1
|
Zhou SY, Li L, Cao JH, Yang XB, Wu DY. Transition from Procoagulation to Antiplatelet Effect: Application and Mechanism of Aspirin-Modified Chitosan in Small-Diameter Vascular Grafts. ACS APPLIED BIO MATERIALS 2025; 8:763-773. [PMID: 39829269 DOI: 10.1021/acsabm.4c01613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Chitosan is generally considered to be a procoagulant effect, which may cause adverse phenomena such as blood clotting when used in small-diameter vascular grafts. However, it also shows good biocompatibility and anti-inflammatory properties, which can facilitate vascular reconstruction. Therefore, it is significant to transition the effect of chitosan from coagulation promotion to antiplatelet while still harnessing its bioactivity. The procoagulant mechanism of chitosan is primarily attributed to the presence of protonated amino groups in the molecular chain. If the number of amino groups in chitosan is reduced, the procoagulant effect will be diminished as well. Aspirin has a strong antiplatelet function, and its molecular structure contains numerous active carboxyl groups, which can couple with the amino groups in chitosan. Aspirin-modified chitosan retains the biological activity of chitosan while also imparting an antiplatelet effect. In our study, we used a heparinized electrospun graft as the substrate and coated it with aspirin-modified chitosan to create a functional vascular graft. The blood clotting index of the graft remained above 80% after 45 min, and the platelet activation degree was only 4.03%. Additionally, the graft maintained complete patency with stable blood flow after 4 weeks of implantation and the vascular structure was largely rebuilt.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
- CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| |
Collapse
|
2
|
Amiri Heydari H, Kazemi Ashtiani M, Mostafaei F, Alipour Choshali M, Shiravandi A, Rajabi S, Daemi H. Functional Efficacy of Tissue-Engineered Small-Diameter Nanofibrous Polyurethane Vascular Grafts Surface-Modified by Methacrylated Sulfated Alginate in the Rat Abdominal Aorta. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67255-67274. [PMID: 39621863 DOI: 10.1021/acsami.4c13925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis. Here, we fabricated macroporous and nanofibrous polyurethane (PU) bilayer tissue-engineered vascular grafts (TEVGs) by a salt-leaching method to achieve high porosities up to 30 μm. These grafts have a low porosity on the luminal side and a high porosity on the abluminal side. To enhance their properties, we surface-modified the PU scaffolds using heparin-mimicking methacrylated sulfated alginate (PU-MSA). We then evaluated these tubular scaffolds for their anticoagulation effect, protein adsorption, and cell attachment in vitro. The results revealed that TEVGs modified with sulfated alginate (PU-MSA) exhibited better anticoagulation (25 ± 1 min) and higher VEGF protein adsorption (75 ± 5 ng/mL) compared to other scaffolds. Moving to in vivo testing, we examined the TEVGs in a rat model for either 1 or 5 months. Through ultrasonication and various histological analyses, we assessed the functionality and biocompatibility of the TEVGs. Notably, the PU-MSA scaffold created a microenvironment conducive to cell homing and regeneration in the field of VTE.
Collapse
Affiliation(s)
- Hamid Amiri Heydari
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
| | - Mohammad Kazemi Ashtiani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Farhad Mostafaei
- Animal Core Facility, Reproductive Biomedicine Research Center, Royan Institute for Animal Biotechnology, ACECR, Tehran 16635-148, Iran
| | - Mahmoud Alipour Choshali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Ayoub Shiravandi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Sarah Rajabi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Hamed Daemi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Royan Institute, Tehran 16635-148, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
3
|
Wu Q, Guo S, Liang X, Sun W, Lei J, Pan L, Liu X, Chen H. Endothelium-Inspired Hemocompatible Silicone Surfaces: An Elegant Balance between Antifouling Properties and Endothelial Cell Selectivity. Biomacromolecules 2024; 25:7202-7215. [PMID: 39190804 DOI: 10.1021/acs.biomac.4c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
To address the adverse reactions caused by the implantation of blood-contacting materials, researchers have developed different strategies, of which mimicking multiple key features of endothelial cells is the most effective. However, simultaneously immobilizing multiple chemical components on a single material surface and maintaining the effects of individual components are challenging. In this work, endothelium-mimicking silicone surfaces were developed by incorporating the antifouling polymer poly(oligo(ethylene glycol) methacrylate), the glycosaminoglycan analog poly(sodium 4-vinyl-benzenesulfonate) and a nitric oxide catalyst (selenocystamine dihydrochloride). Through the rational regulation of multiple chemical components, the surfaces harmoniously resisted nonspecific protein adsorption, platelet adhesion and activation and smooth muscle cell hyperproliferation while promoting endothelial cell proliferation and migration. The coculture experiment with HUVECs and HUVSMCs showed that the optimum selectivity of HUVECs/HUVSMCs was ∼1.7. This work contributes insight into the control of antifouling properties and endothelial selectivity, providing a new avenue for the development of blood-contacting materials.
Collapse
Affiliation(s)
- Qiulian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Lisha Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| |
Collapse
|
4
|
Fan D, Liu X, Chen H. Endothelium-Mimicking Materials: A "Rising Star" for Antithrombosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53343-53371. [PMID: 39344055 DOI: 10.1021/acsami.4c12117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The advancement of antithrombotic materials has significantly mitigated the thrombosis issue in clinical applications involving various medical implants. Extensive research has been dedicated over the past few decades to developing blood-contacting materials with complete resistance to thrombosis. However, despite these advancements, the risk of thrombosis and other complications persists when these materials are implanted in the human body. Consequently, the modification and enhancement of antithrombotic materials remain pivotal in 21st-century hemocompatibility studies. Previous research indicates that the healthy endothelial cells (ECs) layer is uniquely compatible with blood. Inspired by bionics, scientists have initiated the development of materials that emulate the hemocompatible properties of ECs by replicating their diverse antithrombotic mechanisms. This review elucidates the antithrombotic mechanisms of ECs and examines the endothelium-mimicking materials developed through single, dual-functional and multifunctional strategies, focusing on nitric oxide release, fibrinolytic function, glycosaminoglycan modification, and surface topography modification. These materials have demonstrated outstanding antithrombotic performance. Finally, the review outlines potential future research directions in this dynamic field, aiming to advance the development of antithrombotic materials.
