1
|
Kumar A, Kashyap S, Mazahir F, Sharma R, Yadav AK. Unveiling the potential of molecular imprinting polymer-based composites in the discovery of advanced drug delivery carriers. Drug Discov Today 2024; 29:104164. [PMID: 39265805 DOI: 10.1016/j.drudis.2024.104164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/14/2024]
Abstract
Molecularly imprinted polymers (MIPs) are polymeric matrices that can mimic natural recognition entities, such as antibodies and biological receptors. Molecular imprinting of therapeutics is very appealing in the design of drug delivery systems since the specific and selective binding sites created within the polymeric matrix turn these complex structures into value-added carriers with tunable features, notably high drug-loading capacity and good control of payload release. MIPs possess considerable promise as synthetic recognition elements in 'theranostics'. Moreover, the high affinity and specificity of MIPs make them more advantageous than other polymer-based nanocomposites. This review summarizes the present state-of-the-art of MIP-based delivery systems for the targeted delivery of bioactives, with current challenges and future perspectives.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER)-Raebareli, A Transit Campus, Bijnor-Sisendi Road, Lucknow, 2226002, India
| | - Shashi Kashyap
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER)-Raebareli, A Transit Campus, Bijnor-Sisendi Road, Lucknow, 2226002, India
| | - Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER)-Raebareli, A Transit Campus, Bijnor-Sisendi Road, Lucknow, 2226002, India
| | - Rajeev Sharma
- Amity Institute of Pharmacy, Amity University Gwalior (M.P.) 474005, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, (NIPER)-Raebareli, A Transit Campus, Bijnor-Sisendi Road, Lucknow, 2226002, India.
| |
Collapse
|
2
|
Shi H, Tian X, Wu J, Chen Q, Yang S, Shan L, Zhang C, Wan Y, Wu MY, Feng S. Fabricating Ultrathin Imprinting Layer for Fast Capture of Valsartan via a Metal Affinity-Oriented Surface Imprinting Method. Anal Chem 2024; 96:9447-9452. [PMID: 38807557 DOI: 10.1021/acs.analchem.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Rapid separation and enrichment of targets in biological matrixes are of significant interest in multiple life sciences disciplines. Molecularly imprinted polymers (MIPs) have vital applications in extraction and sample cleanup owing to their excellent specificity and selectivity. However, the low mass transfer rate, caused by the heterogeneity of imprinted cavities in polymer networks and strong driving forces, significantly limits its application in high-throughput analysis. Herein, one novel metal affinity-oriented surface imprinting method was proposed to fabricate an MIP with an ultrathin imprinting layer. MIPs were prepared by immobilized template molecules on magnetic nanoparticles (NPs) with metal ions as bridges via coordination, and then polymerization was done. Under the optimized conditions, the thickness of the imprinting layer was merely 1 nm, and the adsorption toward VAL well matched the Langmuir model. Moreover, it took just 5 min to achieve adsorption equilibrium significantly faster than other reported MIPs toward VAL. Adsorption capacity still can reach 25.3 mg/g ascribed to the high imprinting efficiency of the method (the imprinting factor was as high as 5). All evidence proved that recognition sites were all external cavities and were evenly distributed on the surface of the NPs. The obtained MIP NPs exhibited excellent selectivity and specificity toward VAL, with good dispersibility and stability. Coupled with high-performance liquid chromatography, it was successfully used as a dispersed solid phase extraction material to determine VAL in serum. Average recoveries are over 90.0% with relative standard deviations less than 2.14% at three spiked levels (n = 3). All evidence testified that the MIPs fabricated with the proposed method showed a fast trans mass rate and a large rebinding capacity. The method can potentially use high-throughput separation and enrichment of target molecules in batch samples to meet practical applications.
Collapse
Affiliation(s)
- Haizhu Shi
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Xiao Tian
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Jiateng Wu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Qian Chen
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Shuling Yang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Lianhai Shan
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Chungu Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Yu Wan
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Ming-Yu Wu
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| | - Shun Feng
- School of Life Science and Engineering, Southwest Jiaotong University, No. 111, North Section of the Second Ring Road, Chengdu 610031, China
| |
Collapse
|
3
|
Jahanban-Esfahlan A, Amarowicz R. Molecularly imprinted polymers for sensing/depleting human serum albumin (HSA): A critical review of recent advances and current challenges. Int J Biol Macromol 2024; 266:131132. [PMID: 38531529 DOI: 10.1016/j.ijbiomac.2024.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 03/28/2024]
Abstract
Human serum albumin (HSA) is an essential biomacromolecule in the blood circulatory system because it carries numerous molecules, including fatty acids (FAs), bilirubin, metal ions, hormones, and different pharmaceuticals, and plays a significant role in regulating blood osmotic pressure. Fluctuations in HSA levels in human biofluids, particularly urine and serum, are associated with several disorders, such as elevated blood pressure, diabetes mellitus (DM), liver dysfunction, and a wide range of renal diseases. Thus, the ability to quickly and accurately measure HSA levels is important for the rapid identification of these disorders in human populations. Molecularly imprinted polymers (MIPs), well known as artificial antibodies (Abs), have been extensively used for the quantitative detection of small molecules and macromolecules, especially HSA, in recent decades. This review highlights major challenges and recent developments in the application of MIPs to detect HSA in artificial and real samples. The fabrication and application of various MIPs for the depletion of HSA are also discussed, as well as different MIP preparation approaches and strategies for overcoming obstacles that hinder the development of MIPs with high efficiency and recognition capability for HSA determination/depletion.
Collapse
Affiliation(s)
- Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665813, Iran.
| | - Ryszard Amarowicz
- Division of Food Sciences, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Street Tuwima 10, 10-748 Olsztyn, Poland.
| |
Collapse
|
4
|
Yu SS, Shi YJ, Wang D, Qiang TT, Zhao YQ, Wang XY, Zhao JM, Dong LY, Huang YJ, Wang XH. Linking peptide-oriented surface imprinting magnetic nanoparticle with carbon nanotube-based fluorescence signal output device for ultrasensitive detection of glycoprotein. Anal Chim Acta 2023; 1259:341202. [PMID: 37100478 DOI: 10.1016/j.aca.2023.341202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/28/2023]
Abstract
Determination of trace glycoprotein has important guiding significance in clinical diagnosis and is usually achieved by immunoaffinity. However, immunoaffinity possesses inherent drawbacks, such as poor probability of high-quality antibodies, instability of biological reagents, and harmfulness of chemical labels to the body. Herein, we propose an innovative method of peptide-oriented surface imprinting to fabricate artificial antibody for recognition of glycoprotein. By integrating peptide-oriented surface imprinting and PEGylation, an innovative hydrophilic peptide-oriented surface imprinting magnetic nanoparticle (HPIMN) was successfully fabricated with human epidermal growth factor receptor-2 (HER2) as a model glycoprotein template. In addition, we further prepared a novel boronic acid-modified/fluorescein isothiocyanate-loaded/polyethylene glycol-covered carbon nanotube (BFPCN) as fluorescence signal output device, which was loaded with numerous fluorescent molecules could specifically label the cis-diol of glycoprotein at physiological pH via boronate-affinity interaction. To prove the practicability, we proposed a HPIMN-BFPCN strategy, in which the HPIMN first selectively captured the HER2 due to the molecular imprinted recognition and then the BFPCN specific labeled the exposed cis-diol of HER2 based on the boronate-affinity reaction. The HPIMN-BFPCN strategy exhibited ultrahigh sensitivity with limit of detection of 14 fg mL-1 and was successfully used in the determination of HER2 in spiked sample with recovery and relative standard deviation in the range of 99.0%-103.0% and 3.1%-5.6%, respectively. Therefore, we believe that the novel peptide-oriented surface imprinting has great potential to become an universal strategy for fabrication of recognition units for other protein biomarkers, and the synergy sandwich assay could become a powerful tool in prognosis evaluation and clinical diagnosis of glycoprotein-related diseases.
