1
|
He N, Bao H, Meng J, Song Y, Xu LP, Wang S. Immunomagnetic particles exhibiting programmable hierarchical flower-like nanostructures for enhanced separation of tumor cells. NANOSCALE 2024; 16:19245-19253. [PMID: 39330982 DOI: 10.1039/d4nr02929a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Immunomagnetic particles are extensively used for the separation of biological molecules and particles, and have exhibited great potential in many fields including biosensors, disease diagnosis and biomedical engineering. However, most immunomagnetic particles exhibit a smooth surface, resulting in a limited separation efficiency for biological particles featuring enormous surface nanostructures, such as tumor cells. Here we report flower-like immunomagnetic particles (FIMPs) prepared by streptavidin (SA)-assisted biomineralization and one-step antibody modification, and demonstrate their superior capability for highly efficient and selective separation of circulating tumor cells (CTCs). SA can link inorganic nanosheets and magnetic nanoparticles together to obtain FIMPs with programmable hierarchical flower-like nanostructures and provide enormous binding sites for post-antibody modification. The synergetic effect of nano-sized petals and micro-sized particles in the hierarchical nanostructure enhances the interaction between the cells and the matrix, thus enabling FIMPs to separate CTCs with high selectivity and high efficiency. Our study provides a promising platform for the selective separation of trace biological molecules and particles from complex samples and shows great potential for downstream detection and diagnosis.
Collapse
Affiliation(s)
- Na He
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Han Bao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China.
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Yang J, Liu B, Wang Q, Yan H, Li G, Wang X, Shang Z, Ou T, Chen W. Carboxylated mesoporous silica nanoparticle-nucleic acid chimera conjugate-assisted delivery of siRNA and doxorubicin effectively treat drug-resistant bladder cancer. Biomed Pharmacother 2024; 178:117185. [PMID: 39053429 DOI: 10.1016/j.biopha.2024.117185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Chemotherapy is the main treatment for bladder cancer, but drug resistance and side effects limit its application and therapeutic effect. Herein, we constructed doxorubicin (DOX)/COOH-mesoporous silica nanoparticle/polyethylenimine (PEI)/nucleic acid chimeras (DOX/MSN/Chimeras) to reduce the toxicity of chemotherapy drugs and the resistance of bladder cancer cells. Transmission electron microscopy showed that PEI was coated on the DOX/MSN/BSA nanoparticles with a diameter of about 150 nm. DOX/MSN/PEI could control DOX release for over 48 h, and the sudden release rate was significantly lower than DOX/MSN. Immunohistochemical results showed that DOX/MSN/Chimera specifically bound to bladder cancer cells, and markedly inhibited PI3K expression and proliferation of DOX-resistant bladder cancer cells. DOX/MSN/Chimera promoted the apoptosis of drug-resistant bladder cancer cells, which was superior to DOX/MSN/Aptamer or DOX/MSN. We further carried out animal experiments and found that DOX/MSN/Chimera could reduce the volume of transplanted tumors in vivo. Compared with DOX/MSN/Aptamer group, the proliferation rate was significantly decreased and the proportion of apoptotic cells was highly increased. Through the histological observation of kidneys and lungs, we believed that DOX/MSN/Chimera can effectively reduce the damage of chemotherapy drugs to normal tissues. In conclusion, we constructed a COOH-MSN/nucleic acid chimera conjugate for the targeted delivery of siRNA and anti-cancer drugs. Our study provides a new method for personalized and targeted treatment of drug-resistant bladder cancer.
Collapse
Affiliation(s)
- Jintao Yang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Biao Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Hao Yan
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Guangping Li
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xu Wang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Zhenhua Shang
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Wen Chen
- Department of Pathology, The 8th Medical Center, Chinese PLA General Hospital, Beijing 100091, China.
| |
Collapse
|
3
|
Pal J, Sharma M, Tiwari A, Tiwari V, Kumar M, Sharma A, Hassan Almalki W, Alzarea SI, Kazmi I, Gupta G, Kumarasamy V, Subramaniyan V. Oxidative Coupling and Self-Assembly of Polyphenols for the Development of Novel Biomaterials. ACS OMEGA 2024; 9:19741-19755. [PMID: 38737049 PMCID: PMC11080037 DOI: 10.1021/acsomega.3c08528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 05/14/2024]
Abstract
In recent years, the development of biomaterials from green organic sources with nontoxicity and hyposensitivity has been explored for a wide array of biotherapeutic applications. Polyphenolic compounds have unique structural features, and self-assembly by oxidative coupling allows molecular species to rearrange into complex biomaterial that can be used for multiple applications. Self-assembled polyphenolic structures, such as hollow spheres, can be designed to respond to various chemical and physical stimuli that can release therapeutic drugs smartly. The self-assembled metallic-phenol network (MPN) has been used for modulating interfacial properties and designing biomaterials, and there are several advantages and challenges associated with such biomaterials. This review comprehensively summarizes current challenges and prospects of self-assembled polyphenolic hollow spheres and MPN coatings and self-assembly for biomedical applications.
Collapse
Affiliation(s)
- Jyoti Pal
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Manu Sharma
- Department
of Chemistry and Toxicology, National Forensic
Sciences University, Sector 3 Rohini, Delhi 110085 India
| | - Abhishek Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Varsha Tiwari
- Pharmacy
Academy, IFTM University, Lodhipur-Rajput, Moradabad, U.P. 244102, India
| | - Manish Kumar
- Department
of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ajay Sharma
- School of
Pharmaceutical Sciences, Delhi Pharmaceutical
Sciences and Research University, Pushp Vihar, New Delhi 110017, India
| | - Waleed Hassan Almalki
- Department
of Pharmacology, College of Pharmacy, Umm
Al-Qura University, Makkah 21421, Saudi Arabia
| | - Sami I. Alzarea
- Department
of Pharmacology, College of Pharmacy, Jouf
University, Al-Jouf, Sakaka, 72388, Saudi Arabia
| | - Imran Kazmi
- Department
of Biochemistry, Faculty of Science, King
Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Gaurav Gupta
- Centre for
Global Health Research, Saveetha Medical College, Saveetha Institute
of Medical and Technical Sciences, Saveetha
University, Chennai, Tamil Nadu 602105, India
- School of
Pharmacy, Graphic Era Hill University, Dehradun 248007, India
- School
of Pharmacy, Suresh Gyan Vihar University, Jagatpura, 302017 Jaipur, India
| | - Vinoth Kumarasamy
- Department
of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Vetriselvan Subramaniyan
- Pharmacology
Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| |
Collapse
|
4
|
Ouyang R, Geng C, Li J, Jiang Q, Shen H, Zhang Y, Liu X, Liu B, Wu J, Miao Y. Recent advances in photothermal nanomaterials-mediated detection of circulating tumor cells. RSC Adv 2024; 14:10672-10686. [PMID: 38572345 PMCID: PMC10988362 DOI: 10.1039/d4ra00548a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.
Collapse
Affiliation(s)
- Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Chongrui Geng
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Li
- Hunan Shizhuyuan Nonferrous Metals Co., Ltd Chenzhou Hunan 423037 China
| | - Qiliang Jiang
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Hongyu Shen
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yulong Zhang
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xueyu Liu
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Baolin Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jingxiang Wu
- Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine Shanghai 200030 China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth Science, University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|
5
|
Tao S, Wu J, He Y, Jiao F. Numerical Studies on the Motions of Magnetically Tagged Cells Driven by a Micromagnetic Matrix. MICROMACHINES 2023; 14:2224. [PMID: 38138393 PMCID: PMC10745660 DOI: 10.3390/mi14122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Precisely controlling magnetically tagged cells in a complex environment is crucial to constructing a magneto-microfluidic platform. We propose a two-dimensional model for capturing magnetic beads from non-magnetic fluids under a micromagnetic matrix. A qualitative description of the relationship between the capture trajectory and the micromagnetic matrix with an alternating polarity configuration was obtained by computing the force curve of the magnetic particles. Three stages comprise the capture process: the first, where motion is a parabolic fall in weak fields; the second, where the motion becomes unpredictable due to the competition between gravity and magnetic force; and the third, where the micromagnetic matrix finally captures cells. Since it is not always obvious how many particles are adhered to the surface, attachment density is utilized to illustrate how the quantity of particles influences the capture path. The longitudinal magnetic load is calculated to measure the acquisition efficiency. The optimal adhesion density is 13%, and the maximum adhesion density is 18%. It has been demonstrated that a magnetic ring model with 100% adhesion density can impede the capture process. The results offer a theoretical foundation for enhancing the effectiveness of rare cell capture in practical applications.
Collapse
Affiliation(s)
- Shanjia Tao
- School of Mechanical Engineering, Chongqing Technology and Business University, Chongqing 400067, China;
| | - Jianguo Wu
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China;
| | - Yongqing He
- Chongqing Key Laboratory of Micro-Nano System and Intelligent Transduction, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Feng Jiao
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
6
|
Ilyas A, Dyussupova A, Sultangaziyev A, Shevchenko Y, Filchakova O, Bukasov R. SERS immuno- and apta-assays in biosensing/bio-detection: Performance comparison, clinical applications, challenges. Talanta 2023; 265:124818. [PMID: 37453393 DOI: 10.1016/j.talanta.2023.124818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Surface Enhanced Raman Spectroscopy is increasingly used as a sensitive bioanalytical tool for detection of variety of analytes ranging from viruses and bacteria to cancer biomarkers and toxins, etc. This comprehensive review describes principles of operation and compares the performance of immunoassays and aptamer assays with Surface Enhanced Raman scattering (SERS) detection to each other and to some other bioassay methods, including ELISA and fluorescence assays. Both immuno- and aptamer-based assays are categorized into assay on solid substrates, assays with magnetic nanoparticles and assays in laminar flow or/and strip assays. The best performing and recent examples of assays in each category are described in the text and illustrated in the figures. The average performance, particularly, limit of detection (LOD) for each of those methods reflected in 9 tables of the manuscript and average LODs are calculated and compared. We found out that, on average, there is some advantage in terms of LOD for SERS immunoassays (0.5 pM median LOD of 88 papers) vs SERS aptamer-based assays (1.7 pM median LOD of 51 papers). We also tabulated and analyzed the clinical performance of SERS immune and aptamer assays, where selectivity, specificity, and accuracy are reported, we summarized the best examples. We also reviewed challenges to SERS bioassay performance and real-life application, including non-specific protein binding, nanoparticle aggregation, limited nanotag stability, sometimes, relatively long time to results, etc. The proposed solutions to those challenges are also discussed in the review. Overall, this review may be interesting not only to bioanalytical chemist, but to medical and life science researchers who are interested in improvement of bioanalyte detection and diagnostics.