Collapse
Affiliation(s)
- Duanqi Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
5
|
Yao ZY, Gong JS, Jiang JY, Su C, Zhao WH, Xu ZH, Shi JS. Unraveling the intricacies of glycosaminoglycan biosynthesis: Decoding the molecular symphony in understanding complex polysaccharide assembly. Biotechnol Adv 2024; 75:108416. [PMID: 39033835 DOI: 10.1016/j.biotechadv.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Wen-Han Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
6
|
Zhang S, Sun J, Guo S, Wang Y, Zhang Y, Lei J, Liu X, Chen H. Balancing functions of antifouling, nitric oxide release and vascular cell selectivity for enhanced endothelialization of assembled multilayers. Regen Biomater 2024; 11:rbae096. [PMID: 39323744 PMCID: PMC11422184 DOI: 10.1093/rb/rbae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 09/27/2024] Open
Abstract
Surface endothelialization is a promising way to improve the hemocompatibility of biomaterials. However, current surface endothelialization strategies have limitations. For example, various surface functions are not well balanced, leading to undesirable results, especially when multiple functional components are introduced. In this work, a multifunctional surface was constructed by balancing the functions of antifouling, nitric oxide (NO) release and endothelial cell promotion via layer-by-layer (LBL) self-assembly. Poly(sodium p-styrenesulfonate-co-oligo(ethylene glycol) methacrylate) (negatively charged) and polyethyleneimine (positively charged) were deposited on silicon substrates to construct multilayers by LBL self-assembly. Then, organic selenium, which has a NO-releasing function, and the cell-adhesive peptide Gly-Arg-Glu-Asp-Val-Tyr, which selectively promotes endothelial cells, were introduced on the assembled multilayers. Poly(oligo(ethylene glycol) methacrylate) is a hydrophilic component for antifouling properties, and poly(sodium p-styrenesulfonate) is a heparin analog that provides negative charges. By modulating the contents of poly(oligo(ethylene glycol) methacrylate) and poly(sodium p-styrenesulfonate) in the copolymers, the NO release rates catalyzed by the modified surfaces were regulated. Moreover, the behaviors of endothelial cells and smooth muscle cells on modified surfaces were well controlled. The optimized surface strongly promoted endothelial cells and inhibited smooth muscle cells to achieve endothelialization effectively.
Collapse
Affiliation(s)
- Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Jun Sun
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| | - Shuaihang Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Yichen Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Yuheng Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| |
Collapse
|
7
|
Sun W, Liang X, Lei J, Jiang C, Sheng D, Zhang S, Liu X, Chen H. Regulating cell behavior via regional patterned distribution of heparin-like polymers. BIOMATERIALS ADVANCES 2023; 154:213664. [PMID: 37866231 DOI: 10.1016/j.bioadv.2023.213664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Molecular patterning on biomaterial surfaces is an effective strategy to regulate biomaterial properties. Among the specific molecules, due to their biological functions, such as regulating cell behavior, heparin-like polymers (HLPs) have attracted much attention. In this study, HLP-distributed regional patterned surfaces (300 μm diameter circular array) were prepared by the combination of visible light-induced graft polymerization, transfer imprinting, and self-assembly to regulate the behavior of human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs). The introduction of the regional pattern on HLP-modified surfaces enhanced the promotion effect of sulfonate-containing polymer (pSS) and sulfonate-, and glyco-containing copolymer (pS-co-pM), and slightly weakened the inhibition effect of glyco-containing polymer (pMAG) on the growth of HUVECs and HUVSMCs. Compared with flat surfaces, it was found that the unmodified regional patterned surfaces inhibit the spreading of HUVECs and HUVSMCs, while significantly promoting the spreading of HUVECs and HUVSMCs on all the HLP-distributed regional patterned surfaces. The patterned surface modified with pS-co-pM had the highest average spread area of HUVECs (∼10,554 μm2), which was 193 % higher than that of the unmodified flat surface. This trend was somewhat related to surface VEGF adsorption. The combination of regional divisive patterns and different HLP distributions enriched the potential of further exploring the influences of HLP chemical distributions and complex surface environments on cell-material interactions.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Chi Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Denghai Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Sulei Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| |
Collapse
|
8
|
Zhou SY, Li L, Xie E, Li MX, Cao JH, Yang XB, Wu DY. Small-diameter PCL/PU vascular graft modified with heparin-aspirin compound for preventing the occurrence of acute thrombosis. Int J Biol Macromol 2023; 249:126058. [PMID: 37524284 DOI: 10.1016/j.ijbiomac.2023.126058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The occurrence of acute thrombosis, directly related to platelet aggregation and coagulant system, is a considerable reason for the failure of small-diameter vascular grafts. Heparin is commonly used as a functional molecule for graft modification due to the strong anticoagulant effect. Unfortunately, heparin cannot directly resist the adhesion and aggregation of platelets. Therefore, we have prepared a heparin-aspirin compound by coupling heparin with aspirin, an antiplatelet drug, and covalently grafted it onto the surface of polycaprolactone/polyurethane composite tube. In this way, the graft not only showed a dual function of both anticoagulation and antiplatelet, but also effectively avoided the rapid drug release and excessive toxicity to other organs caused by simple blending the medicine with material matrix. The compound retained the original function of heparin, showing good hydrophilicity and biocompatibility, which could promote the adhesion and proliferation of endothelial cells (ECs) and facilitate the process of tissue regeneration. What's more, the compound showed more effective than heparin in reducing platelet activation and preventing thrombosis. The graft modified by this compound maintained completely unobstructed for one month of implantation, while severe obstruction or stenosis occurred in PCL/PU and PCL/PU-Hep lumen at the first week, verifying the effect of the compound on preventing acute thrombosis. In general, this study proposed a designing method for small-diameter vascular graft which could prevent acute thrombosis and promote intimal construction.
Collapse
Affiliation(s)
- Si-Yuan Zhou
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Lei Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; CAS Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Enzehua Xie
- Department of Cardiovascular Surgery, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, PR China
| | - Mei-Xi Li
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jian-Hua Cao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Xiu-Bin Yang
- Department of Cardiac Surgery, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| | - Da-Yong Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
9
|
Lei J, Sun W, Sheng D, Wang S, Liu X, Zhao T, Chen H. Effect of Structural Elements of Heparin-Mimicking Polymers on Vascular Cell Distribution and Functions: Chemically Homogeneous or Heterogeneous? ACS Biomater Sci Eng 2023; 9:5304-5311. [PMID: 37582232 DOI: 10.1021/acsbiomaterials.3c00860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Heparin-mimicking polymers (HMPs) are artificially synthesized alternatives to heparin with comparable regulatory effects on protein adsorption and cell behavior. By introducing two major structural elements of HMPs (sulfonate- and glyco-containing units) to different areas of material surfaces, heterogeneous surfaces patterned with different HMPs and homogeneous surfaces patterned with the same HMPs can be obtained. In this work, heterogeneous HMP-patterned poly(dimethylsiloxane) (PDMS) surfaces with sulfonate-containing polySS (pS) and glyco-containing polyMAG (pM) distributed in circular patterns (with a diameter of 300 μm) were prepared (S-M and M-S). Specifically, pS and pM were distributed inside and outside the circles on S-M, respectively, and exchanged their distribution on M-S. Homogeneous HMP-patterned silicone surfaces (SM-SM) where sulfonate- and glyco-containing poly(SS-co-MAG) (pSM) were distributed uniformly were prepared. Vascular cells showed interestingly different behaviors between chemically homogeneous and heterogeneous surfaces. They tended to grow in the sulfonate-modified area on S-M and M-S and were distributed uniformly on SM-SM. Compared with M-S, S-M showed a better promoting effect on the growth of vascular cells. Among all the samples, SM-SM exhibited the highest proliferation density and an optimum spreading state of vascular cells, as well as the highest human umbilical vein endothelial cell (HUVEC) viability (∼99%) and relatively low human umbilical vein smooth muscle cell (HUVSMC) viability (∼72%). By heterogeneous or homogeneous patterning with different structural elements of HMPs, the modified silicone surfaces spatially guided vascular cell distribution and functions. This strategy provides a new surface engineering approach to the study of cell-HMP interactions.
