1
|
Jo W, Lee HS, Trinh TP, Gupta G, Kim M, Kim GY, Kim J, Kim CH, Lee CY. Sequential Energy and Electron Transfer in Metal-Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69479-69491. [PMID: 39626118 DOI: 10.1021/acsami.4c17875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
This study presents the design and characterization of a triad metal-organic framework (MOF) system composed of pyrene, porphyrin, and phenyl-C61-butyric acid (PCBA) for efficient energy and electron transfer processes mimicking natural photosynthesis. The triad MOF, synthesized through a mixed-ligand approach followed by postsynthetic modification, demonstrates sequential energy transfer from pyrene to porphyrin, followed by electron transfer to the PCBA acceptor. Time-resolved photoluminescence (TRPL) spectroscopy was employed to investigate the dynamics of energy and charge transfer, revealing fast interligand energy transfer and subsequent charge separation in the MOF structure. The PCBA-functionalized MOF (PCBA@nMLM) exhibited a significantly enhanced photocatalytic performance compared to the nonfunctionalized counterpart, particularly in the selective aerobic oxidation of sulfides to sulfoxides under visible light irradiation. The enhanced photocatalytic activity is attributed to the prolonged charge separation facilitated by the PCBA moieties, as confirmed by electrochemical impedance spectroscopy (EIS) and transient photocurrent measurements. This work highlights the potential of MOF-based systems in artificial photosynthesis and other photocatalytic applications by effectively harnessing solar energy through optimized energy and charge transfer mechanisms.
Collapse
Affiliation(s)
- Wooseong Jo
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hyun Seok Lee
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Tra Phuong Trinh
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Gajendra Gupta
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
- Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Ga Young Kim
- Department of Chemistry and Research Institute of Basic Science, Incheon National University, Incheon 22012, Republic of Korea
| | - Jinho Kim
- Department of Chemistry and Research Institute of Basic Science, Incheon National University, Incheon 22012, Republic of Korea
| | - Chul Hoon Kim
- Department of Advanced Materials Chemistry, Korea University, Sejong 30019, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University, Incheon 22012, Republic of Korea
- Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Republic of Korea
| |
Collapse
|
2
|
Hashimoto T, Hoz Tomás MDL, Oketani R, Cohen B, Naruoka M, Tohnai N, Douhal A, Hisaki I. Single Crystalline, Non-Stoichiometric Hydrogen-Bonded Organic Frameworks Showing Versatile Fluorescence Depending on Composition Ratios and Distributions. Angew Chem Int Ed Engl 2024:e202419992. [PMID: 39586783 DOI: 10.1002/anie.202419992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) composed of multicomponent molecules in a non-stoichiometric composition have drawn great interest due to their tunable properties. However, the photobehavior of the single crystals of such mixed HOFs has not been explored. Here, we report on the synthesis, characterization and photobehavior of single crystalline non-stoichiometric HOFs (NS-HOFs). NS-HOFs (BTNT-1) with various composition ratios were successfully obtained as single crystals from two analogue tetratopic carboxylic acids, possessing naphthalene and benzothiadiazole cores (NTTA and BTTA, respectively). The heterogeneous distribution of the components was thoroughly confirmed by time-resolved fluorescence microscopy and local crystallographic analysis using focused synchrotron X-ray radiation. The versatile fluorescence of BTNT-1 behavior depends on the composition ratio and distribution of the component in the single crystals. We observed not only fluorescence bands with various colors such as purple, blue, green and white, depending on the composition ratios, but also different emission bands from a single crystal. We provide details on their emission lifetimes following the composition, emission color and targeted region on the crystal. This work is the first example of single crystal studies applied to organic porous co-crystals and demonstrates unique and versatile optical properties of carboxylic acid-based NS-HOFs. The results provide a concept of creating functional mixed porous materials capable of different and tunable optical properties.
Collapse
Affiliation(s)
- Taito Hashimoto
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Mario de la Hoz Tomás
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
| | - Ryusei Oketani
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
| | - Miki Naruoka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, Toledo, 45071, Spain
| | - Ichiro Hisaki
- Division of Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
3
|
Yang XZ, Zhang ZG, Xin CL, Liu H, Yu S, Xing LB. Artificial light-harvesting system with sequential energy transfer in photocatalytic CP coupling based on supramolecular organic framework of triphenylamine. J Colloid Interface Sci 2024; 680:587-595. [PMID: 39531877 DOI: 10.1016/j.jcis.2024.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Porous structures exhibit an increased access surface area, thereby promoting the efficient transportation of active oxygen species. Reinforcing the development of artificial light-harvesting systems (LHSs) with porous structured supramolecular organic frameworks (SOFs) as the energy donor can significantly enhance its photocatalytic performance, thereby facilitating efficient organic transformation via photocatalysis. In this investigation, we have successfully fabricated a supramolecular organic framework (MT-SOF) composed of cucurbit[8]uril (CB[8]) and triphenylamine derivative (MeTPPA). Because of the framework structure and large ring restriction in MT-SOF, its fluorescence emission shows a significant increase when compared to that of the individual MeTPPA molecule. By harnessing the remarkable fluorescence emission characteristics of MT-SOF, it was employed as an energy donor in conjunction with Sulforhodamine 101 (SR101) and Cyanine 5 (Cy5) as acceptors to fabricate sequential energy transfer LHS. MT-SOF-SR101-Cy5 has the ability to act as a photosensitizer, facilitating the CP bond coupling with broad applicability. It is important to mention that when compared to MeTPPA, MT-SOF and MT-SOF-SR101, the photocatalytic performance of MT-SOF-SR101-Cy5, featuring continuous two-step energy transfer, shows significant improvement, which can be attributed to the porous structure of MT-SOF and the increased efficiency in generating superoxide anion radical (O2-).
Collapse
Affiliation(s)
- Xuan-Zong Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Zhao-Gao Zhang
- Jiangsu Weunite Fine Chemical Co., Ltd., Xuzhou 221424, PR China
| | - Cheng-Long Xin
- Shandong Center for Disease Control and Prevention, Jinan 255014, PR China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China
| | - Shengsheng Yu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| | - Ling-Bao Xing
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255000, PR China.