Collapse
Affiliation(s)
- Aisha Ilyas
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | | | | | - Yegor Shevchenko
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Olena Filchakova
- Department of Biology, SSH, Nazarbayev University, Astana, Kazakhstan
| | - Rostislav Bukasov
- Department of Chemistry, SSH, Nazarbayev University, Astana, Kazakhstan.
| |
Collapse
|
7
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [DOI: https:/doi.org/10.3390/pharmaceutics15061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore
| | - João Rodrigues
- CQM—Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Michael K. Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
8
|
Jeevanandam J, Tan KX, Rodrigues J, Danquah MK. Target-Specific Delivery and Bioavailability of Pharmaceuticals via Janus and Dendrimer Particles. Pharmaceutics 2023; 15:1614. [PMID: 37376062 DOI: 10.3390/pharmaceutics15061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Nanosized Janus and dendrimer particles have emerged as promising nanocarriers for the target-specific delivery and improved bioavailability of pharmaceuticals. Janus particles, with two distinct regions exhibiting different physical and chemical properties, provide a unique platform for the simultaneous delivery of multiple drugs or tissue-specific targeting. Conversely, dendrimers are branched, nanoscale polymers with well-defined surface functionalities that can be designed for improved drug targeting and release. Both Janus particles and dendrimers have demonstrated their potential to improve the solubility and stability of poorly water-soluble drugs, increase the intracellular uptake of drugs, and reduce their toxicity by controlling the release rate. The surface functionalities of these nanocarriers can be tailored to specific targets, such as overexpressed receptors on cancer cells, leading to enhanced drug efficacy The design of these nanocarriers can be optimized by tuning the size, shape, and surface functionalities, among other parameters. The incorporation of Janus and dendrimer particles into composite materials to create hybrid systems for enhancing drug delivery, leveraging the unique properties and functionalities of both materials, can offer promising outcomes. Nanosized Janus and dendrimer particles hold great promise for the delivery and improved bioavailability of pharmaceuticals. Further research is required to optimize these nanocarriers and bring them to the clinical setting to treat various diseases. This article discusses various nanosized Janus and dendrimer particles for target-specific delivery and bioavailability of pharmaceuticals. In addition, the development of Janus-dendrimer hybrid nanoparticles to address some limitations of standalone nanosized Janus and dendrimer particles is discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Kei Xian Tan
- GenScript Biotech (Singapore) Pte. Ltd., 164, Kallang Way, Solaris@Kallang 164, Singapore 349248, Singapore
| | - João Rodrigues
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Michael K Danquah
- Department of Chemical Engineering, University of Tennessee, Chattanooga, TN 37403-2598, USA
| |
Collapse
|
9
|
Shah S, Famta P, Bagasariya D, Charankumar K, Sikder A, Kashikar R, Kotha AK, Chougule MB, Khatri DK, Asthana A, Raghuvanshi RS, Singh SB, Srivastava S. Tuning Mesoporous Silica Nanoparticles in Novel Avenues of Cancer Therapy. Mol Pharm 2022; 19:4428-4452. [PMID: 36109099 DOI: 10.1021/acs.molpharmaceut.2c00374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The global menace of cancer has led to an increased death toll in recent years. The constant evolution of cancer therapeutics with novel delivery systems has paved the way for translation of innovative therapeutics from bench to bedside. This review explains the significance of mesoporous silica nanoparticles (MSNs) as delivery vehicles with particular emphasis on cancer therapy, including novel opportunities for biomimetic therapeutics and vaccine delivery. Parameters governing MSN synthesis, therapeutic agent loading characteristics, along with tuning of MSN toward cancer cell specificity have been explained. The advent of MSN in nanotheranostics and its potential in forming nanocomposites for imaging purposes have been illustrated. Additionally, various hurdles encountered during the bench to bedside translation have been explained along with potential avenues to circumvent them. This also opens up new horizons in drug delivery, which could be useful to researchers in the years to come.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rama Kashikar
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Arun K Kotha
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Mahavir Bhupal Chougule
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, Georgia 30341, United States
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, Raj Nagar, Ghaziabad 201002, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| |
Collapse
|
10
|
Uthaman S, Cutshaw G, Ghazvini S, Bardhan R. Nanomaterials for Natural Killer Cell-Based Immunoimaging and Immunotherapies in Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 15:10.1021/acsami.2c08619. [PMID: 36006784 PMCID: PMC10176446 DOI: 10.1021/acsami.2c08619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Natural killer (NK) cells are an important component of the tumor immunosurveillance; activated NK cells can recognize and directly lyse tumor cells eliciting a potent antitumor immune response. Due to their intrinsic ability to unleash cytotoxicity against tumor cells, NK cell-based adoptive cell therapies have gained rapid clinical significance, and many clinical trials are ongoing. However, priming and activating NK cells, infiltration of activated NK cells in the immunosuppressive tumor microenvironment, and tracking the infiltrated NK cells in the tumors remain a critical challenge. To address these challenges, NK cells have been successfully interfaced with nanomaterials where the morphology, composition, and surface characteristics of nanoparticles (NPs) were leveraged to enable longitudinal tracking of NK cells in tumors or deliver therapeutics to prime NK cells. Distinct from other published reviews, in this tutorial review, we summarize the recent findings in the past decade where NPs were used to label NK cells for immunoimaging or deliver treatment to activate NK cells and induce long-term immunity against tumors. We discuss the NP properties that are key to surmounting the current challenges in NK cells and the different strategies employed to advance NK cells-based diagnostics and therapeutics. We conclude the review with an outlook on future directions in NP-NK cell hybrid interfaces, and overall clinical impact and patient response to such interfaces that need to be addressed to enable their clinical translation.
Collapse
|
11
|
Shah S, Famta P, Bagasariya D, Charankumar K, Amulya E, Kumar Khatri D, Singh Raghuvanshi R, Bala Singh S, Srivastava S. Nanotechnology based drug delivery systems: Does shape really matter? Int J Pharm 2022; 625:122101. [PMID: 35961415 DOI: 10.1016/j.ijpharm.2022.122101] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/11/2023]
Abstract
As of today, the era of nanomedicine has brought numerous breakthroughs and overcome challenges in the treatment of various disorders. Various factors like size, charge and surface hydrophilicity have garnered significant attention by nanotechnologists. However, more exploration in the field of nanoparticle shape and geometry, one of the basic physical phenomenon is required. Tuning nanoparticle shape and geometry could potentially overcome pitfalls in therapeutics and biomedical fields. Thus, in this article, we unveil the importance of tuning nanoparticle shape selection across the delivery platforms. This article provides an in-depth understanding of nanoparticle shape modulation and advise the researchers on the ideal morphology selection tailored for each implication. We deliberated the importance of nanoparticle shape selection for specific implications with respect to organ targeting, cellular internalization, pharmacokinetics and bio-distribution, protein corona formation as well as RES evasion and tumor targeting. An additional section on the significance of shape transformation, a recently introduced novel avenue with applications in drug delivery was discussed. Furthermore, regulatory concerns towards nanoparticle shape which need to be addressed for harnessing their clinical translation will be explained.
Collapse
Affiliation(s)
- Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Deepkumar Bagasariya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kondasingh Charankumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rajeev Singh Raghuvanshi
- Indian Pharmacopoeia Commission, Ministry of Health & Family Welfare, Government of India, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
12
|
Shukla SK, Sarode A, Wang X, Mitragotri S, Gupta V. Particle shape engineering for improving safety and efficacy of doxorubicin - A case study of rod-shaped carriers in resistant small cell lung cancer. BIOMATERIALS ADVANCES 2022; 137:212850. [PMID: 35929278 DOI: 10.1016/j.bioadv.2022.212850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
Therapeutic drug delivery is known to be influenced by interplay between various design parameters of delivery carriers which influence the drug uptake efficiency and subsequently the effectiveness of treatment. Amongst, the several design parameters such as size, shape and surface charge, particle shape is gaining attention as a crucial design parameter for development of robust and efficient delivery carriers. In this exploration, we investigated the influence of particle shape on injectability and therapeutic effectiveness of the delivery carriers using doxorubicin (DOX) conjugated polymeric microparticles. Results of injectability experiments demonstrated the influence of particle shape with anisotropic rod-shaped particles displaying increased injectability as against spherical particles. Impact of particle shape on therapeutic effectiveness was assessed against small cell lung cancer (SCLC) which was selected as a model disease. Results of cellular uptake studies revealed preferential uptake of rod-shaped particles than spherical particles in cancer cells. These results were further validated by in-vitro tumor simulation studies wherein rod-shaped particles displayed enhanced anti-tumorigenic activity along with distortion of tumor integrity against spheres. Furthermore, the impact of particle size was also assessed on cardiotoxicity, an adverse effect of DOX which limits its therapeutic use. Results illustrated that the high aspect ratio particles displayed diminished cardiotoxicity activity. These results provide valuable insights about influence of particle shape for designing efficient therapeutics.