Collapse
Affiliation(s)
- Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Denghai Sheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Sujian Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| | - Tingting Zhao
- Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing Industrial Square, No. 1, Jintian Road, Suzhou Industrial Park, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
10
|
Li Q, Wu X, Mu S, He C, Ren X, Luo X, Adeli M, Han X, Ma L, Cheng C. Microenvironment Restruction of Emerging 2D Materials and their Roles in Therapeutic and Diagnostic Nano-Bio-Platforms. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207759. [PMID: 37129318 PMCID: PMC10369261 DOI: 10.1002/advs.202207759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/30/2023] [Indexed: 05/03/2023]
Abstract
Engineering advanced therapeutic and diagnostic nano-bio-platforms (NBPFs) have emerged as rapidly-developed pathways against a wide range of challenges in antitumor, antipathogen, tissue regeneration, bioimaging, and biosensing applications. Emerged 2D materials have attracted extensive scientific interest as fundamental building blocks or nanostructures among material scientists, chemists, biologists, and doctors due to their advantageous physicochemical and biological properties. This timely review provides a comprehensive summary of creating advanced NBPFs via emerging 2D materials (2D-NBPFs) with unique insights into the corresponding molecularly restructured microenvironments and biofunctionalities. First, it is focused on an up-to-date overview of the synthetic strategies for designing 2D-NBPFs with a cross-comparison of their advantages and disadvantages. After that, the recent key achievements are summarized in tuning the biofunctionalities of 2D-NBPFs via molecularly programmed microenvironments, including physiological stability, biocompatibility, bio-adhesiveness, specific binding to pathogens, broad-spectrum pathogen inhibitors, stimuli-responsive systems, and enzyme-mimetics. Moreover, the representative therapeutic and diagnostic applications of 2D-NBPFs are also discussed with detailed disclosure of their critical design principles and parameters. Finally, current challenges and future research directions are also discussed. Overall, this review will provide cutting-edge and multidisciplinary guidance for accelerating future developments and therapeutic/diagnostic applications of 2D-NBPFs.
Collapse
Affiliation(s)
- Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xizheng Wu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chao He
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Mohsen Adeli
- Department of Organic ChemistryFaculty of ChemistryLorestan UniversityKhorramabad68137‐17133Iran
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| | - Xianglong Han
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Lang Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringDepartment of UltrasoundWest China HospitalSichuan UniversityChengdu610065China
- Department of Chemistry and BiochemistryFreie Universität BerlinTakustrasse 314195BerlinGermany
| |
Collapse
|
11
|
Gao X, Liu K, Liu P, Bai X, Li A, Lyu Z, Li Q. Preparation and properties of cellulose acetate graft copolymer‐coated adsorbent resin for hemoperfusion device. J Appl Polym Sci 2023. [DOI: 10.1002/app.53895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Wang H, Wang J, Feng J, Rao Y, Xu Z, Zu J, Wang H, Zhang Z, Chen H. Artificial Extracellular Matrix Composed of Heparin-Mimicking Polymers for Efficient Anticoagulation and Promotion of Endothelial Cell Proliferation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50142-50151. [PMID: 36302722 DOI: 10.1021/acsami.2c13892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heparin-mimicking polymers have emerged as an alternative to heparin to construct effective and safe anticoagulant surfaces. However, the present heparin-mimicking polymers are usually limited to the combinations of glucose and sulfonic acid units, and the structure origin of their anticoagulant properties remains vague. Inspired by the structure of natural heparin, we synthesized a series of novel heparin-mimicking polymers (named GSAs) composed of three units, glucose, sulfonic acid, and carboxylic acid. Then, we constructed artificial extracellular matrices composed of GSAs and two typical cationic polymers, polyethyleneimine and chitosan, to investigate the anticoagulation and endothelialization of GSAs. By changing the ratio of the three units, their functions in the matrices were studied systematically. We found that an increase in the sulfonic acid content enhanced surface anticoagulant activity, an increase in glucose and sulfonic acid content promoted the proliferation of human umbilical vein vascular endothelial cells, and an increase in the carboxylic acid content inhibited the adherence of human umbilical vein vascular smooth muscle cells. This work uncovers the important role of the GSAs structure to the anticoagulation properties, which sheds new light on the design and preparation of heparin-mimicking polymers for practical engineering applications.
Collapse
Affiliation(s)
- Huanhuan Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Jinghong Wang
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| | - Jian Feng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Yu Rao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - ZiYing Xu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - JunYi Zu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Huaguang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Zexin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou215123, P. R. China
- The SIP Biointerface Engineering Research Institute, Suzhou215123, P. R. China
| |
Collapse
|
13
|
Zhao YQ, Xiu Z, Wu R, Zhang L, Ding X, Zhao N, Duan S, Xu FJ. A Near‐Infrared‐Responsive Quaternary Ammonium/Gold Nanorod Hybrid Coating with Enhanced Antibacterial Properties. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Yu-Qing Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Zongpeng Xiu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Ruonan Wu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Lujiao Zhang
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology) Ministry of Education, Beijing Laboratory of Biomedical Materials Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
14
|
Assessment of the Anti-Thrombogenic Activity of Polyurethane Starch Composites. J Funct Biomater 2022; 13:jfb13040184. [PMID: 36278653 PMCID: PMC9589968 DOI: 10.3390/jfb13040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 12/02/2022] Open
Abstract
The increasing morbidity and mortality of patients due to post-surgery complications of coronary artery bypass grafts (CABPG) are related to blood–material interactions. Thus, the characterization of the thrombogenicity of the biomaterial for cardiovascular devices is of particular interest. This research evaluated the anti-thrombogenic activity of polyurethanes–starch composites. We previously synthesized polyurethane matrices that were obtained from polycaprolactone diol (PCL), polyethylene glycol (PEG), pentaerythritol (PE), and isophorone diisocyanate (IPDI). In addition, potato starch (AL-N) and zwitterionic starch (AL-Z) were added as fillers. The anti-thrombogenic property was characterized by the clot formation time, platelet adhesion, protein absorption, TAT complex levels, and hemolysis. Additionally, we evaluated the cell viability of the endothelial and smooth muscle cells. Statically significant differences among the polyurethane matrices (P1, P2, and P3) were found for protein absorption and the blood clotting time without fillers. The polyurethanes composites with AL-Z presented an improvement in the anti-thrombogenic property. On the other hand, the composites with AL-Z reduced the viability of the endothelial cells and did not significantly affect the AoSCM (except for P1, which increased). These results classify these biomaterials as inert; therefore, they can be used for cardiovascular applications.
