1
|
Li S, Zhao Z, Wang J, Xie L, Pan M, Wu F, Hu Y, Liu J, Zeng H. Molecular Interaction Mechanisms Between Lubricant-Infused Slippery Surfaces and Mussel-Inspired Polydopamine Adhesive and DOPA Moiety. Macromol Rapid Commun 2024; 45:e2400276. [PMID: 39031940 DOI: 10.1002/marc.202400276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/29/2024] [Indexed: 07/22/2024]
Abstract
Lubricant-infused slippery surfaces have recently emerged as promising antifouling coatings, showing potential against proteins, cells, and marine mussels. However, a comprehensive understanding of the molecular binding behaviors and interaction strength of foulants to these surfaces is lacking. In this work, mussel-inspired chemistry based on catechol-containing chemicals including 3,4-dihydroxyphenylalanine (DOPA) and polydopamine (PDA) is employed to investigate the antifouling performance and repellence mechanisms of fluorinated-based slippery surface, and the correlated interaction mechanisms are probed using atomic force microscopy (AFM). Intermolecular force measurements and deposition experiments between PDA and the surface reveal the ability of lubricant film to inhibit the contact of PDA particles with the substrate. Moreover, the binding mechanisms and bond dissociation energy between a single DOPA moiety and the lubricant-infused slippery surface are quantitatively investigated employing single-molecule force spectroscopy based on AFM (SM-AFM), which reveal that the infused lubricant layer can remarkably influence the dissociation forces and weaken the binding strength between DOPA and underneath per-fluorinated monolayer surface. This work provides new nanomechanical insights into the fundamental antifouling mechanisms of the lubricant-infused slippery surfaces against mussel-derived adhesive chemicals, with important implications for the design of lubricant-infused materials and other novel antifouling platforms for various bioengineering and engineering applications.
Collapse
Affiliation(s)
- Sijia Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jingyi Wang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan, 610500, P. R. China
| | - Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, P. R. China
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Feiyi Wu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Ying Hu
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan, 030024, P. R. China
| | - Jifang Liu
- Cancer Center, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510700, P. R. China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| |
Collapse
|
2
|
Chen Y, Shi T, Li L, Hong R, Lai J, Huang T, Xu R, Zhao Q, Chen X, Dai L, Zhou Y, Liu W, Lin J. Tannic acid and quaternized chitosan mediated puerarin-loaded octacalcium phosphate /sodium alginate scaffold for bone tissue engineering. Int J Biol Macromol 2024; 271:132632. [PMID: 38797298 DOI: 10.1016/j.ijbiomac.2024.132632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Current limitations in mechanical performance and foreign body reactions (FBR) often lead to implant failure, restricting the application of bioceramic scaffolds. This study presents a novel 3D-printed scaffold that combines the release of anti-inflammatory drugs with osteogenic stimulation. Initially, the inorganic and organic phases were integrated to ensure the scaffold's mechanical integrity through catechol chemistry and the electrostatic interactions between tannic acid and quaternary ammonium chitosan. Subsequently, layers of polydopamine-encapsulated puerarin-loaded zeolitic imidazolate framework-8 (ZIF-8) were self-assembled onto the stent's surface, creating the drug-loaded scaffold that improved drug release without altering the scaffold's structure. Compared with unloaded scaffolds, the puerarin-loaded scaffold demonstrated excellent osteogenic differentiation properties along with superior anti-inflammatory and osteogenic effects in a range of in vitro and in vivo studies. RNA sequencing clarified the role of the TNF and NF/κB signaling pathways in these effects, further supporting the scaffold's osteogenic potential. This study introduces a novel approach for creating drug-loaded scaffolds, providing a unique method for treating cancellous bone defects.
Collapse
Affiliation(s)
- Yan Chen
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Tengbin Shi
- Orthopedics Department, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lan Li
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ruchen Hong
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Jun Lai
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Tingting Huang
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Rui Xu
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qing Zhao
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Xiaolong Chen
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Lijun Dai
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Yuan Zhou
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Wenge Liu
- Orthopedics Department, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Jinxin Lin
- Key Laboratory of Optoelectronic Materials Chemical and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
| |
Collapse
|
3
|
Chen J, Peng Q, Liu J, Zeng H. Mussel-Inspired Cation-π Interactions: Wet Adhesion and Biomimetic Materials. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17600-17610. [PMID: 38039395 DOI: 10.1021/acs.langmuir.3c02818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Cation-π interaction is one of the most important noncovalent interactions identified in biosystems, which has been proven to play an essential role in the strong adhesion of marine mussels. In addition to the well-known catecholic amino acid, l-3,4-dihydroxyphenylalanine, mussel foot proteins are rich in various aromatic moieties (e.g., tyrosine, phenylalanine, and tryptophan) and cationic residues (e.g., lysine, arginine, and histidine), which favor a series of short-range cation-π interactions with adjustable strengths, serving as a prototype for the development of high-performance underwater adhesives. This work highlights our recent advances in understanding and utilizing cation-π interactions in underwater adhesives, focusing on three aspects: (1) the investigation of the cation-π interaction mechanisms in mussel foot proteins via force-measuring techniques; (2) the modulation of cation-π interactions in mussel mimetic polymers with the variation of cations, anions, and aromatic groups; (3) the design of wet adhesives based on these revealed principles, leading to functional materials in the form of films, coacervates, and hydrogels with biomedical and engineering applications. This review provides valuable insights into the development and optimization of smart materials based on cation-π interactions.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jifang Liu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
4
|
Zhou C, Bai J, Zhang F, Zhang R, Zhang X, Zhong K, Yan B. Development of mussel-inspired chitosan-derived edible coating for fruit preservation. Carbohydr Polym 2023; 321:121293. [PMID: 37739502 DOI: 10.1016/j.carbpol.2023.121293] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
Fruit rotting at the postharvest stage severely limits their marketing supply chains and shelf-life. Thus, developing a green and cost-effective approach to extend the shelf-life of perishable foods is highly desired. In this study, inspired by the mussel-adhesion strategy, a multifunctional fruit coating material has been developed using a quaternized catechol-functionalized chitosan (CQ-CS) grafted with 2, 3-epoxypropyl trimethyl ammonium chloride and 3, 4-dihydroxy benzaldehyde. The as-prepared CQ-CS coating exhibited excellent mechanical properties, universal surface adhesion abilities, antimicrobial and antioxidant capacities without any potential toxicity effects. Using strawberry and banana as model fruits, we showed that the CQ-CS coating could effectively maintain the fruit's firmness and color, decrease the weight loss rate, and prevent microbial growth, thus finally extending their shelf- life when compared to uncoated samples, indicating the universal application of the as-prepared CQ-CS coating. These findings demonstrated that this novel conformal coating of CQ-CS has great potential for fruit preservation in the food industry.
