1
|
Zhang Q, Wang S, Song J, Yang X. Boosting Droplet Transport for Fog Harvest. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62838-62850. [PMID: 39475533 DOI: 10.1021/acsami.4c10213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Wedge-shaped superhydrophilic tracks have been considered as one of the most effective ways to transport droplets for diverse cutting-edge applications, e.g., energy harvesting and lab-on-a-chip devices. Although significant progress, such as serial wedge-shaped tracks with curved edges, has evolved to advance the liquid transport, the ultrafast and long-distance transporting of drop-shaped liquid remains challenging. Here, inspired by the cactus spine that enables fast droplet transport and the serial spindle knot of spider silk, which is capable of collecting condensate from a wide range of distances, we created serial wedge-shaped superhydrophilic patterns and optimized their side edges with a convex brachistochrone curve to boost the acceleration. The junctions of the serial patterns were meanwhile reformed into concave brachistochrone curves to lower the energy barrier for sustained transport. For transporting the liquid in drop shapes to the long distance at high velocity, the wedge-shaped tracks were slenderized to the greatest extent to suppress the liquid spreading and thus prevent the degradation of the Laplace driving force. Moreover, the junction that determines the energy barrier of droplet striding was carefully designed based on the principle of minimizing momentum loss. The exquisite architecture design pushed the droplet transport to a maximum instantaneous velocity of 207.7 mm·s-1 and an outermost transport distance of 120.5 mm, exceeding most wettability or geometric gradient based reports. The transported volume of the droplets can be readily regulated by simply scaling the created architectures. The enhanced droplet transport facilitates the motion and departure of the cohered droplets, enabling a 1.9-fold rise of the water collection rate and 12-fold increase of the heat transfer coefficient during the fog harvest test. This scalable, controllable, and easily fabricatable surface design provides an essential pathway in realizing high-performance manipulation of droplets and possibly pioneers substantial innovative applications in multidisciplinary fields. Those include but are not limited to energy harvesting, lab-on-a-chip devices, and MEMS systems.
Collapse
Affiliation(s)
- Qianqin Zhang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Siyu Wang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jinlong Song
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Xiaolong Yang
- College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
2
|
Zhu Y, Niu H, Wang Y, Li G, Qiu B, Zhang M, Yan F, Xu Y, Guo C, Xuan S. Janus Flexible Device with Microcone Channels for Sampling and Analysis of Biological Microfluidics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13648-13656. [PMID: 38952282 DOI: 10.1021/acs.langmuir.4c01251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Controlling the spontaneous directional transport of droplets plays an important role in the application of microchemical reactions and microdroplet detection. Although the relevant technologies have been widely studied, the existing spontaneous droplet transport strategies still face problems of complex structure, single function, and poor flexibility. Inspired by the spontaneous droplet transport strategy in nature, an asymmetric wettability surface with microcone channels (AWS-MC) is prepared on a flexible fabric by combining surface modification and femtosecond laser manufacturing technology. On this surface, the capillary force and Laplace pressure induced by the wettability gradient and the geometric structure gradient drive the droplet transport from the hydrophobic surface to the hydrophilic surface. Notably, droplets in adjacent hydrophilic regions do not exchange substances even if the gap in the hydrophilic region is only 1 mm, which provides an ideal platform for numerous detections by a single drop. The droplet transport strategy does not require external energy and can adapt to the manipulation of various droplet types. Application of this surface in the blood of organisms is demonstrated. This work provides an effective method for microdroplet-directed self-transport and microdroplet detection.