Collapse
Affiliation(s)
- Snehal K Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Apoorva Sarode
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Xuechun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Samir Mitragotri
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vivek Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
13
|
Chen B, Zheng J, Gao K, Hu X, Guo SS, Zhao XZ, Liao F, Yang Y, Liu W. Noninvasive Optical Isolation and Identification of Circulating Tumor Cells Engineered by Fluorescent Microspheres. ACS APPLIED BIO MATERIALS 2022; 5:2768-2776. [PMID: 35537085 DOI: 10.1021/acsabm.2c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Circulating tumor cells (CTCs) are rare, meaning that current isolation strategies can hardly satisfy efficiency and cell biocompatibility requirements, which hinders clinical applications. In addition, the selected cells require immunofluorescence identification, which is a time-consuming and expensive process. Here, we developed a method to simultaneously separate and identify CTCs by the integration of optical force and fluorescent microspheres. Our method achieved high-purity separation of CTCs without damage through light manipulation and avoided additional immunofluorescence staining procedures, thus achieving rapid identification of sorted cells. White blood cells (WBCs) and CTCs are similar in size and density, which creates difficulties in distinguishing them optically. Therefore, fluorescent PS microspheres with high refractive index (RI) are designed here to capture the CTCs (PS-CTCs) and increase the average index of refraction of PS-CTCs. In optofluidic chips, PS-CTCs were propelled to the collection channel from the sample mixture, under the radiation of light force. Cells from the collection outlet were easily identified under a fluorescence microscope due to the fluorescence signals of PS microspheres. This method provides an approach for the sorting and identification of CTCs, which holds great potential for clinical applications in early diagnosis of disease.
Collapse
Affiliation(s)
- Bei Chen
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Jingjing Zheng
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Kefan Gao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xuejia Hu
- Department of Electronic Engineering School of Electronic Science and Engineering, Xiamen University, Xiamen, Fujian Province 361005, China
| | - Shi-Shang Guo
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Xing-Zhong Zhao
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Fei Liao
- Gastroenterology Department, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yi Yang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, Hubei 430072, China.,Wuhan Institute of Quantum Technology, Wuhan 430206, China.,Hubei Luojia Laboratory, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
14
|
Keup C, Kimmig R, Kasimir-Bauer S. Combinatorial Power of cfDNA, CTCs and EVs in Oncology. Diagnostics (Basel) 2022; 12:870. [PMID: 35453918 PMCID: PMC9031112 DOI: 10.3390/diagnostics12040870] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/18/2022] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Liquid biopsy is a promising technique for clinical management of oncological patients. The diversity of analytes circulating in the blood useable for liquid biopsy testing is enormous. Circulating tumor cells (CTCs), cell-free DNA (cfDNA) and extracellular vesicles (EVs), as well as blood cells and other soluble components in the plasma, were shown as liquid biopsy analytes. A few studies directly comparing two liquid biopsy analytes showed a benefit of one analyte over the other, while most authors concluded the benefit of the additional analyte. Only three years ago, the first studies to examine the value of a characterization of more than two liquid biopsy analytes from the same sample were conducted. We attempt to reflect on the recent development of multimodal liquid biopsy testing in this review. Although the analytes and clinical purposes of the published multimodal studies differed significantly, the additive value of the analytes was concluded in almost all projects. Thus, the blood components, as liquid biopsy reservoirs, are complementary rather than competitive, and orthogonal data sets were even shown to harbor synergistic effects. The unmistakable potential of multimodal liquid biopsy testing, however, is dampened by its clinical utility, which is yet to be proven, the lack of methodical standardization and insufficiently mature reimbursement, logistics and data handling.
Collapse
Affiliation(s)
- Corinna Keup
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital of Essen, Hufelandstr. 55, 45122 Essen, Germany
| |
Collapse
|
15
|
He X, Chen F, Chang Z, Waqar K, Hu H, Zheng X, Wang Y, Dong WF, Yang C. Silver Mesoporous Silica Nanoparticles: Fabrication to Combination Therapies for Cancer and Infection. CHEM REC 2022; 22:e202100287. [PMID: 35020240 DOI: 10.1002/tcr.202100287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/24/2021] [Indexed: 12/16/2022]
Abstract
The integration of silver nanoparticles (Ag NPs) with mesoporous silica nanoparticles (MSNs) protects the former from aggregation and promotes the controlled release of silver ions, resulting in therapeutic significance on cancer and infection. The unique size, shape, pore structure and silver distribution of silver mesoporous silica nanoparticles (Ag-MSNs) embellish them with the potential to perform combined imaging and therapeutic actions via modulating optical and drug release properties. Here, we comprehensively review the recent progress in the fabrication and application of Ag-MSNs for combination therapies for cancer and infection. We first elaborate on the fabrication of star-shaped structure, core-shell structure, and Janus structure Ag-MSNs. We then highlight Ag-MSNs as a multifunctional nanoplatform to surface-enhanced Raman scattering-based detection, non-photo-based cancer theranostics and photo-based cancer theranostics. In addition, we detail Ag-MSNs for combined antibacterial therapy via drug delivery and phototherapy. Overall, we summarize the challenges and future perspectives of Ag-MSNs that make them promising for diagnosis and therapy of cancer and infection.
Collapse
Affiliation(s)
- Xuan He
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Kasim Waqar
- Department of Biomedical Engineering, Columbia University, New York, New York, 10025, USA
| | - Hanze Hu
- Department of Biomedical Engineering, Columbia University, New York, New York, 10025, USA
| | - Xiao Zheng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Yingshuai Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, 261053, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Chao Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, Guangdong, 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
16
|
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:503. [PMID: 35057223 PMCID: PMC8779542 DOI: 10.3390/ma15020503] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023]
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Nhat M. Ngo
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Riddhiman Medhi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Pannaree Srinoi
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Tingting Liu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Supparesk Rittikulsittichai
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| |
Collapse
|
17
|
Li F, Xu H, Zhao Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
18
|
Wu H, Xu XF, Zhu JQ, Wang MD, Li C, Liang L, Xing H, Wu MC, Shen F, Huang DS, Yang T. Mesoporous Silica Nanoparticles for Potential Immunotherapy of Hepatocellular Carcinoma. Front Bioeng Biotechnol 2021; 9:695635. [PMID: 34692650 PMCID: PMC8531639 DOI: 10.3389/fbioe.2021.695635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related death worldwide, which lacks effective inhibition of progression and metastasis in the advanced clinical stage. Mesoporous silica nanoparticle (MSN)–based cytotoxic or immunoregulatory drug–loading strategies have attracted widespread attention in the recent years. As a representative of mesoporous biomaterials, MSNs have good biological characteristics and immune activation potential and can cooperate with adjuvants against HCC. This review summarizes the possible future development of the field from the perspective of tumor immunity and aims to stimulate the exploration of the immune mechanism of MSN-based therapy. Through this point of view, we hope to develop new clinical immune drugs that can be applied to HCC clinical management in the future.
Collapse
Affiliation(s)
- Han Wu
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Xin-Fei Xu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Jia-Qi Zhu
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China
| | - Ming-Da Wang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Chao Li
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Lei Liang
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Hao Xing
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Meng-Chao Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Feng Shen
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| | - Dong-Sheng Huang
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,School of Clinical Medicine, Hangzhou Medical College, Hangzhou, China
| | - Tian Yang
- Department of Hepatobiliary, Pancreatic and Minimal Invasive Surgery, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College), Hangzhou, China.,Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University (Naval Medical University), Shanghai, China
| |
Collapse
|
19
|
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021; 13:pharmaceutics13101615. [PMID: 34683908 PMCID: PMC8539492 DOI: 10.3390/pharmaceutics13101615] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Nanomaterials are now being used in a wide variety of biomedical applications. Medical and health-related issues, however, have raised major concerns, in view of the potential risks of these materials against tissue, cells, and/or organs and these are still poorly understood. These particles are able to interact with the body in countless ways, and they can cause unexpected and hazardous toxicities, especially at cellular levels. Therefore, undertaking in vitro and in vivo experiments is vital to establish their toxicity with natural tissues. In this review, we discuss the underlying mechanisms of nanotoxicity and provide an overview on in vitro characterizations and cytotoxicity assays, as well as in vivo studies that emphasize blood circulation and the in vivo fate of nanomaterials. Our focus is on understanding the role that the physicochemical properties of nanomaterials play in determining their toxicity.
Collapse
Affiliation(s)
- Abraham J. Domb
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Correspondence: (A.J.D.); (H.H.)
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Victoria Nahum
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
- Correspondence: (A.J.D.); (H.H.)
| |
Collapse
|
20
|
Janus metallic mesoporous silica nanoparticles: Unique structures for cancer theranostics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Zhang Y, Wang W, Guo H, Liu M, Zhu H, Sun H. Hyaluronic acid-functionalized redox responsive immunomagnetic nanocarrier for circulating tumor cell capture and release. NANOTECHNOLOGY 2021; 32:475102. [PMID: 33494073 DOI: 10.1088/1361-6528/abdf8c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Detection of circulating tumor cells (CTCs) in peripheral blood holds significant insights for cancer diagnosis, prognosis evaluation, and precision medicine. To efficiently capture and release CTCs with high viability, we reported the development of hyaluronic acid (HA)-functionalized redox responsive immunomagnetic nanocarrier (Fe3O4@SiO2-SS-HA). First, Fe3O4nanoparticles were prepared and modified with tetraethyl orthosilicate (TEOS), 3-mercaptopropyltrimethoxysilane (MPTMS) and 2,2'-dithiodipyridine (DDPy) to form the magnetic substrate (Fe3O4@SiO2-SSPy). Modified with targeted segment HA-functionalized L-cysteine ethyl ester hydrochloride (HA-Cys) via disulfide exchange reaction, the Fe3O4@SiO2-SS-HA was formed. The nanocarrier with prominent magnetic property, targeting ligand, and redox-sensitive disulfide linkages was able to specially capture MCF-7 cells with an efficiency of 92% and effectively release captured cells with an efficiency of 81.4%. Furthermore, the Fe3O4@SiO2-SS-HA could successfully be used for the capture of MCF-7 cells, and the captured cells could be diferntiated from the blood cells. Almost all of released tumor cells kept good viability and a robust proliferative capacity after being re-cultured. It is likely that the as-prepared nanocarrier will serve as a new weapon against CD44 receptor-overexpressed cancer cells.