Collapse
Affiliation(s)
- Chaomei Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinrong Bai
- Molecular Toxicology Key Laboratory of Sichuan Provincial Education office, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Fantao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang 330022, China
| | - Rongya Zhang
- Technology Center, China Tobacco Sichuan Industrial Co. Ltd., Chengdu 610066, China
| | - Xiaolei Zhang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610225, China
| | - Kai Zhong
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Zhao Z, Pan M, Yang W, Huang C, Qiao C, Yang H, Wang J, Wang X, Liu J, Zeng H. Bioinspired engineered proteins enable universal anchoring strategy for surface functionalization. J Colloid Interface Sci 2023; 650:1525-1535. [PMID: 37487283 DOI: 10.1016/j.jcis.2023.07.108] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
HYPOTHESIS Conventional coating strategies and materials for bio-applications with protective, diagnostic, and therapeutic functions are commonly limited by their arduous preparation processes and lack of on-demand functionalities. Herein, inspired by the 'root-leaf' structure of grass, a series of novel polyacrylate-conjugated proteins can be engineered with sticky bovine serum albumin (BSA) protein as a 'root' anchoring layer and a multifunctional polyacrylate as a 'leaf' functional layer for the facile coating procedure and versatile surface functionalities. EXPERIMENTS The engineered proteins were synthesized based on click chemistry, where the 'root' layer can universally anchor onto both organic and inorganic substrates through a facile dip/spraying method with excellent stability in harsh solution conditions, thanks to its multiple adaptive molecular interactions with substrates that further elucidated by molecular force measurements between the 'root' BSA protein and substrates. The 'leaf' conjugated-polyacrylates imparted coatings with versatile on-demand functionalities, such as resistance to over 99% biofouling in complex biofluids, pH-responsive performance, and robust adhesion with various nanomaterials. FINDINGS By synergistically leveraging the universal anchoring capabilities of BSA with the versatile physicochemical properties of polyacrylates, this study introduces a promising and facile strategy for imparting novel functionalities to a myriad of surfaces through engineering natural proteins and biomaterials for biotechnical and nanotechnical applications.
Collapse
Affiliation(s)
- Ziqian Zhao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenshuai Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Charley Huang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Chenyu Qiao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Haoyu Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jianmei Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiaogang Wang
- Heavy Machinery Engineering Research Center of Education Ministry, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Jifang Liu
- The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510700, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
6
|
Lamberty ZD, Tran NT, van Engers CD, Karnal P, Knorr DB, Frechette J. Cooperative Tridentate Hydrogen-Bonding Interactions Enable Strong Underwater Adhesion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450657 PMCID: PMC10375471 DOI: 10.1021/acsami.3c06545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Multidentate hydrogen-bonding interactions are a promising strategy to improve underwater adhesion. Molecular and macroscale experiments have revealed an increase in underwater adhesion by incorporating multidentate H-bonding groups, but quantitatively relating the macroscale adhesive strength to cooperative hydrogen-bonding interactions remains challenging. Here, we investigate whether tridentate alcohol moieties incorporated in a model epoxy act cooperatively to enhance adhesion. We first demonstrate that incorporation of tridentate alcohol moieties leads to comparable adhesive strength with mica and aluminum in air and in water. We then show that the presence of tridentate groups leads to energy release rates that increase with an increase in crack velocity in air and in water, while materials lacking these groups do not display rate-dependent adhesion. We model the rate-dependent adhesion to estimate the activation energy of the interfacial bonds. Based on our data, we estimate the lifetime of these bonds to be between 2 ms and 6 s, corresponding to an equilibrium activation energy between 23kBT and 31kBT. These values are consistent with tridentate hydrogen bonding, suggesting that the three alcohol groups in the Tris moiety bond cooperatively form a robust adhesive interaction underwater.
Collapse
Affiliation(s)
- Zachary D Lamberty
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| | - Ngon T Tran
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Christian D van Engers
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Preetika Karnal
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton Street, Building 205, Bethlehem, Pennsylvania 18015, United States
| | - Daniel B Knorr
- DEVCOM U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, Berkeley, California 94760, United States
| |
Collapse
|
7
|
Chen J, Zeng H. Designing Bio-Inspired Wet Adhesives through Tunable Molecular Interactions. J Colloid Interface Sci 2023; 645:591-606. [PMID: 37167909 DOI: 10.1016/j.jcis.2023.04.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023]
Abstract
Marine organisms, such as mussels and sandcastle worms, can master rapid and robust adhesion in turbulent seawater, becoming leading archetypes for the design of underwater adhesives. The adhesive proteins secreted by the organisms are rich in catecholic amino acids along with ionic and amphiphilic moieties, which mediate the adaptive adhesion mainly through catechol chemistry and coacervation process. Catechol allows a broad range of molecular interactions both at the adhesive-substrate interface and within the adhesive matrix, while coacervation promotes the delivery and surface spreading of the adhesive proteins. These natural design principles have been translated to synthetic systems toward the development of biomimetic adhesives with water-resist adhesion and cohesion. This review provides an overview of the recent progress in bio-inspired wet adhesives, focusing on two aspects: (1) the elucidation of the versatile molecular interactions (e.g., electrostatic interactions, metal coordination, hydrogen bonding, and cation-π/anion-π interactions) used by natural adhesives, mainly through nanomechanical characterizations; and (2) the rational designs of wet adhesives based on these biomimetic strategies, which involve catechol-functionalized, coacervation-induced, and hydrogen bond-based approaches. The emerging applications (e.g., tissue glues, surgical implants, electrode binders) of the developed biomimetic adhesives in biomedical, energy, and environmental fields are also discussed, with future research directions proposed.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada.