Collapse
Affiliation(s)
- Shi-Song Yu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Yu-Jun Shi
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Di Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ti-Ti Qiang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ya-Qi Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xin-Yu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jia-Meng Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Lin-Yi Dong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Ya-Jie Huang
- Jiangsu East-Mab Biomedical Technology Co. Ltd., Nantong, 226400, China.
| | - Xian-Hua Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
5
|
Zangiabadi M, Ghosh A, Zhao Y. Nanoparticle Scanners for the Identification of Key Sequences Involved in the Assembly and Disassembly of β-Amyloid Peptides. ACS NANO 2023; 17:4764-4774. [PMID: 36857741 DOI: 10.1021/acsnano.2c11186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The aggregation of β-amyloid peptides (Aβ), implied in the development and progression of Alzheimer's disease, is driven by a complex set of intramolecular and intermolecular interactions involving both hydrophobic and polar residues. The key residues responsible for the forward assembling process may be different from those that should be targeted to disassemble already formed aggregates. Molecularly imprinted nanoparticle (MINP) receptors are reported in this work to strongly and selectively bind specific segments of Aβ40. Combined fluorescence spectroscopy, atomic force microscopy (AFM) imaging, and circular dichroism (CD) spectroscopy indicate that binding residues 21-30 near the loop region is most effective at inhibiting the aggregation of monomeric Aβ40, but residues 11-20 that include the internal β strand closer to the N-terminal represent the best target for disaggregating already formed aggregates in the polymerization phase. Once the aggregation proceeds to the saturation phase, binding residues 1-10 has the largest effect on the disaggregation, likely because of the accessibility of these amino acids relative to others to the MINP receptors.
Collapse
Affiliation(s)
- Milad Zangiabadi
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, United States
| |
Collapse
|
6
|
Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta 2023; 253:123919. [PMID: 36126523 DOI: 10.1016/j.talanta.2022.123919] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Nowadays, proteins separation has attracted great attention in proteomics research. Because the proteins separation is helpful for making an early diagnosis of many diseases. Magnetic nanoparticles are an interesting and useful functional material, and have attracted extensive research interest during the past decades. Because of the excellent properties such as easy surface functionalization, tunable biocompatibility, high saturation magnetization etc, magnetic microspheres have been widely used in isolation of proteins/peptides. Notably, with the rapid development of surface decoration strategies, more and more functional magnetic adsorbents have been designed and fabricated to meet the growing demands of biological separation. In this review, we have collected recent information about magnetic adsorbents applications in selective separation of proteins/peptides. Furthermore, we present a comprehensive prospects and challenges in the field of protein separation relying on magnetic nanoparticles.
Collapse
|
7
|
Singhal A, Singh A, Shrivastava A, Khan R. Epitope imprinted polymeric materials: application in electrochemical detection of disease biomarkers. J Mater Chem B 2023; 11:936-954. [PMID: 36606445 DOI: 10.1039/d2tb02135h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epitope imprinting is a promising method for creating specialized recognition sites that resemble natural biorecognition elements. Epitope-imprinted materials have gained a lot of attention recently in a variety of fields, including bioanalysis, drug delivery, and clinical therapy. The vast applications of epitope imprinted polymers are due to the flexibility in choosing monomers, the simplicity in obtaining templates, specificity toward targets, and resistance to harsh environments along with being cost effective in nature. The "epitope imprinting technique," which uses only a tiny subunit of the target as the template during imprinting, offers a way around various drawbacks inherent to biomacromolecule systems i.e., traditional molecular imprinting techniques with regards to the large size of proteins, such as the size, complexity, accessibility, and conformational flexibility of the template. Electrochemical based sensors are proven to be promising tool for the quick, real-time monitoring of biomarkers. This review unravels epitope imprinting techniques, approaches, and strategies and highlights the applicability of these techniques for the electrochemical quantification of biomarkers for timely disease monitoring. In addition, some challenges are discussed along with future prospective developments.
Collapse
Affiliation(s)
- Ayushi Singhal
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, MP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Amrita Singh
- Department of Biotechnology, Barkatullah University, Habibganj, Bhopal, Madhya Pradesh 462026, India
| | - Apoorva Shrivastava
- Dr D. Y. Patil Biotechnology and Bioinformatics Institute, Dr D. Y. Patil Vidyapeeth, Sr. No. 87-88, Mumbai-Bangalore Highway, Tathawade, Pune, Maharashtra, 411033, India
| | - Raju Khan
- CSIR-Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal - 462026, MP, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
8
|
Yang Z, Wang T, Wang Y, Zhang Q, Zhang B. Anti‐nonspecific adsorption segments‐assisted self‐driven surface imprinted fibers for efficient protein separation. AIChE J 2022. [DOI: 10.1002/aic.17802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zuoting Yang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Xi'an Key Laboratory of Functional Organic Porous Materials Northwestern Polytechnical University Xi'an People's Republic of China
| | - Ting Wang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
| | - Yabin Wang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering Yan'an University Yan'an People's Republic of China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Xi'an Key Laboratory of Functional Organic Porous Materials Northwestern Polytechnical University Xi'an People's Republic of China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an People's Republic of China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation Sunresins New Materials Co. Ltd Xi'an People's Republic of China
| |
Collapse
|
9
|
Zhang R, Gao R, Gou Q, Lai J, Li X. Precipitation Polymerization: A Powerful Tool for Preparation of Uniform Polymer Particles. Polymers (Basel) 2022; 14:polym14091851. [PMID: 35567018 PMCID: PMC9105061 DOI: 10.3390/polym14091851] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/06/2023] Open
Abstract
Precipitation polymerization (PP) is a powerful tool to prepare various types of uniform polymer particles owing to its outstanding advantages of easy operation and the absence of any surfactant. Several PP approaches have been developed up to now, including traditional thermo-induced precipitation polymerization (TRPP), distillation precipitation polymerization (DPP), reflux precipitation polymerization (RPP), photoinduced precipitation polymerization (PPP), solvothermal precipitation polymerization (SPP), controlled/‘‘living’’ radical precipitation polymerization (CRPP) and self-stabilized precipitation polymerization (2SPP). In this review, a general introduction to the categories, mechanisms, and applications of precipitation polymerization and the recent developments are presented, proving that PP has great potential to become one of the most attractive polymerization techniques in materials science and bio-medical areas.
Collapse
|
10
|
Chen K, Zhao Y. Molecular recognition of enzymes and modulation of enzymatic activity by nanoparticle conformational sensors. Chem Commun (Camb) 2022; 58:1732-1735. [PMID: 35029260 DOI: 10.1039/d1cc05699a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regulation of enzyme activity is key to dynamic processes in biology but is difficult to achieve with synthetic systems. We here report molecularly imprinted nanoparticles with strong binding for the N- and C-terminal peptides on lysozyme. Binding affinity for the enzyme correlated with conformational flexibility of the peptides in the protein structure. Significantly, binding at the C-terminus of lysozyme enhanced the performance of the enzyme at elevated temperatures and that at the N-terminus lowered the enzyme activity. These nanoparticles, when clicked onto magnetic nanoparticles, could also be used to fish out the protein of interest from a mixture in a single step.