Collapse
|
15
|
Miao C, Du J, Dou J, Wang C, Wang L, Yuan J, Shen J, Yin M. Facile fabrication of copper-incorporating poly(ε-caprolactone)/keratin mats for tissue-engineered vascular grafts with the potential of catalytic nitric oxide generation. J Mater Chem B 2022; 10:6158-6170. [PMID: 35904091 DOI: 10.1039/d2tb01031c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) provide a new alternative for vascular construction. Nitric oxide (NO) is capable of promoting vascular tissue regeneration and reducing restenosis caused by vascular implantation. Therefore, in situ production of NO by catalytic decomposition of the endogenous donor is a promising strategy to fabricate a TEVG. In this study, poly(ε-caprolactone) (PCL) was first electrospun with keratin (Ker) to afford PCL/Ker mats and then incorporated with Cu(II) ions through multiple interactions. This strategy is very simple, green, and facile. Particularly, the incorporated Cu(II) ions were partially reduced to Cu(I) ions due to the reducibility of keratin. The chelated copper ions were expected to catalyze the generation of NO from endogenous S-nitrosothiol (RSNO). As a result, PCL/Ker-Cu mats selectively accelerated the adhesion, migration, and growth of human umbilical vein endothelial cells (HUVECs), while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, these mats exhibited excellent blood compatibility and significant antibacterial activity. Vascular implantation in vivo indicated that the tubular mats could inhibit thrombus formation and retain patency for 3 months after implantation in the rabbit carotid artery. More importantly, vascular remodeling was observed during follow-up, including a complete endothelium and smooth muscle layer. Taken together, the PCL/Ker-Cu mats have great potential application in vascular tissue regeneration.
Collapse
Affiliation(s)
- Cuie Miao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jun Du
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China.
| | - Jie Dou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chenshu Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng Yin
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China.
| |
Collapse
|
16
|
Liang X, Zhang A, Sun W, Lei J, Liu X, Tang Z, Chen H. Vascular cell behavior on glycocalyx-mimetic surfaces: Simultaneous mimicking of the chemical composition and topographical structure of the vascular endothelial glycocalyx. Colloids Surf B Biointerfaces 2022; 212:112337. [PMID: 35051794 DOI: 10.1016/j.colsurfb.2022.112337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/05/2022] [Accepted: 01/12/2022] [Indexed: 10/19/2022]
Abstract
The endothelial glycocalyx is a carbohydrate-rich layer overlying the outermost surface of endothelial cells. It mediates intercellular interactions by specific chemical compositions (e.g., proteoglycans containing glycosaminoglycan (GAG) side chains) and micro/nanotopography. Inspired by the endothelial glycocalyx, we fabricated a series of glycocalyx-mimetic surfaces with tunable chemical compositions (GAG-like polymers with different functional units) and topographical structures (micro/nanopatterns with pillars different in size). The combination of micro/nanopatterns and GAG-like polymers was flexibly and precisely controlled by replica molding using silicon templates (Si templates) and visible light-initiated polymerization. Human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs) were suppressed on surfaces modified with polymers of 2-methacrylamido glucopyranose (MAG) but promoted on surfaces modified with polymers of sodium 4-vinyl-benzenesulfonate (SS) and copolymers of SS and MAG. Surface micro/nanopatterns showed highly complicated effects on surfaces grafted with different GAG-like polymers. Moreover, the spread of HUVSMCs was highly promoted on all flat/patterned surfaces containing sulfonate units, and the elongation effect was stronger on surfaces with smaller pillars. On all the flat/patterned surfaces modified with GAG-like polymers, the adsorption of human vascular endothelial growth factor (VEGF) and human basic fibroblast growth factor (bFGF) was improved, and the amount of VEGF and bFGF absorbed on patterned surfaces containing sulfonate units decreased with pattern dimensions. The decreasing trend of VEGF and bFGF adsorption was in accordance with HUVEC density, suggesting that glycocalyx-mimetic surfaces influence the adsorption of VEGF and bFGF and further influence the growth behavior of vascular cells.
Collapse
Affiliation(s)
- Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Jiao Lei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Zengchao Tang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China; Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing Industrial Square, No. 1, Jintian Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| |
Collapse
|
17
|
Alfieri ML, Panzella L, Amorati R, Cariola A, Valgimigli L, Napolitano A. Role of Sulphur and Heavier Chalcogens on the Antioxidant Power and Bioactivity of Natural Phenolic Compounds. Biomolecules 2022; 12:90. [PMID: 35053239 PMCID: PMC8774257 DOI: 10.3390/biom12010090] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
The activity of natural phenols is primarily associated to their antioxidant potential, but is ultimately expressed in a variety of biological effects. Molecular scaffold manipulation of this large variety of compounds is a currently pursued approach to boost or modulate their properties. Insertion of S/Se/Te containing substituents on phenols may increase/decrease their H-donor/acceptor ability by electronic and stereo-electronic effects related to the site of substitution and geometrical constrains. Oxygen to sulphur/selenium isosteric replacement in resveratrol or ferulic acid leads to an increase in the radical scavenging activity with respect to the parent phenol. Several chalcogen-substituted phenols inspired by Vitamin E and flavonoids have been prepared, which in some cases prove to be chain-breaking antioxidants, far better than the natural counterparts. Conjugation of catechols with biological thiols (cysteine, glutathione, dihydrolipoic acid) is easily achieved by addition to the corresponding ortho-quinones. Noticeable examples of compounds with potentiated antioxidant activities are the human metabolite 5-S-cysteinyldopa, with high iron-induced lipid peroxidation inhibitory activity, due to strong iron (III) binding, 5-S-glutathionylpiceatannol a most effective inhibitor of nitrosation processes, and 5-S-lipoylhydroxytyrosol, and its polysulfides that proved valuable oxidative-stress protective agents in various cellular models. Different methodologies have been used for evaluation of the antioxidant power of these compounds against the parent compounds. These include kinetics of inhibition of lipid peroxidation alkylperoxyl radicals, common chemical assays of radical scavenging, inhibition of the OH• mediated hydroxylation/oxidation of model systems, ferric- or copper-reducing power, scavenging of nitrosating species. In addition, computational methods allowed researchers to determine the Bond Dissociation Enthalpy values of the OH groups of chalcogen modified phenolics and predict the best performing derivative. Finally, the activity of Se and Te containing compounds as mimic of glutathione peroxidase has been evaluated, together with other biological activities including anticancer action and (neuro)protective effects in various cellular models. These and other achievements are discussed and rationalized to guide future development in the field.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| | - Riccardo Amorati
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alice Cariola
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Luca Valgimigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via S. Giacomo 11, I-40126 Bologna, Italy; (R.A.); (A.C.)
