1
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Octarina O, Munadziroh E, Razak FA, Handharyani E, Surboyo MDC. The Role of Bovine Amniotic Membrane and Hydroxyapatite for the Ridge Preservation. Int J Biomater 2024; 2024:4053527. [PMID: 39376510 PMCID: PMC11458299 DOI: 10.1155/2024/4053527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 10/09/2024] Open
Abstract
Ridge preservation is an important technique for maintaining the dimensions of the alveolar bone following tooth extraction, which is crucial for successful tooth rehabilitation. The combination of bovine amniotic membrane and hydroxyapatite has shown promise as a scaffold material containing growth factors that can stimulate osteogenic-related factors such as bone morphogenetic protein 2 (BMP2), Runt-related transcription factor 2 (RUNX2), and osteocalcin. This stimulation leads to collagen production and osteoblast proliferation, resulting in new bone formation. In this study, bovine amniotic membrane-hydroxyapatite (BAM-HA) composites were prepared using three different ratios of bovine amniotic membrane and hydroxyapatite (2 : 3, 3 : 7, 7 : 13). Thirty Sprague-Dawley rats had their first incisors extracted, and different types of BAM-HA were applied for ridge preservation. The control group received no treatment, while the positive control group was given xenograft. After 14 and 28 days, the animals were sacrificed, and immunohistochemical analysis was performed to evaluate the expression of BMP2, RUNX2, and osteocalcin. Additionally, a histological examination was conducted to analyse collagen thickness and osteoblast cell proliferation. The results demonstrated that the application of BAM-HA significantly increased collagen density, osteoblast cell proliferation, and the expression of BMP2, RUNX2, and osteoclacin compared to the control group (p < 0.05) on both days 14 and 28. Furthermore, increasing the hydroxyapatite content in the composite was found to enhance collagen thickness, osteoblast cell proliferation, and the expression of osteogenic-related factors. These preliminary findings suggest that the combination of BAM-HA can be used for ridge preservation to prevent further bone resorption following tooth extraction.
Collapse
Affiliation(s)
- Octarina Octarina
- Department of Dental Material, Faculty of Dentistry, Universitas Trisakti, Jakarta 11440, Indonesia
- Doctoral Program, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Elly Munadziroh
- Department of Dental Material, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia
| | - Fathilah Abdul Razak
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ekowati Handharyani
- Division of Pathology, School of Veterinary Medicine and Biomedical, Institute Pertanian Bogor University, Bogor 16680, Indonesia
| | | |
Collapse
|
3
|
Holkar K, Kale V, Pethe P, Ingavle G. The symbiotic effect of osteoinductive extracellular vesicles and mineralized microenvironment on osteogenesis. J Biomed Mater Res A 2024; 112:155-166. [PMID: 37671776 DOI: 10.1002/jbm.a.37600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 09/07/2023]
Abstract
The increasing prevalence of bone-related diseases has raised concern about the need for an osteoinductive and mechanically stronger scaffold-based bone tissue engineering (BTE) alternative. A mineralized microenvironment, similar to the native bone microenvironment, is required in the scaffold to recruit and differentiate local mesenchymal stem cells at the bone defect site. Further, extracellular vesicles (EVs), pre-osteoblasts' secretome, contain osteoinductive cargo and have recently been exploited in bone regeneration. This work developed a cell-free and mechanically strong interpenetrating network-based scaffold for BTE by combining the action of osteoinductive EVs with a mineralized microenvironment. The MC3T3 (a pre-osteoblast cell line) is used as a source of EVs and as the target population. The optimal concentration of MC3T3-EVs was first determined to induce osteogenesis in target cells. The osteoinductive potential of the scaffold was estimated in vitro by osteogenesis-related markers like the alkaline phosphatase (ALP) enzyme and calcium content. The MC3T3-EVs cargo was also studied for osteoinductive signals such as ALP, calcium, and mRNA. The findings of this work indicated that MC3T3-EVs at a 90 μg/mL dose had significantly higher ALP activity than 0 μg/mL (1.47-fold), 10 μg/mL (1.41-fold), and 30 μg/mL (1.39-fold) EV-concentration on day 14. Further combination of the optimum dose of EVs with a mineralized microenvironment significantly enhanced ALP activity (1.5-fold) and mineralization (3.36-fold) as compared to the control group on day 7. EV cargo analysis revealed the presence of calcium, the ALP enzyme, and the mRNAs necessary for osteogenesis and angiogenesis. ALP activity was significantly boosted in the EV-containing target cells as early as day 1, and mineralization began on day 7 because MC3T3-EVs carry ALP enzymes and calcium as cargo. When osteoinductive EVs were combined with an osteoconductive mineralized microenvironment, osteogenesis was significantly enhanced in target cells at early time points. The interaction between osteoinductive EVs and the mineralized milieu facilitates the process of osteogenesis in the target cells and suggests a potential cell-free strategy for in vivo bone repair.
Collapse
Affiliation(s)
- Ketki Holkar
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| | - Ganesh Ingavle
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
4
|
Lin H, Zhang L, Zhang Q, Wang Q, Wang X, Yan G. Mechanism and application of 3D-printed degradable bioceramic scaffolds for bone repair. Biomater Sci 2023; 11:7034-7050. [PMID: 37782081 DOI: 10.1039/d3bm01214j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Bioceramics have attracted considerable attention in the field of bone repair because of their excellent osteogenic properties, degradability, and biocompatibility. To resolve issues regarding limited formability, recent studies have introduced 3D printing technology for the fabrication of bioceramic bone repair scaffolds. Nevertheless, the mechanisms by which bioceramics promote bone repair and clinical applications of 3D-printed bioceramic scaffolds remain elusive. This review provides an account of the fabrication methods of 3D-printed degradable bioceramic scaffolds. In addition, the types and characteristics of degradable bioceramics used in clinical and preclinical applications are summarized. We have also highlighted the osteogenic molecular mechanisms in biomaterials with the aim of providing a basis and support for future research on the clinical applications of degradable bioceramic scaffolds. Finally, new developments and potential applications of 3D-printed degradable bioceramic scaffolds are discussed with reference to experimental and theoretical studies.