| |
Collapse
|
8
|
Chang H, Adibnia V, Qi W, Su R, Banquy X. Ternary Synergy of Lys, Dopa, and Phe Results in Strong Cohesion of Peptide Films. ACS APPLIED BIO MATERIALS 2023; 6:865-873. [PMID: 36625035 DOI: 10.1021/acsabm.2c01009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synergistic interactions between 3,4-dihydroxyphenylalanine (Dopa, Y*), cationic residues, and the aromatic rings have been recently highlighted as influential factors that enhance the underwater adhesion strength of mussel foot proteins and their derivatives. In this study, we report the first ever evidence of a cation-catechol-benzene ternary synergy between Y*, lysine (Lys, K), and phenylalanine (Phe, F) in adhesive peptides. We synthesized three hexapeptides containing a different combination of Y*, K, and F, i.e., (KY*)3, (KF)3, and (KY*F)2, respectively, exploring the relationship between the cohesive performance and molecular architecture of peptides. The peptide with the (KY*F)2 sequence displays the strongest underwater cohesion energy of 10.3 ± 0.3 mJ m-2 from direct nanoscale surface force measurements. Combined with molecular dynamics simulation, we demonstrated that there are more bonding interactions (including cation-π, π-π, and hydrogen bond interactions) in (KY*F)2 compared to the other two peptides. In addition, peptide (KY*F)2 still shows the strongest cohesive energies of 7.6 ± 0.7 and 3.7 ± 0.5 mJ m-2 in acidic and high-ionic strength environments, respectively, although the cohesive energy decreases compared to the value in pure water. Our results further explain the underwater cohesion mechanisms combining multiple interactions and offer insights on designing Dopa containing underwater adhesives.
Collapse
Affiliation(s)
- Heng Chang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada
| | - Vahid Adibnia
- School of Biomedical Engineering, Dalhousie University, Halifax, Nova Scotia B3J 1B6, Canada.,Department of Applied Oral Sciences, Dalhousie University, Halifax, Nova Scotia B3J 1B6, Canada
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.,School of Marine Science and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Québec H3C 3J7, Canada.,Department of Chemistry, Faculty of Art and Science, Université de Montréal, Montreal, Québec H3C 3J7, Canada.,Institute of Biomedical Engineering Faculty of Medicine, Université de Montréal, Montreal, Québec H3C 3J7, Canada
| |
Collapse
|
9
|
Ban W, Yang Q, Huang W, Li X, Wang Z, Chen S, Xiang L, Yan B. Mussel-Inspired Catechol-Grafted Quaternized Chitosan Flocculant for Efficiently Treating Suspended Particles and Refractory Soluble Organic Pollutants. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Wenzheng Ban
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Qin Yang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Wenhuan Huang
- Chunliang Oil Production Plant of Shengli Oilfield, Sinopec, Binzhou City, Shandong256504, China
| | - Xingliang Li
- Gansu Tobacco Industry Co., Ltd, Lanzhou730050, China
| | - Zhicai Wang
- Gansu Tobacco Industry Co., Ltd, Lanzhou730050, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Li Xiang
- Jiangsu Key Laboratory for Design & Manufacture of Micro/Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing211189, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| |
Collapse
|
10
|
Chen J, Peng Q, Peng X, Zhang H, Zeng H. Probing and Manipulating Noncovalent Interactions in Functional Polymeric Systems. Chem Rev 2022; 122:14594-14678. [PMID: 36054924 DOI: 10.1021/acs.chemrev.2c00215] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Noncovalent interactions, which usually feature tunable strength, reversibility, and environmental adaptability, have been recognized as driving forces in a variety of biological and chemical processes, contributing to the recognition between molecules, the formation of molecule clusters, and the establishment of complex structures of macromolecules. The marriage of noncovalent interactions and conventional covalent polymers offers the systems novel mechanical, physicochemical, and biological properties, which are highly dependent on the binding mechanisms of the noncovalent interactions that can be illuminated via quantification. This review systematically discusses the nanomechanical characterization of typical noncovalent interactions in polymeric systems, mainly through direct force measurements at microscopic, nanoscopic, and molecular levels, which provide quantitative information (e.g., ranges, strengths, and dynamics) on the binding behaviors. The fundamental understandings of intermolecular and interfacial interactions are then correlated to the macroscopic performances of a series of noncovalently bonded polymers, whose functions (e.g., stimuli-responsiveness, self-healing capacity, universal adhesiveness) can be customized through the manipulation of the noncovalent interactions, providing insights into the rational design of advanced materials with applications in biomedical, energy, environmental, and other engineering fields.
Collapse
Affiliation(s)
- Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiongyao Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuwen Peng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
11
|
Lallemang M, Yu L, Cai W, Rischka K, Hartwig A, Haag R, Hugel T, Balzer BN. Multivalent non-covalent interactions lead to strongest polymer adhesion. NANOSCALE 2022; 14:3768-3776. [PMID: 35171194 DOI: 10.1039/d1nr08338d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multivalent interactions play a leading role in biological processes such as the inhibition of inflammation or virus internalization. The multivalent interactions show enhanced strength and better selectivity compared to monovalent interactions, but they are much less understood due to their complexity. Here, we detect molecular interactions in the range of a few piconewtons to several nanonewtons and correlate them with the formation and subsequent breaking of one or several bonds and assign these bonds. This becomes possible by performing atomic force microcopy (AFM)-based single molecule force spectroscopy of a multifunctional polymer covalently attached to an AFM cantilever tip on a substrate bound polymer layer of the multifunctional polymer. Varying the pH value and the crosslinking state of the polymer layer, we find that bonds of intermediate strength (non-covalent), like coordination bonds, give the highest multivalent bond strength, even outperforming strong (covalent) bonds. At the same time, covalent bonds enhance the polymer layer density, increasing in particular the number of non-covalent bonds. In summary, we can show that the key for the design of stable and durable polymer coatings is to provide a variety of multivalent interactions and to keep the number of non-covalent interactions at a high level.