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, I-80126 Naples, Italy; (M.L.A.); (L.P.)
| |
Collapse
|
18
|
Wang C, Lin B, Qiu Y. Enhanced hydrophilicity and anticoagulation of polysulfone materials modified via dihydroxypropyl, sulfonic groups and chitosan. Colloids Surf B Biointerfaces 2021; 210:112243. [PMID: 34861540 DOI: 10.1016/j.colsurfb.2021.112243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
A novel modified polysulfone (PSF) is successfully prepared for hemodialysis by grafting with a well-defined heparin-like polymer, sulfonated dihydroxypropyl chitosan (SDHPCS), which is obtained in proper sequence via alkalization of chitosan, etherification and sulfonation. PSF is modified via chloroacetyl chloride, and then, the chloroacylated polysulfone (CAPSF) with pristine PSF is transformed into CAPSF/PSF blend membrane via the phase inversion, followed introducing amino group into CAPSF on the surface and taking glutaraldehyde as bridge between modified PSF membrane and SDHPCS. The result of 1H NMR spectrum of prepared CAPSF indicates that the degree of the substitution of chloroacetyl group. The SEM, EDS mapping, FTIR and XPS show that SDHPCS-g-PSF membranes are successfully prepared. The hydrophilicity of the membrane modified by SDHPCS is improved obviously, and the contact angle remarkably reduced from 87 ° to below 45°, exhibiting much better hydrophilicity. The hemocompatibility characterizations including BSA adsorption, Plasma recalcification time (PRT), hemolysis ratio (HR), activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) also certificates that SDHPCS-g-PSF possesses lower BSA adsorption and enhanced blood compatibility.
Collapse
Affiliation(s)
- Can Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Bingxian Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yunren Qiu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
19
|
Zhu Z, Gao Q, Long Z, Huo Q, Ge Y, Vianney N, Daliko NA, Meng Y, Qu J, Chen H, Wang B. Polydopamine/poly(sulfobetaine methacrylate) Co-deposition coatings triggered by CuSO 4/H 2O 2 on implants for improved surface hemocompatibility and antibacterial activity. Bioact Mater 2021; 6:2546-2556. [PMID: 33665495 PMCID: PMC7887402 DOI: 10.1016/j.bioactmat.2021.01.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Implanted biomaterials such as medical catheters are prone to be adhered by proteins, platelets and bacteria due to their surface hydrophobicity characteristics, and then induce related infections and thrombosis. Hence, the development of a versatile strategy to endow surfaces with antibacterial and antifouling functions is particularly significant for blood-contacting materials. In this work, CuSO4/H2O2 was used to trigger polydopamine (PDA) and poly-(sulfobetaine methacrylate) (PSBMA) co-deposition process to endow polyurethane (PU) antibacterial and antifouling surface (PU/PDA(Cu)/PSBMA). The zwitterions contained in the PU/PDA(Cu)/PSBMA coating can significantly improve surface wettability to reduce protein adsorption, thereby improving its blood compatibility. In addition, the copper ions released from the metal-phenolic networks (MPNs) imparted them more than 90% antibacterial activity against E. coli and S. aureus. Notably, PU/PDA(Cu)/PSBMA also exhibits excellent performance in vivo mouse catheter-related infections models. Thus, the PU/PDA(Cu)/PSBMA has great application potential for developing multifunctional surface coatings for blood-contacting materials so as to improve antibacterial and anticoagulant properties.
Collapse
Affiliation(s)
- Zhongqiang Zhu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiang Gao
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ziyue Long
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qiuyi Huo
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yifan Ge
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Ntakirutimana Vianney
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Nishimwe Anodine Daliko
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yongchun Meng
- Central Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, 717 Jinbu Street, Yantai, Shandong, 264100, China
| | - Jia Qu
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Chen
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Bailiang Wang
- School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| |
Collapse
|
20
|
Li Y, Sun W, Zhang A, Jin S, Liang X, Tang Z, Liu X, Chen H. Vascular cell behavior on heparin-like polymers modified silicone surfaces: The prominent role of the lotus leaf-like topography. J Colloid Interface Sci 2021; 603:501-510. [PMID: 34197993 DOI: 10.1016/j.jcis.2021.06.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Vascular cell behavior on material surfaces, such as heparin-like polymers, can be affected by the surface chemical composition and surface topological structure. In this study, the effects of heparin-like polymers and lotus leaf-like topography on surface vascular cell behavior are considered. By combining multicomponent thermo-curing and replica molding, a polydimethylsiloxane surface containing bromine (PDMS-Br) with lotus leaf-like topography is obtained. Heparin-like polymers with different chemical compositions are grafted onto PDMS-Br surfaces using visible-light-induced graft polymerization. Compared with unmodified PDMS-Br, surfaces modified by sulfonate-containing polymers are more friendly to vascular cells, while those modified by a glyco-polymer are much more resistant to vascular cells. The introduction of lotus leaf-like topography results in different degrees of decrease in cell density on different heparin-like polymer-modified surfaces. In addition, the combination of heparin-like polymers and lotus leaf-like topography results in the change in protein adsorption, indicating that the two factors may affect the surface vascular cell behavior by affecting the adsorption of relative proteins. The combination of bionic surface topography and different chemical components of heparin-like polymers on material surfaces suggests a new way of engineering cell-material interactions.
Collapse
Affiliation(s)
- Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| | - Zengchao Tang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China; Jiangsu Biosurf Biotech Company Ltd., Building 26, Dongjing industrial square, No.1, Jintian Road, Suzhou Industrial Park, Suzhou, 215123, P. R. China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China
| |
Collapse
|
21
|
Zhang ZP, Zhong Y, Han ZB, Zhou L, Su HS, Wang J, Liu Y, Cheng MS. Synthesis, Molecular Docking Analysis and Biological Evaluations of Saccharide-Modified Thiadiazole Sulfonamide Derivatives. Int J Mol Sci 2021; 22:ijms22115482. [PMID: 34067452 PMCID: PMC8196973 DOI: 10.3390/ijms22115482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/23/2022] Open
Abstract
A series of saccharide-modified thiadiazole sulfonamide derivatives has been designed and synthesized by the “tail approach” and evaluated for inhibitory activity against carbonic anhydrases II, IX, and XII. Most of the compounds showed high topological polar surface area (TPSA) values and excellent enzyme inhibitory activity. The impacts of some compounds on the viability of HT-29, MDA-MB-231, and MG-63 human cancer cell lines were examined under both normoxic and hypoxic conditions, and they showed certain inhibitory effects on cell viability. Moreover, it was found that the series of compounds had the ability to raise the pH of the tumor cell microenvironment. All the results proved that saccharide-modified thiadiazole sulfonamides have important research prospects for the development of CA IX inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yang Liu
- Correspondence: (Y.L.); (M.-S.C.)