| |
Collapse
|
4
|
Gupta G, Paul A, Gupta A, Lee J, Lee CY. Removal of organic dyes from aqueous solution using a novel pyrene appended Zn(II)-based metal-organic framework and its photocatalytic properties. Dalton Trans 2024; 53:15732-15741. [PMID: 39253790 DOI: 10.1039/d4dt01869a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
In this study, we report the efficient removal of organic dyes from aqueous solutions using a newly synthesized pyrene-appended Zn(II)-based metal-organic framework (MOF), ZnSiF6Pyrene MOF, with the chemical formula C52H32F6N4SiZn·4(CHCl3). The MOF was synthesized through a facile method at room temperature using a dipyridylpyrene ligand and ZnSiF6 metal source, resulting in a highly crystalline structure with pyrene functional groups forming the framework. The synthesized MOF was characterized using various analytical techniques, including Fourier-transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis, and scanning electron microscopy (SEM). Thermal stability was assessed using thermogravimetric analysis (TGA), while the surface area of the MOF was determined using a Brunauer-Emmett-Teller (BET) surface analyzer. Furthermore, the single-crystal X-ray diffraction (SCXRD) structure was studied to authenticate its solid-state structure. The as-synthesized MOF exhibited remarkable adsorption capacity towards various organic dyes, including Congo red (CR), rhodamine B (RhB), and methyl violet (MV), due to its ample surface area and strong π-π interactions between the pyrene moieties and dye molecules, as demonstrated by experimental and in silico docking studies. The photocatalytic degradation of MV dye was also investigated. Detailed trapping tests indicate that hydroxyl (˙OH) and superoxide (O2˙-) radicals are likely the primary active species responsible for the photodegradation of the dye under study. Furthermore, the photocatalytic property of the MOF was investigated under visible light irradiation, demonstrating excellent ability to generate singlet oxygen. This study highlights the potential of pyrene-appended Zn(II)-based MOFs as promising materials for environmental remediation applications.
Collapse
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Anup Paul
- Centro de Química Estrutural, Instituto of Molecular Sciences, Superior Técnico para Investigacao do Instituto Departmento de Engenharia Química, IST-ID Associação Desenvolvimento, Universidade de Lisboa, 1000-043 Lisboa, Portugal.
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies, North Eastern Hill University, Shillong, 793022, India
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| |
Collapse
|
5
|
Xiao Y, Sun Q, Leng J, Jin S. Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal-Organic Frameworks. J Phys Chem Lett 2024:3390-3403. [PMID: 38501970 DOI: 10.1021/acs.jpclett.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.
Collapse
Affiliation(s)
- Yejun Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
6
|
Huang NY, Zheng YT, Chen D, Chen ZY, Huang CZ, Xu Q. Reticular framework materials for photocatalytic organic reactions. Chem Soc Rev 2023; 52:7949-8004. [PMID: 37878263 DOI: 10.1039/d2cs00289b] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Photocatalytic organic reactions, harvesting solar energy to produce high value-added organic chemicals, have attracted increasing attention as a sustainable approach to address the global energy crisis and environmental issues. Reticular framework materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), are widely considered as promising candidates for photocatalysis owing to their high crystallinity, tailorable pore environment and extensive structural diversity. Although the design and synthesis of MOFs and COFs have been intensively developed in the last 20 years, their applications in photocatalytic organic transformations are still in the preliminary stage, making their systematic summary necessary. Thus, this review aims to provide a comprehensive understanding and useful guidelines for the exploration of suitable MOF and COF photocatalysts towards appropriate photocatalytic organic reactions. The commonly used reactions are categorized to facilitate the identification of suitable reaction types. From a practical viewpoint, the fundamentals of experimental design, including active species, performance evaluation and external reaction conditions, are discussed in detail for easy experimentation. Furthermore, the latest advances in photocatalytic organic reactions of MOFs and COFs, including their composites, are comprehensively summarized according to the actual active sites, together with the discussion of their structure-property relationship. We believe that this study will be helpful for researchers to design novel reticular framework photocatalysts for various organic synthetic applications.
Collapse
Affiliation(s)
- Ning-Yu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Yu-Tao Zheng
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Di Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Zhen-Yu Chen
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Chao-Zhu Huang
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Key University Laboratory of Highly Efficient Utilization of Solar Energy and Sustainable Development of Guangdong, Department of Chemistry and Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China.
| |
Collapse
|
7
|
Li H, Yang Y, Jing X, He C, Duan C. Mixed-ligand metal-organic frameworks as an effective photocatalyst for selective oxidation reaction. Chem Commun (Camb) 2023; 59:11220-11223. [PMID: 37655546 DOI: 10.1039/d3cc02839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
By incorporating tetrakis(4-carboxyphenyl)porphyrin and bis(3,5-dicarboxyphenyl)pyridine into one single metal-organic framework (MOF), a multifunctional mixed-ligand Zn-MIX with large pores was obtained. Under visible-light irradiation, Zn-MIX exhibits high photocatalytic activity for the oxidation of amines and sulfides.
Collapse
Affiliation(s)
- Hanning Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Yang Yang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Cheng He
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| | - Chunying Duan
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Selvaggio G, Herrmann N, Hill B, Dervişoğlu R, Jung S, Weitzel M, Dinarvand M, Stalke D, Andreas L, Kruss S. Covalently Functionalized Egyptian Blue Nanosheets for Near-Infrared Bioimaging. ACS APPLIED BIO MATERIALS 2023; 6:309-317. [PMID: 36538701 DOI: 10.1021/acsabm.2c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorophores emitting in the near-infrared (NIR) wavelength region present optimal characteristics for photonics and especially bioimaging. Unfortunately, only few NIR fluorescent materials are known, and even fewer are biocompatible. For this reason, the scientific interest in designing NIR fluorophores is very high. Egyptian Blue (CaCuSi4O10, EB) is an NIR fluorescent layered silicate that can be exfoliated into fluorescent nanosheets (EB-NS). So far, its surface chemistry has not been tailored, but this is crucial for colloidal stability and biological targeting. Here, we demonstrate covalent surface functionalization of EB nanosheets (EBfunc) via Si-H activation using hydrosilanes with variable functionalities. In the first part of this work, EB-NS are grafted with the visible fluorescent pyrene (Pyr) moieties to demonstrate conjugation by colocalization of the Vis/NIR fluorescence on the (single) EB-NS level. Next, the same grafting procedure was repeated and validated with carboxyl group (COOH)-containing hydrosilanes. These groups serve as a generic handle for further (bio)functionalization of the EB-NS surface. In this way, folic acid (FA) could be conjugated to EB-NS, allowing the targeting of folic acid receptor-expressing cancer cells. These results highlight the potential of this surface chemistry approach to modify EB-NS, enabling targeted NIR imaging for biomedical applications.