Collapse
Affiliation(s)
- Yuying Zhu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Hanhan Niu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuan Wang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Guoqiang Li
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Miaoqi Zhang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Fei Yan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuanchong Xu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Chenghong Guo
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sensen Xuan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| |
Collapse
|
3
|
Ghasemlou M, Oladzadabbasabadi N, Ivanova EP, Adhikari B, Barrow CJ. Engineered Sustainable Omniphobic Coatings to Control Liquid Spreading on Food-Contact Materials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15657-15686. [PMID: 38518221 DOI: 10.1021/acsami.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
The adhesion of sticky liquid foods to a contacting surface can cause many technical challenges. The food manufacturing sector is confronted with many critical issues that can be overcome with long-lasting and highly nonwettable coatings. Nanoengineered biomimetic surfaces with distinct wettability and tunable interfaces have elicited increasing interest for their potential use in addressing a broad variety of scientific and technological applications, such as antifogging, anti-icing, antifouling, antiadhesion, and anticorrosion. Although a large number of nature-inspired surfaces have emerged, food-safe nonwetted surfaces are still in their infancy, and numerous structural design aspects remain unexplored. This Review summarizes the latest scientific research regarding the key principles, fabrication methods, and applications of three important categories of nonwettable surfaces: superhydrophobic, liquid-infused slippery, and re-entrant structured surfaces. The Review is particularly focused on new insights into the antiwetting mechanisms of these nanopatterned structures and discovering efficient platform methodologies to guide their rational design when in contact with food materials. A detailed description of the current opportunities, challenges, and future scale-up possibilities of these nanoengineered surfaces in the food industry is also provided.
Collapse
Affiliation(s)
- Mehran Ghasemlou
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | | | - Elena P Ivanova
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Benu Adhikari
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, Victoria 3216, Australia
| |
Collapse
|
4
|
Dai X, Si W, Liu Y, Zhang W, Guo Z. Bubble Unidirectional Transportation on Multipath Aerophilic Surfaces by Adjusting the Surface Microstructure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11984-11996. [PMID: 38407018 DOI: 10.1021/acsami.3c15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Comprehending and controlling the behavior of bubbles on solid surfaces is of significant importance in various fields including catalysis and drag reduction, both industrially and scientifically. Herein, Inspired by the superaerophilic properties of the lotus leaf surface, a series of asymmetrically patterned aerophilic surfaces were prepared by utilizing a facile mask-spraying method for directional transport of underwater bubbles. The ability of bubbles to undergo self-driven transportation in an asymmetric pattern is attributed to the natural tendency of bubbles to move toward regions with lower surface energy. In this work, the microstructure of the aerophilic surface is demonstrated as a critical element that influences the self-driven transport of bubbles toward regions of lower surface energy. The microstructure characteristic affects the energy barrier of forming a continuous gas film on the final regions. We classify three distinct bubble behaviors on the aerophilic surface, which align with three different underwater gas film evolution states: Model I, Model II, and Model III. Furthermore, utilizing the energy difference between the energy barrier that forms a continuous gas film and the gas-gas merging, gas-liquid microreaction in a specific destination on the multiple paths can be easily realized by preinjecting a bubble in the final region. This work provides a new view of the microevolutionary process for the diffusion, transport, and merging behavior of bubbles upon contact with an aerophilic pattern surface.
Collapse
Affiliation(s)
- Xin Dai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Wen Si
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Yifan Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
5
|
Yong J, Peng Y, Wang X, Li J, Hu Y, Chu J, Wu D. Self-Driving Underwater "Aerofluidics". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301175. [PMID: 37114841 PMCID: PMC10375095 DOI: 10.1002/advs.202301175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Here, the concept of "aerofluidics," in which a system uses microchannels to transport and manipulate trace gases at the microscopic scale to build a highly versatile integrated system based on gas-gas or gas-liquid microinteractions is proposed. A kind of underwater aerofluidic architecture is designed using superhydrophobic surface microgrooves written by a femtosecond laser. In the aqueous medium, a hollow microchannel is formed between the superhydrophobic microgrooves and the water environment, which allows gas to flow freely underwater for aerofluidic devices. Driven by Laplace pressure, gas can be self-transported along various complex patterned paths, curved surfaces, and even across different aerofluidic devices, with an ultralong transportation distance of more than 1 m. The width of the superhydrophobic microchannels of the designed aerofluidic devices is only ≈42.1 µm, enabling the aerofluidic system to achieve accurate gas transportation and control. With the advantages of flexible self-driving gas transportation and ultralong transportation distance, the underwater aerofluidic devices can realize a series of gas control functions, such as gas merging, gas aggregation, gas splitting, gas arrays, gas-gas microreactions, and gas-liquid microreactions. It is believed that underwater aerofluidic technology can have significant applications in gas-involved microanalysis, microdetection, biomedical engineering, sensors, and environmental protection.