Collapse
Affiliation(s)
- Kaiqian Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, USA.
| |
Collapse
|
11
|
Zhang Y, Wu Z, Shi H, Xie Y, Wu MY, Zhang C, Feng S. Copper Mediated Molecularly Imprinted Polymers for Fast Recognizing Tylosin. J Pharm Biomed Anal 2022; 213:114674. [DOI: 10.1016/j.jpba.2022.114674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 11/30/2022]
|
12
|
Origin of macromolecular crowding: Analysis of recognition mechanism of dual-template molecularly imprinted polymers by in silico prediction. J Chromatogr A 2021; 1662:462695. [PMID: 34923305 DOI: 10.1016/j.chroma.2021.462695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022]
Abstract
Multi-template imprinting is one of the challenge for molecular imprinting since the selectivity and binding affinity for each analyte decrease significantly compared with the corresponding molecularly imprinting polymers (MIPs) against single template. In this work, molecular crowding effect was tried to remedy the problem of imprinting reduction caused by the competition of two templates. Methacrylic acid (ACR) was used as functional monomer, ethylene dimethacrylate (EDMA) as crosslinker, and polystyrene (PS) as macromolecular crowding agent. With levofloxacin (S-OFX) as the first template, a number of compounds with varied chemical structure were chosen as the second template to investigate the imprinting effect of dual-template. When S-OFX and naproxen (S-NAP) was used as the dual-template, the imprinting factor (IF) of the resulting MIP for S-OFX was 20.1 and IF for S-NAP was 10.9. In contrast, for the single-template MIPs, IF for S-OFX was 22.4, and IF for S-NAP was 11.9. As a comparison, the IF of the DT-MIP prepared in absence of PS was only 2.3 for S-OFX and 1.0 for S-NAP. To analyze recognition mechanism of the molecular crowding-based imprinting system, molecular dynamics simulations to the chain structure of PS and binding modes between template and functional monomers was conducted by NAMD software. All the results displayed that molecular crowding is a promising method to improve the affinity of the dual-template imprinted polymer.
Collapse
|
13
|
Synergistic recognition of transferrin by using performance dual epitope imprinted polymers. Anal Chim Acta 2021; 1186:339117. [PMID: 34756250 DOI: 10.1016/j.aca.2021.339117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 11/24/2022]
Abstract
Transferrin (Trf) is a new type of active drug targeting carrier and disease biomarker that regulates the balance of iron ions in human body. The recognition and isolation of Trf is of great significance for disease diagnosis and treatment. Thus, a new type of magnetic dual affinity epitope molecularly imprinted polymer coated on Fe3O4 nanoparticles (Fe3O4@DEMIP) was successfully prepared for specific recognition of Trf. C-terminal nonapeptide and Trf glycan were selected as bi-epitope templates for metal chelation and boron affinity immobilization, respectively. 4-vinylphenylboric acid (4-VP), N-isopropyl acrylamide (NIPAM) and zinc acrylic were used as functional monomers. Results showed that Fe3O4@DEMIP exhibited excellent specific recognition ability adsorption capacity toward Trf, with an adsorption of 43.96 mg g-1 (RSD = 3.28%) and a more satisfactory imprinting factor (about 6.60) than that of other reported imprinting methods. In addition, Fe3O4@DEMIP displayed pH, temperature and magnetic sensitivity properties to realize temperature and pH-controlled recognition and release of target proteins and magnetic rapid separation. Furthermore, the Fe3O4@DEMIP coupled with high-performance liquid chromatography (HPLC) analysis was successfully used for specific recognition of Trf in biosamples. This study provides a reliable protocol for preparing metal chelation and boron affinity dual affinity bi-epitope molecularly imprinted polymers for synergistic and efficient recognition of biomacromolecules in the complex biological systems.
Collapse
|
14
|
Teixeira SPB, Reis RL, Peppas NA, Gomes ME, Domingues RMA. Epitope-imprinted polymers: Design principles of synthetic binding partners for natural biomacromolecules. SCIENCE ADVANCES 2021; 7:eabi9884. [PMID: 34714673 PMCID: PMC8555893 DOI: 10.1126/sciadv.abi9884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/07/2021] [Indexed: 05/27/2023]
Abstract
Molecular imprinting (MI) has been explored as an increasingly viable tool for molecular recognition in various fields. However, imprinting of biologically relevant molecules like proteins is severely hampered by several problems. Inspired by natural antibodies, the use of epitopes as imprinting templates has been explored to circumvent those limitations, offering lower costs and greater versatility. Here, we review the latest innovations in this technology, as well as different applications where MI polymers (MIPs) have been used to target biomolecules of interest. We discuss the several steps in MI, from the choice of epitope and functional monomers to the different production methods and possible applications. We also critically explore how MIP performance can be assessed by various parameters. Last, we present perspectives on future breakthroughs and advances, offering insights into how MI techniques can be expanded to new fields such as tissue engineering.
Collapse
Affiliation(s)
- Simão P. B. Teixeira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nicholas A. Peppas
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Department of Surgery and Perioperative Care, Dell Medical School, University of Texas at Austin, Austin, TX 78712-1801, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, Austin, TX 78712-1801, USA
| | - Manuela E. Gomes
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Rui M. A. Domingues
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark—Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
15
|
Epitope-imprinted polymers for biomacromolecules: Recent strategies, future challenges and selected applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116414] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Chen W, Guo Z, Yu H, Liu Q, Fu M. Molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under neutral pH. J Colloid Interface Sci 2021; 607:1163-1172. [PMID: 34571303 DOI: 10.1016/j.jcis.2021.09.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
Glycoproteins play vital roles in living organisms and often serve as biomarkers for some disease. However, due to the low content of glycoprotein in biological fluids, selective detection of glycoproteins is still a challenging issue that needs to be addressed. In this study, molecularly imprinted colloidal array with multi-boronic acid sites for glycoprotein detection under physiological pH was proposed. Monodispersed glycoprotein imprinted particles (SiO2@PEI/MIPs) was first prepared based on surface imprinting strategy using horseradish peroxidase (HRP) as template, and polyethyleneimine (PEI) was used to increase the number of boronic acid groups. The binding experiment indicated that the SiO2@PEI/MIPs hold satisfactory adsorption capacity (1.41 μmol/g), rapid adsorption rate (40 min) and preferable selectivity toward HRP. Then the SiO2@PEI/MIPs was assembled into close-packed colloidal array to construct a label free optical sensor (denoted as GICA). Benefiting from the high ordered photonic crystal structure, binding of HRP onto the GICA could be directly readout from the changes in structure color and diffracted wavelength. The structure color of the GICA changed from bright blue to yellow with the diffraction wavelength red shifted 59 nm when the HRP concentration increased from 2.5 to 15 μmol/L. Importantly, the GICA was capable of detecting HRP from human serum samples. All those results indicated the potential of the GICA for naked-eye detection of glycoprotein.