Collapse
Affiliation(s)
- Gabriele Selvaggio
- Department of Chemistry, Bochum University, Bochum 44801, Germany.,Institute of Physical Chemistry, University of Göttingen, Göttingen 37077, Germany
| | - Niklas Herrmann
- Institute of Physical Chemistry, University of Göttingen, Göttingen 37077, Germany
| | - Björn Hill
- Department of Chemistry, Bochum University, Bochum 44801, Germany
| | - Rıza Dervişoğlu
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sebastian Jung
- Department of Chemistry, Bochum University, Bochum 44801, Germany
| | - Milan Weitzel
- Institute of Physical Chemistry, University of Göttingen, Göttingen 37077, Germany
| | - Meshkat Dinarvand
- Department of Chemistry, Bochum University, Bochum 44801, Germany.,Institute of Physical Chemistry, University of Göttingen, Göttingen 37077, Germany
| | - Dietmar Stalke
- Institute of Inorganic Chemistry, University of Göttingen, Göttingen 37077, Germany
| | - Loren Andreas
- Max-Planck-Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Sebastian Kruss
- Department of Chemistry, Bochum University, Bochum 44801, Germany.,Institute of Physical Chemistry, University of Göttingen, Göttingen 37077, Germany.,Fraunhofer Institute for Microelectronic Circuits and Systems, Duisburg 47057, Germany.,Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg 47057, Germany
| |
Collapse
|
9
|
Zhao Z, Chen X, Li B, Zhao S, Niu L, Zhang Z, Chen Y. Spatial Regulation of Acceptor Units in Olefin-Linked COFs toward Highly Efficient Photocatalytic H 2 Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203832. [PMID: 35981892 PMCID: PMC9561862 DOI: 10.1002/advs.202203832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Indexed: 05/19/2023]
Abstract
Covalent organic frameworks (COFs)-based photocatalysts have received growing attention for photocatalytic hydrogen (H2 ) production. One of the big challenges in the field is to find ways to promote energy/electron transfer and exciton dissociation. Addressing this challenge, herein, a series of olefin-linked 2D COFs is fabricated with high crystallinity, porosity, and robustness using a melt polymerization method without adding volatile organic solvents. It is found that regulation of the spatial distances between the acceptor units (triazine and 2, 2'-bipyridine) of COFs to match the charge carrier diffusion length can dramatically promote the exciton dissociation, hence leading to outstanding photocatalytic H2 evolution performance. The COF with the appropriate acceptor distance achieves exceptional photocatalytic H2 evolution with an apparent quantum yield of 56.2% at 475 nm, the second highest value among all COF photocatalysts and 70 times higher than the well-studied polymer carbon nitride. Various experimental and computation studies are then conducted to in-depth unveil the mechanism behind the enhanced performance. This study will provide important guidance for the design of highly efficient organic semiconductor photocatalysts.
Collapse
Affiliation(s)
- Zhengfeng Zhao
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Xuepeng Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - BaoYing Li
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Shu Zhao
- Institute of Advanced Battery Materials and DevicesFaculty of Materials and ManufacturingBeijing University of TechnologyBeijing100124P. R. China
| | - Liwei Niu
- School of Chemistry and Chemical EngineeringQilu University of Technology (Shandong Academy of Sciences)Jinan250353P. R. China
| | - Zhenjie Zhang
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| | - Yao Chen
- State Key Laboratory of Medicinal Chemical BiologyCollege of PharmacyNankai UniversityTianjin300071P. R. China
| |
Collapse
|
10
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
11
|
Gupta G, Kim M, Singh N, Lee J, Lee CY. Pyrene and porphyrin-based Zn metal 1-D-polymer: synthesis, molecular structure, and photocatalytic property. Dalton Trans 2022; 51:4257-4261. [DOI: 10.1039/d2dt00299j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A zinc-based pyrene-porphyrin hybrid linear 1-D coordination polymer ZnPyrPorp with general formula [Zn(Pyr)(Porp)]n (Pyr = pyrene, Porp = tetraphenylporphyrin) was synthesized using a facile one-pot solvothermal method and fully characterized...
Collapse
|
12
|
Liu W, Guo Z, Jin Z, Chen D, Lu T, Jia P, Xing H. Visible-light-driven sonophotocatalysis for enhanced Cr(VI) reduction based on mixed-linker zirconium-porphyrin MOFs. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02346b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we synthesized and characterized two mixed-linker zirconium-porphyrin metal-organic frameworks, PCN-134 and PCN-138 which constructed from tetratopic light harvesting TCPP ligand and tritopic BTB/TBTB ligand (TCPP = trakis(4-carboxyphenyl)porphyrin),...
Collapse
|
13
|
Cai P, Xu M, Meng S, Lin Z, Yan T, Drake HF, Zhang P, Pang J, Gu Z, Zhou H. Precise Spatial‐Designed Metal‐Organic‐Framework Nanosheets for Efficient Energy Transfer and Photocatalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Peiyu Cai
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Ming Xu
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
- Department of Chemistry Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Sha‐Sha Meng
- Department of Chemistry Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Zaifeng Lin
- Department of Mathematics Texas A&M University College Station TX 77843-3255 USA
| | - Tianhao Yan
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Hannah F. Drake
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Peng Zhang
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Jiandong Pang
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Zhi‐Yuan Gu
- Department of Chemistry Nanjing Normal University Nanjing Jiangsu 210023 China
| | - Hong‐Cai Zhou
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| |
Collapse
|
14
|
Fiankor C, Nyakuchena J, Khoo RSH, Zhang X, Hu Y, Yang S, Huang J, Zhang J. Symmetry-Guided Synthesis of N,N'-Bicarbazole and Porphyrin-Based Mixed-Ligand Metal-Organic Frameworks: Light Harvesting and Energy Transfer. J Am Chem Soc 2021; 143:20411-20418. [PMID: 34797665 DOI: 10.1021/jacs.1c10291] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, many attempts have been made to mimic the energy transfer (EnT) in photosynthesis, a key process occurring in nature that is of fundamental significance in solar fuels and sustainable energy. Metal-organic frameworks (MOFs), an emerging class of porous crystalline materials self-assembled from organic linkers and metal or metal cluster nodes, offer an ideal platform for the exploration of directional EnT phenomena. However, placing energy donor and acceptor moieties within the same framework with an atomistic precision appears to be a major synthesis challenge. In this work, we report the design and synthesis of a highly porous and photoactive N,N'-bicarbazole- and porphyrin-based mixed-ligand MOF, namely, NPF-500-H2TCPP (NPF = Nebraska porous framework; H2TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin), where the secondary ligand H2TCPP is incorporated precisely through the open metal sites of the equatorial plane of the octahedron cage resulting from the underlying (4,8) connected network of NPF-500. The efficient EnT process from N,N'-bicarbazole to porphyrin in NPF-500-H2TCPP was captured by time-resolved spectroscopy and exemplified by photocatalytic oxidation of thioanisole. These results demonstrate not only the capability of NPF-500 as the scaffold to precisely arrange the donor-acceptor assembly for the EnT process but also the potential to directly utilize the EnT process for photocatalytic applications.
Collapse
Affiliation(s)
- Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| | - Yuchen Hu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Wang Z, Wang C. Excited State Energy Transfer in Metal-Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005819. [PMID: 33788309 DOI: 10.1002/adma.202005819] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/20/2020] [Indexed: 05/18/2023]
Abstract
Excited state energy transfer in metal-organic frameworks (MOFs) is of great interest due to potential application of these materials in photocatalysis and fluorescence sensing. In photocatalysis, a light-harvesting antenna of MOFs can collect energy from a much larger area than a single reaction center and efficiently transport the energy to the active site to enhance photocatalytic efficiency, mimicking nature photosynthesis. In fluorescence sensing, excited state traveling on the framework can search for analyte quencher molecules to give amplified fluorescence quenching, so that one quencher turns off multiple excited states to enhance signal. Key to these designer performances is highly efficient energy transfer on these framework materials that are determined by types of excited states, dimension of the materials, and structure of the frameworks. Advancement of MOF synthetic chemistry provides new tools to control the rate and directionality of energy transfer in these materials, opening opportunities in manipulating excited states at an unprecedented level.