Collapse
Affiliation(s)
- Yi Zhang
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Wenjing Wang
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Huiling Guo
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Mingxing Liu
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Hongda Zhu
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| | - Hongmei Sun
- School of Bioengineering and Food, Key Laboratory of Fermentation Engineering (Ministry of Education), Key Laboratory of Industrial Microbiology in Hubei, National '111' Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, People's Republic of China
| |
Collapse
|
22
|
Alphandéry E. Light-Interacting iron-based nanomaterials for localized cancer detection and treatment. Acta Biomater 2021; 124:50-71. [PMID: 33540060 DOI: 10.1016/j.actbio.2021.01.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/12/2022]
Abstract
To improve the prognosis of cancer patients, methods of local cancer detection and treatment could be implemented. For that, iron-based nanomaterials (IBN) are particularly well-suited due to their biocompatibility and the various ways in which they can specifically target a tumor, i.e. through passive, active or magnetic targeting. Furthermore, when it is needed, IBN can be associated with well-known fluorescent compounds, such as dyes, clinically approved ICG, fluorescent proteins, or quantum dots. They may also be excited and detected using well-established optical methods, relying on scattering or fluorescent mechanisms, depending on whether IBN are associated with a fluorescent compound or not. Systems combining IBN with optical methods are diverse, thus enabling tumor detection in various ways. In addition, these systems provide a wealth of information, which is inaccessible with more standard diagnostic tools, such as single tumor cell detection, in particular by combining IBN with near-field scanning optical microscopy, dark-field microscopy, confocal microscopy or super-resolution microscopy, or the highlighting of certain dynamic phenomena such as the diffusion of a fluorescent compound in an organism, e.g. using fluorescence lifetime imaging, fluorescence resonance energy transfer, fluorescence anisotropy, or fluorescence tomography. Furthermore, they can in some cases be complemented by a therapeutic approach to destroy tumors, e.g. when the fluorescent compound is a drug, or when a technique such as photo-thermal or photodynamic therapy is employed. This review brings forward the idea that iron-based nanomaterials may be associated with various optical techniques to form a commercially available toolbox, which can serve to locally detect or treat cancer with a better efficacy than more standard medical approaches. STATEMENT OF SIGNIFICANCE: New tools should be developed to improve cancer treatment outcome. For that, two closely-related aspects deserve to be considered, i.e. early tumor detection and local tumor treatment. Here, I present various types of iron-based nanomaterials, which can achieve this double objective when they interact with a beam of light under specific and accurately chosen conditions. Indeed, these materials are biocompatible and can be used/combined with most standard microscopic/optical methods. Thus, these systems enable on the one hand tumor cell detection with a high sensitivity, i.e. down to single tumor cell level, and on the other hand tumor destruction through various mechanisms in a controlled and localized manner by deciding whether or not to apply a beam of light and by having these nanomaterials specifically target tumor cells.
Collapse
|
23
|
Kajani AA, Mehrgardi MA. Fluorescence resonance energy transfer monitoring of pH-responsive doxorubicin release from carbon dots/aptamer functionalized magnetic mesoporous silica. Nanomedicine (Lond) 2021; 16:627-639. [PMID: 33759545 DOI: 10.2217/nnm-2020-0410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Aim: To develop a novel theranostic nanoplatform for simultaneous fluorescent monitoring and stimuli-triggered drug delivery. Materials & methods: Different microscopic and spectroscopic techniques were used for the characterization of nanocarriers. MCF-7 and human umbilical vein endothelial cell lines were cultured and treated with different doses of doxorubicin-loaded nanocarriers. The cell viability and drug release were studied using MTT assay and fluorescence microscopy. Results: Biocompatible and mono-disperse nanocarriers represent hollow and mesoporous structures with the calculated surface area of 552.83 m2.g-1, high magnetic activity (12.6 emu.g-1), appropriate colloidal stability and high drug loading capacity (up to 61%). Conclusion: Taxane-based carbon dots act as the pH-responsive gatekeepers for the controlled release of doxorubicin into cancer cells and provide a fluorescence resonance energy transfer system for real-time monitoring of drug delivery.
Collapse
Affiliation(s)
- Abolghasem Abbasi Kajani
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran
| | | |
Collapse
|
24
|
Cho HY, Choi JH, Lim J, Lee SN, Choi JW. Microfluidic Chip-Based Cancer Diagnosis and Prediction of Relapse by Detecting Circulating Tumor Cells and Circulating Cancer Stem Cells. Cancers (Basel) 2021; 13:1385. [PMID: 33803846 PMCID: PMC8003176 DOI: 10.3390/cancers13061385] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022] Open
Abstract
Detecting circulating tumor cells (CTCs) has been considered one of the best biomarkers in liquid biopsy for early diagnosis and prognosis monitoring in cancer. A major challenge of using CTCs is detecting extremely low-concentrated targets in the presence of high noise factors such as serum and hematopoietic cells. This review provides a selective overview of the recent progress in the design of microfluidic devices with optical sensing tools and their application in the detection and analysis of CTCs and their small malignant subset, circulating cancer stem cells (CCSCs). Moreover, discussion of novel strategies to analyze the differentiation of circulating cancer stem cells will contribute to an understanding of metastatic cancer, which can help clinicians to make a better assessment. We believe that the topic discussed in this review can provide brief guideline for the development of microfluidic-based optical biosensors in cancer prognosis monitoring and clinical applications.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Bio & Fermentation Convergence Technology, Kookmin University, Seoul 02707, Korea;
- Interdisciplinary Program for Bio-health Convergence, Kookmin University, Seoul 02707, Korea
| | - Jin-Ha Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
- School of Chemical Engineering, Jeonbuk National University, Jeonju 54896, Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| | - Sang-Nam Lee
- Uniance Gene Inc., 1107 Teilhard Hall, 35 Baekbeom-Ro, Mapo-Gu, Seoul 04107, Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Korea; (J.-H.C.); (J.L.)
| |
Collapse
|
25
|
Kumar S, Singhal A, Narang U, Mishra S, Kumari P. Recent Progresses in Organic-Inorganic Nano Technological Platforms for Cancer Therapeutics. Curr Med Chem 2021; 27:6015-6056. [PMID: 30585536 DOI: 10.2174/0929867326666181224143734] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
Nanotechnology offers promising tools in interdisciplinary research areas and getting an upsurge of interest in cancer therapeutics. Organic nanomaterials and inorganic nanomaterials bring revolutionary advancement in cancer eradication process. Oncology is achieving new heights under nano technological platform by expediting chemotherapy, radiotherapy, photo thermodynamic therapy, bio imaging and gene therapy. Various nanovectors have been developed for targeted therapy which acts as "Nano-bullets" for tumor cells selectively. Recently combinational therapies are catching more attention due to their enhanced effect leading towards the use of combined organicinorganic nano platforms. The current review covers organic, inorganic and their hybrid nanomaterials for various therapeutic action. The technological aspect of this review emphasizes on the use of inorganic-organic hybrids and combinational therapies for better results and also explores the future opportunities in this field.
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, India,Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | - Anchal Singhal
- Department of chemistry, St. Joseph College, Banglore, India
| | - Uma Narang
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sweta Mishra
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| |
Collapse
|
26
|
Colorimetric detection of immunomagnetically captured rare number CTCs using mDNA-wrapped single-walled carbon nanotubes. Biosens Bioelectron 2021; 172:112780. [DOI: 10.1016/j.bios.2020.112780] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 01/17/2023]
|
27
|
Xia W, Shangguan X, Li M, Wang Y, Xi D, Sun W, Fan J, Shao K, Peng X. Ex vivo identification of circulating tumor cells in peripheral blood by fluorometric "turn on" aptamer nanoparticles. Chem Sci 2020; 12:3314-3321. [PMID: 34164101 PMCID: PMC8179407 DOI: 10.1039/d0sc05112h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/19/2020] [Indexed: 12/21/2022] Open
Abstract
The detection of the circulating tumor cells (CTCs) detached from solid tumors has emerged as a burgeoning topic for cancer diagnosis and treatment. The conventional CTC enrichment and identification mainly rely on the specific binding of the antibodies on the capture interface of the magnetic nanoparticles with the corresponding biomarkers on the cell membranes. However, these methods could easily generate false-negative results due to the extremely low concentration of CTCs and the internal heterogeneity of the tumor cells. Herein, with the aim of selectively identifying CTCs and improving the detection accuracy in peripheral blood, we designed the fluorometric "turn on" Au nanoparticles (DHANs) with the modification of a tumor-targeted moiety, dehydroascorbic acid (DHA) and a fluorometric aptamer, which could be "switched-on" by an over-expressed intracellular protein, namely hypoxia-inducible factor-1α (HIF 1α). This novel nanoformulated detection platform demonstrated the great capacity for visualizing various CTCs in peripheral blood with significantly improved detection efficiency and sensitivity. As a result, the nanoplatform has a great potential to be further applied for CTC detection in vitro or in vivo, which holds promise for extensive CTC studies.