Collapse
Affiliation(s)
- Hui Lin
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Liyun Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiyue Zhang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Qiang Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
- Liaoning Provincial Key Laboratory of Oral Diseases, China Medical University, Shenyang, China
| | - Xue Wang
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| | - Guangqi Yan
- School and Hospital of Stomatology, China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Bogdanova E, Sadykov A, Ivanova G, Zubina I, Beresneva O, Semenova N, Galkina O, Parastaeva M, Sharoyko V, Dobronravov V. Mild Chronic Kidney Disease Associated with Low Bone Formation and Decrease in Phosphate Transporters and Signaling Pathways Gene Expression. Int J Mol Sci 2023; 24:ijms24087270. [PMID: 37108433 PMCID: PMC10138582 DOI: 10.3390/ijms24087270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The initial phases of molecular and cellular maladaptive bone responses in early chronic kidney disease (CKD) remain mostly unknown. We induced mild CKD in spontaneously hypertensive rats (SHR) by either causing arterial hypertension lasting six months (sham-operated rats, SO6) or in its' combination with 3/4 nephrectomy lasting two and six months (Nx2 and Nx6, respectively). Sham-operated SHRs (SO2) and Wistar Kyoto rats (WKY2) with a two-month follow-up served as controls. Animals were fed standard chow containing 0.6% phosphate. Upon follow-up completion in each animal, we measured creatinine clearance, urine albumin-to-creatinine ratio, renal interstitial fibrosis, inorganic phosphate (Pi) exchange, intact parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), Klotho, Dickkopf-1, sclerostin, and assessed bone response by static histomorphometry and gene expression profiles. The mild CKD groups had no increase in renal Pi excretion, FGF23, or PTH levels. Serum Pi, Dickkopf-1, and sclerostin were higher in Nx6. A decrease in trabecular bone area and osteocyte number was obvious in SO6. Nx2 and Nx6 had additionally lower osteoblast numbers. The decline in eroded perimeter, a resorption index, was only apparent in Nx6. Significant downregulation of genes related to Pi transport, MAPK, WNT, and BMP signaling accompanied histological alterations in Nx2 and Nx6. We found an association between mild CKD and histological and molecular features suggesting lower bone turnover, which occurred at normal levels of systemic Pi-regulating factors.
Collapse
Affiliation(s)
- Evdokia Bogdanova
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Airat Sadykov
- Raisa Gorbacheva Memorial Research Institute for Pediatric Oncology, Hematology and Transplantation Pavlov University, 197022 Saint Petersburg, Russia
| | - Galina Ivanova
- Laboratory of Cardiovascular and Lymphatic Systems, Physiology Pavlov Institute of Physiology, 199034 Saint Petersburg, Russia
| | - Irina Zubina
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Olga Beresneva
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Natalia Semenova
- Research Department of Pathomorphology, Almazov National Medical Research Center, 197341 Saint Petersburg, Russia
| | - Olga Galkina
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Marina Parastaeva
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| | - Vladimir Sharoyko
- Department of General and Bioorganic Chemistry, Pavlov University, 197022 Saint Petersburg, Russia
| | - Vladimir Dobronravov
- Research Institute of Nephrology, Pavlov University, 197022 Saint Petersburg, Russia
| |
Collapse
|
6
|
Al-Harbi N, Hussein MA, Al-Hadeethi Y, Felimban RI, Tayeb HH, Bedaiwi NMH, Alosaimi AM, Bekyarova E, Chen M. Bioactive hybrid membrane-based cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes nanocomposite for dental applications. J Mech Behav Biomed Mater 2023; 141:105795. [PMID: 37001249 DOI: 10.1016/j.jmbbm.2023.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/28/2023]
Abstract
The present work aimed to fabricate a set of hybrid bioactive membrane in the form of bio-nanocomposite films for dental applications using the casting dissolution procedures. The formulation of the targeted materials was consisting of cellulose acetate/bioactive glass/hydroxyapatite/carbon nanotubes with a general abbreviation CA-HAP-BG-SWCNTs. The nanocomposites were characterized using XRD, FTIR, SEM-EDX and Raman spectroscopy. XRD, FTIR and SEM characters confirm the nanocomposites formation with good compatibility. The fabricated materials had a semi crystalline structure. The mechanical and thermal properties, as well as contact angle and bioactivity of the fabricated nanocomposites were investigated. The SEM images for showed beehive-like architectures with a thicker frame for the second material. All fabricated materials showed good thermal behaviors. Furthermore, the agar diffusion antimicrobial study showed that the prepared nanocomposites do not exhibit an antibacterial activity against five pathogenic bacterial strains. Additionally, cytotoxicity of a dental nanocomposite filling agent was evaluated. Vero normal cells were incubated with test materials for 72h at 37 °C and 5% CO2. Cell viability was detected using a SRB assay. All nanocomposites were mildly to non-cytotoxic to Vero cells at high concentration in contrast to the inhibitory effect of doxorubicin which was added at 10-fold lower concertation than the nanocomposites. Hence, the proposed nanocomposite is promising candidates for dental applications.
Collapse
Affiliation(s)
- Nuha Al-Harbi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia; Department of Physics, Umm AL-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia; Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Yas Al-Hadeethi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia.
| | - Raed I Felimban
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; 3D Bioprinting Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hossam H Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Nanomedicine Unit, Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nada M H Bedaiwi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Kingdom of Saudi Arabia; Department of Physics, University of Tabuk, Duba University College, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Abeer M Alosaimi
- Department of Chemistry, Faculty of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Elena Bekyarova
- Department of Chemical & Environmental Engineering, Center for Nanoscale Science and Engineering, University California Riverside, Riverside, CA, 92521, USA
| | - Mingguag Chen
- Physical Secience and Enginerring Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
7
|
Gani MA, Budiatin AS, Shinta DW, Ardianto C, Khotib J. Bovine hydroxyapatite-based scaffold accelerated the inflammatory phase and bone growth in rats with bone defect. J Appl Biomater Funct Mater 2023; 21:22808000221149193. [PMID: 36708249 DOI: 10.1177/22808000221149193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Hydroxyapatite (HA) is a biomaterial widely used to treat bone defect, such as due to traffic accident. The HA scaffold is obtained from synthetic HA or natural sources, such as bovine hydroxyapatite (BHA). This study aims to compare the characteristics and in vivo performance of BHA-based and HA-based scaffolds. For this purpose, the scaffold was formulated with gelatin (GEL) and characterised by SEM-EDX, FTIR and mini autograph. The defect model was carried out on the femur area of Wistar rats classified into three animal groups: defect, HA-GEL and BHA-GEL. Postoperatively (7, 14 and 28 days), the bone was radiologically evaluated, and stained with haematoxylin-eosin, anti-CD80 and anti-CD163. The BHA-GEL scaffold showed a regular surface and spherical particle shape, whereas the HA-GEL scaffold exhibited irregular surface. The BHA-GEL scaffold had higher pore size and compressive strength and lower calcium-to-phosphorus ratio than the HA-GEL scaffold. In vivo study showed that the expression of CD80 in the three experimental groups was not significantly different. However, the expression of CD163 differed significantly between the groups. The BHA-GEL group showed robust expression of CD163 on day 7, which rapidly decreased over time. It also showed increased osteoclasts, osteoblasts and osteocytes cell count that contributed to the integrity of the defect area. In conclusion, the BHA-based scaffold exhibited the desired physical and chemical characteristics that benefit in vivo performance versus the HA-based scaffold. Thus, the BHA-based scaffold may be used as a bone graft.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Doctoral Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia
| | | | - Dewi Wara Shinta
- Department of Pharmacy Practice, Universitas Airlangga, Surabaya, Indonesia
| | | | - Junaidi Khotib
- Department of Pharmacy Practice, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Gui X, Peng W, Xu X, Su Z, Liu G, Zhou Z, Liu M, Li Z, Song G, Zhou C, Kong Q. Synthesis and application of nanometer hydroxyapatite in biomedicine. NANOTECHNOLOGY REVIEWS 2022. [DOI: 10.1515/ntrev-2022-0127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Nano-hydroxyapatite (nano-HA) has been widely studied as a promising biomaterial because of its potential mechanical and biological properties. In this article, different synthesis methods for nano-HA were summarized. Key factors for the synthesis of nano-HA, including reactant concentration, effects of temperature, PH, additives, aging time, and sintering, were separately investigated. The biological performances of the nano-HA depend strongly on its structures, morphology, and crystallite sizes. Nano-HA with different morphologies may cause different biological effects, such as protein adsorption, cell viability and proliferation, angiogenesis, and vascularization. Recent research progress with respect to the biological functions of the nano-HA in some specific biological applications are summarized and the future development of nano-sized hydroxyapatite is prospected.