Collapse
Affiliation(s)
- Jiale Yong
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yubin Peng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Xiuwen Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, 230027, P. R. China
| |
Collapse
|
6
|
Zhou P, Yan Y, Cheng J, Zhou C. Directional Self-Transportation of Droplets on Superwetting Wedge-Shaped Surface in Air and Underliquid Environments. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8742-8750. [PMID: 36740783 DOI: 10.1021/acsami.2c21392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The directional self-transportation of droplets has aroused great attention in microfluidic systems. However, most reported surfaces are mainly designed for driving water droplets to move in air, displaying low adaptability in complex environments. This work presents a wedge-shaped surface with multiple superwettability, i.e., superhydrophilicity/superoleophilicity and underwater superoleophobicity/underoil superhydrophobicity, fabricated by electrodeposition of a metal-organic framework on a copper sheet. This surface exhibited excellent performance for driving droplet self-transportation, regardless of the droplet type (water or oil) and environmental media (air or underliquids). In air, the wedge-shaped surface with wedge angle of 9.2° could move droplets of water and dodecane up to 24.5 mm and 17.9 mm, respectively. The movement of water droplet under dodecane, however, dropped from 24.5 mm to 22.1 mm, while the dodecane droplet underwater increased from 17.9 mm to 20.3 mm in moving displacement, indicating the underliquid environment is in favor of manipulation of oil droplets. Furthermore, the droplet convergence, transportation, and separation were achieved on the well-designed multiple wedge tracks in air with a total movement distance up to 60.0 mm. The test of micro-oil droplets collecting under water demonstrated that a sponge with two wedges has 2.1 times the oil droplet collection capacity over that of the sponge only, providing a new strategy for efficient treatment of the micro-oil droplets contaminated water.
Collapse
Affiliation(s)
- Peizhang Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Yuanyang Yan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Jiang Cheng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology, South China University of Technology, Guangzhou510640, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
7
|
Hybrid superhydrophobic/hydrophilic patterns deposited on glass by laser-induced forward transfer method for efficient water harvesting. J Colloid Interface Sci 2022; 625:383-396. [PMID: 35724461 DOI: 10.1016/j.jcis.2022.06.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022]
Abstract
In recent years, the combination of factors such as growing population and global climate change has resulted in freshwater shortages. Therefore, water harvesting from the atmospheric fog in order to produce freshwater supply inspired by nature has received much attention. The water harvesting capability of the creatures is significantly based on the combination of both wettability states on their surfaces. In this study, a facile physicochemical hybrid method was used for the fabrication of glass surfaces with contrast wettability. First, fractal and regular repeated geometric patterns were deposited on a glass substrate using brass sheet as donor material by laser induced forward transfer (LIFT) method. Subsequently, stearic acid (SA) treatment was used to convert the wettability of the superhydrophilic (SHL) deposited patterns on glass to superhydrophobic. In order to investigate the effect of the shape of designed patterns on glass surfaces in the water harvesting efficiency, the amount of collected water for a period of time from untreated hydrophilic (HL) glass, superhydrophobic (SHB) glass and hybrid superhydrophobic/hydrophilic (SHB-HL) surfaces were measured. The obtained results indicate that the hybrid of superhydrophobic and hydrophilic regions and selecting the optimal pattern can improve the water harvesting performance by up to 300%.
