Discharge-Jet Treatment on Nickel Oxide for p-i-n Structure Perovskite Solar Cells. ACS OMEGA 2020; 5:6082-6089. [PMID: 32226891 PMCID: PMC7097993 DOI: 10.1021/acsomega.0c00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
A scan-mode low-temperature (<40 °C) atmospheric-pressure helium (He) dielectric-barrier discharge jet (DBDjet) is applied to treat nickel oxide (NiO) thin films for p-i-n perovskite solar cells (PSCs). Reactive plasma species help reduce the trap density, improve the transmittance and wettability, and deepen the valence band maximum (VBM) level. A NiO surface with the lower trap density surface of NiO allows better interfacial contact with the MAPbI3 layer and increases the carrier extraction capability. MAPbI3 can better crystallize on a more hydrophilic NiO surface, thereby suppressing charge recombination from the grain boundary and the interface. Further, the deeper VBM allows better band alignment and reduces the probability of nonradiative recombination. NiO treatment using He DBDjet with a scan rate of 0.3 cm/s can improve PSC efficiency from 13.63 to 14.88%.
Collapse
Affiliation(s)
- Jui-Hsuan Tsai
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
| | - I-Chun Cheng
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei City 10617, Taiwan
- Department of Electrical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Cheng-Che Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei City 10617, Taiwan
| | - Jian-Zhang Chen
- Graduate Institute of Applied Mechanics, National Taiwan University, Taipei City 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei City 10617, Taiwan
| |
Collapse
|
18
|
Zhang Y, Ng SW, Lu X, Zheng Z. Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chem Rev 2020; 120:2049-2122. [DOI: 10.1021/acs.chemrev.9b00483] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yaokang Zhang
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Sze-Wing Ng
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xi Lu
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zijian Zheng
- Laboratory for Advanced Interfacial Materials and Devices and Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
19
|
Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes. Polymers (Basel) 2020; 12:polym12010145. [PMID: 31936017 PMCID: PMC7022521 DOI: 10.3390/polym12010145] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/11/2019] [Accepted: 12/17/2019] [Indexed: 11/30/2022] Open
Abstract
Solution-processed polymer solar cells (PSCs) have attracted dramatically increasing attention over the past few decades owing to their advantages of low cost, solution processability, light weight, and excellent flexibility. Recent progress in materials synthesis and devices engineering has boosted the power conversion efficiency (PCE) of single-junction PSCs over 17%. As an emerging technology, it is still a challenge to prepare solution-processed flexible electrodes for attractive flexible PSCs. Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is one of the most promising candidates for electrodes due to its high conductivity (>4000 S/cm), excellent transmittance (>90%), intrinsically high work function (WF > 5.0 eV), and aqueous solution processability. To date, a great number of single-junction PSCs based on PEDOT:PSS electrodes have realized a PCE over 12%. In this review, we introduce the current research on the conductive complex PEDOT:PSS as well as trace the development of PEDOT:PSS used in electrodes for high performance PSCs and perovskite solar cells. We also discuss and comment on the aspects of conductivity, transmittance, work-function adjustment, film preparing methods, and device fabrications. A perspective on the challenges and future directions in this field is be offered finally.
Collapse
|
20
|
Kulshreshtha C, Clement A, Pascher T, Sundström V, Matyba P. Investigating ultrafast carrier dynamics in perovskite solar cells with an extended π-conjugated polymeric diketopyrrolopyrrole layer for hole transportation. RSC Adv 2020; 10:6618-6624. [PMID: 35496014 PMCID: PMC9049750 DOI: 10.1039/c9ra10009a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/10/2023] Open
Abstract
Here, we show a new diketopyrrole based polymeric hole-transport material (PBDTP-DTDPP, (poly[[2,5-bis(2-hexyldecyl)-2,3,5,6-tetrahydro-3,6-dioxopyrrolo[3,4-c]pyrrole-1,4-diyl]-alt-[[2,2′-(4,8-bis(4-ethylhexyl-1-phenyl)-benzo[1,2-b:4,5-b′]dithiophene)bis-thieno[3,2-b]thiophen]-5,5′-diyl]])) for application in perovskite solar cells. The material performance was tested in a solar cell with an optimized configuration, FTO/SnO2/perovskite/PBDTP-DTDPP/Au, and the device showed a power conversion efficiency of 14.78%. The device charge carrier dynamics were investigated using transient absorption spectroscopy. The charge separation and recombination kinetics were determined in a device with PBDTP-DTDPP and the obtained results were compared to a reference device. We find that PBDTP-DTDPP enables similar charge separation time (<∼4.8 ps) to the spiro-OMeTAD but the amount of nongeminate recombination is different. Specifically, we find that the polymeric PBDTP-DTDPP hole-transport layer (HTL) slows-down the second-order recombination much less than spiro-OMeTAD. This effect is of particular importance in studying the charge transportation in optimized solar cell devices with diketopyrrole based HTL materials. Diketopyrrole based hole-transport organic semiconductor was employed in perovskite solar cells and charge carrier dynamics was explained.![]()
Collapse
Affiliation(s)
| | - Arul Clement
- Swanson School of Engineering
- University of Pittsburgh
- Pittsburgh
- USA
| | | | | | | |
Collapse
|
21
|
Fan X, Nie W, Tsai H, Wang N, Huang H, Cheng Y, Wen R, Ma L, Yan F, Xia Y. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900813. [PMID: 31592415 PMCID: PMC6774040 DOI: 10.1002/advs.201900813] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/19/2019] [Indexed: 05/18/2023]
Abstract