Collapse
Affiliation(s)
- Wei Chen
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Zhiyang Guo
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Hao Yu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Qingyun Liu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| | - Min Fu
- College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China.
| |
Collapse
|
17
|
Zhao Y. Substrate Protection in Controlled Enzymatic Transformation of Peptides and Proteins. Chembiochem 2021; 22:2680-2687. [PMID: 34058051 PMCID: PMC8453913 DOI: 10.1002/cbic.202100217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 05/28/2021] [Indexed: 11/07/2022]
Abstract
Proteins are involved in practically every single biological process. The many enzymes involved in their synthesis, cleavage, and posttranslational modification (PTM) carry out highly specific tasks with no usage of protecting groups. Yet, the chemists' strategy of protection/deprotection potentially can be highly useful, for example, when a specific biochemical reaction catalyzed by a broad-specificity enzyme needs to be inhibited, during infection of cells by enveloped viruses, in the invasion and spread of cancer cells, and upon mechanistic investigation of signal-transduction pathways. Doing so requires highly specific binding of peptide substrates in aqueous solution with biologically competitive affinities. Recent development of peptide-imprinted cross-linked micelles allows such protection and affords previously impossible ways of manipulating peptides and proteins in enzymatic transformations.
Collapse
Affiliation(s)
- Yan Zhao
- Department of ChemistryIowa State UniversityAmesIA 50011–3111USA
| |
Collapse
|
18
|
Shen M, Wang Y, Kan X. Dual-recognition colorimetric sensing of thrombin based on surface-imprinted aptamer-Fe 3O 4. J Mater Chem B 2021; 9:4249-4256. [PMID: 34008694 DOI: 10.1039/d1tb00565k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Thrombin plays an essential role in blood coagulation and some physiological and pathological processes. The convenient, rapid, sensitive, and specific detection of thrombin is of great significance in clinical research and diagnosis. Herein, surface molecularly imprinted polymer (MIP) was modified on aptamer-functionalized Fe3O4 nanoparticles (MIP-aptamer-Fe3O4 NP) for thrombin colorimetric assay by taking advantage of the peroxidase-like activity of Fe3O4 NP. With the adsorption of thrombin into imprinted cavities, the exposed surface area of Fe3O4 NP decreased, causing a decrease in its peroxidase-like activity toward 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of H2O2. On the other hand, the reductive amino acids on the thrombin surface also impeded the oxidation of TMB. Both phenomena caused the light blue color of the sensing solution. Thus, a specifically sensitive colorimetric approach for the visual detection of thrombin was proposed with a linear range and limit of detection of 108.1 pmol L-1-2.7 × 10-5 mol L-1 and 27.8 pmol L-1, respectively. Moreover, due to the double recognition elements of MIP and aptamer, the prepared MIP-aptamer-Fe3O4 NP showed higher selectivity to thrombin than that based on only one recognition element. It is worth noting that no special property (e.g. electrochemical or fluorescence activity) of the template was required in this work. Thus, more template molecules can be easily, selectively, and sensitively detected based on the proposed MIP-aptamer-mimic enzyme colorimetric sensing strategy.
Collapse
Affiliation(s)
- Mingmei Shen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yuanyuan Wang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China. and The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
19
|
Yang Z, Zhang Y, Ren J, Zhang Q, Zhang B. Cobalt-Iron Double Ion-Bovine Serum Albumin Chelation-Assisted Thermo-Sensitive Surface-Imprinted Nanocage with High Specificity. ACS APPLIED MATERIALS & INTERFACES 2021; 13:34829-34842. [PMID: 34264633 DOI: 10.1021/acsami.1c06583] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
To develop multifunctional protein imprinted materials, a cobalt-iron double ion-BSA directional chelation-assisted thermo-sensitive surface-imprinted hollow nanocage (Co-Fe@CBMA-MIPs) with excellent specificity is developed on the surface of ZIF-67@Co-Fe in this study by synergizing the advantages of surface imprinting, metal ion chelation, anti-protein adsorption segments, and thermo-sensitive components. Beyond previous research, well-designed multifunctional protein-imprinted materials possess high binding capacity, fast adsorption kinetics, and outstanding selectivity. When the adsorption is carried out at 32 °C, the adsorption capacity of Co-Fe@CBMA-MIPs for BSA reaches 520.35 mg/g within 50 min. The imprinting factor is 8.55. The selectivity factors of Co-Fe@CBMA-MIPs for HSA, Bhb, OVA, and Lyz are 3.72, 6.09, 4.10, and 8.41, respectively. More significantly, Co-Fe@CBMA-MIPs could specifically recognize BSA from mixed proteins and actual samples and exhibit excellent repeated use stability. Based on the above advantages, the development of this research provides an effective means to improve the recognition specificity of molecularly imprinted polymers.
Collapse
Affiliation(s)
- Zuoting Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yunfei Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jianquan Ren
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Qiuyu Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Xi'an Key Laboratory of Functional Organic Porous Materials, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
- Shaanxi Engineering and Research Center for Functional Polymers on Adsorption and Separation, Sunresins New Materials Co. Ltd., Xi'an 710072, China
| |
Collapse
|
20
|
Arabi M, Ostovan A, Li J, Wang X, Zhang Z, Choo J, Chen L. Molecular Imprinting: Green Perspectives and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100543. [PMID: 34145950 DOI: 10.1002/adma.202100543] [Citation(s) in RCA: 308] [Impact Index Per Article: 102.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Indexed: 05/04/2023]
Abstract
Advances in revolutionary technologies pose new challenges for human life; in response to them, global responsibility is pushing modern technologies toward greener pathways. Molecular imprinting technology (MIT) is a multidisciplinary mimic technology simulating the specific binding principle of enzymes to substrates or antigens to antibodies; along with its rapid progress and wide applications, MIT faces the challenge of complying with green sustainable development requirements. With the identification of environmental risks associated with unsustainable MIT, a new aspect of MIT, termed green MIT, has emerged and developed. However, so far, no clear definition has been provided to appraise green MIT. Herein, the implementation process of green chemistry in MIT is demonstrated and a mnemonic device in the form of an acronym, GREENIFICATION, is proposed to present the green MIT principles. The entire greenificated imprinting process is surveyed, including element choice, polymerization implementation, energy input, imprinting strategies, waste treatment, and recovery, as well as the impacts of these processes on operator health and the environment. Moreover, assistance of upgraded instrumentation in deploying greener goals is considered. Finally, future perspectives are presented to provide a more complete picture of the greenificated MIT road map and to pave the way for further development.
Collapse
Affiliation(s)
- Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Zhiyang Zhang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
21
|
Chen S, Luo L, Wang L, Chen C, Gong H, Cai C. A sandwich sensor based on imprinted polymers and aptamers for highly specific double recognition of viruses. Analyst 2021; 146:3924-3932. [PMID: 33982684 DOI: 10.1039/d1an00155h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Highly selective and highly efficient identification of large viruses has been a major obstacle in the field of virus detection. In this work, a novel sandwich resonance light scattering sensor was designed based on molecularly imprinted polymers (MIPs) and aptamers for the first time. One of the recognition probes was obtained by molecular imprinting using environmentally friendly carbon spheres as carriers and the other by modification of the aptamer that can specifically recognize hepatitis B virus (HBV) on the surface of silicon spheres. In the presence of both probes, an MIP-HBV-aptamer sandwich structure was formed continuously in the system with the increase in HBV concentration, resulting in a strong resonance light scattering response. Finally, satisfactory selectivity and sensitivity were obtained, and the imprinting factor was as high as 7.56, which was higher than that reported in previous works of viral molecular imprinting sensor. In addition, it is of great significance to solve the problem of insufficient selectivity of traditional detection methods for macromolecular targets.