Collapse
Affiliation(s)
- Xingyu Gui
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Wei Peng
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Xiujuan Xu
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Zixuan Su
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Gang Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhigang Zhou
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Ming Liu
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| | - Zhao Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Geyang Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu 610041 , China
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University , Chengdu 610064 , China
- National Engineering Research Center for Biomaterials, Sichuan University , Chengdu 610064 , China
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University , 610041, Chengdu , China
| |
Collapse
|
9
|
Liu X, Miao Y, Liang H, Diao J, Hao L, Shi Z, Zhao N, Wang Y. 3D-printed bioactive ceramic scaffolds with biomimetic micro/nano-HAp surfaces mediated cell fate and promoted bone augmentation of the bone–implant interface in vivo. Bioact Mater 2022; 12:120-132. [PMID: 35087968 PMCID: PMC8777208 DOI: 10.1016/j.bioactmat.2021.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023] Open
Abstract
Calcium phosphate bio-ceramics are osteo-conductive, but it remains a challenge to promote the induction of bone augmentation and capillary formation. The surface micro/nano-topography of materials can be recognized by cells and then the cell fate are mediated. Traditional regulation methods of carving surface structures on bio-ceramics employ mineral reagents and organic additives, which might introduce impurity phases and affect the biological results. In a previous study, a facile and novel method was utilized with ultrapure water as the unique reagent for hydrothermal treatment, and a uniform hydroxyapatite (HAp) surface layer was constructed on composite ceramics (β-TCP/CaSiO3) in situ. Further combined with 3D printing technology, biomimetic hierarchical structure scaffolds were fabricated with interconnected porous composite ceramic scaffolds as the architecture and micro/nano-rod hybrid HAp as the surface layer. The obtained HAp surface layer favoured cell adhesion, alleviated the cytotoxicity of precursor scaffolds, and upregulated the cellular differentiation of mBMSCs and gene expression of HUVECs in vitro. In vivo studies showed that capillary formation, bone augmentation and new bone matrix formation were upregulated after the HAp surface layer was obtained, and the results confirmed that the fabricated biomimetic hierarchical structure scaffold could be an effective candidate for bone regeneration. Simple and practical process to construct surface structure layer in situ with little impurities. Combined with the 3D printing technology to fabricate architecture of the pre-treated matrix. Study the angiogenesis and osteogenesis (for mesenchymal stem cells) separately. Improving tissue growth in vivo: capillary formation, bone-augmentation and new bone matrix formation.
Collapse
|
10
|
Fabrication and Characterization of Submicron-Scale Bovine Hydroxyapatite: A Top-Down Approach for a Natural Biomaterial. MATERIALS 2022; 15:ma15062324. [PMID: 35329775 PMCID: PMC8953508 DOI: 10.3390/ma15062324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/14/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Submicron hydroxyapatite has been reported to have beneficial effects in bone tissue engineering. This study aimed to fabricate submicron-scale bovine hydroxyapatite (BHA) using the high-energy dry ball milling method. Bovine cortical bone was pretreated and calcined to produce BHA powder scaled in microns. BHA was used to fabricate submicron BHA with milling treatment for 3, 6, and 9 h and was characterized by using dynamic light scattering, scanning electron microscope connected with energy dispersive X-Ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffractometry to obtain its particle size, calcium-to-phosphorus (Ca/P) ratio, functional chemical group, and XRD peaks and crystallinity. Results showed that the particle size of BHA had a wide distribution range, with peaks from ~5 to ~10 µm. Milling treatment for 3, 6, and 9 h successfully gradually reduced the particle size of BHA to a submicron scale. The milled BHA's hydrodynamic size was significantly smaller compared to unmilled BHA. Milling treatment reduced the crystallinity of BHA. However, the treatment did not affect other characteristics; unmilled and milled BHA was shaped hexagonally, had carbonate and phosphate substitution groups, and the Ca/P ratio ranged from 1.48 to 1.68. In conclusion, the fabrication of submicron-scale BHA was successfully conducted using a high-energy dry ball milling method. The milling treatment did not affect the natural characteristics of BHA. Thus, the submicron-scale BHA may be potentially useful as a biomaterial for bone grafts.
Collapse
|
11
|
Stimulation of Metabolic Activity and Cell Differentiation in Osteoblastic and Human Mesenchymal Stem Cells by a Nanohydroxyapatite Paste Bone Graft Substitute. MATERIALS 2022; 15:ma15041570. [PMID: 35208112 PMCID: PMC8877199 DOI: 10.3390/ma15041570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023]
Abstract
Advances in nanotechnology have been exploited to develop new biomaterials including nanocrystalline hydroxyapatite (nHA) with physical properties close to those of natural bone mineral. While clinical data are encouraging, relatively little is understood regarding bone cells’ interactions with synthetic graft substitutes based on this technology. The aim of this research was therefore to investigate the in vitro response of both osteoblast cell lines and primary osteoblasts to an nHA paste. Cellular metabolic activity was assessed using the cell viability reagent PrestoBlue and quantitative, real-time PCR was used to determine gene expression related to osteogenic differentiation. A potential role of calcium-sensing receptor (CaSR) in the response of osteoblastic cells to nHA was also investigated. Indirect contact of the nHA paste with human osteoblastic cells (Saos-2, MG63, primary osteoblasts) and human bone marrow-derived mesenchymal stem cells enhanced the cell metabolic activity. The nHA paste also stimulated gene expression of runt-related transcription factor 2, collagen 1, alkaline phosphatase, and osteocalcin, thereby indicating an osteogenic response. CaSR was not involved in nHA paste-induced increases in cellular metabolic activity. This investigation demonstrated that the nHA paste has osteogenic properties that contribute to clinical efficacy when employed as an injectable bone graft substitute.