Collapse
|
8
|
Raj N, Crooks RM. Plastic-based lateral flow immunoassay device for electrochemical detection of NT-proBNP. Analyst 2022; 147:2460-2469. [PMID: 35531909 PMCID: PMC9178520 DOI: 10.1039/d2an00685e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Here we report an easily fabricated, plastic-based lateral flow device for carrying out metalloimmunoassays. The device is called ocFlow to emphasize the open-channel design. We have shown that the ocFlow is capable of magnetic microbead (MμB)-based metalloimmunoassays for the detection of two types of immunoconjugates: a model composite (MC) and a sandwich immunoassay for the heart failure marker NT-proBNP. In both assays, Ag nanoparticles (AgNPs) were used as electrochemically detectable labels. NT-proBNP and MC concentrations as low as 750.0 pM and 10.0 pM, respectively, could be detected using the ocFlow device. Four key conclusions can be drawn from the results presented herein. First, immunoconjugates attached to the MμBs can be transported in the flow channel using combined hydrodynamic and capillary pressure passive pumping. Second, the ocFlow device is capable of on-chip storage, resolvation, and conjugate formation of both the MC and NT-proBNP composites. Third, electrochemical detection can be conducted on analytes suspended in serum by rinsing the electrodes with a wash buffer. Finally, and perhaps most significantly, the assay is quantitative and has a detection limit for NT-proBNP in the high picomolar range when the necessary reagents are stored on the device in a dry form.
Collapse
Affiliation(s)
- Nikhil Raj
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| | - Richard M Crooks
- Department of Chemistry, The University of Texas at Austin, 105 E. 24th Street, Stop A5300, Austin, Texas 78712-1224, USA.
| |
Collapse
|
9
|
Wang Z, Li H, Yang X, Guan M, Wang L. Multi-Bioinspired Janus Copper Mesh for Improved Gravity-Irrelevant Directional Water Droplet and Flow Transport. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2137-2144. [PMID: 35108022 DOI: 10.1021/acs.langmuir.1c03267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A conceptually novel multi-bioinspired strategy based on structures and functions derived from the Namib desert beetle and lotus leaf is proposed in this paper. The proposed scheme synergistically combines the features of alternating wettability patterns and asymmetric wettability for improved directional water transport. Consequently, a Janus copper mesh, which substantially outperforms other single-bioinspired synthetic materials, is produced. The Janus copper mesh achieves directional self-transportation of tiny water droplets and continuous water flow in a gravity-irrelevant or an anti-gravity manner without energy consumption. This depends on the asymmetric wettability and alternating hydrophobic-hydrophilic wettability patterns on the hydrophobic surface of the mesh. In particular, Janus copper shows remarkable selective directional water transport in a water-oil system, rendering it a promising candidate for practical applications.
Collapse
Affiliation(s)
- Zhecun Wang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Hanzhen Li
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Xin Yang
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Min Guan
- College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| | - Laigui Wang
- School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, P. R. China
| |
Collapse
|
10
|
Soltani M, Golovin K. Anisotropy-induced directional self-transportation of low surface tension liquids: a review. RSC Adv 2020; 10:40569-40581. [PMID: 35520851 PMCID: PMC9057580 DOI: 10.1039/d0ra08627d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 11/29/2022] Open
Abstract
Inspired by natural surfaces such as butterfly wings, cactus leaves, or the Nepenthes alata plant, synthetic materials may be engineered to directionally transport liquids on their surface without external energy input. This advantageous feature has been adopted for various mechanical and chemical processes, e.g. fog harvesting, lubrication, lossless chemical reactions, etc. Many studies have focused on the manipulation and transport of water or aqueous droplets, but significantly fewer have extended their work to low surface tension (LST) liquids, although these fluids are involved in numerous industrial and everyday processes. LST liquids completely wet most surfaces which makes spontaneous transportation an active challenge. This review focuses on recently developed strategies for passively and directionally transporting LST liquids.