Collapse
Affiliation(s)
- Zhiye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChem, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
16
|
Ren D, Xia HL, Zhou K, Wu S, Liu XY, Wang X, Li J. Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal-Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:25048-25054. [PMID: 34535955 DOI: 10.1002/anie.202110531] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 01/13/2023]
Abstract
While limited choice of emissive organic linkers with systematic emission tunability presents a great challenge to investigate energy transfer (ET) over the whole visible light range with designable directions, luminescent metal-organic frameworks (LMOFs) may serve as an ideal platform for such study due to their tunable structure and composition. Herein, five Zr6 cluster-based LMOFs, HIAM-400X (X=0, 1, 2, 3, 4) are prepared using 2,1,3-benzothiadiazole and its derivative-based tetratopic carboxylic acids as organic linkers. The accessible unsaturated metal sites confer HIAM-400X as a pristine scaffold for linker installation. Six full-color emissive 2,1,3-benzothiadiazole and its derivative-based dicarboxylic acids (L) were successfully installed into HIAM-400X matrix to form HIAM-400X-L, in which the ET can be facilely tuned by controlling its direction, either from the inserted linkers to pristine MOFs or from the pristine MOFs to inserted linkers, and over the whole range of visible light. The combination of the pristine MOFs and the second linkers via linker installation creates a powerful two-dimensional space in tuning the emission via ET in LMOFs.
Collapse
Affiliation(s)
- Daming Ren
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Shenjie Wu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China.,Department of Chemistry, University of Colorado Denver, Campus Box 194, P. O. Box 173364, Denver, Colorado, 80217-3364, USA
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China.,Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
17
|
Ren D, Xia H, Zhou K, Wu S, Liu X, Wang X, Li J. Tuning and Directing Energy Transfer in the Whole Visible Spectrum through Linker Installation in Metal–Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Daming Ren
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 People's Republic of China
| | - Hai‐Lun Xia
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 People's Republic of China
| | - Shenjie Wu
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 People's Republic of China
| | - Xiao‐Yuan Liu
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 People's Republic of China
| | - Xiaotai Wang
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 People's Republic of China
- Department of Chemistry University of Colorado Denver Campus Box 194, P. O. Box 173364 Denver Colorado 80217-3364 USA
| | - Jing Li
- Hoffmann Institute of Advanced Materials Shenzhen Polytechnic 7098 Liuxian Blvd, Nanshan District Shenzhen 518055 People's Republic of China
- Department of Chemistry and Chemical Biology Rutgers University 123 Bevier Road Piscataway New Jersey 08854 USA
| |
Collapse
|
18
|
Vasanthakumar P, Raja DS, Sindhuja D, Swaminathan S, Karvembu R. Mixed-metal MOFs as efficient catalysts for transfer hydrogenation of furfural, levulinic acid and other carbonyl compounds. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Cai P, Xu M, Meng SS, Lin Z, Yan T, Drake HF, Zhang P, Pang J, Gu ZY, Zhou HC. Precise Spatial-Designed Metal-Organic-Framework Nanosheets for Efficient Energy Transfer and Photocatalysis. Angew Chem Int Ed Engl 2021; 60:27258-27263. [PMID: 34714946 DOI: 10.1002/anie.202111594] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Indexed: 12/11/2022]
Abstract
High-efficiency photocatalysis in metal-organic frameworks (MOF) and MOF nanosheets (NSs) are often limited by their short-lived charge separation as well as self-quenching. Here, we propose to use the energy-transfer process (EnT) to increase charge separation, thus enhancing the catalytic performance of a series of MOF NSs. With the use of NS, the photocatalyst can also be well isolated to reduce self-quenching. Tetrakis(4-carboxyphenyl) porphyrin (H4 TCPP) and 1,3,6,8-tetrakis(p-benzoic acid)pyrene (H4 TBAPy) linkers were chosen as the acceptor and donor moieties, respectively. Accounting for the precise spatial design afforded by the MOF NSs, the donor and acceptor moieties could be closely positioned on the NSs, allowing for an efficient EnT process as well as a high degree of site isolation. Two templates, donor-on-acceptor NS and acceptor-on-donor NS catalysts, were successfully synthesized, and the results show that the second one has much enhanced catalytic performances over the first one due to site-isolated active photocatalysts.
Collapse
Affiliation(s)
- Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Ming Xu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA.,Department of Chemistry, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Sha-Sha Meng
- Department of Chemistry, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Zaifeng Lin
- Department of Mathematics, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Tianhao Yan
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Hannah F Drake
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Peng Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jiandong Pang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Zhi-Yuan Gu
- Department of Chemistry, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| |
Collapse
|
20
|
Martin CR, Park KC, Corkill RE, Kittikhunnatham P, Leith GA, Mathur A, Abiodun SL, Greytak AB, Shustova NB. Photoresponsive frameworks: energy transfer in the spotlight. Faraday Discuss 2021; 231:266-280. [PMID: 34212961 DOI: 10.1039/d1fd00013f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this paper, spiropyran-containing metal- and covalent-organic frameworks (MOFs and COFs, respectively) are probed as platforms for fostering photochromic behavior in solid-state materials, while simultaneously promoting directional energy transfer (ET). In particular, Förster resonance energy transfer (FRET) between spiropyran and porphyrin derivatives integrated as linkers in the framework matrix is discussed. The photochromic spiropyran derivatives allow for control over material optoelectronic properties through alternation of excitation wavelengths. Photoinduced changes in the material electronic profile have also been probed through conductivity measurements. Time-resolved photoluminescence studies were employed to evaluate the effect of photochromic linkers on material photophysics. Furthermore, "forward" and "reverse" FRET processes occurring between two distinct chromophores were modeled, and the Förster critical radii and ET rates were estimated to support the experimentally observed changes in material photoluminescence.