Collapse
Affiliation(s)
- Siyu Chen
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lianghui Luo
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lingyun Wang
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China and School of Material and Chemical Engineering, Hunan Institute of Technology, Hengyang 421002, China.
| | - Chunyan Chen
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Hang Gong
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
22
|
“Out of Pocket” Protein Binding—A Dilemma of Epitope Imprinted Polymers Revealed for Human Hemoglobin. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060128] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The epitope imprinting approach applies exposed peptides as templates to synthesize Molecularly Imprinted Polymers (MIPs) for the recognition of the parent protein. While generally the template protein binding to such MIPs is considered to occur via the epitope-shaped cavities, unspecific interactions of the analyte with non-imprinted polymer as well as the detection method used may add to the complexity and interpretation of the target rebinding. To get new insights on the effects governing the rebinding of analytes, we electrosynthesized two epitope-imprinted polymers using the N-terminal pentapeptide VHLTP-amide of human hemoglobin (HbA) as the template. MIPs were prepared either by single-step electrosynthesis of scopoletin/pentapeptide mixtures or electropolymerization was performed after chemisorption of the cysteine extended VHLTP peptide. Rebinding of the target peptide and the parent HbA protein to the MIP nanofilms was quantified by square wave voltammetry using a redox probe gating, surface enhanced infrared absorption spectroscopy, and atomic force microscopy. While binding of the pentapeptide shows large influence of the amino acid sequence, all three methods revealed strong non-specific binding of HbA to both polyscopoletin-based MIPs with even higher affinities than the target peptides.
Collapse
|
23
|
Caserta G, Zhang X, Yarman A, Supala E, Wollenberger U, Gyurcsányi RE, Zebger I, Scheller FW. Insights in electrosynthesis, target binding, and stability of peptide-imprinted polymer nanofilms. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
24
|
Lee MH, Thomas JL, Su ZL, Yeh WK, Monzel AS, Bolognin S, Schwamborn JC, Yang CH, Lin HY. Transition metal dichalcogenides to optimize the performance of peptide-imprinted conductive polymers as electrochemical sensors. Mikrochim Acta 2021; 188:203. [PMID: 34043106 DOI: 10.1007/s00604-021-04850-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/10/2021] [Indexed: 10/21/2022]
Abstract
Molecularly imprinted polymer (MIP)-based electrochemical sensors for the protein α-synuclein (a marker for Parkinson's disease) were developed using a peptide epitope from the protein. MIPs doped with various concentrations and species of transition metal dichalcogenides (TMDs) to enhance conductivity were electropolymerized with and without template molecules. The current during the electropolymerization was compared with that associated with the electrochemical response (at 0.24~0.29 V vs. ref. electrode) to target peptide molecules in the finished sensor. We found that this relationship can aid in the rational design of conductive MIPs for the recognition of biomarkers in biological fluids. The sensing range and limit of detection of TMD-doped imprinted poly(AN-co-MSAN)-coated electrodes were 0.001-100 pg/mL and 0.5 fg/mL (SNR = 3), respectively. To show the potential applicability of the MIP electrochemical sensor, cell culture medium from PD patient-specific midbrain organoids generated from induced pluripotent stem cells was analyzed. α-Synuclein levels were found to be significantly reduced in the organoids from PD patients, compared to those generated from age-matched controls. The relative standard deviation and recovery are less than 5% and 95-115%, respectively. Preparation of TMD-doped α-synuclein (SNCA) peptide-imprinted poly(AN-co-MSAN)-coated electrodes.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zi-Lin Su
- Department of Chemical and Materials Engineering, National University of Kaohsiung (NUK), 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung, 81148, Taiwan
| | - Wen-Kuan Yeh
- Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.,Taiwan Semiconductor Research Institute, Hsinchu, 30009, Taiwan
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, L-4367, Belvaux, Luxembourg.
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung (NUK), 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung, 81148, Taiwan.
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung (NUK), 700, Kaohsiung University Rd., Nan-Tzu District, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
25
|
Lee MH, Thomas JL, Li JA, Chen JR, Wang TL, Lin HY. Synthesis of Multifunctional Nanoparticles for the Combination of Photodynamic Therapy and Immunotherapy. Pharmaceuticals (Basel) 2021; 14:ph14060508. [PMID: 34073468 PMCID: PMC8228393 DOI: 10.3390/ph14060508] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed death-ligand 1 protein (PD-L1) has been posited to have a major role in suppressing the immune system during pregnancy, tissue allografts, autoimmune disease and other diseases, such as hepatitis. Photodynamic therapy uses light and a photosensitizer to generate singlet oxygen, which causes cell death (phototoxicity). In this work, photosensitizers (such as merocyanine) were immobilized on the surface of magnetic nanoparticles. One peptide sequence from PD-L1 was used as the template and imprinted onto poly(ethylene-co-vinyl alcohol) to generate magnetic composite nanoparticles for the targeting of PD-L1 on tumor cells. These nanoparticles were characterized using dynamic light scattering, high-performance liquid chromatography, Brunauer-Emmett-Teller analysis and superconducting quantum interference magnetometry. Natural killer-92 cells were added to these composite nanoparticles, which were then incubated with human hepatoma (HepG2) cells and illuminated with visible light for various periods. The viability and apoptosis pathway of HepG2 were examined using a cell counting kit-8 and quantitative real-time polymerase chain reaction. Finally, treatment with composite nanoparticles and irradiation of light was performed using an animal xenograft model.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 84001, Taiwan
- Correspondence: (M.-H.L.); (H.-Y.L.)
| | - James L. Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Jin-An Li
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
| | - Jyun-Ren Chen
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
| | - Tzong-Liu Wang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung 81148, Taiwan; (J.-A.L.); (J.-R.C.); (T.-L.W.)
- Correspondence: (M.-H.L.); (H.-Y.L.)
| |
Collapse
|
26
|
Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment. Talanta 2021; 224:121810. [PMID: 33379035 DOI: 10.1016/j.talanta.2020.121810] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 11/22/2022]
Abstract
Microfluidic system with multi-functional integration of high-throughput protein/peptide separation ability has great potential for improving the identification capacity of biological samples in proteomics. In this paper, a sample treatment platform was constructed by integrating reversed phase chromatography, immobilized enzyme reactor (IMER) and imprinted monolith through a microfluidic chip to achieve the online proteins fractionation, denaturation, digestion and peptides enrichment. We firstly synthesized a poly-allyl phenoxyacetate (AP) monolith and a lysine-glycine-glycine (KGG) imprinted monolith separately, and investigated in detail their performance in fractionating proteins and extracting KGG from the protein digests of MCF-7 cell. The removal percentage of 94.6% for MCF-7 cell protein and the recovery of 90.8% for KGG were obtained. The number of proteins and peptides identified on this microfluidic platform was 2,004 and 8,797, respectively, which was 2.8-fold and 3.0-fold higher than that of untreatment sample. The time consumed by this platform for a sample treatment was about 9.6 h, less than that of conventional method (approximate 13.3 h). In addition, this platform can enrich some peptide fragments containing KGG based on imprinted monolith, which can be served for the identification of ubiquitin-modified proteomics. The successful construction of this integrated microfluidic platform provides a considerable and efficient technical tool for simultaneous identification of proteomics and post-translational modification proteomics information.