Collapse
Affiliation(s)
- Mohammad Soltani
- Okanagan Polymer Engineering Research & Applications Laboratory, Faculty of Applied Science, University of British Columbia Canada
| | - Kevin Golovin
- Okanagan Polymer Engineering Research & Applications Laboratory, Faculty of Applied Science, University of British Columbia Canada
| |
Collapse
|
11
|
Nandyala D, Wang Z, Hwang D, Cubaud T, Colosqui CE. Design, Fabrication, and Analysis of a Capillary Diode for Potential Application in Water-Oil Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45950-45960. [PMID: 32955850 DOI: 10.1021/acsami.0c10744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A capillary device is designed and fabricated in glass to work as a fluidic diode with vanishingly small hydrodynamic conductance for imbibition of water within a finite range of immersion depths. This is attained through patterning a section of predefined length on the device surfaces using a single-step laser-based ablation process and without resorting to chemical treatment of the hydrophilic glass substrate. While the studied device works as a fluidic diode for water, it can behave as a conventional capillary slit for the imbibition of oils (e.g., alkanes, silicone oils) with low surface tension. A prototype device with simple geometric design is demonstrated for selective adsorption and separation of water and oil in vertical imbibition experiments at controlled immersion depths. Efficient devices for passive separation of water and oil can be designed based on the demonstrated physical mechanism and the analytical model proposed in this work.
Collapse
Affiliation(s)
- Dhiraj Nandyala
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - Zhen Wang
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - David Hwang
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - Thomas Cubaud
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - Carlos E Colosqui
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York 11794, United States
| |
Collapse
|
12
|
Liu F, Xu T, Liu W, Zheng X, Xu J, Ma B. Spontaneous droplet generation via surface wetting. LAB ON A CHIP 2020; 20:3544-3551. [PMID: 32895671 DOI: 10.1039/d0lc00641f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A surface wetting-driven droplet generation microfluidic chip was developed, and could produce droplets spontaneously once adding a drop of oil and an aqueous sample on the chip without any power source and equipment. The chip is simply composed of three drilled holes connected by a single microchannel. The aqueous sample dropped in the middle hole could be converged and segmented into monodispersed droplets spontaneously by preloading oil in the side hole, and then flow into the other side hole through the microchannel. To address the high throughput and stability in practical applications, a siphon pump was further integrated into the microfluidic chip by simply connecting oil-filled tubing also acting as a collector. In this way, droplets can be generated spontaneously with a high uniformity (CV < 3.5%) and adjustable size (30-80 μm). Higher throughput (280 Hz) and multi-sample emulsification are achieved by parallel integration of a multi-channel structure. Based on that, the microfluidic chip was used as the droplet generator for the ddPCR to absolutely quantify S. mutans DNA. This is the first time that the feasibility of droplet generation driven only by oil wettability on hydrophobic surfaces is demonstrated. It offers great opportunity for self-sufficient and portable W/O droplet generation in biomedical samples, thus holding the potential for point-of-care testing (POCT).
Collapse
Affiliation(s)
- Fengyi Liu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China.
| | | | | | | | | | | |
Collapse
|
13
|
Zhang Y, Wang Y, Tang C, Zhou G, Yu J, He H, Qi H. Reducing the droplet/solid interfacial sliding resistance under electrowetting-on-dielectric by different voltage slew rate signals. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Pi X, Wang A, Fan R, Zhou X, Sui W, Yang Y. Metal-Organic Complexes@Melamine Foam Template Strategy to Prepare Three-Dimensional Porous Carbon with Hollow Spheres Structures for Efficient Organic Vapor and Small Molecule Gas Adsorption. Inorg Chem 2020; 59:5983-5992. [PMID: 32314913 DOI: 10.1021/acs.inorgchem.9b03773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three-dimensional (3D) porous carbon materials have received substantial attention owing to their unique structural features. However, the synthesis of 3D porous carbon, especially 3D porous carbon with hollow spheres structures at the connection points, still pose challenges. Herein, we first develop a metal-organic complexes@melamine foam (MOC@MF) template strategy, by using hot-pressing and carbonization method to synthesize 3D porous carbon with hollow spheres structures (denoted as NOPCs). The formation mechanism of NOPCs can be attributed to the difference in Laplace pressure and surface energy gradient between the carbonized MOC and carbonized MF. These rare 3D porous carbons exhibit high BET surface area (2453.8 m2 g-1), N contents (10.5%), and O contents (16.3%). Moreover, NOPCs show significant amounts of toluene and methanol at room temperature, reaching as high as 1360 and 1140 mg g-1. The adsorption amounts of SO2 and CO2 for NOPCs are up to 93.1 and 445 mg g-1. Theoretical calculation indicates surfaces of porous carbon with N and O coexistence could strongly enhance adsorption with high adsorption energy of -65.83 kJ mol g-1.