Collapse
Affiliation(s)
- Wenxi Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaoyan Shangguan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Miao Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
- School of Biological Engineering, Dalian Polytechnic University Ganjingzi District Dalian 116034 PR China
| | - Yang Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Dongmei Xi
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Kun Shao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology Dalian 116024 China
| |
Collapse
|
28
|
Tancredi P, Rivas-Rojas PC, Veiga LS, Garate O, Socolovsky LM, Muraca D, Ybarra G. Magnetic mesoporous silica nanospheres with dual probe & release fluorescent functionality. NANOTECHNOLOGY 2020; 31:495603. [PMID: 32975223 DOI: 10.1088/1361-6528/abb2c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The combination of different nanomaterials through step-by-step synthesis procedures has turned into a promising alternative to fabricate high-quality nanosystems in order to satisfy the increasingly demanding requirements of the biomedical field. In this work, we report a detailed study on the synthesis and characterization of a complex nanosystem composed of nanoparticles with a single magnetic nanoparticle core and a shell of dense and mesoporous silica arranged in layers. The procedure designed to fabricate these systems lead us to the formation of a dispersion of non-agglomerated spherical nanoparticles of nearly 100 nm. The structural characterization performed over the final samples confirmed both the prevalence of single-core systems and the presence of the mesoporous silica shell in the outer layer. The performance of the nanosystem in a specific technological application was tested by sequentially loading two different fluorescents molecules by covalent and non-covalent bonding strategies. Due to the distinct loading strategies, the resulting nanosystem presented a magnetically-assisted probe & release functionality as analyzed in a magnetophoretic experiment.
Collapse
Affiliation(s)
- Pablo Tancredi
- Functional Nanomaterials - INTI-Micro and Nanotechnology, National Institute of Industrial Technology, San Martín, Buenos Aires, CP B1650, Argentina
- Laboratory of Amorphous Solids - INTECIN, Faculty of Engineering, University of Buenos Aires - CONICET, Buenos Aires, CP C1063, Argentina
| | - Patricia C Rivas-Rojas
- Laboratory of Amorphous Solids - INTECIN, Faculty of Engineering, University of Buenos Aires - CONICET, Buenos Aires, CP C1063, Argentina
- Laboratory of Applied Crystallography, School of Science and Technology, National University of San Martin, San Martin, Buenos Aires, CP B1650, Argentina
| | - Lionel S Veiga
- Functional Nanomaterials - INTI-Micro and Nanotechnology, National Institute of Industrial Technology, San Martín, Buenos Aires, CP B1650, Argentina
| | - Octavio Garate
- Functional Nanomaterials - INTI-Micro and Nanotechnology, National Institute of Industrial Technology, San Martín, Buenos Aires, CP B1650, Argentina
| | - Leandro M Socolovsky
- Santa Cruz Regional School, National Technological University - CIT Santa Cruz (CONICET), Río Gallegos, Santa Cruz, CP Z9400, Argentina
| | - Diego Muraca
- Instituto de Física 'Gleb Wataghin', University of Campinas (UNICAMP), Campinas, SP CEP 13083-859, Brazil
| | - Gabriel Ybarra
- Functional Nanomaterials - INTI-Micro and Nanotechnology, National Institute of Industrial Technology, San Martín, Buenos Aires, CP B1650, Argentina
| |
Collapse
|
29
|
Li J, Luo Y, Li B, Xia Y, Wang H, Fu C. Implantable and Injectable Biomaterial Scaffolds for Cancer Immunotherapy. Front Bioeng Biotechnol 2020; 8:612950. [PMID: 33330440 PMCID: PMC7734317 DOI: 10.3389/fbioe.2020.612950] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer immunotherapy has become an emerging strategy recently producing durable immune responses in patients with varieties of malignant tumors. However, the main limitation for the broad application of immunotherapies still to reduce side effects by controlling and regulating the immune system. In order to improve both efficacy and safety, biomaterials have been applied to immunotherapies for the specific modulation of immune cells and the immunosuppressive tumor microenvironment. Recently, researchers have constantly developed biomaterials with new structures, properties and functions. This review provides the most recent advances in the delivery strategies of immunotherapies based on localized biomaterials, focusing on the implantable and injectable biomaterial scaffolds. Finally, the challenges and prospects of applying implantable and injectable biomaterial scaffolds in the development of future cancer immunotherapies are discussed.
Collapse
Affiliation(s)
- Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Chang ZM, Zhang R, Yang C, Shao D, Tang Y, Dong WF, Wang Z. Cancer-leukocyte hybrid membrane-cloaked magnetic beads for the ultrasensitive isolation, purification, and non-destructive release of circulating tumor cells. NANOSCALE 2020; 12:19121-19128. [PMID: 32929419 DOI: 10.1039/d0nr04097e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Most of the current circulating tumor cell (CTC) isolation techniques are based on immunomagnetic beads with antibodies or aptamers that specifically target epithelial cell adhesion molecules (EpCAMs). However, these techniques are unsuitable for the isolation and purification of circulating tumor cells because they fail to recognize EpCAM-negative CTCs and thus lead to the non-specific adsorption of background leucocytes and EpCAM-positive circulating epithelial cells. Moreover, releasing the CTCs from the capture platform without disruption is a big challenge. To address these issues, herein, we developed biomimetic magnetic beads (MBs) by cloaking a cancer cell-leukocyte hybrid membrane on the MBs. These biomimetic MBs inherited homologous CTC binding capability from the cancer cell membrane and less affinity for the background cells from the leukocyte membrane, exhibitng a higher CTC capture efficiency and separation purity than EpCAM-based MBs. Importantly, the captured CTCs could be rapidly released by a facile method i.e. co-incubation with a trypsin-EDTA solution. We demonstrated the excellent performance of these MBs for the highly pure separation and non-destructive release of CTCs in metastatic mammary carcinoma models. Our results indicate that the proposed homologous cancer-leukocyte membrane coating strategy may provide a promising method for the ultrahigh-specific and sensitive detection of CTCs.
Collapse
Affiliation(s)
- Zhi-Min Chang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China and CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Rui Zhang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Chao Yang
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, China.
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, 510006, China.
| | - Yuguo Tang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China and CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| | - Zheng Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.
| |
Collapse
|
31
|
Luo L, He Y. Magnetically driven microfluidics for isolation of circulating tumor cells. Cancer Med 2020; 9:4207-4231. [PMID: 32325536 PMCID: PMC7300401 DOI: 10.1002/cam4.3077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/06/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
Circulating tumor cells (CTCs) largely contribute to cancer metastasis and show potential prognostic significance in cancer isolation and detection. Miniaturization has progressed significantly in the last decade which in turn enabled the development of several microfluidic systems. The microfluidic systems offer a controlled microenvironment for studies of fundamental cell biology, resulting in the rapid development of microfluidic isolation of CTCs. Due to the inherent ability of magnets to provide forces at a distance, the technology of CTCs isolation based on the magnetophoresis mechanism has become a routine methodology. This historical review aims to introduce two principles of magnetic isolation and recent techniques, facilitating research in this field and providing alternatives for researchers in their study of magnetic isolation. Researchers intend to promote effective CTC isolation and analysis as well as active development of next-generation cancer treatment. The first part of this review summarizes the primary principles based on positive and negative magnetophoretic isolation and describes the metrics for isolation performance. The second part presents a detailed overview of the factors that affect the performance of CTC magnetic isolation, including the magnetic field sources, functionalized magnetic nanoparticles, magnetic fluids, and magnetically driven microfluidic systems.
Collapse
Affiliation(s)
- Laan Luo
- School of Chemical EngineeringKunming University of Science and TechnologyKunmingChina
| | - Yongqing He
- School of Chemical EngineeringKunming University of Science and TechnologyKunmingChina
- Chongqing Key Laboratory of Micro‐Nano System and Intelligent SensingChongqing Technology and Business UniversityChongqingChina
| |
Collapse
|
32
|
Dindarloo Inaloo I, Majnooni S, Eslahi H, Esmaeilpour M. Air‐Stable Fe
3
O
4
@SiO
2
‐EDTA‐Ni(0) as an Efficient Recyclable Magnetic Nanocatalyst for Effective Suzuki‐Miyaura and Heck Cross‐Coupling via Aryl Sulfamates and Carbamates. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5662] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Sahar Majnooni
- Department of Chemistry University of Isfahan Isfahan 81746‐73441 Iran
| | - Hassan Eslahi
- Chemistry Department, College of Sciences Shiraz University Shiraz Iran
| | | |
Collapse
|
33
|
Chang ZM, Zhou H, Yang C, Zhang R, You Q, Yan R, Li L, Ge M, Tang Y, Dong WF, Wang Z. Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. J Mater Chem B 2020; 8:5019-5025. [PMID: 32393955 DOI: 10.1039/d0tb00403k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Immunomagnetic beads are important tools for the isolation and detection of circulating tumor cells (CTCs). However, the current immunomagnetic bead technique provides poor CTC separation purity due to nonspecific binding of background cells. Furthermore, immunomagnetic beads have not been appropriately functionalized for enabling CTC analysis and quantification. In this work, bimetallic magnetic gold nanoparticles were prepared and coated with leukocyte membranes to form leukocyte membrane-camouflaged nanoparticles. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), the biomimetic immunomagnetic gold nanoparticles (CM-Fe3O4@Au-Ab) showed a high specific recognition ability on mock (EpCAM-positive) CTCs and a reduced interaction with leukocytes. We subsequently optimized the conditions for CTC separation, including the concentration of nanoparticles and the incubation time. Under the optimized conditions, CM-Fe3O4@Au-Ab exhibited high CTC capture efficiency with negligible background cell binding in mock clinical blood samples. More importantly, gold probes were tagged on the surface of these separated CTCs. When coupled with ICP-MS analysis, the number of CTCs and gold signals exhibited a good linear relationship, and a low limit of detection was obtained, enabling us to estimate the number of CTCs in blood samples. Hence, we expected that CM-Fe3O4@Au-Ab could provide an opportunity to surmount the limitations of current CTC detection.