Collapse
Affiliation(s)
- Max Lallemang
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takusstraße 3, 14195 Berlin, Germany
| | - Wanhao Cai
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
| | - Klaus Rischka
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
| | - Andreas Hartwig
- Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Straße 12, 28359 Bremen, Germany
- University of Bremen, Department 2 Biology/Chemistry, Leobener Straße 3, 28359 Bremen, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takusstraße 3, 14195 Berlin, Germany
| | - Thorsten Hugel
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bizan N Balzer
- Institute of Physical Chemistry, University of Freiburg, Albertstraße 21, 79104 Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Freiburg Materials Research Center (FMF), Albert Ludwig University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
12
|
Facile and scalable surface functionalization approach with small silane molecules for oil/water separation and demulsification of surfactant/asphaltenes-stabilized emulsions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Yan B, Lv Z, Chen S, Xiang L, Gong L, Xiang J, Fan H, Zeng H. Probing Anion - π interactions between fluoroarene and carboxylate anion in aqueous solutions. J Colloid Interface Sci 2022; 615:778-785. [PMID: 35176544 DOI: 10.1016/j.jcis.2022.01.184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/11/2022] [Accepted: 01/29/2022] [Indexed: 12/19/2022]
Abstract
Despite the much progress in developing π-conjugated fluoroarene moieties based functional materials in which anion - π interactions are commonly involved, it remains challenging to quantitatively characterize the nanomechanical interaction mechanism of these anion - π systems, particularly in aqueous solutions. In this study, we reported the first experimental quantification of the nanomechanics of anion - π interactions between π-conjugated fluoroarene moieties and carboxylate anions in aqueous solutions through direct molecular force measurements, with a special focus on the impact of the anion species, concentration and of the substitution effect of aromatic side group. The results using surface forces apparatus (SFA) and single-molecule force spectroscopy (SMFS) provide complementary evidences to demonstrate that the robust and reversible adhesion measured between the fluoroarene π systems and carboxylate anions was mainly attributed to anion - π interaction. Moreover, their nanomechanical properties were also systematically scrutinized, with the interaction strength being found to be significantly determined by the contact time, the type of fluoroarene systems (PFST > DFST) and the type of anions and ion concentration (HPO42- > CO32- > I- > Cl- ≈ NO3- > F-).
Collapse
Affiliation(s)
- Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zezhong Lv
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Sheng Chen
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Xiang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jun Xiang
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.
| | - Haojun Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
| |
Collapse
|
14
|
Degen GD, Delparastan P, Tiu BDB, Messersmith PB. Surface Force Measurements of Mussel-Inspired Pressure-Sensitive Adhesives. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6212-6220. [PMID: 35050591 DOI: 10.1021/acsami.1c22295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Translating fundamental studies of marine mussel adhesion into practical mussel-inspired wet adhesives remains an important technological challenge. To adhere, mussels secrete adhesive proteins rich in the catecholic amino acid 3,4-dihydroxyphenylalanine (Dopa) and positively charged lysine. Consequently, numerous synthetic adhesives incorporating catecholic and cationic functionalities have been designed. However, despite widespread research, uncertainties remain about the optimal design of synthetic mussel-inspired adhesives. Here, we present a study of the adhesion of mussel-inspired pressure-sensitive adhesives. We explore the effects of catechol content, molecular architecture, and solvent quality on pressure-sensitive adhesive (PSA) adhesion and cohesion measured in a surface forces apparatus. Our findings demonstrate that the influence of catechol content depends on the choice of solvent and that adhesive performance is dictated by film composition rather than molecular architecture. Our results also highlight the importance of electrostatic and hydrophobic interactions for adhesion and cohesion in aqueous environments. Together, our findings contribute to an improved understanding of the interplay between materials chemistry, environmental conditions, and adhesive performance to facilitate the design of bioinspired wet adhesives.
Collapse
Affiliation(s)
- George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | | | | | - Phillip B Messersmith
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Degen GD, Cunha KC, Levine ZA, Waite JH, Shea JE. Molecular Context of Dopa Influences Adhesion of Mussel-Inspired Peptides. J Phys Chem B 2021; 125:9999-10008. [PMID: 34459591 DOI: 10.1021/acs.jpcb.1c05218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Improving adhesives for wet surfaces is an ongoing challenge. While the adhesive proteins of marine mussels have inspired many synthetic wet adhesives, the mechanisms of mussel adhesion are still not fully understood. Using surface forces apparatus (SFA) measurements and replica-exchange and umbrella-sampling molecular dynamics simulations, we probed the relationships between the sequence, structure, and adhesion of mussel-inspired peptides. Experimental and computational results reveal that peptides derived from mussel foot protein 3 slow (mfp-3s) containing 3,4-dihydroxyphenylalanine (Dopa), a post-translationally modified variant of tyrosine commonly found in mussel foot proteins, form adhesive monolayers on mica. In contrast, peptides with tyrosine adsorb as weakly adhesive clusters. We further considered simulations of mfp-3s derivatives on a range of hydrophobic and hydrophilic organic and inorganic surfaces (including silica, self-assembled monolayers, and a lipid bilayer) and demonstrated that the chemical character of the target surface and proximity of cationic and hydrophobic residues to Dopa affect peptide adsorption and adhesion. Collectively, our results suggest that conversion of tyrosine to Dopa in hydrophobic, sparsely charged peptides influences peptide self-association and ultimately dictates their adhesive performance.
Collapse
Affiliation(s)
- George D Degen
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Keila C Cunha
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Zachary A Levine
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510, United States
| | - J Herbert Waite
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Marine Science Institute, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Joan-Emma Shea
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States.,Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
16
|
Wu M, Peng QY, Han LB, Zeng HB. Self-healing Hydrogels and Underlying Reversible Intermolecular Interactions. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2631-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Wan J, Huang J, Yu H, Liu L, Shi Y, Liu C. Fabrication of self-assembled 0D-2D Bi 2MoO 6-g-C 3N 4 photocatalytic composite membrane based on PDA intermediate coating with visible light self-cleaning performance. J Colloid Interface Sci 2021; 601:229-241. [PMID: 34082228 DOI: 10.1016/j.jcis.2021.05.038] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 11/29/2022]
Abstract
A Self-cleaning surface can efficaciously solve the problem of irreversible contamination buildup on filtration membranes. Photocatalytic membranes were fabricated via vacuum assisted layer-by-layer (LBL) self-assembly of 0D-2D Bi2MoO6-g-C3N4 on a PDA coated thin-film composite PVDF substrate by Schiff base reaction. The rejection rate of the simulated polysaccharide was more than 90%, and that of the simulated protein was more than 80%. The combination of the membrane and the photocatalyst promoted the degradation of tetracycline hydrochloride by the composite membrane to 67.85% when original membranes had minor effect. Under visible light, reversible radiation pollutants (Rr) gradually replaced irreversible pollutants (Rir) as the main pollutants. The flux recovery ratio (FRR) of 0D-2D Bi2MoO6-g-C3N4/PVDF membrane was 85% after being irradiated with visible light for 30 min. The flux recovery rate of contaminated photocatalytic membrane remained 75%, and the rejection was maintained in a stable range after four cycles of the cleaning operation under visible light. The results indicated that the excellent photocatalytic performance of 0D-2D Bi2MoO6-g-C3N4 photocatalysis material and the increase of multi-dimensional functional layer morphology on pollutant contact area improved the mechanical stability, interception performance and self-cleaning performance of the composite membrane. This work not only builds a new type of composite coating membranes, but also help us to further understand the relationship between the dimensions of photocatalytic materials and the improvement of photocatalytic membrane performance.