Collapse
Affiliation(s)
- Xinxin Pi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ani Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Ruiqing Fan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Xuesong Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Wenbo Sui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Yulin Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| |
Collapse
|
15
|
Upadhyay RK, Waghmare PR. Underwater Oil Drop Storage, Guided Transport, and Oil/Water Separation Using Surfaces with Wettability Contrast Prepared through a Vapor-Based Etching Method. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11144-11154. [PMID: 32017523 DOI: 10.1021/acsami.9b18508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A facile vapor-based etching method is introduced to design surfaces with underwater wettability contrast. The method involves exposure of the masked copper surface to acetic acid vapors for growing nano- and microstructures; additional modification with stearic acid (STA) produced a superhydrophobic exposed area, while the masked surface remained hydrophobic. Dot- as well dumbbell-shaped patterns were prepared and used for oil drop storage and transfer, respectively. The influence of buoyancy on the storage capacity of the dot patterns and transfer rate of the channels is investigated. Buoyancy-driven partial channel-less transport of oil droplets by using a strategic arrangement of donor and receptor channels is also demonstrated. Patterns are also designed on flexible substrates to enable easy fabrication of complex three-dimensional fluidic pathways having both horizontal and vertical tracks. The flexibility of the substrates enabled the design of an electric switch-type configuration for the oil drop transport between two channels. In the end, a strategy for the removal of water from a water-in-oil emulsion using channels is introduced. A unique phenomenon of spontaneous bursting out of a water drop from inside an oil drop is also demonstrated.
Collapse
Affiliation(s)
- Ravi Kant Upadhyay
- interfacial Science and Surface Engineering Lab (iSSELab), Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6 G 2G8, Canada
| | - Prashant R Waghmare
- interfacial Science and Surface Engineering Lab (iSSELab), Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6 G 2G8, Canada
| |
Collapse
|
16
|
Chen S, Wang J, Chen C, Mahmood A. Understanding the coalescence and non-coalescence of underwater oil droplets. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2019.110466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Tong W, Karthik N, Li J, Wang N, Xiong D. Superhydrophobic Surface with Stepwise Multilayered Micro- and Nanostructure and an Investigation of Its Corrosion Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15078-15085. [PMID: 31682454 DOI: 10.1021/acs.langmuir.9b02910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We develop a fluorine-free preparation of the superhydrophobic surface on an aluminum alloy with anticorrosion performance and mechanical robustness. The surface morphology, chemical composition, and water repellency were determined with SEM, CLSM, EDS, FT-IR, TG, and contact-angle measurements, respectively. The aluminum matrix superhydrophobic surface (STA-PDMS-ZnO sample) was able to display excellent repellency to water with a WCA of 152° and a WSA of 2°. The outstanding superhydrophobicity on the as-prepared surface was greatly related to the construction of stepwise multilayered micro- and nanostructure within the superhydrophobic surface. Because of the special surface structure, the mechanical robustness and corrosion resistance of the STA-PDMS-ZnO sample were improved. Notably, the anticorrosion mechanism by air pockets was explained by the comparison of two superhydrophobic surfaces prepared with the same low-surface-energy chemicals. The superhydrophobic surface with a multilayered micro- and nanostructure (STA-PDMS-ZnO sample) showed greater corrosion resistance than the surface coated by superhydrophobic modification (control sample). This is because of the entrapments of numerous air pockets within the aluminum matrix superhydrophobic surface, thus strengthening the corrosion resistance. On the basis of the results, the multidimensional superhydrophobic surface is promising for having a good application future in the field of metal corrosion protection.