Collapse
Affiliation(s)
- Zhi-Min Chang
- Academy for Engineering & Technology, Fudan University, Shanghai 200433, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Li G, Wang Y, Tan G, Liu Y, Xu Z, Feng H, Xing W, Xu Z. [Preliminary Study on Detection of Circulating Tumor Cells in Lung Cancer by EGFR/Vimentin/Folic Acid Magnetic Sphere]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:351-359. [PMID: 32336066 PMCID: PMC7260381 DOI: 10.3779/j.issn.1009-3419.2020.103.05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
背景与目的 循环肿瘤细胞(circulating tumor cell, CTC)在肺癌的筛查及预后方面发挥着重要的作用, 但较低的CTC分离效率和特异性对其临床应用有着明显的制约, 本研究旨在探讨非小细胞肺癌(non-small cell lung cancer, NSCLC)患者CTC的新型高效分离方法, 以期达到对NSCLC的早期诊断的目的。 方法 采用薄膜法制备表皮生长因子受体(epidermal growth factor receptor, EGFR)、波形蛋白(Vimentin)和叶酸(folic acid, FA)三种免疫脂质磁球, 表征后通过细胞系进行分选方案的探索, 构建对NSCLC CTC的最优分选方案, 初步研究了其在临床上的应用价值。 结果 EGFR、Vimentin和FA磁球磁球单独和联合使用对肺癌细胞株的平均捕获效率分别为78.0%、79.0%、82.0%和91.0%;在60例肺癌患者中, 以每7.5 mL血液2个CTC为cutoff值, EGFR、Vimentin、FA磁球单独和联合使用阳性率分别为65.0%、33.3%、93.3%和100.0%, 同时发现联合使用三种磁球检出的CTC数量与临床分期具有相关性(P < 0.05)。 结论 联合使用三种磁球可以分离EGFR+、Vimentin+和FA+表达且形态完整的CTC, 有利于的CTC相关下游分析, 本研究提供了一种提高NSCLC CTC捕获效率的新方法, 且验证了捕获的CTC计数方法可用于肺癌的辅助诊断。
Collapse
Affiliation(s)
- Guolei Li
- The First Surgery Department, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050051, China
| | - Yun Wang
- Department of Medical Ultrasonics, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Guoliang Tan
- The First Surgery Department, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050051, China
| | - Yuan Liu
- The First Surgery Department, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050051, China
| | - Zhao Xu
- The First Surgery Department, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050051, China
| | - Hao Feng
- The First Surgery Department, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050051, China
| | - Wei Xing
- The First Surgery Department, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050051, China
| | - Zhifeng Xu
- The First Surgery Department, Hebei Provincial Hospital of Chinese Medicine, Shijiazhuang 050051, China
| |
Collapse
|
35
|
Vandghanooni S, Barar J, Eskandani M, Omidi Y. Aptamer-conjugated mesoporous silica nanoparticles for simultaneous imaging and therapy of cancer. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115759] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Zhou H, Li Q, Cheng X, Zhang C, Sun J, Du L, Cao J, Liu Y, Huang P. A Janus upconverting nanoplatform with biodegradability for glutathione depletion, near-infrared light induced photodynamic therapy and accelerated excretion. J Mater Chem B 2020; 8:9251-9257. [PMID: 32929430 DOI: 10.1039/d0tb01357a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The major limitations of photodynamic therapy (PDT) are the poor tissue penetration of excitation light and the neutralization of reactive oxygen species (ROS) generated by overexpressed glutathione (GSH) in cancer cells.
Collapse
Affiliation(s)
- Hang Zhou
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Qunying Li
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Xi Cheng
- Department of General Surgery
- Ruijin Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai
- China
| | - Chao Zhang
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Jiawei Sun
- Department of In-patient Ultrasound
- The Second Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Linyao Du
- Department of Ultrasound
- The First Affiliated Hospital of Dalian Medical University
- Dalian 116011
- China
| | - Jing Cao
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Yajing Liu
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| | - Pintong Huang
- Department of Ultrasound
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou 310000
- China
| |
Collapse
|
37
|
Wu K, Su D, Liu J, Saha R, Wang JP. Magnetic nanoparticles in nanomedicine: a review of recent advances. NANOTECHNOLOGY 2019; 30:502003. [PMID: 31491782 DOI: 10.1088/1361-6528/ab4241] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nanomaterials, in addition to their small size, possess unique physicochemical properties that differ from bulk materials, making them ideal for a host of novel applications. Magnetic nanoparticles (MNPs) are one important class of nanomaterials that have been widely studied for their potential applications in nanomedicine. Due to the fact that MNPs can be detected and manipulated by remote magnetic fields, it opens a wide opportunity for them to be used in vivo. Nowadays, MNPs have been used for diverse applications including magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene delivery, and hyperthermia therapy, etc. Specifically, we reviewed some emerging techniques in magnetic diagnostics such as magnetoresistive (MR) and micro-Hall (μHall) biosensors, as well as the magnetic particle spectroscopy, magnetic relaxation switching and surface enhanced Raman spectroscopy (SERS)-based bioassays. Recent advances in applying MNPs as contrast agents in magnetic resonance imaging and as tracer materials in magnetic particle imaging are reviewed. In addition, the development of high magnetic moment MNPs with proper surface functionalization has progressed exponentially over the past decade. To this end, different MNP synthesis approaches and surface coating strategies are reviewed and the biocompatibility and toxicity of surface functionalized MNP nanocomposites are also discussed. Herein, we are aiming to provide a comprehensive assessment of the state-of-the-art biological and biomedical applications of MNPs. This review is not only to provide in-depth insights into the different synthesis, biofunctionalization, biosensing, imaging, and therapy methods but also to give an overview of limitations and possibilities of each technology.
Collapse
Affiliation(s)
- Kai Wu
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | | | | | | |
Collapse
|
38
|
Zhang F, Jia Y, Zheng X, Shao D, Zhao Y, Wang Z, Dawulieti J, Liu W, Sun M, Sun W, Pan Y, Cui L, Wang Y, He K, Zhang M, Li J, Dong WF, Chen L. Janus nanocarrier-based co-delivery of doxorubicin and berberine weakens chemotherapy-exacerbated hepatocellular carcinoma recurrence. Acta Biomater 2019; 100:352-364. [PMID: 31563690 DOI: 10.1016/j.actbio.2019.09.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 12/24/2022]
Abstract
Despite the rapid progress which has been made in hepatocellular carcinoma (HCC) chemotherapeutics, recurrence of liver cancer still remains a barrier to achieve satisfying prognosis. Herein, we aimed to decipher the role of berberine (BER) in chemotherapy-exacerbated HCC repopulation via developing a nanocarrier co-deliveries doxorubicin (DOX) and BER to achieve a synergic effect in HCC treatment. The underlying fact of chemotherapy that promotes HCC repopulation was firstly examined and corroborated by clinical samples and murine repopulation model. Then, hyaluronic acid (HA)-conjugated Janus nanocarrier (HA-MSN@DB) was developed to load DOX and BER simultaneously. The HCC targeting efficiency, pH-controlled drug-release and anti-cancer property of HA-MSN@DB were assessed in CD44-overexpressed HCCs and normal liver cells. Magnet resonance imaging, bio-distribution, biocompatibility, tumor and recurrence inhibition studies were performed in H22 tumor-bearing mice. BER significantly reduced doxorubicin (DOX)-triggered HCC repopulation in vitro and in vivo through inhibiting Caspase-3-iPLA2-COX-2 pathway. The delivery of HA-MSN@DB into HCCs through CD44 receptor-mediated targeting effect was demonstrated. The controlled release of DOX and BER in response to acidic tumor microenvironment was validated. Importantly, HA-MSN@DB drastically enhanced the antitumor activity of DOX and suppressed DOX-exacerbated HCC repopulation in vitro and in vivo. Furthermore, HA-MSN@DB exhibited enhanced tumor accumulation and biocompatibility. Our findings revealed the pivotal role of BER in overcoming chemotherapy-exacerbated HCC repopulation through Caspase-3-iPLA2-COX-2 pathway, thereby providing a promising and stable nanocarrier integrating DOX and BER for effective HCC chemotherapy without repopulation. STATEMENT OF SIGNIFICANCE: In this work, we have first demonstrated the fact that berberine (Ber) reduces chemotherapy-exacerbated HCC recurrence and studied its mechanism by the aid of a doxorubicin-induced mice HCC relapse model. We then developed a promising strategy that simultaneously inhibits HCC and its recurrence with an HCC-targeted co-delivery nanocarrier HA-MSN@DB and revealed that such an inhibition was related with the suppression of Caspase-3-iPLA2-COX-2 pathway by berberine.
Collapse
|
39
|
He Y, Zhang Y, Sun M, Yang C, Zheng X, Shi C, Chang Z, Wang Z, Chen J, Pei S, Dong WF, Shao D, She J. One-pot synthesis of chlorhexidine-templated biodegradable mesoporous organosilica nanoantiseptics. Colloids Surf B Biointerfaces 2019; 187:110653. [PMID: 31787458 DOI: 10.1016/j.colsurfb.2019.110653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/29/2019] [Accepted: 11/20/2019] [Indexed: 12/25/2022]
Abstract
Chlorhexidine (CHX) is a widely used antiseptic in various infection control practices. In this work, we have developed biodegradable mesoporous organosilica nanoparticles (MONs) through a one-pot synthesis by employing CHX as a bifunctional agent that not any acts as a cationic template to form the structure of mesopores but also serves as a broad-spectrum antiseptic. The resulting CHX@MONs exhibit a relatively high CHX content and glutathione (GSH)-responsive release of CHX via a matrix-degradation-controlled mechanism, leading to comparable antibacterial effects with CHX on both Escherichia coli and Staphylococcus aureus. Furthermore, the effective antibacterial concentration of CHX@MONs shows less cytotoxicity toward normal cells. Our findings will help increase the use of CHX as an antiseptic agent, especially for responsive drug release upon bacterial infection.