| | | |
Collapse
|
22
|
Zhang A, Sun W, Liang X, Chen X, Li Y, Liu X, Chen H. The role of carboxylic groups in heparin-mimicking polymer-functionalized surfaces for blood compatibility: Enhanced vascular cell selectivity. Colloids Surf B Biointerfaces 2021; 201:111653. [PMID: 33667866 DOI: 10.1016/j.colsurfb.2021.111653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Blood compatibility is an eternal topic of biomedical materials. The effect of heparin-mimicking polymers (HMPs) on blood compatibility has been well studied, especially the synergistic effect of sugar unit and sulfonate/sulfate unit. However, carboxylic groups also play an important role in HMPs. In this work, copolymers of sodium 4-vinyl-benzenesulfonate (SS) and 2-methacrylamido glucopyranose (MAG) (poly(SS-co-MAG)) and poly(acrylate acid) (PAA) were self-assembled on Au surfaces with different feed ratios. When self-assembly of poly(SS-co-MAG) alone, the optimized feed ratio of SS and MAG for vascular cell selectivity was 1:1 (PS1M1); at this ratio the Au-PS1M1 surface showed the highest human umbilical vein endothelial cells (HUVECs) density and the lowest human umbilical vein smooth muscle cells (HUVSMCs) density. When self-assembly of PAA alone (surface designated as Au-PAA), the proliferation of both HUVECs and HUVSMCs was inhibited. Compared with either PS1M1 or PAA alone, the surfaces modified with both PAA and PS1M1 at the feed ratio of 1:1 (material designated as Au-PSM/PAA-2) showed enhanced promoting effect on HUVECs as well as enhanced inhibiting effect on HUVSMCs, indicating stronger vascular cell selectivity of carboxylic groups in the presence of sugar and sulfonate units.
Collapse
Affiliation(s)
- Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xinyi Liang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, PR China.
| |
Collapse
|
23
|
Alfieri ML, Panzella L, Duarte B, Gonçalves-Monteiro S, Marques F, Morato M, Correia-da-Silva M, Verotta L, Napolitano A. Sulfated Oligomers of Tyrosol: Toward a New Class of Bioinspired Nonsaccharidic Anticoagulants. Biomacromolecules 2021; 22:399-409. [PMID: 33432805 PMCID: PMC8023584 DOI: 10.1021/acs.biomac.0c01254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfated phenolic polymers have extensively been investigated as anticoagulant agents in view of their higher bioavailability and resistance to degradation compared to heparins, allowing for increased half-lives. In this frame, we report herein the preparation of sulfated derivatives of tyrosol, one of the most representative phenolic constituents of extra virgin olive oil, by different approaches. Mild sulfation of OligoTyr, a mixture of tyrosol oligomers, that has been reported to possess antioxidant properties and osteogenic activity, afforded OligoTyrS I in good yields. Elemental analysis, NMR, and MALDI-MS investigation provided evidence for an almost complete sulfation at the OH on the phenylethyl chain, leaving the phenolic OH free. Peroxidase/H2O2 oxidation of tyrosol sulfated at the alcoholic group (TyrS) also provided sulfated tyrosol oligomers (OligoTyrS II) that showed on structural analysis highly varied structural features arising likely from the addition of oxygen, derived from water or hydrogen peroxide, to the intermediate quinone methides and substantial involvement of the phenolic OH group in the oligomerization. In line with these characteristics, OligoTyrS I proved to be more active than OligoTyrS II as antioxidant in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing/antioxidant power (FRAP) assays and as anticoagulant in the classical clotting times, mainly in prolonging the activated partial thromboplastin time (APTT). After intraperitoneal administration in mice, OligoTyrS I was also able to significantly decrease the weight of an induced thrombus. Data from chromogenic coagulation assays showed that the anticoagulant effect of OligoTyrS I was not dependent on antithrombin or factor Xa and thrombin direct inhibition. These results clearly highlight how some structural facets of even closely related phenol polymers may be critical in dictating the anticoagulant activity, providing the key for the rationale design of active synthetic nonsaccharidic anticoagulant agents alternative to heparin.
Collapse
Affiliation(s)
- Maria Laura Alfieri
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| | - Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| | - Bárbara Duarte
- UCIBIO/REQUIMTE and Clinical Analysis Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Salomé Gonçalves-Monteiro
- LAQV/REQUIMTE and Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Franklim Marques
- UCIBIO/REQUIMTE and Clinical Analysis Unit, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Manuela Morato
- LAQV/REQUIMTE and Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Marta Correia-da-Silva
- CIIMAR and Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Luisella Verotta
- Department of Environmental Science and Policy, University of Milan, 20133 Milano, Italy
| | - Alessandra Napolitano
- Department of Chemical Sciences, University of Naples Federico II, I-80126 Naples, Italy
| |
Collapse
|
24
|
Ma J, Cai H, Long X, Cheng K, Xu X, Zhang D, Li J. Hyaluronic acid bioinspired polymers for the regulation of cell chondrogenic and osteogenic differentiation. Int J Biol Macromol 2020; 161:1011-1020. [PMID: 32531368 DOI: 10.1016/j.ijbiomac.2020.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/28/2022]
Abstract
As the simplest glycosaminoglycan (GAG) in extracellular matrix, hyaluronic acid (HA) takes part in several important biological processes, such as regulating cell proliferation, differentiation, and migration. In this work, a series of HA-inspired polymers with different saccharide and carboxylate units (HA-analogue polymers) are synthesized by free radical polymerization, and characterized using Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC) and nuclear magnetic resonance spectrometer (NMR), Moreover, cell experiments demonstrate that HA-analogue polymers with a certain proportion of saccharide and carboxylate (PM1G1) units shows a positive effect on the proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs). Furthermore, HA-analogue polymers have prominent cartilage inductive capacity in chondrogenic induction medium (CIM) and brilliant bone inductive capacity in osteogenic induction medium (OIM) toward BMSCs. Therefore, it is confirmed that the HA-analogue polymers can effectively mimic the functions of HA and have broad potential application prospects in the biomedical and clinical fields.