Collapse
|
27
|
WANG Y, LI J, WANG L, QI J, CHEN L. [Recent advances in applications of fragment/dummy molecularly imprinted polymers]. Se Pu 2021; 39:134-141. [PMID: 34227346 PMCID: PMC9274850 DOI: 10.3724/sp.j.1123.2020.08008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 11/25/2022] Open
Abstract
Molecularly imprinted polymers (MIPs) are designed to mimic the specific binding principle of enzymes to substrates or antigens to antibodies, while holding several advantages such as structure predictability, recognition specificity, easy preparation, low cost, high physical robustness, and thermal stability. Therefore, they have been widely applied in many fields including sample preparation (pretreatment), sensing analysis (chemo/biosensors), biomedicine, and environment/food analysis. To date, several strategies were developed for MIPs preparation, aiming to simplify the preparation process and/or improve the properties of the polymers, greatly broadening its usability. The exploration in various advanced imprinting strategies and their combinational use has become a research hotspot in MIPs preparation, among which the fragment imprinting strategy and the dummy template imprinting strategy are especially favored. Fragment imprinting, also called segment imprinting, uses a partial structure of the target molecule as a pseudo-template to prepare MIPs. This strategy is useful to target molecules that are not easy to obtain or that are too large to be used as templates, providing a feasible method for imprinting target analytes that are easy to inactivate or infect, as well as macromolecules that are difficult to imprint. In turn, dummy template imprinting uses molecules with structure, shape, and size similar to the target analytes as templates for imprinting. Because the target is not directly used as a template, this strategy can overcome problems of template leakage, as well as solve target molecule-related difficulties as they can be expensive, infectious, flammable, explosive, or chemically instable. This mini-review compiles information of several articles published in the last four years across ACS, Elsevier, RSC, and other databases, summarizing the most recent advances in the application of fragment/dummy template MIPs (FMIPs/DMIPs). Herein, the biomedical application of FMIPs is mainly addressed as a strategy for the detection of proteins and microorganisms, and the application of FMIPs in the field of food analysis is also explored. In recent years, the imprinting of mammalian cells has made some progress in the application of FMIPs. Mammalian cells, especially cancer cells, overexpress some proteins and sugars, which are good fragment templates. Consequently, the fragment imprinting strategy is widely used in cancer cell imaging, localization, and treatment. Moreover, due to the complicated structure and easy inactivation of some proteins, their MIPs are often prepared by fragment imprinting (also called epitope imprinting). As some microorganisms are infectious, imprinting microorganisms directly can pose a risk; therefore it is safer to also use the fragment imprinting strategy in such cases. The recent application of fragment imprinting strategy in other areas remains scarce. Nonetheless, three studies in the food analysis have explored this possibility. DMIPs are widely used in sample pretreatment and sensing analysis, and they are mainly used as SPE adsorbents for packed SPE, dispersive SPE (DSPE), magnetic SPE (MSPE), and matrix solid phase dispersion (MSPD) extraction. In addition, DMIPs are employed as molecularly imprinted membrane materials. As a result, by virtue of DMIPs, selective extraction and enrichment of target analytes from complicated samples can be achieved. MIP-based sensors can either recognize or transduce, meaning that they can specifically recognize and bind target analytes as well as generate output signals for detection. Because of the high selectivity of MIPs, the use of a dummy template imprinting strategy solves the problem of template leakage in the process of recognition and adsorption, further improving the detection accuracy and sensitivity of the sensor. These features expand the application range of MIP-based sensors. This review briefly overviews the construction and application of chemiluminescence and fluorescence sensors based on DMIPs. Lastly, the advantages and disadvantages, differences, and relationships among the two strategies are summarized. Despite of their potential, four main challenges still remain as major setbacks for the application of FMIPs and DMIPs: (i) the difficulty to select or prepare appropriate fragment templates and dummy templates; (ii) how to ensure that there is almost no difference in the recognition adsorption selectivity between the fragment/dummy template and the original template, so as to ensure optimal recognition specificity; (iii) the use of, environment-friendly reagents to reduce pollution during FMIPs/DMIPs preparation and use to conform with green chemistry requirements; (iv) how to strengthen the industrial and commercial applications of FMIPs and DMIPs. Therefore, significant efforts should be made to develop new imprinting strategies and techniques, as well as to adopt combinational imprinting approaches for FMIPs/DMIPs preparation to expedite the sustainable development and efficient application of FMIPs and DMIPs.
Collapse
|
28
|
Cheubong C, Takano E, Kitayama Y, Sunayama H, Minamoto K, Takeuchi R, Furutani S, Takeuchi T. Molecularly imprinted polymer nanogel-based fluorescence sensing of pork contamination in halal meat extracts. Biosens Bioelectron 2021; 172:112775. [DOI: 10.1016/j.bios.2020.112775] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022]
|
29
|
Lee MH, Thomas JL, Su ZL, Yeh WK, Monzel AS, Bolognin S, Schwamborn JC, Yang CH, Lin HY. Epitope imprinting of alpha-synuclein for sensing in Parkinson's brain organoid culture medium. Biosens Bioelectron 2020; 175:112852. [PMID: 33288425 DOI: 10.1016/j.bios.2020.112852] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/09/2023]
Abstract
Parkinson's disease (PD) is a progressive nervous system disorder that affects movement, whose early signs may be mild and unnoticed. α-Synuclein has been identified as the major component of Lewy bodies and Lewy neurites, which are the characteristic proteinaceous deposits that are the hallmarks of PD. In this work, three alpha-synuclein peptides were synthesized as templates for the molecular imprinting of conductive polymers to enable recognition of alpha-synuclein via ultrasensitive electrochemical measurements. The peptide sequences encompassed specific residues where mutations are known to accelerate PD (though the target sequences, in this study, were wild-type.) The different peptide targets were all successfully imprinted, but with differing imprinting effectiveness, probably owing to differences in target carboxylic acids (which can bind to the aniline (AN) m-aminobenzenesulfonic acid (MSAN) MIP polymers.) Composition of the imprinted polymer, (the mole proportions of AN and MSAN), and the concentrations and sequences of imprinted peptide templates were optimized by measuring the electrochemical responses to target peptides. The imprinted electrode can detect alpha-synuclein at fg/mL levels, and was therefore used to measure alpha-synuclein in the culture medium of human brain organoids generated from normal and idiopathic PD patients.
Collapse
Affiliation(s)
- Mei-Hwa Lee
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan
| | - James L Thomas
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Zi-Lin Su
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Wen-Kuan Yeh
- Department of Electrical Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan; Taiwan Semiconductor Research Institute, Hsinchu, 30009, Taiwan
| | - Anna S Monzel
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Silvia Bolognin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Jens C Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, L-4367, Luxembourg
| | - Chien-Hsin Yang
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan
| | - Hung-Yin Lin
- Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, 81148, Taiwan.
| |
Collapse
|
30
|
Zhang N, Hu X, Guan P, Xu Y, Liu Z, Cheng Y. Effect of surface functionality of molecularly imprinted composite nanospheres on specific recognition of proteins. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111076. [PMID: 32806320 DOI: 10.1016/j.msec.2020.111076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022]
Abstract
The surface functionality of biomaterial plays a primary role in determining its application in biorecognition and drug delivery. In our work, three types of synthetic tailoring polymer nanospheres with hierarchical architecture were constructed to obtain functional polymer layer with disparate chemical motifs for protein adsorption via surface imprinting and grafting copolymerization. In this polymerization system, the structure stability of template protein bovine serum albumin (BSA) is well maintained within a certain range, which facilitated the accurate imprinting and precise identification. A comprehensive protocol for screening different functional layer is proposed through comparing the adsorption behavior, selectivity, identification and responsiveness to medium pH of three functional layers. Our study demonstrates that surface functionality greatly influences the adsorption capacity and selectivity of adsorption material. The functional layer with ionic liquid structure that could only provide multiple non-covalent binding sites is beneficial to the proteins aggregation and extraction, while the anti-nonspecific binding functional layer of biomaterial with zwitterionic structure for specific protein capture is promising to serve as a preferable antigen-antibody communication network, which shows great potential for protein recognition and separation. In summary, our proposed strategy provides a systematic selection criterion of biomaterials for effective application in biosensors.