Collapse
|
12
|
Li X, Xi D, Zhang Z, Long S, Chen P, Du J, Sun W, Fan J, Peng X. Light‐triggered dePEGylation with decreasing the diameter of hydroxyapatite nanocarriers for enhanced cellular uptake and tumor penetration. NANO SELECT 2021. [DOI: 10.1002/nano.202100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Xiaojing Li
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
| | - Dongmei Xi
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
| | - Zhen Zhang
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
| | - Saran Long
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Jiangbei District Ningbo 315016 China
| | - Pengzhong Chen
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Jiangbei District Ningbo 315016 China
| | - Jianjun Du
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Jiangbei District Ningbo 315016 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Jiangbei District Ningbo 315016 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
- Ningbo Institute of Dalian University of Technology Jiangbei District Ningbo 315016 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals Dalian University of Technology No. 2 linggong Road Dalian 116024 China
| |
Collapse
|
13
|
Liu Q, Luo Y, Zhao Y, Xiang P, Zhu J, Jing W, Jin W, Chen M, Tang R, Yu H. Nano-hydroxyapatite accelerates vascular calcification via lysosome impairment and autophagy dysfunction in smooth muscle cells. Bioact Mater 2021; 8:478-493. [PMID: 34541414 PMCID: PMC8429627 DOI: 10.1016/j.bioactmat.2021.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Vascular calcification (VC) is a common characteristic of aging, diabetes, chronic renal failure, and atherosclerosis. The basic component of VC is hydroxyapatite (HAp). Nano-sized HAp (nHAp) has been identified to play an essential role in the development of pathological calcification of vasculature. However, whether nHAp can induce calcification in vivo and the mechanism of nHAp in the progression of VC remains unclear. We discovered that nHAp existed both in vascular smooth muscle cells (VSMCs) and their extracellular matrix (ECM) in the calcified arteries from patients. Synthetic nHAp had similar morphological and chemical properties as natural nHAp recovered from calcified artery. nHAp stimulated osteogenic differentiation and accelerated mineralization of VSMCs in vitro. Synthetic nHAp could also directly induce VC in vivo. Mechanistically, nHAp was internalized into lysosome, which impaired lysosome vacuolar H+-ATPase for its acidification, therefore blocked autophagic flux in VSMCs. Lysosomal re-acidification by cyclic-3′,5′-adenosine monophosphate (cAMP) significantly enhanced autophagic degradation and attenuated nHAp-induced calcification. The accumulated autophagosomes and autolysosomes were converted into calcium-containing exosomes which were secreted into ECM and accelerated vascular calcium deposit. Inhibition of exosome release in VSMCs decreased calcium deposition. Altogether, our results demonstrated a repressive effect of nHAp on lysosomal acidification, which inhibited autophagic degradation and promoted a conversion of the accumulated autophagic vacuoles into exosomes that were loaded with undissolved nHAp, Ca2+, Pi and ALP. These exosomes bud off the plasma membrane, deposit within ECM, and form calcium nodules. Vascular calcification was thus accelerated by nHAP through blockage of autophagic flux in VSMCs. We first demonstrated that nHAp was internalized into the vascular cell in human calcified aorta. Nano-HAp impairs lysosomal acidification and degradation, and causesblockage of autophagy flux in VSMCs. The accumulated autophagosomes and autolysosomes induced by nHAp in VSMCs are converted into exosomes which promote calcification development.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Yi Luo
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Yun Zhao
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong Province, 266071, China.,Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Pingping Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Jinyun Zhu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wangwei Jing
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Wenjing Jin
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Mingyao Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| | - Ruikang Tang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China
| | - Hong Yu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, China
| |
Collapse
|
14
|
Boller LA, Shiels SM, Florian DC, Peck SH, Schoenecker JG, Duvall C, Wenke JC, Guelcher SA. Effects of nanocrystalline hydroxyapatite concentration and skeletal site on bone and cartilage formation in rats. Acta Biomater 2021; 130:485-496. [PMID: 34129957 DOI: 10.1016/j.actbio.2021.05.056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/29/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023]
Abstract
Most fractures heal by a combination of endochondral and intramembranous ossification dependent upon strain and vascularity at the fracture site. Many biomaterials-based bone regeneration strategies rely on the use of calcium phosphates such as nano-crystalline hydroxyapatite (nHA) to create bone-like scaffolds. In this study, nHA was dispersed in reactive polymers to form composite scaffolds that were evaluated both in vitro and in vivo. Matrix assays, immunofluorescent staining, and Western blots demonstrated that nHA influenced mineralization and subsequent osteogenesis in a dose-dependent manner in vitro. Furthermore, nHA dispersed in polymeric composites promoted osteogenesis by a similar mechanism as particulated nHA. Scaffolds were implanted into a 2-mm defect in the femoral diaphysis or metaphysis of Sprague-Dawley rats to evaluate new bone formation at 4 and 8 weeks. Two formulations were tested: a poly(thioketal urethane) scaffold without nHA (PTKUR) and a PTKUR scaffold augmented with 22 wt% nHA (22nHA). The scaffolds supported new bone formation in both anatomic sites. In the metaphysis, augmentation of scaffolds with nHA promoted an intramembranous healing response. Within the diaphysis, nHA inhibited endochondral ossification. Immunohistochemistry was performed on cryo-sections of the bone/scaffold interface in which CD146, CD31, Endomucin, CD68, and Myeloperoxidase were evaluated. No significant differences in the infiltrating cell populations were observed. These findings suggest that nHA dispersed in polymeric composites induces osteogenic differentiation of adherent endogenous cells, which has skeletal site-specific effects on fracture healing. STATEMENT OF SIGNIFICANCE: Understanding the mechanism by which synthetic scaffolds promote new bone formation in preclinical models is crucial for bone regeneration applications in the clinic where complex fracture cases are seen. In this study, we found that dispersion of nHA in polymeric scaffolds promoted in vitro osteogenesis in a dose-dependent manner through activation of the PiT1 receptor and subsequent downstream Erk1/2 signaling. While augmentation of polymeric scaffolds with nHA enhanced intramembranous ossification in metaphyseal defects, it inhibited endochondral ossification in diaphyseal defects. Thus, our findings provide new insights into designing synthetic bone grafts that complement the skeletal site-specific fracture healing response.
Collapse
|
15
|
Dadhich P, Srivas PK, Das B, Pal P, Dutta J, Maity P, Guha Ray P, Roy S, Das SK, Dhara S. Direct 3D Printing of Seashell Precursor toward Engineering a Multiphasic Calcium Phosphate Bone Graft. ACS Biomater Sci Eng 2021; 7:3806-3820. [PMID: 34269559 DOI: 10.1021/acsbiomaterials.1c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Multiphasic calcium phosphate (Ca-P) has widely been explored for bone graft replacement. This study represents a simple method of developing osteoinductive scaffolds by direct printing of seashell resources. The process demonstrates a coagulation-assisted extrusion-based three-dimensional (3D) printing process for rapid fabrication of multiphasic calcium phosphate-incorporated 3D scaffolds. These scaffolds demonstrated an interconnected open porous architecture with improved compressive strength and higher surface area. Multiphasic calcium phosphate (Ca-P) and hydroxyapatite present in the multi-scalar naturally resourced scaffold displayed differential protein adsorption, thus facilitating cell adhesion, migration, and differentiation, resulting in enhanced deposition of the extracellular matrix. The microstructural and physicochemical attributes of the scaffolds also lead to enhanced stem cell differentiation as witnessed from gene and protein expression analysis. Furthermore, the histological study of subcutaneous implantation evidently portrays promising biocompatibility without foreign body reaction. Neo-tissue in-growth was manifested with abundant blood vessels, thus indicative of excellent vascularization. Notably, cartilaginous and proteoglycan-rich tissue deposition indicated ectopic bone formation via an endochondral ossification pathway. The hierarchical interconnected porous architectural tribology accompanied with multiphasic calcium phosphate composition manifests its successful implication in enhancing stem cell differentiation and promoting excellent tissue in-growth, thus making it a plausible alternative in bone tissue engineering applications.