Collapse
Affiliation(s)
- Jiayun Ma
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huijuan Cai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoling Long
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Kai Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
25
|
Sun W, Jin S, Zhang A, Huang J, Li Y, Liu X, Chen H. Vascular cell responses to silicone surfaces grafted with heparin-like polymers: surface chemical composition vs. topographic patterning. J Mater Chem B 2020; 8:9151-9161. [PMID: 32945818 DOI: 10.1039/d0tb01000f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Heparin-like polymers are promising synthetic materials with biological functionalities, such as anticoagulant ability, growth factor binding to regulate cellular functions, and inflammation mediation, similar to heparin. The biocompatibility of heparin-like polymers with well-defined chemical structures has inspired many researchers to design heparin-like surfaces to explore their biological applications. The concept of the recombination of functional heparin structural units (sulfonate- and glyco-containing units) was proven to be successful in designing heparin-mimicking surfaces. However, besides surface structural units, topographic patterning is also an important contributor to the biological activity of the surfaces modified with heparin-like polymers. In this work, both surface structural units and topographic patterning were taken into account to investigate the vascular cell behaviors on the silicone surfaces. A facile method for the production of patterned bromine-containing polydimethylsiloxane surface (PDMS-Br) was developed from a one-step multicomponent thermocuring procedure and replica molding using a nanohole-arrayed silicon template. Different structural units of heparin-like polymers, i.e. homopolymer of sulfonate-containing sodium 4-vinylbenzenesulfonate (pSS), homopolymer of glyco-containing 2-(methacrylamido)glucopyranose (pMAG), and copolymers of MAG and SS (pSG), were then introduced on the flat and patterned PDMS-Br surface using visible light-induced graft polymerization. For the flat surfaces, compared with the PDMS-Br surface, pSS-grafted and pSG-grafted surfaces significantly increased cell densities of both human umbilical vein endothelial cells (HUVECs) and human umbilical vein smooth muscle cells (HUVSMCs), indicating that they are "vascular cell-friendly". In contrast, the pMAG-grafted surface showed decreased cell attachment of both HUVECs and HUVSMCs, indicating that the pMAG-grafted surface is "vascular cell-resistant". Moreover, surface topographic patterning enhanced the cell responses to the corresponding flat surfaces. That is to say, surface patterning can make the "vascular cell-friendly" surface still friendly, and the "vascular cell-resistant" surface much more resistant. The combination of surface structural units and topographic patterning shows promise in the preparation of new heparin-like surfaces with improved cell compatibility that is suitable for blood-compatible biomaterials.
Collapse
Affiliation(s)
- Wei Sun
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Yuepeng Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, P. R. China.
| |
Collapse
|
26
|
Zhao J, Feng Y. Surface Engineering of Cardiovascular Devices for Improved Hemocompatibility and Rapid Endothelialization. Adv Healthc Mater 2020; 9:e2000920. [PMID: 32833323 DOI: 10.1002/adhm.202000920] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/18/2020] [Indexed: 12/13/2022]
Abstract
Cardiovascular devices have been widely applied in the clinical treatment of cardiovascular diseases. However, poor hemocompatibility and slow endothelialization on their surface still exist. Numerous surface engineering strategies have mainly sought to modify the device surface through physical, chemical, and biological approaches to improve surface hemocompatibility and endothelialization. The alteration of physical characteristics and pattern topographies brings some hopeful outcomes and plays a notable role in this respect. The chemical and biological approaches can provide potential signs of success in the endothelialization of vascular device surfaces. They usually involve therapeutic drugs, specific peptides, adhesive proteins, antibodies, growth factors and nitric oxide (NO) donors. The gene engineering can enhance the proliferation, growth, and migration of vascular cells, thus boosting the endothelialization. In this review, the surface engineering strategies are highlighted and summarized to improve hemocompatibility and rapid endothelialization on the cardiovascular devices. The potential outlook is also briefly discussed to help guide endothelialization strategies and inspire further innovations. It is hoped that this review can assist with the surface engineering of cardiovascular devices and promote future advancements in this emerging research field.
Collapse
Affiliation(s)
- Jing Zhao
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
| | - Yakai Feng
- School of Chemical Engineering and Technology Tianjin University Yaguan Road 135 Tianjin 300350 P. R. China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin) Yaguan Road 135 Tianjin 300350 P. R. China
- Key Laboratory of Systems Bioengineering (Ministry of Education) Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
27
|
Cheng K, Zhu Y, Wang D, Li Y, Xu X, Cai H, Chu H, Li J, Zhang D. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111368. [PMID: 32919697 DOI: 10.1016/j.msec.2020.111368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
As a typical representative of crucial glycosaminoglycans (GAGs), chondroitin sulfate (CS) with sulfonated polysaccharide in structures extensively exists in the extracellular matrix (ECM) and exhibits peculiar bioactivity on the regulation of cells behaviors and fates (e.g. proliferation and differentiation) in organisms. Nevertheless, some intrinsic disadvantages of natural CS mainly ascribe to the intricate structure and inhomogeneous composition (especially the uncontrollable sulfonate degrees), resulting in overt restrictions on its physiological functions and applications. Although recent bionic synthesis of artificial GAGs analogues at the molecular level have already provides an efficient strategy to reconstruct GAG for regulating the cellular behaviors and fates, it still remains great challenges to rationally design and synthesize GAGs analogues with special composition and structure for precisely mimicking ECM. Simultaneously, the relevant regulation process of GAG analogues on cell fate needs to be further studied as well. Herein, chondroitin sulfate-analogue (CS-analogue) hydrogels with diverse contents of saccharide and sulfonate units in the networks were fabricated through photo-polymerization and then characterized by Fourier transform infrared (FT-IR) spectroscopy, zeta potential and scanning electron microscope (SEM). Additionally, CS-analogue hydrogels with proper mechanical properties exhibited favorable swelling, degradation performance and prominent cytocompatibility. According to cell cultivation results, CS-analogue hydrogel with a certain proportion of saccharide and sulfonate units presented preferable promotion on the adhesion, spreading, proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), shedding light on the significance of saccharide and sulfonate units in regulating cell behaviors. Furthermore, BMSCs cultivated with CS-analogue hydrogels under different culture conditions were also systematically investigated, revealing that with the help of cultivation environment CS-analogue hydrogels owned the remarkable capacity of directing either chondrogenic or osteogenic differentiation of BMSCs. Therefore, it is envisioned that versatile CS-analogue hydrogels would have promising application prospects in the biomedical and clinical fields.
Collapse
Affiliation(s)
- Kai Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yalin Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yichen Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huijuan Cai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
28
|
Nahain AA, Ignjatovic V, Monagle P, Tsanaktsidis J, Vamvounis G, Ferro V. Sulfonated RAFT Copolymers as Heparin Mimetics: Synthesis, Reactivity Ratios, and Anticoagulant Activity. Macromol Biosci 2020; 20:e2000110. [PMID: 32627962 DOI: 10.1002/mabi.202000110] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/16/2020] [Indexed: 12/17/2022]
Abstract
The glycosaminoglycan heparin is a clinically important anticoagulant drug, primarily used to reduce the risk of blood clots (thrombosis) during surgery. Despite its importance in medicine and its continuous use over many decades, heparin suffers from several limitations associated with its heterogeneity and its extraction from animal tissues. In order to address these limitations, reversible addition-fragmentation chain transfer polymerization is utilized to prepare a library of heparin mimetic copolymers from the sulfonated monomers sodium 4-styrene sulfonate, potassium-3-sulfopropyl acrylate, potassium-3-sulfopropyl methacrylate, and sodium-2-acrylamido-2-methyl-1-propane sulfonate. Copolymers are prepared using combinations of two different monomers in various ratios. Monomer reactivity ratios are also determined for some representative monomer combinations, and all polymers are characterized by 1 H NMR spectroscopy and gel permeation chromatography. The anticoagulant activities of the copolymers are determined by activated partial thromboplastin time and thrombin clotting time assays and structure-activity relationships are explored.