Collapse
Affiliation(s)
- Nan Zhang
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, PR China; Institute of High Performance Computing, A*STAR, 138632, Singapore
| | - Xiaoling Hu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, PR China.
| | - Ping Guan
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yarong Xu
- School of Natural and Applied Science, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhuangjian Liu
- Institute of High Performance Computing, A*STAR, 138632, Singapore
| | - Yuan Cheng
- Institute of High Performance Computing, A*STAR, 138632, Singapore.
| |
Collapse
|
31
|
Pan M, Hong L, Xie X, Liu K, Yang J, Wang S. Nanomaterials‐Based Surface Protein Imprinted Polymers: Synthesis and Medical Applications. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Liping Hong
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Xiaoqian Xie
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety Tianjin University of Science and Technology Tianjin 300457 China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
32
|
Liu Z, Wang Y, Xu F, Wei X, Chen J, Li H, He X, Zhou Y. A new magnetic molecularly imprinted polymer based on deep eutectic solvents as functional monomer and cross-linker for specific recognition of bovine hemoglobin. Anal Chim Acta 2020; 1129:49-59. [DOI: 10.1016/j.aca.2020.06.052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 12/22/2022]
|
33
|
Synthesis of a molecularly imprinted polymer using MOF-74(Ni) as matrix for selective recognition of lysozyme. Anal Bioanal Chem 2020; 412:7227-7236. [PMID: 32803301 DOI: 10.1007/s00216-020-02855-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/30/2020] [Indexed: 01/23/2023]
Abstract
A molecularly imprinted polymer and metal organic framework were combined to prepare protein imprinted material. MOF-74(Ni) was used as a matrix to prepare surface-imprinted material with lysozyme as a template and polydopamine as an imprinting polymer. MOF-74(Ni) not only provides a large surface area (150.0 m2/g) to modify the polymer layer with more recognition sites (Wt (Ni) = 42.24%), but also facilitates the immobilization of lysozyme by using the chelation between Ni2+ of the MOF-74(Ni) and protein. The thin polydopamine layer (10 nm) of the molecularly imprinted material (named MOF@PDA-MIP) enables surface imprinting. Benefiting from the thin polymer layer, MOF@PDA-MIP reached adsorption equilibrium within 10 min. The maximum adsorption capacity reaches 313.5 mg/g with the highest imprinting factor (IF) of 7.8. The specific recognition sites can distinguish target lysozyme from other proteins such as egg albumin (OVA), bovine serum albumin (BSA) and ribonuclease A (RNase A). The material was successfully applied to separation of lysozyme from egg white. Graphical abstract.
Collapse
|
34
|
Cheubong C, Yoshida A, Mizukawa Y, Hayakawa N, Takai M, Morishita T, Kitayama Y, Sunayama H, Takeuchi T. Molecularly Imprinted Nanogels Capable of Porcine Serum Albumin Detection in Raw Meat Extract for Halal Food Control. Anal Chem 2020; 92:6401-6407. [PMID: 32282196 DOI: 10.1021/acs.analchem.9b05499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Accurate, simple, and valuable analytical methods for detection of food contamination are rapidly expanding to evaluate the validity of food product quality because of ethnic considerations and food safety. Herein molecularly imprinted nanogels (MIP-NGs), capable of porcine serum albumin (PSA) recognition, were prepared as artificial molecular recognition elements. The MIP-NGs were immobilized on a quartz crystal microbalance (QCM) sensor for detection of pork contamination in real beef extract samples. The MIP-NGs-based QCM sensor showed high affinity and excellent selectivity toward PSA compared to reference serum albumins from five different animals. The high PSA specificity of MIP-NGs led to the detection of pork contamination with a detection limit of 1% (v/v) in real beef extract samples. We believe the artificial molecular recognition materials prepared by molecular imprinting are a promising candidate for halal food control.
Collapse
Affiliation(s)
- Chehasan Cheubong
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
| | - Aoi Yoshida
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yuki Mizukawa
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Natsuki Hayakawa
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Minako Takai
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Takahiro Morishita
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yukiya Kitayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Medical Device Fabrication Engineering Center, Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.,Medical Device Fabrication Engineering Center, Graduate School of Engineering, Kobe University, Kobe, Japan
| |
Collapse
|
35
|
Yang X, Jiang X, Bashir MS, Kong XZ. Preparation of Highly Uniform Polyurethane Microspheres by Precipitation Polymerization and Pd Immobilization on Their Surface and Their Catalytic Activity in 4-Nitrophenol Reduction and Dye Degradation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06367] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xingjie Yang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xubao Jiang
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | | | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
36
|
Luo L, Zhang F, Chen C, Cai C. Visual Simultaneous Detection of Hepatitis A and B Viruses Based on a Multifunctional Molecularly Imprinted Fluorescence Sensor. Anal Chem 2019; 91:15748-15756. [PMID: 31718158 DOI: 10.1021/acs.analchem.9b04001] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Simultaneous detection of large viruses has been a great obstacle in the field of molecular imprinting. In this work, for the first time, a multifunctional molecularly imprinted sensor for single or simultaneous determination of hepatitis A virus (HAV) and hepatitis B virus (HBV) is provided. Visual detection was realized due to the color of green and red quantum dots that varied with the concentration of the target substance. The combination of hydrophilic monomers and metal chelation reduced the nonspecific binding and enhanced the specificity of adsorption. As a result, satisfactory selectivity and sensitivity were obtained for the detection of the two viruses, with imprinting factors of 3.70 and 3.35 for HAV and HBV, and limits of detection of 3.4 and 5.3 pmol/L, respectively, that were achieved within 20 min. The excellent recoveries during simultaneous detection and single detection modes indicate the prominent ability of the proposed sensor to detect HAV and HBV in human serum and the potential ability to simultaneously detect multiple viruses in real applications.
Collapse
Affiliation(s)
- Lianghui Luo
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Feng Zhang
- School of Chemistry and Materials Science , Hunan Agricultural University , Changsha 410128 , China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan 411105 , China
| |
Collapse
|
37
|
Boitard C, Curcio A, Rollet AL, Wilhelm C, Ménager C, Griffete N. Biological Fate of Magnetic Protein-Specific Molecularly Imprinted Polymers: Toxicity and Degradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35556-35565. [PMID: 31496222 DOI: 10.1021/acsami.9b11717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic nanoparticles coated with protein-specific molecularly imprinted polymers (MIPs) are receiving increasing attention thanks to their binding abilities, robustness, and easy synthesis compared to their natural analogues also able to target proteins, such as antibodies or aptamers. Acting as tailor-made recognition systems, protein-specific MIPs can be used in many in vivo nanomedicine applications, such as targeted drug delivery, biosensing, and tissue engineering. Nonetheless, studies on their biocompatibility and long-term fate in biological environments are almost nonexistent, although these questions have to be addressed before considering clinical applications. To alleviate this lack of knowledge, we propose here to monitor the effect of a protein-specific MIP coating on the toxicity and biodegradation of magnetic iron oxide nanoparticles, both in a minimal aqueous degradation medium and in a model of cartilage tissue formed by differentiated human mesenchymal stem cells. Degradation of iron oxide nanoparticles with or without the polymer coating was monitored for a month by following their magnetic properties using vibrating sample magnetometry and their morphology by transmission electron microscopy. We showed that the MIP coating of magnetic iron oxide nanoparticles does not affect their biocompatibility or internalization inside cells. Remarkably, the imprinted polymer coating does not hinder the magnetic particle degradation but seems to slow it down, although this effect is more visible when degradation occurs in the buffer medium than in cells. Hence, the results presented in this paper are really encouraging and open up the way to future applications of MIP-coated nanoparticles into the clinic.