Collapse
Affiliation(s)
- Corey R Martin
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Kyoung Chul Park
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Ryan E Corkill
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Preecha Kittikhunnatham
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Abhijai Mathur
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Sakiru L Abiodun
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Andrew B Greytak
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | - Natalia B Shustova
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| |
Collapse
|
21
|
Jiang W, Yan G, Lv M, Lv C, Liu B, Qiao Y, Liu C, Che G. Synthesis, crystal structure and photocatalytic property of a porphyrin-based coordination polymer. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1813773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Wei Jiang
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, P. R. China
| | - Guosong Yan
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
| | - Mengying Lv
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
| | - Cong Lv
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
| | - Bo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
| | - Yu Qiao
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
| | - Chunbo Liu
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
- College of Environmental Science and Engineering, Jilin Normal University, Siping, P. R. China
| | - Guangbo Che
- Key Laboratory of Preparation and Application of Environmental Friendly Materials, Jilin Normal University, Ministry of Education, Changchun, P. R. China
| |
Collapse
|
22
|
Schlachter A, Asselin P, Harvey PD. Porphyrin-Containing MOFs and COFs as Heterogeneous Photosensitizers for Singlet Oxygen-Based Antimicrobial Nanodevices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26651-26672. [PMID: 34086450 DOI: 10.1021/acsami.1c05234] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Visible-light irradiation of porphyrin and metalloporphyrin dyes in the presence of molecular oxygen can result in the photocatalytic generation of singlet oxygen (1O2). This type II reactive oxygen species (ROS) finds many applications where the dye, also called the photosensitizer, is dissolved (i.e., homogeneous phase) along with the substrate to be oxidized. In contrast, metal-organic frameworks (MOFs) are insoluble (or will disassemble) when placed in a solvent. When stable as a suspension, MOFs adsorb a large amount of O2 and photocatalytically generate 1O2 in a heterogeneous process efficiently. Considering the immense surface area and great capacity for gas adsorption of MOFs, they seem ideal candidates for this application. Very recently, covalent-organic frameworks (COFs), variants where reticulation relies on covalent rather than coordination bonds, have emerged as efficient photosensitizers. This comprehensive mini review describes recent developments in the use of porphyrin-based or porphyrin-containing MOFs and COFs, including nanosized versions, as heterogeneous photosensitizers of singlet oxygen toward antimicrobial applications.
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Paul Asselin
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Quebec J1K 2R1, Canada
| |
Collapse
|
23
|
Chen TF, Wang LY, Wang YF, Gao H, He J, Wang G, Meng XF, Wu YS, Deng YH, Wan CQ. Facile Strategy for Efficient Charge Separation and High Photoactivity of Mixed-Linker MOFs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20897-20905. [PMID: 33896173 DOI: 10.1021/acsami.1c04130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two new sets of UiO-Zr metal-organic framework (MOF) bearing mixed linkers BDC-(SCH3)2 and BDC-(SOCH3)2 that have different band gaps and edges were prepared through post oxidation and direct methods, namely, UiO-66-(SCH3)2-xh (x = 4, 9, 12 oxidation hours) and UiO-66-(SOCH3)x(SCH3)2-x (x = 0, 0.4, 0.6, 2), respectively. These composites with stoichiometric components were fully characterized via proton nuclear magnetic resonance (1H NMR) spectroscopy, powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier-transform infrared (FT-IR) spectra, Brunauer-Emmett-Teller (BET), photo electrochemical measurements, and femtosecond transient absorption (fs-TA) spectroscopy. The structure, electronic property, and photoresponsive and catalytic ability as the functions of the molar ratio of linkers and the synthetic protocol were first investigated. The mixed-linker UiO-66-(SCH3)2-xh and UiO-66-(SOCH3)x(SCH3)2-x exhibited improved performances as compared to the UiO-66-(SCH3)2 and UiO-66-(SOCH3)2 possessing neat linkers only. Their photo response and catalytic activity varied with different linker ratios. For UiO-66-(SCH3)2-xh, the performance increased with the increasing linker BDC-(SOCH3)2 ratio upon oxidation but reached the highest as the BDC-(SOCH3)2 being of 24.4% in UiO-66-(SCH3)2-9h. In comparison, the best photocurrent (80.74 uA/cm-2) and the highest H2 generation rate (2018.8 μmol g-1 h-1) (λ > 400 nm) in UiO-66-(SCH3)2-9h are about twice those of UiO-66-(SOCH3)0.4(SCH3)1.6 obtained by direct synthesis, although the linker BDC-(SOCH3)2 ratio of those two composites is almost the same (24.4% vs 23.9%). Recorded shorter lifetime and higher charge separation efficiency of the former than those of the latter suggest the postsynthetic protocol as the efficient method for achieving the mixed-liner-MOF-based photocatalyst with high performance. A new type-II tailored homojunction is proposed in these mixed-linker MOFs for their efficient charge separation and improved activity.
Collapse
Affiliation(s)
- Teng-Fei Chen
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lin-Yang Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yi-Fan Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hui Gao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jing He
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guo Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xiang-Fu Meng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yi-Shi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yu-Heng Deng
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chong-Qing Wan
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
24
|
Zhao Y, Hao RH. Structural diversity and photoluminescent properties of two zinc coordination polymers based on 5-i-propoxyisophthalate and flexible N-donor ligands. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1793362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ying Zhao
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang, P. R. China
| | - Rui-Hua Hao
- College of Chemistry and Chemical Engineering, Henan Province Function-Oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang, P. R. China
| |
Collapse
|
25
|
Rajasree SS, Li X, Deria P. Physical properties of porphyrin-based crystalline metal‒organic frameworks. Commun Chem 2021; 4:47. [PMID: 36697594 PMCID: PMC9814740 DOI: 10.1038/s42004-021-00484-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/05/2021] [Indexed: 01/28/2023] Open
Abstract
Metal‒organic frameworks (MOFs) are widely studied molecular assemblies that have demonstrated promise for a range of potential applications. Given the unique and well-established photophysical and electrochemical properties of porphyrins, porphyrin-based MOFs are emerging as promising candidates for energy harvesting and conversion applications. Here we discuss the physical properties of porphyrin-based MOFs, highlighting the evolution of various optical and electronic features as a function of their modular framework structures and compositional variations.
Collapse
Affiliation(s)
- Sreehari Surendran Rajasree
- grid.411026.00000 0001 1090 2313Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL USA
| | - Xinlin Li
- grid.411026.00000 0001 1090 2313Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL USA
| | - Pravas Deria
- grid.411026.00000 0001 1090 2313Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL USA
| |
Collapse
|
26
|
Gupta G, Kim M, Lee J, Lee CY. Zinc‐based
Metal Organic Framework Derived From Anthracene and
BODIPY
Chromophores: Synthesis and Photophysical Properties. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12269] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Gajendra Gupta
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University Yeonsu‐gu, Incheon 22012 Republic of Korea
| | - Miyeon Kim
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University Yeonsu‐gu, Incheon 22012 Republic of Korea
| | - Junseong Lee
- Department of Chemistry Chonnam National University Gwangju 61186 Republic of Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering/Innovation Center for Chemical Engineering Incheon National University Yeonsu‐gu, Incheon 22012 Republic of Korea
| |
Collapse
|
27
|
Porphyrinic zirconium metal-organic frameworks: Synthesis and applications for adsorption/catalysis. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-020-0730-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Kinik FP, Ortega-Guerrero A, Ongari D, Ireland CP, Smit B. Pyrene-based metal organic frameworks: from synthesis to applications. Chem Soc Rev 2021; 50:3143-3177. [PMID: 33475661 DOI: 10.1039/d0cs00424c] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Pyrene is one of the most widely investigated aromatic hydrocarbons given to its unique optical and electronic properties. Hence, pyrene-based ligands have been attractive for the synthesis of metal-organic frameworks (MOFs) in the last few years. In this review, we will focus on the most important characteristics of pyrene, in addition to the development and synthesis of pyrene-based molecules as bridging ligands to be used in MOF structures. We will summarize the synthesis attempts, as well as the post-synthetic modifications of pyrene-based MOFs by the incorporation of metals or ligands in the structure. The discussion of promising results of such MOFs in several applications; including luminescence, photocatalysis, adsorption and separation, heterogeneous catalysis, electrochemical applications and bio-medical applications will be highlighted. Finally, some insights and future prospects will be given based on the studies discussed in the review. This review will pave the way for the researchers in the field for the design and development of novel pyrene-based structures and their utilization for different applications.