Collapse
Affiliation(s)
- Prabhash Dadhich
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pavan Kumar Srivas
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Bodhisatwa Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pallabi Pal
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Joy Dutta
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Pritiprasanna Maity
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Preetam Guha Ray
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyasachi Roy
- Department of Gynaecology, Midnapore Medical College and Hospital, Midnapore, West Bengal 721101, India
| | - Subrata K Das
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Santanu Dhara
- Biomaterials and Tissue Engineering Laboratory, School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
16
|
Signaling Pathway and Transcriptional Regulation in Osteoblasts during Bone Healing: Direct Involvement of Hydroxyapatite as a Biomaterial. Pharmaceuticals (Basel) 2021; 14:ph14070615. [PMID: 34206843 PMCID: PMC8308723 DOI: 10.3390/ph14070615] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bone defects and periodontal disease are pathological conditions that may become neglected diseases if not treated properly. Hydroxyapatite (HA), along with tricalcium phosphate and bioglass ceramic, is a biomaterial widely applied to orthopedic and dental uses. The in vivo performance of HA is determined by the interaction between HA particles with bone cells, particularly the bone mineralizing cells osteoblasts. It has been reported that HA-induced osteoblastic differentiation by increasing the expression of osteogenic transcription factors. However, the pathway involved and the events that occur in the cell membrane have not been well understood and remain controversial. Advances in gene editing and the discovery of pharmacologic inhibitors assist researchers to better understand osteoblastic differentiation. This review summarizes the involvement of extracellular signal-regulated kinase (ERK), p38, Wnt, and bone morphogenetic protein 2 (BMP2) in osteoblastic cellular regulation induced by HA. These advances enhance the current understanding of the molecular mechanism of HA as a biomaterial. Moreover, they provide a better strategy for the design of HA to be utilized in bone engineering.
Collapse
|
17
|
Gani MA, Nurhan AD, Budiatin AS, Siswodihardjo S, Khotib J. Predicting the molecular mechanism of glucosamine in accelerating bone defect repair by stimulating osteogenic proteins. J Basic Clin Physiol Pharmacol 2021; 32:373-377. [PMID: 34214297 DOI: 10.1515/jbcpp-2020-0403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/29/2021] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Bone defect is serious condition that is usually caused by traffic accident. Chitosan is a polymer developed as a scaffold to treat bone defect. However, the mechanism by which chitosan can accelerate bone growth in defect area is still unclear. This study aims to identify proteins which are crucial to the osteogenic properties of chitosan monomer using an in silico study. METHODS Molecular docking was carried out on chitosan monomer, which are d-glucosamine and glucosamine 6-phosphate units against bone morphogenetic protein 2 (BMP-2), fibronectin, fibroblast growth factor (Fgf), and phosphate transporter (PiT) using AutoDock Vina. Ligand preparation was carried out using Chem3D version 15.0.0.106, while protein preparation was performed using AutoDockTools version 1.5.6. RESULTS The results showed that glucosamine 6-phosphate had the best binding affinity with fibronectin and PiT, which was -5.7 kcal mol-1 on both proteins, while d-glucosamine had the best binding affinity with PiT (-5.2 kcal mol-1). CONCLUSIONS This study suggests that the osteogenic properties of chitosan may be due to the presence of bonds between glucosamine units and fibronectin and/or PiT. However, in vitro studies need to be done to prove this.
Collapse
Affiliation(s)
- Maria Apriliani Gani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Ahmad Dzulfikri Nurhan
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
18
|
Liu Q, Xiang P, Chen M, Luo Y, Zhao Y, Zhu J, Jing W, Yu H. Nano-Sized Hydroxyapatite Induces Apoptosis and Osteogenic Differentiation of Vascular Smooth Muscle Cells via JNK/c-JUN Pathway. Int J Nanomedicine 2021; 16:3633-3648. [PMID: 34079254 PMCID: PMC8166281 DOI: 10.2147/ijn.s303714] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/13/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose The deposition of hydroxyapatite (HAp) crystals plays an important role in the development of vascular calcification (VC). This study aimed to demonstrate the effects of nanosized HAp (nHAp) on vascular smooth muscle cells (VSMCs) and VC progression. Methods Transmission electron microscopy (TEM) was used to examine cellular uptake of nHAp. Cell viability was determined using CCK-8 assay kit. Mitochondrial impairment and reactive oxygen species were detected by TEM and fluorescence dye staining, respectively. Cell apoptosis was detected by Western blot analysis and Annexin V staining. Mouse model of VC was built via applying nHAp on the surface of abdominal aorta. Calcification was visualized by Alizarin red and von Kossa staining. Results We found that nHAp could promote osteogenic transformation of VSMCs by elevating expression of runt-related factor 2 (Runx2), osteopontin (OPN) and alkaline phosphatase (ALP), impairing function and morphology of mitochondria and inducing apoptosis of VSMCs. More phosphorylation of c-Jun N-terminal protein kinase/c-JUN (JNK/c-JUN) in VSMCs was detected after mixing nHAp with VSMCs. HAp-induced osteogenic transformation of VSMCs was blocked by JNK inhibitor SP600125, resulted in decreased ALP activity, less Runx2 and OPN expressions. SP600125 also inhibited apoptosis of VSMCs. Application of nHAp to outside of aorta induced osteogenic transformation and apoptosis of VSMCs, and significant deposition of calcium on the vessel walls of mice, which can be effectively attenuated by SP600125. Conclusion JNK/c-JUN signaling pathway is critical for nHAp-induced calcification, which could be a potential therapeutic target for controlling the progression of VC.
Collapse
Affiliation(s)
- Qi Liu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Pingping Xiang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Mingyao Chen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Yi Luo
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Yun Zhao
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China.,The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao, Shandong Province, 266071, People's Republic of China
| | - Jinyun Zhu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Wangwei Jing
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| | - Hong Yu
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310009, People's Republic of China
| |
Collapse
|
19
|
Bird RP, Eskin NAM. The emerging role of phosphorus in human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 96:27-88. [PMID: 34112356 DOI: 10.1016/bs.afnr.2021.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Phosphorus, an essential nutrient, performs vital functions in skeletal and non-skeletal tissues and is pivotal for energy production. The last two decades of research on the physiological importance of phosphorus have provided several novel insights about its dynamic nature as a nutrient performing functions as a phosphate ion. Phosphorous also acts as a signaling molecule and induces complex physiological responses. It is recognized that phosphorus homeostasis is critical for health. The intake of phosphorus by the general population world-wide is almost double the amount required to maintain health. This increase is attributed to the incorporation of phosphate containing food additives in processed foods purchased by consumers. Research findings assessed the impact of excessive phosphorus intake on cells' and organs' responses, and highlighted the potential pathogenic consequences. Research also identified a new class of bioactive phosphates composed of polymers of phosphate molecules varying in chain length. These polymers are involved in metabolic responses including hemostasis, brain and bone health, via complex mechanism(s) with positive or negative health effects, depending on their chain length. It is amazing, that phosphorus, a simple element, is capable of exerting multiple and powerful effects. The role of phosphorus and its polymers in the renal and cardiovascular system as well as on brain health appear to be important and promising future research directions.