Collapse
Affiliation(s)
- Yan He
- College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Yue Zhang
- College of Pharmacy, Jilin University, Changchun, 130021, China
| | - Madi Sun
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Chao Yang
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.
| | - Xiao Zheng
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China
| | - Chengxin Shi
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhimin Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Zheng Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Jinying Chen
- Sinograin Chengdu Storage Research Institute Co. Ltd, Chengdu, 610091, China
| | - Shuchen Pei
- Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China
| | - Dan Shao
- Institutes of Life Sciences, School of Biomedical Sciences and Engineering and National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, 510006, China.
| | - Junjun She
- Department of General Surgery, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
40
|
Wang Z, Zhang F, Shao D, Chang Z, Wang L, Hu H, Zheng X, Li X, Chen F, Tu Z, Li M, Sun W, Chen L, Dong W. Janus Nanobullets Combine Photodynamic Therapy and Magnetic Hyperthermia to Potentiate Synergetic Anti-Metastatic Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1901690. [PMID: 31763151 PMCID: PMC6864517 DOI: 10.1002/advs.201901690] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/16/2019] [Indexed: 05/08/2023]
Abstract
Photodynamic therapy (PDT) is clinically promising in destructing primary tumors but ineffective against distant metastases. This study reports the use of immunogenic nanoparticles mediated combination of PDT and magnetic hyperthermia to synergistically augment the anti-metastatic efficacy of immunotherapy. Janus nanobullets integrating chlorine e6 (Ce6) loaded, disulfide-bridged mesoporous organosilica bodies with magnetic heads (M-MONs@Ce6) are tailored for redox/pH-triggered photosensitizer release accompanying their matrix degradation. Cancer cell membrane cloaking enables favorable tumor-targeted accumulation and prolonged blood circulation time of M-MONs@Ce6. The combination of PDT and magnetic hyperthermia has a strong synergy anticancer activity and simultaneously elicits a sequence of immunogenic cell death, resulting in synergistically tumor-specific immune responses. When combined with anti-CTLA-4 antibody, the biomimetic and biodegradable nanoparticle enables the notable eradication of primary and deeply metastatic tumors with low systematic toxicity, thus potentially advancing the development of combined hyperthermia, PDT, and checkpoint blockade immunotherapy to combat cancer metastasis.
Collapse
Affiliation(s)
- Zheng Wang
- CAS Key Laboratory of Bio Medical DiagnosticsSuzhou Institute of BiomedicalEngineering and TechnologyChinese Academy of SciencesSuzhou215163China
| | - Fan Zhang
- CAS Key Laboratory of Bio Medical DiagnosticsSuzhou Institute of BiomedicalEngineering and TechnologyChinese Academy of SciencesSuzhou215163China
- Department of PharmacologyNanomedicine Engineering Laboratory of Jilin ProvinceCollege of Basic Medical SciencesJilin UniversityChangchun130021China
| | - Dan Shao
- CAS Key Laboratory of Bio Medical DiagnosticsSuzhou Institute of BiomedicalEngineering and TechnologyChinese Academy of SciencesSuzhou215163China
- Department of PharmacologyNanomedicine Engineering Laboratory of Jilin ProvinceCollege of Basic Medical SciencesJilin UniversityChangchun130021China
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Zhimin Chang
- CAS Key Laboratory of Bio Medical DiagnosticsSuzhou Institute of BiomedicalEngineering and TechnologyChinese Academy of SciencesSuzhou215163China
| | - Lei Wang
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
| | - Hanze Hu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Xiao Zheng
- Department of PharmacologyNanomedicine Engineering Laboratory of Jilin ProvinceCollege of Basic Medical SciencesJilin UniversityChangchun130021China
| | - Xuezhao Li
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
| | - Fangman Chen
- CAS Key Laboratory of Bio Medical DiagnosticsSuzhou Institute of BiomedicalEngineering and TechnologyChinese Academy of SciencesSuzhou215163China
| | - Zhaoxu Tu
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Mingqiang Li
- Department of Biomedical EngineeringColumbia UniversityNew YorkNY10027USA
| | - Wen Sun
- State Key Laboratory of Fine ChemicalsDalian University of TechnologyDalian116024China
| | - Li Chen
- Department of PharmacologyNanomedicine Engineering Laboratory of Jilin ProvinceCollege of Basic Medical SciencesJilin UniversityChangchun130021China
| | - Wen‐Fei Dong
- CAS Key Laboratory of Bio Medical DiagnosticsSuzhou Institute of BiomedicalEngineering and TechnologyChinese Academy of SciencesSuzhou215163China
| |
Collapse
|
41
|
Chang Y, Chen JY, Yang J, Lin T, Zeng L, Xu JF, Hou JL, Zhang X. Targeting the Cell Membrane by Charge-Reversal Amphiphilic Pillar[5]arene for the Selective Killing of Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:38497-38502. [PMID: 31556585 DOI: 10.1021/acsami.9b13492] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A charge-reversal amphiphilic pillar[5]arene, P5NH-DCA, bearing 10 charge-reversal headgroups is reported. It targets the cell membrane of cancer cells and selectively destroys the cancer cells by disrupting the membrane. In the acidic tumor microenvironment, the headgroup charge of P5NH-DCA reversed from negative to positive owing to hydrolysis of the acid-labile amide group. The hydrolyzed product bearing multiple positive charges can bind to the cell membrane and then disrupt the membrane of cancer cells with high efficiency. However, under the neutral microenvironment of healthy cells, the negatively charged P5NH-DCA remains stable and the cytotoxicity is considerably reduced. The strategy killing the cancer cells by membrane disruption may represent a new route of cancer chemotherapy.
Collapse
Affiliation(s)
- Yincheng Chang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jian-Yu Chen
- Department of Chemistry , Fudan University , Shanghai 200438 , China
| | - Jinpeng Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Tao Lin
- Department of Chemistry , Fudan University , Shanghai 200438 , China
| | - Lingda Zeng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Jun-Li Hou
- Department of Chemistry , Fudan University , Shanghai 200438 , China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
42
|
Wang Z, Chang ZM, Shao D, Zhang F, Chen F, Li L, Ge MF, Hu R, Zheng X, Wang Y, Dong WF. Janus Gold Triangle-Mesoporous Silica Nanoplatforms for Hypoxia-Activated Radio-Chemo-Photothermal Therapy of Liver Cancer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34755-34765. [PMID: 31474108 DOI: 10.1021/acsami.9b12879] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Radiation dosage constraints and hypoxia-associated resistance lead to the failure of radiotherapy (RT), especially in hypoxic liver cancer. Therefore, the intricate use of combined strategies for potentiating and complementing RT is especially important. In this work, we fabricated multifunctional Janus-structured gold triangle-mesoporous silica nanoparticles (NPs) as multifunctional platforms to deliver the hypoxia-activated prodrug tirapazamine (TPZ) for extrinsic radiosensitization, local photothermal therapy, and hypoxia-specific chemotherapy. The subsequent conjugation of folic acid-linked poly(ethylene glycol) provided the Janus nanoplatforms with liver cancer targeting and minimized opsonization properties. In vitro and in vivo experiments revealed the combined radiosensitive and photothermal antitumor effects of the Janus nanoplatforms. Importantly, the TPZ-loaded Janus nanoplatforms exhibited pH-responsive release behavior, which effectively improved the cellular internalization and therapeutic efficiency in hypoxic rather than normoxic liver cancer cells. Hypoxia-specific chemotherapy supplemented the ineffectiveness of radio-photothermal therapy in hypoxic tumor tissues, resulting in remarkable tumor growth inhibition without systematic toxicity. Therefore, our Janus nanoplatforms integrated radio-chemo-photothermal therapy in a hypoxia-activated manner, providing an efficient and safe strategy for treating liver cancer.
Collapse
Affiliation(s)
- Zheng Wang
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
| | - Zhi-Min Chang
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
| | - Dan Shao
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
- Department of Biomedical Engineering , Columbia University , New York , New York 10027 , United States
| | - Fan Zhang
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences , Jilin University , Changchun 130021 , China
| | - Fangman Chen
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences , Jilin University , Changchun 130021 , China
| | - Li Li
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
| | - Ming-Feng Ge
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
| | - Rui Hu
- Department of Radiation Oncology , Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital , No. 26 Daoqian RD , Suzhou 215000 , China
| | - Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences , Jilin University , Changchun 130021 , China
| | - Yingshuai Wang
- Guangdong Provincial Key Laboratory of Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Health Science Center , Shenzhen University , Shenzhen 518060 , China
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics , Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences , Suzhou 215163 , China
| |
Collapse
|
43
|
Li K, Yang X, Xue C, Zhao L, Zhang Y, Gao X. Biomimetic human lung-on-a-chip for modeling disease investigation. BIOMICROFLUIDICS 2019. [PMID: 31263514 DOI: 10.1063/1.5119052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The lung is the primary respiratory organ of the human body and has a complicated and precise tissue structure. It comprises conductive airways formed by the trachea, bronchi and bronchioles, and many alveoli, the smallest functional units where gas-exchange occurs via the unique gas-liquid exchange interface known as the respiratory membrane. In vitro bionic simulation of the lung or its microenvironment, therefore, presents a great challenge, which requires the joint efforts of anatomy, physics, material science, cell biology, tissue engineering, and other disciplines. With the development of micromachining and miniaturization technology, the concept of a microfluidics-based organ-on-a-chip has received great attention. An organ-on-a-chip is a small cell-culture device that can accurately simulate tissue and organ functions in vitro and has the potential to replace animal models in evaluations of drug toxicity and efficacy. A lung-on-a-chip, as one of the first proposed and developed organs-on-a-chip, provides new strategies for designing a bionic lung cell microenvironment and for in vitro construction of lung disease models, and it is expected to promote the development of basic research and translational medicine in drug evaluation, toxicological detection, and disease model-building for the lung. This review summarizes current lungs-on-a-chip models based on the lung-related cellular microenvironment, including the latest advances described in studies of lung injury, inflammation, lung cancer, and pulmonary fibrosis. This model should see effective use in clinical medicine to promote the development of precision medicine and individualized diagnosis and treatment.