Collapse
Affiliation(s)
- F Pelin Kinik
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Andres Ortega-Guerrero
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Daniele Ongari
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Christopher P Ireland
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'Industrie 17, CH-1951 Sion, Valais, Switzerland.
| |
Collapse
|
29
|
Xu W, Sun Y, Meng X, Zhang W, Hou H. Tuning the photoelectric response of pyrene-based coordination polymers by optimizing charge transfer. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00004g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Three π–π stacked CPs were designed and synthesized for application of photoelectric response. The effect of charge transfer on the photoelectric properties is explored by adjusting the composition and π-stacking fashion of the CPs.
Collapse
Affiliation(s)
- Wenjuan Xu
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yupei Sun
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Xiangru Meng
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Wenjing Zhang
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Hongwei Hou
- The College of Chemistry
- Green Catalysis Centre
- Zhengzhou University
- Zhengzhou
- P.R. China
| |
Collapse
|
30
|
Jeoung S, Kim S, Kim M, Moon HR. Pore engineering of metal-organic frameworks with coordinating functionalities. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213377] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
31
|
Spectroscopic Evidence of Energy Transfer in BODIPY-Incorporated Nano-Porphyrinic Metal-Organic Frameworks. NANOMATERIALS 2020; 10:nano10101925. [PMID: 32993164 PMCID: PMC7601627 DOI: 10.3390/nano10101925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022]
Abstract
Metal–organic frameworks (MOFs) represent a class of solid-state hybrid compounds consisting of multitopic organic struts and metal-based nodes that are interconnected by coordination bonds, and they are ideal for light harvesting due to their highly ordered structure. These structures can be constructed with chromophore organic ligands structures for the purpose of efficient light harvesting. Here, we prepared porphyrin-based nano-scaled MOFs (nPCN-222) with BODIPY and I2BODIPY photosensitizers by incorporating BODIPY/I2BODIPY into nPCN-222 (nPCN-BDP/nPCN-I2BDP) and demonstrated resonance energy transfer from the donor (BODIPY/I2BODIPY) to the acceptor (nPCN-222) resulting in greatly enhanced fluorescence of nPCN-222, as visually manifested by time-resolved and space-resolved fluorescence imaging of the nano-scaled MOFs.
Collapse
|
32
|
di Nunzio MR, Caballero-Mancebo E, Cohen B, Douhal A. Photodynamical behaviour of MOFs and related composites: Relevance to emerging photon-based science and applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100355] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
33
|
Kim M, Oh JS, Kim BH, Kim AY, Park KC, Mun J, Gupta G, Lee CY. Enhanced Photocatalytic Performance of Nanosized Mixed-Ligand Metal–Organic Frameworks through Sequential Energy and Electron Transfer Process. Inorg Chem 2020; 59:12947-12953. [DOI: 10.1021/acs.inorgchem.0c02079] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Miyeon Kim
- Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| | - Jung Suk Oh
- Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| | - Byung Hoon Kim
- Department of Physics and Research Institute of Basic Science, Incheon National University, 12-1, Songdo-dong, Yeonsu-gu, Incheon 22012, Republic of Korea
| | - A. Yeong Kim
- Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| | - Kyoung Chul Park
- Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| | - Junyoung Mun
- Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
- Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| | - Gajendra Gupta
- Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
- Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| | - Chang Yeon Lee
- Department of Energy and Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
- Innovation Center for Chemical Engineering, Incheon National University, Yeonsu-gu, Incheon 22012, Korea
| |
Collapse
|
34
|
Jin Z, Zhu X, Wang N, Li Y, Ju H, Lei J. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angew Chem Int Ed Engl 2020; 59:10446-10450. [DOI: 10.1002/anie.202002713] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/18/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaorong Zhu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
35
|
Jin Z, Zhu X, Wang N, Li Y, Ju H, Lei J. Electroactive Metal–Organic Frameworks as Emitters for Self‐Enhanced Electrochemiluminescence in Aqueous Medium. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongchao Jin
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Xiaorong Zhu
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Ningning Wang
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yafei Li
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Jianping Lei
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
36
|
|
37
|
Gharaati S, Wang C, Förster C, Weigert F, Resch‐Genger U, Heinze K. Triplet-Triplet Annihilation Upconversion in a MOF with Acceptor-Filled Channels. Chemistry 2020; 26:1003-1007. [PMID: 31670422 PMCID: PMC7027809 DOI: 10.1002/chem.201904945] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Indexed: 01/10/2023]
Abstract
Photon upconversion has enjoyed increased interest in the last years due to its high potential for solar-energy harvesting and bioimaging. A challenge for triplet-triplet annihilation upconversion (TTA-UC) processes is to realize these features in solid materials without undesired phase segregation and detrimental dye aggregation. To achieve this, we combine a palladium porphyrin sensitizer and a 9,10-diphenylanthracene annihilator within a crystalline mesoporous metal-organic framework using an inverted design. In this modular TTA system, the framework walls constitute the fixed sensitizer, while caprylic acid coats the channels providing a solventlike environment for the mobile annihilator in the channels. The resulting solid material shows green-to-blue delayed upconverted emission with a luminescence lifetime of 373±5 μs, a threshold value of 329 mW cm-2 and a triplet-triplet energy transfer efficiency of 82 %. The versatile design allows straightforward changing of the acceptor amount and type.