Collapse
Affiliation(s)
- Ranjana P Bird
- School of Health Sciences, University of Northern British Columbia, Prince George, BC, Canada.
| | - N A Michael Eskin
- Department of Food and Human Nutritional Sciences, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
20
|
Lin H, Zhou Y, Lei Q, Lin D, Chen J, Wu C. Effect of inorganic phosphate on migration and osteogenic differentiation of bone marrow mesenchymal stem cells. BMC DEVELOPMENTAL BIOLOGY 2021; 21:1. [PMID: 33407089 PMCID: PMC7788862 DOI: 10.1186/s12861-020-00229-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022]
Abstract
Background Phosphate is the major ingredient of bone tissue, and is also an important component of commercial bone substitute materials, bone scaffolds, and implant surface coatings. With the dissolution of the bone substitute materials and the degradation by cells, local ion concentrations will change and affect bone tissue reconstruction. Bone marrow -derived mesenchymal stem cells (BM-MSCs) are main autologous cells to repair injured bone. When bone injure occurs, BM-MSCs migrate to the damaged area, differentiate into osteoblasts, and secrete bioactive factors to promote bone tissue repaired. This study aimed to investigate the effect of inorganic phosphate (Pi) at a series of concentration on migration and osteogenic differentiation of human bone marrow -derived mesenchymal stem cells(hBM-MSCs). Methods The culture of hBM-MSCs in mediums with different concentration of Pi from 2 mM to 10 mM were performed. HBM-MSCs migration were examined with transwell assays. HBM-MSCs proliferation were evaluated by cell counting kit-8 colorimetric method. Osteogenic genes expression were analyzed by real-time reverse transcriptase polymerase chain reaction. Mineralized nodules formation were demonstrated by Alizarin red staining. Result 4–10 mM Pi could effectively promote the migration of hBM-MSCs at 12 h and 18 h. There was no significant difference in the migration number of hBM-MSCs in Pi culture mediums at a concentration of 6, 8, and10mM. 2–10 mM Pi could promote the proliferation of hBM-MSCs to varying degrees in the observation period, while 4–10 mM Pi could promote the osteogenic differentiation and mineralization of hBM-MSCs. Conclusion The findings in our study showed 4-10 mM Pi could promote the migration, osteogenic differentiation, and mineralization of hBM-MSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-020-00229-x.
Collapse
Affiliation(s)
- Hengzhang Lin
- Department of Stomatology, Fujian Provincial Governmental Hospital, Fuzhou, China
| | - Yong Zhou
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Qun Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| | - Dong Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jiang Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Chuhuo Wu
- Fujian Medical University, Fuzhou, China
| |
Collapse
|
21
|
Chen G, Kong P, Jiang A, Wang X, Sun Y, Yu T, Chi H, Song C, Zhang H, Subedi D, Ravi Kumar P, Bai K, Liu K, Ji Y, Yan J. A modular programmed biphasic dual-delivery system on 3D ceramic scaffolds for osteogenesis in vitro and in vivo. J Mater Chem B 2020; 8:9697-9717. [PMID: 32789334 DOI: 10.1039/c9tb02127b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-factor delivery is the most common characteristic of bone tissue engineering techniques. However, bone regeneration is a complex process requiring multiple factors and specialized release mechanisms. Therefore, the development of a dual-delivery system allowing for programmed release kinetics would be highly desirable. Improvement of the molarity and versatility of the delivery system has rarely been studied. Herein, we report the development of a novel, modular programmed biphasic dual-release system (SCB), carrying a BMP2 and an engineered collagen I-derived recognition motif (Stath-DGEA), with a self-remodification feature on hydroxyapatite (HA)-based materials. The SCB system was loaded onto an additive manufactured (AM) scaffold in order to evaluate its bifactor osteogenic potential and its biphasic release behavior. Further, the biomechanical properties of the scaffold were studied by using the fluid-structure interaction (FSI) method. Section fluorescent labeling revealed that the HA scaffold has a relatively higher density and efficiency. Additionally, the results of the release and inhibition experiment suggested that the SCB system could facilitate the sustained release of therapeutic levels of two factors during the initial stage of implantation, thereby exhibiting a rapid high-dose release pattern at a specific time point during the second stage. The FSI prediction model indicated that the scaffold provides an excellent biomimetic mechanical and fluid dynamic microenvironment to promote osteogenesis. Our results indicated that incorporation of BMP2 with Stath-DGEA in the biphasic SCB system could have a synergetic effect in promoting the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro, under staged stimulations. Further, in vivo studies in both ectopic and orthotopic rat models showed that the SCB system loaded onto an AM scaffold could enhance osteointegration and osteoinduction throughout the osteogenic process. Thus, the novel synthetic SCB system described herein used on an AM scaffold provides a biomimetic extracellular environment that enhances bone regeneration and is a promising multifunctional, dual-release platform.
Collapse
Affiliation(s)
- Guanghua Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Serna J, Bergwitz C. Importance of Dietary Phosphorus for Bone Metabolism and Healthy Aging. Nutrients 2020; 12:E3001. [PMID: 33007883 PMCID: PMC7599912 DOI: 10.3390/nu12103001] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/13/2022] Open
Abstract
Inorganic phosphate (Pi) plays a critical function in many tissues of the body: for example, as part of the hydroxyapatite in the skeleton and as a substrate for ATP synthesis. Pi is the main source of dietary phosphorus. Reduced bioavailability of Pi or excessive losses in the urine causes rickets and osteomalacia. While critical for health in normal amounts, dietary phosphorus is plentiful in the Western diet and is often added to foods as a preservative. This abundance of phosphorus may reduce longevity due to metabolic changes and tissue calcifications. In this review, we examine how dietary phosphorus is absorbed in the gut, current knowledge about Pi sensing, and endocrine regulation of Pi levels. Moreover, we also examine the roles of Pi in different tissues, the consequences of low and high dietary phosphorus in these tissues, and the implications for healthy aging.
Collapse
Affiliation(s)
- Juan Serna
- Yale College, Yale University, New Haven, CT 06511, USA;
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06519, USA
| |
Collapse
|
23
|
Jia Y, Qin L, Gong Y, Chen R, Yang Y, Yang W, Cai K. Experimental and theoretical investigations of the influences of one-dimensional hydroxyapatite nanostructures on cytocompatibility. J Biomed Mater Res A 2020; 109:804-813. [PMID: 32720439 DOI: 10.1002/jbm.a.37068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 11/09/2022]
Abstract
Due to their simple crystal structures, one-dimensional hydroxyapatite (HA) nanostructures are easily to be applied to understand the fundamental concepts about the influences of HA dimensionality on physical, chemical, and biological properties. So, in this work, three typical HA one-dimensional nanostructures, HA nanotubes, HA nanowires, and HA nanospheres, were prepared, whose theoretical structures were built also. in vitro cytocompatibility test proved that, contrasting with TCPS, HA one-dimensional nanostructures had certain degree of cytotoxicity because HA nanostructures increase the generation of intracellular reactive oxygen species (ROS) and intracellular calcium. Theoretical simulation indicated that HA nanosphere has higher intracellular ROS generation and lower ROS storage amount than HA nanowire and HA nanotube, which were the possible reasons for its stronger cytotoxicity. Among these typical one-dimensional nanostructures, owing to higher drug storage amount and sustained delivery ability, HA nanotube was more potential application in orthopedics. The tubular structure of HA nanotubes could be used as reservoirs for small molecule drugs or growth factors. The cytocompatibility of HA nanostructures can be improved obviously when they were produced into two-dimensional structures. The prepared multilayer structure can simulate lamellar structures of Harvard system and enhance the cytocompatibility of Ti substrate. Therefore, the method used in this work is a prospective method to improve the inherently bio-inert of Ti when used in hard tissue repairing.