Collapse
Affiliation(s)
- Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, PR China
| | - Jinhui Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, PR China.
| | - Hanbo Yu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, PR China
| | - Lishuo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, PR China
| | - Yahui Shi
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan 450001, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| | - Chunhua Liu
- School of Chemistry and Food Engineering, Changsha University of Science and Technology , Changsha 410004, Hunan, PR China
| |
Collapse
|
18
|
Narayanan A, Kaur S, Kumar N, Tsige M, Joy A, Dhinojwala A. Cooperative Multivalent Weak and Strong Interfacial Interactions Enhance the Adhesion of Mussel-Inspired Adhesives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Amal Narayanan
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Sukhmanjot Kaur
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Mesfin Tsige
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
19
|
Wang D, Liu F, Zhang X, Wu M, Wang F, Liu J, Wang J, Liu Q, Zeng H. A Janus facilitated transport membrane with asymmetric surface wettability and dense/porous structure: Enabling high stability and separation efficiency. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Pan M, Gong L, Xiang L, Yang W, Wang W, Zhang L, Hu W, Han L, Zeng H. Modulating surface interactions for regenerable separation of oil-in-water emulsions. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119140] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Yu K, Alzahrani A, Khoddami S, Ferreira D, Scotland KB, Cheng JTJ, Yazdani‐Ahmadabadi H, Mei Y, Gill A, Takeuchi LE, Yeung E, Grecov D, Hancock REW, Chew BH, Lange D, Kizhakkedathu JN. Self-Limiting Mussel Inspired Thin Antifouling Coating with Broad-Spectrum Resistance to Biofilm Formation to Prevent Catheter-Associated Infection in Mouse and Porcine Models. Adv Healthc Mater 2021; 10:e2001573. [PMID: 33470545 DOI: 10.1002/adhm.202001573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Catheter-associated urinary tract infections (CAUTIs) are one of the most commonly occurring hospital-acquired infections. Current coating strategies to prevent catheter-associated biofilm formation are limited by their poor long-term efficiency and limited applicability to diverse materials. Here, the authors report a highly effective non-fouling coating with long-term biofilm prevention activity and is applicable to diverse catheters. The thin coating is lubricous, stable, highly uniform, and shows broad spectrum prevention of biofilm formation of nine different bacterial strains and prevents the migration of bacteria on catheter surface. The coating method is adapted to human-sized catheters (both intraluminal and extraluminal) and demonstrates long-term biofilm prevention activity over 30 days in challenging conditions. The coated catheters are tested in a mouse CAUTI model and demonstrate high efficiency in preventing bacterial colonization of both Gram-positive and Gram-negative bacteria. Furthermore, the coated human-sized Foley catheters are evaluated in a porcine CAUTI model and show consistent efficiency in reducing biofilm formation by Escherichia coli (E. coli) over 95%. The simplicity of the coating method, the ability to apply this coating on diverse materials, and the high efficiency in preventing bacterial adhesion increase the potential of this method for the development of next generation infection resistant medical devices.
Collapse
Affiliation(s)
- Kai Yu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Amal Alzahrani
- The Stone Centre at VGH Department of Urologic Sciences University of British Columbia Vancouver British Columbia V5Z 1M9 Canada
| | - Sara Khoddami
- The Stone Centre at VGH Department of Urologic Sciences University of British Columbia Vancouver British Columbia V5Z 1M9 Canada
| | - Demian Ferreira
- The Stone Centre at VGH Department of Urologic Sciences University of British Columbia Vancouver British Columbia V5Z 1M9 Canada
| | - Kymora B. Scotland
- The Stone Centre at VGH Department of Urologic Sciences University of British Columbia Vancouver British Columbia V5Z 1M9 Canada
| | - John T. J. Cheng
- Department of Microbiology and Immunology and Centre for Microbial Diseases and Immunity Research University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | | | - Yan Mei
- Centre for Blood Research and Department of Pathology & Laboratory Medicine University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Arshdeep Gill
- Department of Chemistry University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Lily E. Takeuchi
- Centre for Blood Research and Department of Pathology & Laboratory Medicine University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Edbert Yeung
- Department of Mechanical Engineering University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Dana Grecov
- Department of Mechanical Engineering University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| | - Robert E. W. Hancock
- Department of Microbiology and Immunology and Centre for Microbial Diseases and Immunity Research University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Ben H. Chew
- The Stone Centre at VGH Department of Urologic Sciences University of British Columbia Vancouver British Columbia V5Z 1M9 Canada
| | - Dirk Lange
- The Stone Centre at VGH Department of Urologic Sciences University of British Columbia Vancouver British Columbia V5Z 1M9 Canada
| | - Jayachandran N. Kizhakkedathu
- Centre for Blood Research and Department of Pathology & Laboratory Medicine University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
- Department of Chemistry University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
- School of Biomedical Engineering University of British Columbia Vancouver British Columbia V6T 1Z3 Canada
| |
Collapse
|
22
|
Xie L, Cui X, Liu J, Lu Q, Huang J, Mao X, Yang D, Tan J, Zhang H, Zeng H. Nanomechanical Insights into Versatile Polydopamine Wet Adhesive Interacting with Liquid-Infused and Solid Slippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:6941-6950. [PMID: 33523622 DOI: 10.1021/acsami.0c22073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Mussel-inspired polydopamine (PDA) can be readily deposited on almost all kinds of substrates and possesses versatile wet adhesion. Meanwhile, slippery surfaces have attracted much attention for their self-cleaning capabilities. It remains unclear how the versatile PDA adhesive would interact with slippery surfaces. In this work, both liquid-infused poly(tetrafluoroethylene) (PTFE) (LI-PTFE) and solid slippery surfaces (i.e., self-assembly of small thiol-terminated organosilane, polysiloxane covalently attached to substrates) were fabricated to investigate their capability to prevent PDA deposition. It was found that PDA particles could be easily deposited on a PTFE membrane and the two types of solid slippery surfaces, which resulted in the alternation of their surface wettability and slippery behavior of water droplets. Adhesion was detected between a PDA-coated silica colloidal probe and the PTFE membrane or solid slippery surfaces through quantitative force measurements using an atomic force microscope (AFM), mainly due to van der Waals (vdW) and hydrophobic interactions, which led to the PDA deposition phenomenon. In contrast, LI-PTFE with a thin liquid lubricant film could effectively prevent PDA deposition, with negligible changes in surface morphology, wettability, and slippery characteristics. Although PDA particles could be loosely attached to the lubricant/water interface for LI-PTFE based on the capillary adhesion measured by AFM, they could be readily removed by gentle rinsing with water, as demonstrated by the ultralow friction over LI-PTFE as compared to PTFE using lateral force microscopy (LFM). Our results indicate that LI-PTFE possesses excellent antifouling and self-cleaning properties even when interacting with the versatile PDA wet adhesives. This work provides new insights into the deposition of PDA on slippery surfaces and their interaction mechanism at the nanoscale, with useful implications for the design and development of novel slippery surfaces.