Collapse
Affiliation(s)
- Shadab Gharaati
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Cui Wang
- Division BiophotonicsFederal Institute for, Materials Research and Testing (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
- Institut für Chemie und BiochemieFreie Universität BerlinArnimallee 2214195BerlinGermany
| | - Christoph Förster
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| | - Florian Weigert
- Division BiophotonicsFederal Institute for, Materials Research and Testing (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| | - Ute Resch‐Genger
- Division BiophotonicsFederal Institute for, Materials Research and Testing (BAM)Richard-Willstätter-Str. 1112489BerlinGermany
| | - Katja Heinze
- Institute of Inorganic Chemistry and Analytical ChemistryJohannes Gutenberg University MainzDuesbergweg 10–1455128MainzGermany
| |
Collapse
|
38
|
An Y, Liu Y, Bian H, Wang Z, Wang P, Zheng Z, Dai Y, Whangbo MH, Huang B. Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce 4+-coordinated bipyridinedicarboxylate ligands. Sci Bull (Beijing) 2019; 64:1502-1509. [PMID: 36659558 DOI: 10.1016/j.scib.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023]
Abstract
UiO-67 is a Zr-based metal-organic framework (MOF) containing an organic linker namely, the dianion of biphenyl-4,4'-dicarboxylic acid (bpdc). Ce4+ metal ions (0.02 Ce to Zr atom ratio) were incorporated into UiO-67 via partially replacing bpdc with the dianion of 2,2'-bipyridine-5,5'-dicarboxylic acid (bpydc); thus, the latter forms a bpydc-Ce complex. The resulting product (i.e., UiO-67-Ce) demonstrated a photocatalytic hydrogen evolution rate that was over 10 times higher than that of UiO-67. Through this modification, a new energy transfer channel is opened up. The energy transfer between the bpdc and bpydc-Ce ligands (i.e., from excited bpdc to bpydc-Ce) weakened the recombination of the charge carriers, which was confirmed by photoluminescence, emission lifetime, and transient absorption measurements. This study presents a new way to construct highly efficient MOF photocatalysts.
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Xi'an 710119, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Myung-Hwan Whangbo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences, Fuzhou 350002, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
39
|
Zhao Y, Wang YJ, Wang N, Zheng P, Fu HR, Han ML, Ma LF, Wang LY. Tetraphenylethylene-Decorated Metal–Organic Frameworks as Energy-Transfer Platform for the Detection of Nitro-Antibiotics and White-Light Emission. Inorg Chem 2019; 58:12700-12706. [DOI: 10.1021/acs.inorgchem.9b01588] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ying Zhao
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yan-Jiang Wang
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Ning Wang
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Peng Zheng
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Min-Le Han
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
| | - Lu-Fang Ma
- College of Chemistry and Chemical Engineering, Henan Province Function-oriented Porous Materials Key Laboratory, Luoyang Normal University, Luoyang 471934, P. R. China
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Li-Ya Wang
- Collaborative Innovation Center of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, Nanyang Normal University, Nanyang 473061, P. R. China
| |
Collapse
|
40
|
Oveisi AR, Karimi P, Delarami HS, Daliran S, Khorramabadi-Zad A, Khajeh M, Sanchooli E, Ghaffari-Moghaddam M. New porphyrins: synthesis, characterization, and computational studies. Mol Divers 2019; 24:335-344. [PMID: 31062142 DOI: 10.1007/s11030-019-09955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
New trans-A2B2-porphyrins substituted at phenyl positions were synthesized from 4-methylphthalic acid as a starting material through sequential multistep reactions. These macrocycles were characterized by 1H NMR, 13C NMR, 19F NMR, 1H-1H COSY NMR, and MALDI-TOF mass spectrometry. Computational studies were performed on the porphyrins to investigate various factors such as structural features, electronic energy, energy gaps, and aromaticity. Energy band gap values of these compounds especially N-hydroxyphthalimide-functionalized porphyrins were small that makes them as good candidates for solar cell systems and photocatalysis. Relationships between electronic energies and aromaticity of the compounds were then investigated. The data indicated that the aromaticity features at the center of two series of these compounds (fluorinated and non-fluorinated porphyrins) were in the opposite manner.
Collapse
Affiliation(s)
- Ali Reza Oveisi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Pouya Karimi
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | | - Saba Daliran
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, 6517838695, Iran
| | | | - Mostafa Khajeh
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Esmael Sanchooli
- Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | | |
Collapse
|
41
|
Adams M, Kozlowska M, Baroni N, Oldenburg M, Ma R, Busko D, Turshatov A, Emandi G, Senge MO, Haldar R, Wöll C, Nienhaus GU, Richards BS, Howard IA. Highly Efficient One-Dimensional Triplet Exciton Transport in a Palladium-Porphyrin-Based Surface-Anchored Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15688-15697. [PMID: 30938507 DOI: 10.1021/acsami.9b03079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Efficient photon-harvesting materials require easy-to-deposit materials exhibiting good absorption and excited-state transport properties. We demonstrate an organic thin-film material system, a palladium-porphyrin-based surface-anchored metal-organic framework (SURMOF) thin film that meets these requirements. Systematic investigations using transient absorption spectroscopy confirm that triplets are very mobile within single crystalline domains; a detailed analysis reveals a triplet transfer rate on the order of 1010 s-1. The crystalline nature of the SURMOFs also allows a thorough theoretical analysis using the density functional theory. The theoretical results reveal that the intermolecular exciton transfer can be described by a Dexter electron exchange mechanism that is considerably enhanced by virtual charge-transfer exciton intermediates. On the basis of the photophysical results, we predict exciton diffusion lengths on the order of several micrometers in perfectly ordered, single-crystalline SURMOFs. In the presently available samples, strong interactions of excitons with domain boundaries present in these metal-organic thin films limit the diffusion length to the diameter of these two-dimensional grains, which amount to about 100 nm. Our results demonstrate high potential of SURMOFs for light-harvesting applications.
Collapse
Affiliation(s)
| | | | | | | | - Rui Ma
- Institute of Applied Physics , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | | | | | - Ganapathi Emandi
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin , The University of Dublin , 152-160 Pearse Street , 2 Dublin , Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin , The University of Dublin , 152-160 Pearse Street , 2 Dublin , Ireland
| | | | | | - G Ulrich Nienhaus
- Institute of Applied Physics , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
- Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , 61801 Illinois , United States
| | - Bryce S Richards
- Light Technology Institute , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| | - Ian A Howard
- Light Technology Institute , Karlsruhe Institute of Technology , Wolfgang-Gaede-Straße 1 , 76131 Karlsruhe , Germany
| |
Collapse
|
42
|
Huang L, Kakadiaris E, Vaneckova T, Huang K, Vaculovicova M, Han G. Designing next generation of photon upconversion: Recent advances in organic triplet-triplet annihilation upconversion nanoparticles. Biomaterials 2019; 201:77-86. [PMID: 30802685 PMCID: PMC6467534 DOI: 10.1016/j.biomaterials.2019.02.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 11/23/2022]
Abstract
Organic triplet-triplet annihilation upconversion (TTA-UC) nanoparticles have emerged as exciting therapeutic agents and imaging probes in recent years due to their unique chemical and optical properties such as outstanding biocompatibility and low power excitation density. In this review, we focus on the latest breakthroughs in such new version of upconversion nanoparticle, including their design, preparation, and applications. First, we will discuss the key principles and design concept of these organic-based photon upconversion in regard to the methods of selection of the related triplet TTA dye pairs (photosensitizer and emitter). Then, we will discuss the recent approaches s to construct TTA-UCNPs including silica TTA-UCNPs, lipid-coated TTA-UCNPs, polymer encapsulated TTA-UCNPs, nano-droplet TTA-UCNPs and metal-organic frameworks (MOFs) constructed TTA-UCNPs. In addition, the applications of TTA-UCNPs will be discussed. Finally, we will discuss the challenges posed by current TTA-UCNP development.