Collapse
Affiliation(s)
- Yile Jia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Qin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Yi Gong
- Department of Hematology-Oncology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Rui Chen
- Department of Pathology, Chongqing Cancer Institute/Hospital, Chongqing, China
| | - Yulu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
24
|
A novel fluorescent hydroxyapatite based on iron quantum cluster template to enhance osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110775. [DOI: 10.1016/j.msec.2020.110775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
|
25
|
Fouad-Elhady EA, Aglan HA, Hassan RE, Ahmed HH, Sabry GM. Modulation of bone turnover aberration: A target for management of primary osteoporosis in experimental rat model. Heliyon 2020; 6:e03341. [PMID: 32072048 PMCID: PMC7011045 DOI: 10.1016/j.heliyon.2020.e03341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis is a skeletal degenerative disease characterised by abnormal bone turnover with scant bone formation and overabundant bone resorption. The present approach was intended to address the potency of nanohydroxyapatite (nHA), chitosan/hydroxyapatite nanocomposites (nCh/HA) and silver/hydroxyapatite nanoparticles (nAg/HA) to modulate bone turnover deviation in primary osteoporosis induced in the experimental model. Characterisation techniques such as TEM, zeta-potential, FT-IR and XRD were used to assess the morphology, the physical as well as the chemical features of the prepared nanostructures. The in vivo experiment was conducted on forty-eight adult female rats, randomised into 6 groups (8 rats/group), (1) gonad-intact, (2) osteoporotic group, (3) osteoporotic + nHA, (4) osteoporotic + nCh/HA, (5) osteoporotic + nAg/HA and (6) osteoporotic + alendronate (ALN). After three months of treatment, serum sclerostin (SOST), bone alkaline phosphatase (BALP) and bone sialoprotein (BSP) levels were quantified using ELISA. Femur bone receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL) and cathepsin K (CtsK) mRNA levels were evaluated by quantitative RT-PCR. Moreover, alizarin red S staining was applied to determine the mineralisation intensity of femur bone. Findings in the present study indicated that treatment with nHA, nCh/HA or nAg/HA leads to significant repression of serum SOST, BALP and BSP levels parallel to a significant down-regulation of RANKL and CtsK gene expression levels. On the other side, significant enhancement in the calcification intensity of femur bone has been noticed. The outcomes of this experimental setting ascertained the potentiality of nHA, nCh/HA and nAg/HA as promising nanomaterials in attenuating the excessive bone turnover in the primary osteoporotic rat model. The mechanisms behind the efficacy of the investigated nanostructures involved the obstacle of serum and tissue indices of bone resorption besides the strengthening of bone mineralisation.
Collapse
Affiliation(s)
- Enas A Fouad-Elhady
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Rasha E Hassan
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Gilane M Sabry
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
26
|
Sunarso, Tsuchiya A, Toita R, Tsuru K, Ishikawa K. Enhanced Osseointegration Capability of Poly(ether ether ketone) via Combined Phosphate and Calcium Surface-Functionalization. Int J Mol Sci 2019; 21:E198. [PMID: 31892154 PMCID: PMC6981423 DOI: 10.3390/ijms21010198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/24/2019] [Accepted: 12/25/2019] [Indexed: 02/06/2023] Open
Abstract
Biomedical applications of poly(ether ether ketone) (PEEK) are hindered by its inherent bioinertness and lack of osseointegration capability. In the present study, to enhance osteogenic activity and, hence, the osseointegration capability of PEEK, we proposed a strategy of combined phosphate and calcium surface-functionalization, in which ozone-gas treatment and wet chemistry were used for introduction of hydroxyl groups and modification of phosphate and/or calcium, respectively. Surface functionalization significantly elevated the surface hydrophilicity without changing the surface roughness or topography. The cell study demonstrated that immobilization of phosphate or calcium increased the osteogenesis of rat mesenchymal stem cells compared with bare PEEK, including cell proliferation, alkaline phosphatase activity, and bone-like nodule formation. Interestingly, further enhancement was observed for samples co-immobilized with phosphate and calcium. Furthermore, in the animal study, phosphate and calcium co-functionalized PEEK demonstrated significantly enhanced osseointegration, as revealed by a greater direct bone-to-implant contact ratio and bond strength between the bone and implant than unfunctionalized and phosphate-functionalized PEEK, which paves the way for the orthopedic and dental application of PEEK.
Collapse
Affiliation(s)
- Sunarso
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Department of Dental Materials, Faculty of Dentistry, Universitas Indonesia, Jalan Salemba Raya No. 4, Jakarta 10430, Indonesia
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka 814-0193, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; (S.); (A.T.); (K.T.); (K.I.)
| |
Collapse
|
27
|
Sato N, Handa K, Venkataiah VS, Hasegawa T, Njuguna MM, Yahata Y, Saito M. Comparison of the vertical bone defect healing abilities of carbonate apatite, β-tricalcium phosphate, hydroxyapatite and bovine-derived heterogeneous bone. Dent Mater J 2019; 39:309-318. [PMID: 31776317 DOI: 10.4012/dmj.2019-084] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The treatment of vertical bone defects caused by severe periodontal disease requires the regeneration of periodontal tissue. Although various bone substitutes have been clinically applied to vertical bone defect correction, the evaluation of these materials in periodontal tissue remains incomplete. The purpose of this study was to examine the bone regeneration abilities of various bone substitutes including Cytrans, Cerasorb, Neobone and Bio-Oss in a 3-wall bone defect animal model. All of these bone substitutes showed a similar healing ability to periodontal ligament and cementum. However, Cytrans showed the fastest bone healing ability compared with the other materials at 4 weeks post-transplantation. In addition, the recruitment of osteoclasts and endothelial cells was observed in Cytrans grafts at 4 weeks, but only detected at 8 weeks in the other materials. These results suggest that Cytrans promotes faster bone healing by inducing bone remodeling and angiogenesis.