Collapse
Affiliation(s)
- Abdullah Al Nahain
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Parkville, Victoria, 3052, Australia.,Department of Paediatrics, The University of Melbourne, Parkville, Victoria, 3010, Australia.,Department of Clinical Haematology, Royal Children's Hospital, Parkville, Victoria, 3052, Australia
| | - John Tsanaktsidis
- CSIRO Manufacturing, Research Way, Clayton, Victoria, 3168, Australia
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, Queensland, 4811, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, 4072, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
29
|
Preparation of biofiltration membranes by coating electrospun polyacrylonitrile fiber membranes with layer-by-layer supermolecular polyelectrolyte films. Colloids Surf B Biointerfaces 2020; 190:110953. [DOI: 10.1016/j.colsurfb.2020.110953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 01/20/2023]
|
30
|
Seraj S, Lotfollahi MN, Nematollahzadeh A. Synthesis and sorption properties of heparin imprinted zeolite beta/polydopamine composite nanoparticles. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2019.104462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Jin S, Huang J, Chen X, Gu H, Li D, Zhang A, Liu X, Chen H. Nitric Oxide-Generating Antiplatelet Polyurethane Surfaces with Multiple Additional Biofunctions via Cyclodextrin-Based Host–Guest Interactions. ACS APPLIED BIO MATERIALS 2019; 3:570-576. [DOI: 10.1021/acsabm.9b00969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Dan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| |
Collapse
|
32
|
Lu J, Zhuang W, Li L, Zhang B, Yang L, Liu D, Yu H, Luo R, Wang Y. Micelle-Embedded Layer-by-Layer Coating with Catechol and Phenylboronic Acid for Tunable Drug Loading, Sustained Release, Mild Tissue Response, and Selective Cell Fate for Re-endothelialization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10337-10350. [PMID: 30753784 DOI: 10.1021/acsami.9b01253] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tunable/sustained drug loading/releasing are of significance in addressing low cytotoxicity, long-term performance, and localized mild healing response in biomedical applications. With an ingenious design, a self-healing sandwiched layer-by-layer (LBL) coating was constructed by using chitosan/heparin as adopted polyelectrolytes with embedding of micelles, in which the chitosan backbone was grafted with catechol and the micelle was modified with exposed phenylboronic acid, endowing the coating with enhanced stability by abundant interactions among coating components (e.g., boric acid ester bond formation, weak intermolecular cross-linking, π-π interactions, and H-bonding). Moreover, rapamycin and atorvastatin calcium were selected as drug candidates and loaded into micelles, followed by drug-releasing behavior study. It was found that the LBL coating maintained a linear growth mode up to 30 cycles, giving a favorable tunability of coating construction and drug loading. The coating could also support sustained release of payloads and provide wild tissue response. With the systematic in vitro and in vivo study, such catechol-phenylboronic acid-enhanced LBL coating with drug loading would also address enhanced antiplatelet adhesion/activation and direct cell fate of endothelial cells and smooth muscle cells via tuning of coating cycles and loaded drugs. With modular assembly, such coating indicated potential for achieving enhanced re-endothelialization for vascular implants.
Collapse
|
33
|
Abstract
This review describes several general chemical approaches for the preparation of glycosaminoglycan (GAG)-mimetic polymers based on different backbones and sidechains, and highlights the importance of these synthetic GAG-mimetic polymers in controlling key biofunctions.
Collapse
Affiliation(s)
- Qi Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Gaojian Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
34
|
Ferraro M, Silberreis K, Mohammadifar E, Neumann F, Dernedde J, Haag R. Biodegradable Polyglycerol Sulfates Exhibit Promising Features for Anti-inflammatory Applications. Biomacromolecules 2018; 19:4524-4533. [DOI: 10.1021/acs.biomac.8b01100] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Magda Ferraro
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Kim Silberreis
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Ehsan Mohammadifar
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Falko Neumann
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jens Dernedde
- Institute of Laboratory Medicine, Clinical Chemistry, and Pathobiochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität
zu Berlin, and Berlin Institute of Health, CVK Augustenburger Platz 1, 13353 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| |
Collapse
|
35
|
Jin S, Gu H, Chen X, Liu X, Zhan W, Wei T, Sun X, Ren C, Chen H. A facile method to prepare a versatile surface coating with fibrinolytic activity, vascular cell selectivity and antibacterial properties. Colloids Surf B Biointerfaces 2018; 167:28-35. [PMID: 29625420 DOI: 10.1016/j.colsurfb.2018.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/27/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
Clot and thrombus formation on surfaces that come into contact with blood is still the most serious problem for blood contacting devices. Despite many years of continuous efforts in developing hemocompatible materials, it is still of great interest to develop multifunctional materials to enable vascular cell selectivity (to favor rapid endothelialization while inhibiting smooth muscle cell proliferation) and improve hemocompatibility. In addition, biomaterial-associated infections also cause the failure of biomedical implants and devices. However, it remains a challenging task to design materials that are multifunctional, since one of their functions will usually be compromised by the introduction of another function. In the present work, the gold substrate was first layer-by-layer (LbL) deposited with a multilayered polyelectrolyte film containing chitosan (positively charged) and a copolymer of sodium 4-vinylbenzenesulfonate (SS) and the "guest" adamantane monomer 1-adamantan-1-ylmethyl methacrylate (P(SS-co-Ada), negatively charged) via electro-static interactions, referred to as Au-LbL. The chitosan and P(SS-co-Ada) were intended to provide, respectively, resistance to bacteria and heparin-like properties. Then, "host" β-cyclodextrin derivatives bearing seven lysine ligands (CD-L) were immobilized on the Au-LbL surface by host-guest interactions between adamantane residues and CD-L, referred to as Au-LbL/CD-L. Finally, a versatile surface coating with fibrinolytic activity (lysis of nascent clots), vascular cell selectivity and antibacterial properties was developed.
Collapse
Affiliation(s)
- Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xuebo Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, PR China.
| | - Chuanlu Ren
- Department of Lab., No. 100 Hospital, CPLA, 4 Canglangting Street, Suzhou 215007, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| |
Collapse
|