Collapse
Affiliation(s)
- Wei Tong
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Namachivayam Karthik
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Jianliang Li
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Nan Wang
- Automotive Engineering Research Institute , Jiangsu University , Zhenjiang 212013 , China
| | - Dangsheng Xiong
- School of Materials Science & Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| |
Collapse
|
18
|
Yang X, Liu Z, Liu X, Song J. Nanotextured Surfaces with Underwater Anisotropic Sliding Resistance for Oil Transfer and Coalescence. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Liu Z, Zheng H, Zhang H, Han Y, Chen Y, Huang L, Wang X, Liu X, Yang X. Fabrication of Wettability Mesh with Quasi-Rectangular-Restraining Capacity to Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9177-9183. [PMID: 31265303 DOI: 10.1021/acs.langmuir.9b01418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A water droplet placed on a surface is usually round owing to surface tension. Restraining a droplet to a rectangle shape has been rarely reported. Herein, we fabricated three meshes with diverse wettability including ordinary mesh, superhydropilic mesh, and quasi-rectangular-restraining mesh. The profiles of water droplets on these three meshes were entirely different from the top view, especially for the quasi-rectangular-restraining mesh, which enables the water droplet on it to achieve the rectangular shape. The surface morphologies and chemical compositions of the meshes were characterized by scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Moreover, the influences of processing parameters of the quasi-rectangular-restraining mesh on the quasi-rectangular quality of the water droplet on it were investigated to obtain the relatively optimum processing parameters. The dynamic properties of water droplets on the three meshes were compared, and forces acting on the water droplets during the spreading and shrinking processes on the three meshes were qualitatively analyzed. Additionally, we studied the influences of falling height and water volume on the quasi-rectangular quality of the water droplet on the quasi-rectangular-restraining mesh. Water droplets on the quasi-rectangular-restraining mesh demonstrated good stability under vibration and the droplet could maintain the quasi-rectangular quality on the quasi-rectangular-restraining mesh for about 7 days, revealing a good durability. Further, the large-scaled fabrication of the quasi-rectangular-restraining mesh was realized.
Collapse
Affiliation(s)
- Ziai Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Huanxi Zheng
- Department of Mechanical Engineering , City University of Hong Kong , Hong Kong 999077 , China
| | - Heng Zhang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Yuqi Han
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Yang Chen
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Liu Huang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Xuyue Wang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Xin Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , China
| | - Xiaolong Yang
- National Key Laboratory of Science and Technology on Helicopter Transmission , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , China
| |
Collapse
|
20
|
Qu M, Ma L, Wang J, Zhang Y, Zhao Y, Zhou Y, Liu X, He J. Multifunctional Superwettable Material with Smart pH Responsiveness for Efficient and Controllable Oil/Water Separation and Emulsified Wastewater Purification. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24668-24682. [PMID: 31246414 DOI: 10.1021/acsami.9b03721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Developing multifunctional superwettable materials is highly demanded in the oil/water separation field but remains challenging due to the critical limitations of complex fabrication strategy and high cost. Herein, based on the cost-effective kaolin nanoparticles, we present a convenient and mild strategy for fabricating a smart superwettable material with multiple excellent performances, such as pH-responsive water wettability, self-cleaning property, favorable buoyancy, and air purification performance. By virtue of the dual rough surface structure and special chemical composition, the resultant material surface exhibits a superior pH-dependent wettability, which can be reversibly switched between superamphiphobicity and superhydrophilicity-superoleophobicity for many times in accordance with the pH value of the corresponding aqueous solution. As a result, the obtained superwettable material with reversible and controllable water wettability can be applied in efficient and continuous separation of multiple types of oil/water mixtures, especially the highly emulsified oil/water emulsions, via in situ or ex situ wettability change. To our knowledge, the smart material with the wetting property of superamphiphobicity that can be used for continuous emulsified wastewater purification has been rarely discussed in the emerging research works. In addition, the as-prepared material presents universal applicability to diversiform substrates and exhibits robust durability and stability against high-concentration salt solutions and rigorous mechanical abrasion. All of these above-mentioned advantages indicate that the as-prepared superwettable material will hold great potential in various practical applications, including oily wastewater remediation, smart aquatic device fabrication, liquid droplet manipulation, guiding liquid movement, and optimizing multiple operations in industrial fields.