Collapse
Affiliation(s)
- Nobuya Sato
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry
| | - Keisuke Handa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry
| | - Venkata Suresh Venkataiah
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry
| | - Tatsuya Hasegawa
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry
| | - Mary M Njuguna
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry
| | - Yoshio Yahata
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry
| | - Masahiro Saito
- Department of Restorative Dentistry, Division of Operative Dentistry, Tohoku University Graduate School of Dentistry
| |
Collapse
|
28
|
Zhang QQ, Zhu YJ, Wu J, Shao YT, Cai AY, Dong LY. Ultralong Hydroxyapatite Nanowire-Based Filter Paper for High-Performance Water Purification. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4288-4301. [PMID: 30657684 DOI: 10.1021/acsami.8b20703] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new kind of environmentally friendly filter paper based on ultralong hydroxyapatite nanowires (HAPNWs) and cellulose fibers (CFs) with excellent filtration and adsorption properties has been developed for the application in high-performance water purification. The use of polyamidoamine-epichlorohydrin (PAE) resin increases the wet mechanical strength of the as-prepared HAPNW/CF filter paper. The addition of CFs enhances the mechanical strength of the HAPNW/CF filter paper. Owing to the porous structure and superhydrophilicity of the as-prepared HAPNW/CF filter paper, the pure water flux is as high as 287.28 L m-2 h-1 bar-1 under cross-flow conditions, which is about 3200 times higher than that of the cellulose fiber paper with addition of PAE. More importantly, the as-prepared HAPNW/CF filter paper shows superior performance in the removal of TiO2 nanoparticles (>98.61%) and bacteria (up to 100%) in water by the size exclusion and blocking effect. In addition, the HAPNW/CF filter paper also exhibits high adsorption capacities for methyl blue (273.97 mg g-1) and Pb2+ ions (508.16 mg g-1). The adsorption mechanism of the HAPNW/CF filter paper is investigated. The as-prepared environmentally friendly HAPNW/CF filter paper with both excellent filtration and adsorption properties has promising application in high-performance water purification to tackle the worldwide water scarcity problem.
Collapse
Affiliation(s)
- Qiang-Qiang Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Jin Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| | - Yue-Ting Shao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - An-Yong Cai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Li-Ying Dong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| |
Collapse
|
29
|
Fukuda N, Tsuchiya A, Sunarso, Toita R, Tsuru K, Mori Y, Ishikawa K. Surface plasma treatment and phosphorylation enhance the biological performance of poly(ether ether ketone). Colloids Surf B Biointerfaces 2019; 173:36-42. [DOI: 10.1016/j.colsurfb.2018.09.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/05/2018] [Accepted: 09/13/2018] [Indexed: 01/29/2023]
|
30
|
Zhao R, Chen S, Yuan B, Chen X, Yang X, Song Y, Tang H, Yang X, Zhu X, Zhang X. Healing of osteoporotic bone defects by micro-/nano-structured calcium phosphate bioceramics. NANOSCALE 2019; 11:2721-2732. [PMID: 30672553 DOI: 10.1039/c8nr09417a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The micro-/nano-structured calcium phosphate bioceramic exhibited a higher new bone substitution rate in an osteoporotic bone defect rat model.
Collapse
Affiliation(s)
- Rui Zhao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Siyu Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Bo Yuan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xi Yang
- Department of Orthopaedics
- West China Hospital of Sichuan University
- Chengdu 610041
- China
| | - Yueming Song
- Department of Orthopaedics
- West China Hospital of Sichuan University
- Chengdu 610041
- China
| | - Hai Tang
- Department of Orthopedics
- Beijing Friendship Hospital
- Capital Medical University
- Beijing 100050
- China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu
- China
| |
Collapse
|
31
|
Fukuda N, Kanazawa M, Tsuru K, Tsuchiya A, Sunarso, Toita R, Mori Y, Nakashima Y, Ishikawa K. Synergistic effect of surface phosphorylation and micro-roughness on enhanced osseointegration ability of poly(ether ether ketone) in the rabbit tibia. Sci Rep 2018; 8:16887. [PMID: 30442906 PMCID: PMC6237893 DOI: 10.1038/s41598-018-35313-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/02/2018] [Indexed: 01/04/2023] Open
Abstract
This study was aimed to investigate the osseointegration ability of poly(ether ether ketone) (PEEK) implants with modified surface roughness and/or surface chemistry. The roughened surface was prepared by a sandblast method, and the phosphate groups on the substrates were modified by a two-step chemical reaction. The in vitro osteogenic activity of rat mesenchymal stem cells (MSCs) on the developed substrates was assessed by measuring cell proliferation, alkaline phosphatase activity, osteocalcin expression, and bone-like nodule formation. Surface roughening alone did not improve MSC responses. However, phosphorylation of smooth substrates increased cell responses, which were further elevated in combination with surface roughening. Moreover, in a rabbit tibia implantation model, this combined surface modification significantly enhanced the bone-to-implant contact ratio and corresponding bone-to-implant bonding strength at 4 and 8 weeks post-implantation, whereas modification of surface roughness or surface chemistry alone did not. This study demonstrates that combination of surface roughness and chemical modification on PEEK significantly promotes cell responses and osseointegration ability in a synergistic manner both in vitro and in vivo. Therefore, this is a simple and promising technique for improving the poor osseointegration ability of PEEK-based orthopedic/dental implants.
Collapse
Affiliation(s)
- Naoyuki Fukuda
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Oral Surgery, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramotocho, Tokushima, 770-8504, Japan
| | - Masayuki Kanazawa
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kanji Tsuru
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Section of Bioengineering, Department of Dental Engineering, Fukuoka Dental College, 2-15-1 Tamura, Sawara, Fukuoka, 814-0193, Japan
| | - Akira Tsuchiya
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Sunarso
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
- Department of Dental Materials, Faculty of Dentistry, University of Indonesia, Jalan Salemba Raya No. 4, Jakarta, Pusat, 10430, Indonesia
| | - Riki Toita
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan.
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan.
| | - Yoshihide Mori
- Section of Oral and Maxillofacial Surgery, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| | - Kunio Ishikawa
- Department of Biomaterials, Faculty of Dental Sciences, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-8582, Japan
| |
Collapse
|
32
|
Abstract
Inorganic phosphate (Pi) is essential for signal transduction and cell metabolism, and is also an essential structural component of the extracellular matrix of the skeleton. Pi is sensed in bacteria and yeast at the plasma membrane, which activates intracellular signal transduction to control the expression of Pi transporters and other genes that control intracellular Pi levels. In multicellular organisms, Pi homeostasis must be maintained in the organism and at the cellular level, requiring an endocrine and metabolic Pi-sensing mechanism, about which little is currently known. This Review will discuss the metabolic effects of Pi, which are mediated by Pi transporters, inositol pyrophosphates and SYG1-Pho81-XPR1 (SPX)-domain proteins to maintain cellular phosphate homeostasis in the musculoskeletal system. In addition, we will discuss how Pi is sensed by the human body to regulate the production of fibroblast growth factor 23 (FGF23), parathyroid hormone and calcitriol to maintain serum levels of Pi in a narrow range. New findings on the crosstalk between iron and Pi homeostasis in the regulation of FGF23 expression will also be outlined. Mutations in components of these metabolic and endocrine phosphate sensors result in genetic disorders of phosphate homeostasis, cardiomyopathy and familial basal ganglial calcifications, highlighting the importance of this newly emerging area of research.
Collapse
Affiliation(s)
- Sampada Chande
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Clemens Bergwitz
- Section of Endocrinology and Metabolism, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|