Collapse
Affiliation(s)
- Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jing Liu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Qiuyi Lu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jun Huang
- Center for Advanced Jet Engineering Technologies (CaJET), Key Laboratory of High Efficiency and Clean Mechanical Manufacture (Ministry of Education), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Xiaohui Mao
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Diling Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jinglin Tan
- School of Chemical and Environmental Engineering, Jiujiang University, Jiujiang 332005, China
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
23
|
Bioinspired synthetic wet adhesives: from permanent bonding to reversible regulation. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2019.11.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
24
|
Xie L, Cui X, Gong L, Chen J, Zeng H. Recent Advances in the Quantification and Modulation of Hydrophobic Interactions for Interfacial Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2985-3003. [PMID: 32023067 DOI: 10.1021/acs.langmuir.9b03573] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Hydrophobic interaction is responsible for a variety of colloidal phenomena, which also plays a key role in achieving the desired characteristics and functionalities for a wide range of interfacial applications. In this feature article, our recent advances in the quantification and modulation of hydrophobic interactions at both solid/water and air/water interfaces in different material systems have been reviewed. On the basis of surface forces apparatus (SFA) measurements of hydrophobic polymers (e.g., polystyrene), a three-regime hydrophobic interaction model that could satisfactorily encompass the hydrophobic interaction with different ranges was proposed. In addition, the atomic force microscope (AFM) coupled with various techniques such as the colloidal probe, the electrochemical process, and force mapping were employed to quantify the hydrophobic interaction from different perspectives. For the hydrophobic interactions involving deformable bubbles, the bubble probe AFM combined with reflection interference contrast microscopy (RICM) was used to simultaneously measure the interaction force and spatiotemporal evolution of the thin film drainage process between air bubbles and hydrophobized mica surfaces in an aqueous medium. The studies on the interactions of air bubbles with self-assembled monolayers (SAMs) demonstrated that the range of hydrophobic interactions does not always increase monotonically with the hydrophobicity of interacting surfaces as characterized by the static water contact angle; viz., surfaces with similar hydrophobicity can exhibit different ranges of hydrophobic interaction, while surfaces with different hydrophobicities can exhibit a similar range of hydrophobic interactions. It is found that the hydrophobic interaction can be modulated by tuning the surface nanoscale structure and chemistry. Moreover, the long-range "hydrophilic" attraction that resembles the hydrophobic interaction was discovered between water droplets and polyelectrolyte surfaces in an oil medium, on the basis of which polyelectrolyte coating materials were designed for oil cleaning, oil/water separation, and demulsification. The interfacial applications, remaining challenges, and future perspectives of hydrophobic interactions are discussed.
Collapse
Affiliation(s)
- Lei Xie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xin Cui
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
25
|
Tang Z, Zhao M, Wang Y, Zhang W, Zhang M, Xiao H, Huang L, Chen L, Ouyang X, Zeng H, Wu H. Mussel-inspired cellulose-based adhesive with biocompatibility and strong mechanical strength via metal coordination. Int J Biol Macromol 2020; 144:127-134. [DOI: 10.1016/j.ijbiomac.2019.12.076] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022]
|
26
|
Agergaard AH, Pedersen SU, Birkedal H, Daasbjerg K. Stimuli-responsive degrafting of polymer brushes via addressable catecholato-metal attachments. Polym Chem 2020. [DOI: 10.1039/d0py00916d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Surface attached catecholato-metal complexes serve as polymer brush initiators with well-defined densities and enable stimuli-responsive degrafting of polymer brushes.
Collapse
Affiliation(s)
- Asger Holm Agergaard
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University
- Aarhus C DK-8000
- Denmark
- Department of Chemistry
- Aarhus University
| | - Steen Uttrup Pedersen
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University
- Aarhus C DK-8000
- Denmark
- Department of Chemistry
- Aarhus University
| | - Henrik Birkedal
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University
- Aarhus C DK-8000
- Denmark
- Department of Chemistry
- Aarhus University
| | - Kim Daasbjerg
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University
- Aarhus C DK-8000
- Denmark
- Department of Chemistry
- Aarhus University
| |
Collapse
|
27
|
Gong L, Xiang L, Zhang J, Chen J, Zeng H. Fundamentals and Advances in the Adhesion of Polymer Surfaces and Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15914-15936. [PMID: 31436435 DOI: 10.1021/acs.langmuir.9b02123] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer materials have been widely used in industrial, agricultural, engineering, medical, electronic, and biological fields because of their excellent and diverse properties (e.g., mechanical, optical, electrical, and adhesive properties). The adhesion of polymer materials can affect the stability, alter the surface chemistry, change the surface structure, and influence the performance of the materials. It is of both fundamental and practical importance to understand the adhesion behaviors and interaction mechanisms of polymer surfaces and thin films for the development of new functional polymers and their applications. In this article, the fundamentals of surface energy, adhesion energy, and classical contact mechanics models are presented first, and the commonly used nanomechanical techniques for quantifying the intermolecular and surface interactions of polymers, including the surface forces apparatus (SFA) and atomic force microscope (AFM), are introduced. The advances in the adhesion of surfaces and thin films of various polymers (e.g., elastomers, glassy polymers) are reviewed. The effects of various factors, including the molecular weight, temperature, separation rate, and surface roughness, on the adhesion behaviors of these polymer surfaces and thin films are discussed. Their liquid- to solid-like behaviors during approach and detachment processes are shown. Several commonly applied methodologies used to modulate polymer adhesion are also introduced. Some recent applications based on polymer adhesion, remaining challenging issues, and future perspectives are also presented.