Substantial effort has been devoted to both scientific and technological developments of wearable, flexible, semitransparent, and sensing electronics (e.g., organic/perovskite photovoltaics, organic thin-film transistors, and medical sensors) in the past decade. The key to realizing those functionalities is essentially the fabrication of conductive electrodes with desirable mechanical properties. Conductive polymers (CPs) of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) have emerged to be the most promising flexible electrode materials over rigid metallic oxides and play a critical role in these unprecedented devices as transparent electrodes, hole transport layers, interconnectors, electroactive layers, or motion-sensing conductors. Here, the current status of research on PEDOT:PSS is summarized including various approaches to boosting the electrical conductivity and mechanical compliance and stability, directly linked to the underlying mechanism of the performance enhancements. Along with the basic principles, the most cutting edge-progresses in devices with PEDOT:PSS are highlighted. Meanwhile, the advantages and plausible problems of the CPs and as-fabricated devices are pointed out. Finally, new perspectives are given for CP modifications and device fabrications. This work stresses the importance of developing CP films and reveals their critical role in the evolution of these next-generation devices featuring wearable, deformable, printable, ultrathin, and see-through characteristics.
Collapse
Affiliation(s)
- Xi Fan
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Wanyi Nie
- Division of Materials Physics and ApplicationLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Hsinhan Tsai
- Division of Materials Physics and ApplicationLos Alamos National LaboratoryLos AlamosNM87545USA
| | - Naixiang Wang
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077China
| | - Huihui Huang
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Yajun Cheng
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Rongjiang Wen
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
- School of Physics and ElectronicsHunan UniversityChangsha410082China
| | - Liujia Ma
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
| | - Feng Yan
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomKowloonHong Kong999077China
| | - Yonggao Xia
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
22
|
Li XM, Wang KL, Jiang YR, Yang YG, Gao XY, Ma H. Furrowed hole-transport layer using argon plasma in an inverted perovskite solar cell. NEW J CHEM 2019. [DOI: 10.1039/c9nj02763g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a novel process was found to be effective using the argon-plasma treatment, in which the ion cluster was used to scour the PEDOT:PSS surface instead of the traditional bombardment method. The photoelectric conversion efficiency of the device reaches 14.8%.
Collapse
Affiliation(s)
- Xiao-Mei Li
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Kai-li Wang
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Yu-Rong Jiang
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| | - Ying-Guo Yang
- Shanghai Synchrotron Radiation Facility (SSRF)
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Xing-Yu Gao
- Shanghai Synchrotron Radiation Facility (SSRF)
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Heng Ma
- Henan Province Key Laboratory of Photovoltaic Materials
- College of Physics & Materials Science
- Henan Normal University
- Xinxiang 453007
- China
| |
Collapse
|
23
|
Tsai JH, Cheng IC, Hsu CC, Chueh CC, Chen JZ. Feasibility study of atmospheric-pressure dielectric barrier discharge treatment on CH3NH3PbI3 films for inverted planar perovskite solar cells. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.09.203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Tee BCK, Ouyang J. Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802560. [PMID: 30101469 DOI: 10.1002/adma.201802560] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/24/2018] [Indexed: 06/08/2023]
Abstract
Flexible/stretchable electronic devices and systems are attracting great attention because they can have important applications in many areas, such as artificial intelligent (AI) robotics, brain-machine interfaces, medical devices, structural and environmental monitoring, and healthcare. In addition to the electronic performance, the electronic devices and systems should be mechanically flexible or even stretchable. Traditional electronic materials including metals and semiconductors usually have poor mechanical flexibility and very limited elasticity. Three main strategies are adopted for the development of flexible/stretchable electronic materials. One is to use organic or polymeric materials. These materials are flexible, and their elasticity can be improved through chemical modification or composition formation with plasticizers or elastomers. Another strategy is to exploit nanometer-scale materials. Many inorganic materials in nanometer sizes can have high flexibility. They can be stretchable through the composition formation with elastomers. Ionogels can be considered as the third type of materials because they can be stretchable and ionically conductive. This article provides the recent progress of soft functional materials development including intrinsically conductive polymers for flexible/stretchable electrodes, and thermoelectric conversion and polymer composites for large area, flexible stretchable electrodes, and tactile sensors.
Collapse
Affiliation(s)
- Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, 117576, Singapore
| | - Jianyong Ouyang
- Department of Materials Science and Engineering, National University of Singapore, 117576, Singapore
| |
Collapse
|
25
|
Reza KM, Mabrouk S, Qiao Q. A Review on Tailoring PEDOT:PSS Layer for Improved Performance of Perovskite Solar Cells. ACTA ACUST UNITED AC 2018. [DOI: 10.11605/j.pnrs.201802004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|