Collapse
Affiliation(s)
- Charlotte Boitard
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Alberto Curcio
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 , CNRS and Université Paris Diderot , 75205 Paris Cedex 05, France
| | - Anne-Laure Rollet
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 , CNRS and Université Paris Diderot , 75205 Paris Cedex 05, France
| | - Christine Ménager
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Nébéwia Griffete
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| |
Collapse
|
38
|
Qin YT, Peng H, He XW, Li WY, Zhang YK. Highly Effective Drug Delivery and Cell Imaging Using Fluorescent Double-Imprinted Nanoparticles by Targeting Recognition of the Epitope of Membrane Protein. Anal Chem 2019; 91:12696-12703. [PMID: 31532634 DOI: 10.1021/acs.analchem.9b02123] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nanocarriers with both targeting ability and stable loading of drugs can more effectively deliver drugs to precise tumor sites for therapeutic effects. Accordingly, we have rationally designed fluorescent molecularly imprinted polymer nanoparticles (FMIPs), which use N-terminal epitope of P32 membrane protein as the primary template and doxorubicin (DOX) as the secondary template. The DOX imprinted cavity can stably carry the drug and the epitope-imprinted cavity allows FMIPs to actively recognize the P32-positive 4T1 cancer cells. The targeted therapeutic effect of DOX-loaded FMIPs (FMIPs@DOX) is investigated in vitro and in vivo. The FMIPs@DOX only causes apoptosis in 4T1 cancer cells compared to C8161 cells (expressing low level of P32). In addition, highly effective inhibition of 4T1 malignant breast tumors using FMIPs@DOX is achieved in the model of tumor-bearing mice. Importantly, the antitumor effect achieved by intravenous injection of FMIPs@DOX is almost identical to that by intratumoral injection. Furthermore, the FMIPs can serve as a targeted fluorescence imaging agent due to the high specificity of the epitope-imprinted cavity and the stable fluorescence of the embedded silicon nanoparticles. These results demonstrate the effectiveness of the FMIPs for active targeted drug delivery and imaging. Furthermore, the FMIPs provide a direction for drug-loaded nanocarrier.
Collapse
Affiliation(s)
- Ya-Ting Qin
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Hui Peng
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China.,National Chromatographic Research and Analysis Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
39
|
Jia C, Zhang M, Zhang Y, Ma ZB, Xiao NN, He XW, Li WY, Zhang YK. Preparation of Dual-Template Epitope Imprinted Polymers for Targeted Fluorescence Imaging and Targeted Drug Delivery to Pancreatic Cancer BxPC-3 Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32431-32440. [PMID: 31393695 DOI: 10.1021/acsami.9b11533] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Molecularly imprinted polymers were commonly used for drug delivery. However, single-template molecularly imprinted polymers often fail to achieve both drug delivery and precise targeting. To address this issue, a dual-template molecularly imprinted polymer nanoparticle used for targeted diagnosis and drug delivery for pancreatic cancer BxPC-3 cells (FH-MIPNPs) was prepared. In the FH-MIPNPs, the 71-80 peptide of human fibroblast growth-factor-inducible 14 modified with glucose (Glu-FH) and bleomycin (BLM) were used as templates simultaneously, so that the FH-MIPNPs could load BLM and bind to the BxPC-3 cells, which overexpress human fibroblast growth-factor-inducible 14 (FN14). Targeted imaging experiments in vitro show that the FH-MIPNPs could specifically target BxPC-3 cells and that there is no targeting effect on cells without expression of FN14. In vivo antitumor experiment results demonstrated that the FH-MIPNP-loaded BLM (FH-MIPNPs/BLM) could inhibit the growth of xenografts tumor of BxPC-3 (tumor volume increased to 1.05×), which shows that FH-MIPNPs/BLM had obvious targeted therapeutic effect compared to the other three control groups of BLM, FH-NIPNPs/BLM, and physiological saline (tumor volume increased to 1.5×, 1.6×, and 2.4×, respectively). What is more, FH-MIPNPs have low biotoxicity through toxicity experiments in vitro and in vivo, which is favorable toward making molecularly imprinted polymers an effective platform for tumor-targeted imaging and therapy.
Collapse
Affiliation(s)
- Chao Jia
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Man Zhang
- College of Pharmacy , Nankai University , Tianjin 300071 , China
| | - Yan Zhang
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , China
| | - Zi-Bo Ma
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Nan-Nan Xiao
- State Key Laboratory of Medicinal Chemical Biology , Nankai University , Tianjin 300350 , China
| | - Xi-Wen He
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
| | - Wen-You Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300071 , China
| | - Yu-Kui Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition , Nankai University , Tianjin 300071 , China
- National Chromatographic Research and Analysis Center , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
40
|
|
41
|
He S, Mei L, Wu C, Tao M, Zhai Z, Xu K, Zhong W. In situ hydrogelation of bicalutamide-peptide conjugates at prostate tissue for smart drug release based on pH and enzymatic activity. NANOSCALE 2019; 11:5030-5037. [PMID: 30839985 DOI: 10.1039/c8nr10528f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tissue-specific self-assemblies of supramolecular hydrogels have attracted great interest in material design and biomedical applications, for in situ-formed hydrogels serve as an excellent local depot with tunable release of drug therapeutics. Here we report the design and syntheses of a novel class of histidine-containing hexapeptide derivatives (Nap-1 and ID-1) for in situ hydrogelation at the zinc ion-rich prostate tissue. Thanks to the efficient co-ordination between zinc and histidine, both Nap-1 and ID-1 displayed excellent self-assembly capability with a high sensitivity to zinc ions at ∼0.1 equivalency. To foster a prostate-specific drug delivery system (DDS), ID-1 was chosen for further conjugation with bicalutamide (BLT), a clinically used drug for prostate cancer. The as-synthesized ID-1-BLT retained the self-assembly capability with zinc ions, and conferred supramoelcular hydrogels at the prostate site. Interestingly, ID-1-BLT hydrogels demonstrated tunable drug release profiles in a typical tumor microenvironment, with acidic pH and esterase activity regulating the drug release in a dose dependent manner. Consequently, the hydrogel-based DDS demonstrated enhanced potency and selective cytotoxicity against prostate cancer cell DU145 over normal fibroblast cell NIH3T3, plausibly due to differential cellular uptake of drugs as well as the elevated esterase activities in cancer cells. Finally, the biocompatible hydrogel system demonstrated sustained delivery of drugs at the prostate gland of rats, with a superior in situ drug distribution profile compared to that of aqueous solution of BLT alone.
Collapse
Affiliation(s)
- Suyun He
- Department of Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
42
|
Tan S, Long Y, Han Q, Wang J, Liang Q, Ding M. Polymer-Assisted Hierarchically Bulky Imprinted Microparticles for Enhancing the Selective Enrichment of Proteins. ACS APPLIED BIO MATERIALS 2018; 2:388-396. [DOI: 10.1021/acsabm.8b00631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Siyuan Tan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Yang Long
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Qiang Han
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Jundong Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| | - Qionglin Liang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P.R. China
| | - Mingyu Ding
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry,Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|