Collapse
Affiliation(s)
- Lu Gong
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jingsi Chen
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
28
|
Zhang C, Xiang L, Zhang J, Gong L, Han L, Xu ZK, Zeng H. Tough and Alkaline-Resistant Mussel-Inspired Wet Adhesion with Surface Salt Displacement via Polydopamine/Amine Synergy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5257-5263. [PMID: 30933561 DOI: 10.1021/acs.langmuir.9b00559] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mussel-inspired catechol-based strategy has been well recognized as a promising alternative to design and exploit new generation adhesive materials applicable in many fields, ranging from biomedical adhesives to coatings of biomedical devices and engineering applications. However, in situ achievement of tough adhesion capability to substrate surfaces (e.g., minerals) is severely limited under the physiological environment or seawater condition (namely, relatively high salinity and mild alkalinity). In this work, a facile and versatile approach is proposed to in situ achieve robust wet adhesion in aqueous solutions of high salinity and mild alkalinity, via integrating primary amines into mussel-inspired polydopamine (PDA). By using a surface forces apparatus (SFA), the corresponding interaction behaviors have been systematically investigated. The strong wet adhesion was demonstrated and achieved via a synergetic effect of amine and PDA to the wet surfaces, including the surface salt displacement assisted by primary amine, strong adhesion to substrates facilitated by the catechol groups on PDA moieties, and enhanced cohesion through their cation-π interactions. Our results provide useful insights into the design and development of high-performance underwater adhesives and water-resistance materials.
Collapse
Affiliation(s)
- Chao Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Li Xiang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jiawen Zhang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Linbo Han
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization and Key Laboratory of Adsorption and Separation Materials and Technologies of Zhejiang Province, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou , Zhejiang 310027 , China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|
29
|
Zhang P, Hu W, Wu M, Gong L, Tang A, Xiang L, Zhu B, Zhu L, Zeng H. Cost-Effective Strategy for Surface Modification via Complexation of Disassembled Polydopamine with Fe(III) Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4101-4109. [PMID: 30798592 DOI: 10.1021/acs.langmuir.9b00245] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mussel-inspired polydopamine (PDA) deposition provides a prominent approach for constructing functional coatings, which has received much research interest over the past decade. However, large PDA aggregates often formed and precipitated from the solution during the deposition process, significantly lowering the utilization efficiency of dopamine for surface modification. It is of both fundamental and practical importance to "reactivate" and reuse the precipitated aggregates to achieve higher usage efficiency of PDA in surface modifications. In this work, we report a facile, substrate-independent, and cost-effective coating strategy, by disassembling the precipitated PDA aggregates, to achieve the coating deposition through the complexation of disassembled polydopamine (d-PDA) species with Fe(III) ions on various substrates. Adsorption tests determined by a quartz crystal microbalance with dissipation (QCM-D) monitoring technique indicated that the pH of the solution and the ratio of d-PDA to Fe(III) significantly influence the deposition behavior of d-PDA/Fe(III). Force measurements using a surface force apparatus demonstrated that the coordination interaction between d-PDA and Fe(III) was the major force leading to the formation of coatings. The deposited d-PDA/Fe(III) coatings featured controllable nanoscale thickness, uniform surface morphologies, and light color. Furthermore, the d-PDA/Fe(III) coating could act as an intermediate layer in the preparation of hydrophobic polyurethane sponge for highly efficient oil/water separation. This work provides a useful strategy to realize the reusability of PDA aggregates for versatile surface functionalization, with implications for the fundamental understanding of the formation mechanism in the metal-phenolic complexation systems and development of new coating approaches in various engineering applications.
Collapse
Affiliation(s)
- Peibin Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , PR China
| | - Wenjihao Hu
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Min Wu
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Lu Gong
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Anqi Tang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , PR China
| | - Li Xiang
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| | - Baoku Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , PR China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , PR China
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering , University of Alberta , Edmonton T6G 1H9 , Alberta , Canada
| |
Collapse
|
30
|
Costa RR, Soares da Costa D, Reis RL, Pashkuleva I. Bioinspired baroplastic glycosaminoglycan sealants for soft tissues. Acta Biomater 2019; 87:108-117. [PMID: 30665018 DOI: 10.1016/j.actbio.2019.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
We describe biomimetic adhesives inspired by the marine glues fabricated by the sandcastle worm. The formation of stable polyelectrolyte complexes between poly-L-lysine (PLL) and glycosaminoglycans (GAGs) with different sulfation degree - heparin (HEP), chondroitin sulfate (CS) and hyaluronic acid (HA) - is optimized by zeta-potential titrations. These PLL/GAG complexes are transformed into compact polyelectrolyte complexes (coPECs) with controlled water contents and densities via baroplastic processing. Rotational shear tests demonstrate that coPECs containing sulfated GAGs (HEP or CS) have solid-like properties, whereas HA-based complexes form highly hydrated viscous-like networks. The adhesiveness of the generated coPECs (normalized lap shear strength) is tested in dry and wet states using polystyrene and rabbit skin, respectively. In dry state, the adhesives exhibit lap shear strengths in the order of hundreds of kPa, with coPLL/HEP and coPLL/CS being about 1.5 times stronger than coPLL/HA. In wet state, all coPECs seal rabbit skin and recover over 60% of the elongation capacity of intact skin with coPLL/HA providing the sturdiest adhesion (∼85% elongation recovery). We demonstrate that this is due to the higher water fraction that improves the bonding between the wet specimens, showcasing the potential superior mechanical recovery on injured tissues. STATEMENT OF SIGNIFICANCE: The development of medical sealants with sufficient adhesive strength in the presence of water and moist remains a huge challenge. We present glycosaminoglycans (GAGs) as biomaterials for the assembly of baroplastics with strong adhesive strength to soft tissues at physiological conditions. Baroplastics with tacky properties were generated by a mild assembly process based on polyelectrolyte complexation and compaction. These materials behave as versatile sealants: their adhesiveness can be adjusted to either dry or wet specimens because of the different sulfation degree of GAGs. These sealants were noncytotoxic towards L929 cells and allowed the damaged skin to recover a great deal of its native elasticity: they preserved the J-shaped stress/strain mechanical response that is typical of biological soft tissues.