Collapse
Affiliation(s)
- Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Eugenia Kakadiaris
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Tereza Vaneckova
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States; Department of Chemistry and Biochemistry Mendel University in Brno, Brno, 61300, Czech Republic
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry Mendel University in Brno, Brno, 61300, Czech Republic
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, United States.
| |
Collapse
|
43
|
Yang Y, Ishida M, Yasutake Y, Fukatsu S, Fukakusa C, Morikawa MA, Yamada T, Kimizuka N, Furuta H. Hierarchical Hybrid Metal-Organic Frameworks: Tuning the Visible/Near-Infrared Optical Properties by a Combination of Porphyrin and Its Isomer Units. Inorg Chem 2019; 58:4647-4656. [PMID: 30875205 DOI: 10.1021/acs.inorgchem.9b00251] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hybrid metal-organic frameworks (MOFs) with core/shell-like hierarchical structure comprised of zirconium metal and porphyrin (e.g., TPP) and its isomer, N-confused porphyrin (NCP), were synthesized through a seed-mediated reaction. The hierarchical structures of hybrid MOFs were characterized by the microscopic image analyses (e.g., scanning electron microscope (SEM), energy dispersive X-ray (EDX) spectrometry, and confocal laser scanning microscope (CLSM)). Taking advantage of the intrinsic light-harvesting properties of the porphyrin dye and the N-confused isomer, changing the core/shell layer structures of hybrid MOFs allows for tuning of the visible-to-near-infrared (NIR) absorption/emission characters, excited-state energy migrations, and photosensitization capabilities. The Förster energy transfer event occurring in the bulk MOF samples by photoexcitation enabled us to control the photoinduced singlet oxygen generation through the comprehensive light-harvesting ability of these hybrid porphyrinic MOFs. Therefore, implementation of a precisely designed porphyrin "substitute" into the MOF-based materials indeed provides a new mimic of the photosynthetic pigment system and should be potentially applicable for solar-light-driven devices.
Collapse
Affiliation(s)
- Yufeng Yang
- Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems , Kyushu University , Fukuoka 819-0395 , Japan
| | - Masatoshi Ishida
- Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems , Kyushu University , Fukuoka 819-0395 , Japan
| | - Yuhsuke Yasutake
- Graduate School of Arts and Sciences , The University of Tokyo , Tokyo 153-8902 , Japan
| | - Susumu Fukatsu
- Graduate School of Arts and Sciences , The University of Tokyo , Tokyo 153-8902 , Japan
| | - Chihoko Fukakusa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems , Kyushu University , Fukuoka 819-0395 , Japan
| | - Masa-Aki Morikawa
- Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems , Kyushu University , Fukuoka 819-0395 , Japan
| | - Teppei Yamada
- Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems , Kyushu University , Fukuoka 819-0395 , Japan
| | - Nobuo Kimizuka
- Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems , Kyushu University , Fukuoka 819-0395 , Japan
| | - Hiroyuki Furuta
- Department of Chemistry and Biochemistry, Graduate School of Engineering, and Center for Molecular Systems , Kyushu University , Fukuoka 819-0395 , Japan
| |
Collapse
|
44
|
Zhao X, Zhang Z, Cai X, Ding B, Sun C, Liu G, Hu C, Shao S, Pang M. Postsynthetic Ligand Exchange of Metal-Organic Framework for Photodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7884-7892. [PMID: 30698413 DOI: 10.1021/acsami.9b00740] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Attributed to the large pore size and excellent stability, the metal-organic framework (MOF), NU-1000, which is formed by the coordination of Zr cluster and 1,3,6,8-tetrakis( p-benzoic acid)pyrene (H4TBAPy) ligand, has been widely studied in the catalysis research field; however, only a few reports about the biomedical application of NU-1000 could be found in the open literature. In this study, a functional ligand, tetrakis(4-carboxyphenyl)porphyrin (TCPP), was introduced into NU-1000 via a postsynthetic ligand exchange method and the resulting mixed ligand MOF has an excellent photodynamic effect. Finally, in vitro and in vivo assessment about the antitumor efficacy was investigated for the first time. It demonstrates the feasibility of TCPP-substituted NU-1000 to be used for photodynamic therapy and also provides an alternative approach to enrich the function of MOF for various applications via a postsynthetic method.
Collapse
Affiliation(s)
- Xueyan Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Changchun University of Science and Technology , Changchun 130022 , P. R. China
| | - Zhixiang Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Xuechao Cai
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Chunqiang Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Guofeng Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| | - Chunling Hu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Shuai Shao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
- Changchun University of Science and Technology , Changchun 130022 , P. R. China
| | - Maolin Pang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry , Chinese Academy of Sciences , Changchun 130022 , P. R. China
| |
Collapse
|
45
|
Kim J, Oh JS, Park KC, Gupta G, Yeon Lee C. Colorimetric detection of heavy metal ions in water via metal-organic framework. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Dolgopolova EA, Rice AM, Martin CR, Shustova NB. Photochemistry and photophysics of MOFs: steps towards MOF-based sensing enhancements. Chem Soc Rev 2018; 47:4710-4728. [DOI: 10.1039/c7cs00861a] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In combination with porosity and tunability, light harvesting, energy transfer, and photocatalysis, are facets crucial for engineering of MOF-based sensors.
Collapse
Affiliation(s)
| | - Allison M. Rice
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Corey R. Martin
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - Natalia B. Shustova
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| |
Collapse
|
47
|
Zhang T, Wang P, Gao Z, An Y, He C, Duan C. Pyrene-based metal–organic framework NU-1000 photocatalysed atom-transfer radical addition for iodoperfluoroalkylation and (Z)-selective perfluoroalkylation of olefins by visible-light irradiation. RSC Adv 2018; 8:32610-32620. [PMID: 35547715 PMCID: PMC9086246 DOI: 10.1039/c8ra06181e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/17/2018] [Indexed: 01/08/2023] Open
Abstract
Iodoperfluoroalkylation or (Z)-selective perfluoroalkylation of olefins is mediated through energy transfer processes by using pyrene-based MOF NU-1000 under visible-light irradiation.
Collapse
Affiliation(s)
- Tiexin Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Pengfang Wang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Zirui Gao
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Yang An
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Cheng He
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- China
- Collaborative Innovation Center of Chemical Science and Engineering
| |
Collapse
|