Collapse
Affiliation(s)
- Kaiyan Li
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Xingyuan Yang
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Chang Xue
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| | | | - Xinghua Gao
- Materials Genome Institute, Shanghai University, Shanghai 200444, China
| |
Collapse
|
44
|
Shandilya R, Bhargava A, Bunkar N, Tiwari R, Goryacheva IY, Mishra PK. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 2019; 130:147-165. [PMID: 30735948 DOI: 10.1016/j.bios.2019.01.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
|
45
|
Detection of Circulating Tumor Cells Using Membrane-Based SERS Platform: A New Diagnostic Approach for 'Liquid Biopsy'. NANOMATERIALS 2019; 9:nano9030366. [PMID: 30841516 PMCID: PMC6473992 DOI: 10.3390/nano9030366] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/18/2019] [Accepted: 02/26/2019] [Indexed: 01/05/2023]
Abstract
The detection and monitoring of circulating tumor cells (CTCs) in blood is an important strategy for early cancer evidence, analysis, monitoring of therapeutic response, and optimization of cancer therapy treatments. In this work, tailor-made membranes (MBSP) for surface-enhanced Raman spectroscopy (SERS)-based analysis, which permitted the separation and enrichment of CTCs from blood samples, were developed. A thin layer of SERS-active metals deposited on polymer mat enhanced the Raman signals of CTCs and provided further insight into CTCs molecular and biochemical composition. The SERS spectra of all studied cells—prostate cancer (PC3), cervical carcinoma (HeLa), and leucocytes as an example of healthy (normal) cell—revealed significant differences in both the band positions and/or their relative intensities. The multivariate statistical technique based on principal component analysis (PCA) was applied to identify the most significant differences (marker bands) in SERS data among the analyzed cells and to perform quantitative analysis of SERS data. Based on a developed PCA algorithm, the studied cell types were classified with an accuracy of 95% in 2D PCA to 98% in 3D PCA. These results clearly indicate the diagnostic efficiency for the discrimination between cancer and normal cells. In our approach, we exploited the one-step technology that exceeds most of the multi-stage CTCs analysis methods used and enables simultaneous filtration, enrichment, and identification of the tumor cells from blood specimens.
Collapse
|
46
|
Advances in particle shape engineering for improved drug delivery. Drug Discov Today 2019; 24:575-583. [DOI: 10.1016/j.drudis.2018.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/26/2018] [Accepted: 10/13/2018] [Indexed: 01/03/2023]
|
47
|
Hao N, Nie Y, Tadimety A, Shen T, Zhang JX. Microfluidics-enabled rapid manufacturing of hierarchical silica-magnetic microflower toward enhanced circulating tumor cell screening. Biomater Sci 2018; 6:3121-3125. [PMID: 30375583 PMCID: PMC6246810 DOI: 10.1039/c8bm00851e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The emergence of microfluidic techniques provides new opportunities for chemical synthesis and biomedical applications. Herein, we first develop a microfluidics-based flow and sustainable strategy to synthesize hierarchical silica-magnetic microflower with unique multilayered structure for the efficient capture of circulating tumor cells through our engineered microfluidic screening chip. The production of microflower materials can be realized within 94 milliseconds and a yield of nearly 5 grams per hour can be achieved. The enhanced bioaccessibility of such a multilayered microflower towards cancer cells (MCF-7 and MDA-MB-231) is demonstrated, and the cancer cell capture efficiency of this hierarchical immunomagnetic system in clinical blood samples is significantly increased compared with a standard CellSearch™ assay. These findings bring new insights for engineering functional micro-/nanomaterials in liquid biopsy.
Collapse
Affiliation(s)
- Nanjing Hao
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| | - Ting Shen
- NanoLite Systems, 1521 Concord Pike, Wilmington, DE 19803, United States
| | - John X.J. Zhang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States.
| |
Collapse
|
48
|
Lu MM, Ge Y, Qiu J, Shao D, Zhang Y, Bai J, Zheng X, Chang ZM, Wang Z, Dong WF, Tang CB. Redox/pH dual-controlled release of chlorhexidine and silver ions from biodegradable mesoporous silica nanoparticles against oral biofilms. Int J Nanomedicine 2018; 13:7697-7709. [PMID: 30538453 PMCID: PMC6251470 DOI: 10.2147/ijn.s181168] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Oral plaque biofilms pose a threat to periodontal health and are challenging to eradicate. There is a growing belief that a combination of silver nanoparticles and chlorhexidine (CHX) is a promising strategy against oral biofilms. PURPOSE To overcome the side effects of this strategy and to exert maximum efficiency, we fabricated biodegradable disulfide-bridged mesoporous silica nanoparticles (MSNs) to co-deliver silver nanoparticles and CHX for biofilm inhibition. MATERIALS AND METHODS CHX-loaded, silver-decorated mesoporous silica nanoparticles (Ag-MSNs@CHX) were fabricated after CHX loading, and the pH- and glutathione-responsive release profiles of CHX and silver ions along with their mechanism of degradation were systematically investigated. Then, the efficacy of Ag-MSNs@CHX against Streptococcus mutans and its biofilm was comprehensively assessed by determining the minimum inhibitory concentration, minimum bactericidal concentration, minimal biofilm inhibitory concentration, and the inhibitory effect on S. mutans biofilm formation. In addition, the biosafety of nanocarriers was evaluated by oral epithelial cells and a mouse model. RESULTS The obtained Ag-MSNs@CHX possessed redox/pH-responsive release properties of CHX and silver ions, which may be attributed to the redox-triggered matrix degradation mechanism of exposure to biofilm-mimetic microenvironments. Ag-MSNs@CHX displayed dose-dependent antibacterial activity against planktonic and clone formation of S. mutans. Importantly, Ag-MSNs@CHX had an increased and long-term ability to restrict the growth of S. mutans biofilms compared to free CHX. Moreover, Ag-MSNs@CHX showed less cytotoxicity to oral epithelial cells, whereas orally administered Ag-MSNs exhibited no obvious toxic effects in mice. CONCLUSION Our findings constitute a highly effective and safe strategy against biofilms that has a good potential as an oral biofilm therapy.
Collapse
Affiliation(s)
- Meng-Meng Lu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| | - Yuran Ge
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| | - Dan Shao
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Yue Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao Zheng
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Zhi-Min Chang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Zheng Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Wen-Fei Dong
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, China,
| | - Chun-Bo Tang
- Department of Oral Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, 210029, China,
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China,
| |
Collapse
|
49
|
Zhai R, Gong X, Xie J, Yuan Y, Xu F, Jiang Y, Huang Z, Dai X, Zhang Y, Qian X, Fang X. Ultrasensitive analysis of heat shock protein 90α with antibodies orderly arrayed on a novel type of immunoprobe based on magnetic COFs. Talanta 2018; 191:553-560. [PMID: 30262098 DOI: 10.1016/j.talanta.2018.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 09/03/2018] [Indexed: 12/22/2022]
Abstract
The early diagnosis of liver cancer by target biomarkers is of great significance for improving the survival rate of cancer patients. However, it is still a challenging task to sensitively detect circulating protein biomarkers due to decreased binding activity of antibodies originating from uncontrolled orientation of immobilization on the surface of a solid matrix. In this work, a novel immunoaffinity probe, Fe3O4@TpBD-DSS-Ab-MEG, based on magnetic COFs with ordered arrangement of anchored antibodies has been developed and applied for the first time to detection of a cancer biomarker, heat shock protein 90alpha (Hsp90α). The fabricated composites possess favorable features from magnetic cores and COF shells, including strong magnetic responses (7.96 emu g-1), ordered active groups, a large amount of immobilized antibodies (111.7 μg/mg), good solvent and thermal stability. Fe3O4@TpBD-DSS-Ab-MEG demonstrated low detection limit (50 pg/mL), high selectivity (Hsp90α:BSA = 1:1000), desirable repeatability and good stability for Hsp90α immunocapture. Compared with other immunoprobes, our materials showed higher selectivity and sensitivity, which were mainly attributed to regular arrays of surface antibodies. Furthermore, samples containing Hsp90α at the concentration of 1 µg/mL in human plasma were used to test our immunoprobe, and 2 peptides of Hsp90α were successfully observed. The proposed non-invasive immunoassay strategy offers enhanced ability to control the orientation of immobilized antibodies and great promise for accurate analysis of the liver cancer biomarker Hsp90α in a complicated biological matrix. In addition, the facile preparation of magnetic COFs support and the satisfactory analytical performance made the newly developed immunoprobe a potential tool for sensitive detection of other cancer biomarkers in clinical diagnosis.
Collapse
Affiliation(s)
- Rui Zhai
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Xiaoyun Gong
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Jie Xie
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Yifeng Yuan
- Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China
| | - Fei Xu
- Peking University Third Hospital, No. 49 North HuaYuan Road, HaiDian District, Beijing 100191, China
| | - You Jiang
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Zejian Huang
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Xinhua Dai
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China
| | - Yangjun Zhang
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing, Beijing Institute of Radiation Medicine, Beijing 102200, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, National Center for Protein Science Beijing, Beijing Institute of Radiation Medicine, Beijing 102200, China
| | - Xiang Fang
- Mass Spectrometry Engineering Technology Research Center, National Institute of Metrology, Beijing 100013, China.
| |
Collapse
|
50
|
Mesoporous silica nanoparticles as cutting-edge theranostics: Advancement from merely a carrier to tailor-made smart delivery platform. J Control Release 2018; 287:35-57. [PMID: 30125637 DOI: 10.1016/j.jconrel.2018.08.024] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/13/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
Large surface area, uniform and tunable pore size, high pore volume and low mass density- such attractive features of Mesoporous silica nanoparticles (MSNPs) have compelled researchers to explore the biomedical potential of this nano-material. Recently gained interest in MSNPs have been due to their tremendous potential in cancer therapy and imaging. Last several years have witnessed a rapid development in engineering functionalized MSNPs with various types of functional groups integrated into the system for imaging and therapeutic applications. Although their potential for drug delivery application has been studied since the year 2000, still a major challenge is to improve drug loading capacity and in vivo targeting with minimal side-effects to major organs. In this review article, the recent development of MSNPs as a therapeutic and diagnostic platform has been detailed out with emphasis on drug and bio-macromolecule delivery/co-delivery, bio-imaging and detoxification.
Collapse
|