Collapse
Affiliation(s)
- Mengnan Qu
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| | - Lili Ma
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| | - Jiaxin Wang
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| | - Yu Zhao
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| | - Yichen Zhou
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| | - Xiangrong Liu
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| | - Jinmei He
- College of Chemistry and Chemical Engineering , Xi'an University of Science and Technology , Xi'an 710054 , China
| |
Collapse
|
21
|
Ashrafi Z, Lucia L, Krause W. Nature-Inspired Liquid Infused Systems for Superwettable Surface Energies. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21275-21293. [PMID: 31120721 DOI: 10.1021/acsami.9b00930] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of an innovative interfacial wetting strategy known as liquid infused systems offers great promise for the advanced design of superwetting and superantiwetting substrates to overcome the drawbacks of textured surfaces classified under the heading of Cassie/Wenzel states. The potential value of nature-inspired surfaces has significant potential to address scientific and technological challenges within the field of interfacial chemistry. The objective of the current review is to provide insights into a fruitful and young field of research, highlight its historical developments, examine its nature-inspired design principles, gauge recent progress in emerging applications, and offer a fresh perspective for future research.
Collapse
Affiliation(s)
- Zahra Ashrafi
- Fiber and Polymer Science , North Carolina State University , Campus Box 7616, Raleigh , North Carolina 27695 , United States
| | - Lucian Lucia
- Fiber and Polymer Science , North Carolina State University , Campus Box 7616, Raleigh , North Carolina 27695 , United States
- Department of Forest Biomaterial , North Carolina State University , Campus Box 8005, Raleigh , North Carolina 27695 , United States
- Department of Chemistry , North Carolina State University , Campus Box 8204, Raleigh , North Carolina 27695 , United States
- State Key Laboratory of Bio-based Materials & Green Papermaking , Qilu University of Technology/Shandong Academy of Sciences , Jinan , PR China 250353
| | - Wendy Krause
- Fiber and Polymer Science , North Carolina State University , Campus Box 7616, Raleigh , North Carolina 27695 , United States
| |
Collapse
|
22
|
Yang X, Choi WT, Liu J, Liu X. Droplet Mechanical Hand Based on Anisotropic Water Adhesion of Hydrophobic-Superhydrophobic Patterned Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:935-942. [PMID: 30630312 DOI: 10.1021/acs.langmuir.8b03969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superhydrophobic copper surfaces patterned with non-round hydrophobic areas were fabricated by a combination of through-mask chemical oxidation and fluorocarbon film deposition techniques. The anisotropic sliding resistance of droplets on typical non-round hydrophobic patterns such as semicircle, V-shape, and line segment hydrophobic patterns was observed. The dependence of sliding anisotropy on the pattern shape and dimensions was investigated. Results showed that the experimental sliding resistance was in good agreement with the calculated data using a classical drag-resistance model (Furmidge equation). By taking advantage of the anisotropic sliding resistance, these patterned surfaces can be used as droplet mechanical hands to capture, transfer, mix, and release in situ micro droplets by simply moving the surfaces in different directions. A droplet pinned on a non-round hydrophobic pattern can be captured by lifting a surface with another non-round hydrophobic pattern in a large-sliding-resistance direction after touching it, while the captured droplet can be released in situ with nearly no mass loss by horizontally moving the surface in the low-sliding-resistance direction. The lossless droplet manipulations using hydrophobic/superhydrophobic patterned surfaces have advantages of being low in cost and easy to operate and may have great promising applications to high throughput drug screening, molecular detection, and other lab-on-chip devices.
Collapse
Affiliation(s)
- Xiaolong Yang
- National Key Laboratory of Science and Technology on Helicopter Transmission , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , PR China
| | - Won Tae Choi
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jiyu Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116023 , PR China
| | - Xin Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116023 , PR China
| |
Collapse
|