Collapse
Affiliation(s)
- Rui R Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Diana Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Iva Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal; ICVS/3B's, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
31
|
Mei Y, Yu K, Lo JCY, Takeuchi LE, Hadjesfandiari N, Yazdani-Ahmadabadi H, Brooks DE, Lange D, Kizhakkedathu JN. Polymer-Nanoparticle Interaction as a Design Principle in the Development of a Durable Ultrathin Universal Binary Antibiofilm Coating with Long-Term Activity. ACS NANO 2018; 12:11881-11891. [PMID: 30354054 DOI: 10.1021/acsnano.8b05512] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bacterial attachment and biofilm formation pose major challenges to the optimal performance of indwelling devices. Current coating methods have significant deficiencies including the lack of long-term activity, easy of application, and adaptability to diverse materials. Here we describe a coating method that could potentially overcome such limitations and yield an ultrathin coating with long-term antibiofilm activity. We utilized the interaction between polydopamine (PDA) nanoaggregates/nanoparticles and ultrahigh molecular weight (uHMW) hydrophilic polymers to generate stable coatings with broad spectrum antibiofilm activity. We used a short-term bacterial adhesion assay as an initial screening method to identify coating compositions that give superior performance and found that only selected polymers (out of 13 different types) and molecular weights gave promising antifouling activity. Optimization of PDA self-assembly, polymer-PDA interaction, and deposition on the surface using uHMW poly( N,N-dimethylacrylamide) (PDMA) (∼795 kDa) resulted in a stable ultrathin coating (∼19 nm) with excellent antifouling and antibiofilm properties (>4 weeks) against diverse bacteria (∼108 CFU/mL) in shaking and flow conditions. The ultrathin coating is effective on diverse substrates including metals and polymeric substrates. The uHMW PDMA is stabilized in the coating via supramolecular interactions with PDA and generated a surface that is highly enriched with PDMA in aqueous conditions. Based on the surface analyses data, we also propose a mechanism for the stable coating formation. The molecular weight of PDMA is a crucial factor, and only uHMW polymers generate this property. An attractive feature of the coating is that it does not contain any antimicrobial agents and has the potential to prevent biofilm formation for diverse applications both short- and long-term.
Collapse
Affiliation(s)
- Yan Mei
- Centre for Blood Research , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Kai Yu
- Centre for Blood Research , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Joey C Y Lo
- Department of Urologic Sciences , University of British Columbia , Vancouver , British Columbia V5Z 1M9 , Canada
| | - Lily E Takeuchi
- Centre for Blood Research , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Narges Hadjesfandiari
- Centre for Blood Research , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Hossein Yazdani-Ahmadabadi
- Centre for Blood Research , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Donald E Brooks
- Centre for Blood Research , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| | - Dirk Lange
- Department of Urologic Sciences , University of British Columbia , Vancouver , British Columbia V5Z 1M9 , Canada
| | - Jayachandran N Kizhakkedathu
- Centre for Blood Research , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Pathology and Laboratory Medicine , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
- Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z3 , Canada
| |
Collapse
|
32
|
Yuran S, Dolid A, Reches M. Resisting Bacteria and Attracting Cells: Spontaneous Formation of a Bifunctional Peptide-Based Coating by On-Surface Assembly Approach. ACS Biomater Sci Eng 2018; 4:4051-4061. [PMID: 33418805 DOI: 10.1021/acsbiomaterials.8b00885] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to extension of life expectancy, millions of people suffer nowadays from bone and dental malfunctions that can only be treated by different types of implants. However, these implants tend to fail due to bacterial infection and lack of integration with the remaining tissue. Here, we demonstrate a new concept in which we use specifically designed peptides, in a "Lego-like" manner to endow multiple preprogrammed functions. We developed a bifunctional peptide-based coating that simultaneously rejects the adhesion of infecting bacteria and attracts cells that build the new connecting tissue. The peptide design contains fluorinated phenylalanine that mediates the self-assembly of the peptide into a coating that resists bacterial adhesion. It also includes an Arg-Gly-Asp (RGD) motif that attracts mammalian cells. The whole compound is attached to the surface using a third unit, the amino acid 3,4-dihydroxyphenylalanine (DOPA). This novel, yet very simple approach is significantly advantageous for practical use and synthesis. More importantly, this peptide design can serve as a general platform for generating functional coatings.
Collapse
Affiliation(s)
- Sivan Yuran
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Alona Dolid
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Meital Reches
- Institute of Chemistry and The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| |
Collapse
|
33
|
Han L, Xiang L, Zhang J, Chen J, Liu J, Yan B, Zeng H. Biomimetic Lubrication and Surface Interactions of Dopamine-Assisted Zwitterionic Polyelectrolyte Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11593-11601. [PMID: 30156852 DOI: 10.1021/acs.langmuir.8b02473] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A bioinspired zwitterionic polyelectrolyte coating with excellent hydration ability has been regarded as a promising lubricating candidate for modifying artificial joint cartilage surface. In physiological fluids, the ubiquitous proteins play an important role in achieving outstanding boundary lubrication; however, a comprehensive understanding of the hydration lubrication between polyelectrolyte coatings and proteins still remains unclear. In this work, a facile fabrication of ultrasmooth polyelectrolyte coatings was developed via codeposition of synthesized poly(dopamine methacrylamide- co-2-methacryloyloxyethyl phosphorylcholine) (P(DMA- co-MPC)) and dopamine (DA) in a mild condition. Upon optimization of the feeding ratio of P(DMA- co-MPC) and DA, the as-fabricated PDA/P(DMA- co-MPC) coatings exhibit excellent lubricating properties when sliding with each other (friction coefficient μ = 0.036 ± 0.002, ∼2.8 MPa), as well as sliding with a model protein (bovine serum albumin (BSA)) layer (μ = 0.041 ± 0.005, ∼4.8 MPa) in phosphate-buffered saline (PBS, pH 7.4). Intriguingly, the lubrication in both systems shows Amontons-like behaviors: the friction is directly proportional to the applied load but independent of the shear velocity. Moreover, the PDA/P(DMA- co-MPC) coatings could resist the protein fouling (i.e., BSA) in PBS, which is crucial to prevent the surfaces from being contaminated when applied in biological media, thus maintaining their lubricating properties. Our results provide a versatile approach for facilely fabricating polyelectrolyte coatings with superior lubrication properties to both polyelectrolyte coatings and protein surfaces, with useful implications into the development of novel lubricating coatings for bioengineering applications (e.g., artificial joints).
Collapse
Affiliation(s)
- Linbo Han
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
- Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Li Xiang
- Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jiawen Zhang
- Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jingsi Chen
- Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Jifang Liu
- Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- The Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 510700 , China
| | - Bin Yan
- Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
- College of Light Industry, Textile & Food Engineering, Sichuan University , Chengdu 610065 , China
| | - Hongbo Zeng
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen 518118 , China
- Chemical and Materials Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| |
Collapse
|