1
|
Wang Y, Xie X, Wang X, Wang C, Gao M, Qian F, Qin H, Wang X, Wang J. High fluorescence quantum yield of methionine-doped carbon quantum dots for achieving rapid assay of tetracyclines in foodstuffs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 329:125498. [PMID: 39615457 DOI: 10.1016/j.saa.2024.125498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/27/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
The trace-level detection of tetracyclines (TCs) in food products is essential to ensure food safety and public health. Herein, we prepared the methionine-doped carbon quantum dots (Met-CQDs) using citric acid as the precursor. Met-CQDs exhibited a Gaussian unimodal peak centered at 440 nm in the fluorescent excitation spectrum, along with a remarkable greenish-blue emission and a fluorescent quantum yield of 33.5 %. Furthermore, the presence of TC (the quencher) caused a rapid quenching of the fluorescence of Met-CQDs, accompanying with a color transition from light blue to dark bule as TC concentrations increased. The coloring variation was also detected by the images captured by smartphones and RGB analysis software, facilitating portable detection of TC utilizing Met-CQDs as a fluoroprobe. The findings indicate that the Met-CQDs based fluoroprobe exhibits high selectivity, rapid response (only ∼1 min) according to an "ON-OFF" sensing model. This fluorescence sensing method gave a low detection limit (LOD) of 0.032 μM and excellent linearity for TC in the concentration range of 0.1-500 μM. Also, the smartphone-based fluorescence-visualizing approach displayed good linearity with a LOD of 0.33 μM. The interactions between this fluoroprobe and TC occurred by virtue of both inner filter effect (IFE) and static-quenching principle. The average recovery for TC in the milk, honey, and tap water samples was determined to be 98.46 ± 1.71 % by a fluorometric method. Overall, both fluorometric and RGB approaches demonstrate strong correlation with conventional LC-MS/MS, and thus the as-fabricated Met-CQDs are promising for the preliminary screening of TCs' residues in food products.
Collapse
Affiliation(s)
- Yawei Wang
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Xinying Xie
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Xiaofei Wang
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Chaoyi Wang
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Ming Gao
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Feiyue Qian
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Hongbing Qin
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Xuedong Wang
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China
| | - Junxia Wang
- Suzhou National Joint Laboratory for Green and Low-carbon Wastewater Treatment and Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, China.
| |
Collapse
|
2
|
Dalle Carbonare L, Braggio M, Minoia A, Cominacini M, Romanelli MG, Pessoa J, Tiso N, Valenti MT. Modeling Musculoskeletal Disorders in Zebrafish: Advancements in Muscle and Bone Research. Cells 2024; 14:28. [PMID: 39791729 PMCID: PMC11719663 DOI: 10.3390/cells14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025] Open
Abstract
Zebrafish (Danio rerio) have emerged as a valuable model organism for investigating musculoskeletal development and the pathophysiology of associated diseases. Key genes and biological processes in zebrafish that closely mirror those in humans, rapid development, and transparent embryos make zebrafish ideal for the in vivo studies of bone and muscle formation, as well as the molecular mechanisms underlying musculoskeletal disorders. This review focuses on the utility of zebrafish in modeling various musculoskeletal conditions, with an emphasis on bone diseases such as osteoporosis and osteogenesis imperfecta, as well as muscle disorders like Duchenne muscular dystrophy. These models have provided significant insights into the molecular pathways involved in these diseases, helping to identify the key genetic and biochemical factors that contribute to their progression. These findings have also advanced our understanding of disease mechanisms and facilitated the development of potential therapeutic strategies for musculoskeletal disorders.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Michele Braggio
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - Arianna Minoia
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Mattia Cominacini
- Department of Engineering for the Innovation Medicine, University of Verona, 37100 Verona, Italy; (L.D.C.); (A.M.); (M.C.)
| | - Maria Grazia Romanelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| | - João Pessoa
- Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Natascia Tiso
- Department of Biology, University of Padua, 35131 Padua, Italy;
| | - Maria Teresa Valenti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37100 Verona, Italy; (M.B.); (M.G.R.)
| |
Collapse
|
3
|
Zheng J, Nozaki K, Hashimoto K, Yamashita K, Wakabayashi N. Exploring the Biological Impact of β-TCP Surface Polarization on Osteoblast and Osteoclast Activity. Int J Mol Sci 2024; 26:141. [PMID: 39796000 PMCID: PMC11719610 DOI: 10.3390/ijms26010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
β-tricalcium phosphate (β-TCP) is a widely utilized resorbable bone graft material, whose surface charge can be modified by electrical polarization. However, the specific effects of such a charge modification on osteoblast and osteoclast functions remain insufficiently studied. In this work, electrically polarized β-TCP with a high surface charge density was synthesized and evaluated in vitro in terms of its physicochemical properties and biological activity. Polarization was performed to achieve a high surface charge density, which was quantified using a thermally stimulated depolarization current. The proliferation and differentiation of MC3T3-E1 osteoblast-like cells were assessed via WST-8 and alkaline phosphatase assays. Tartrate-resistant acid phosphatase (TRAP) activity and a resorption pit assay were used to evaluate the impact of surface charge on RAW264.7 osteoclast-like cell activity. Polarized β-TCP exhibited a surface charge of 1.3 mC cm-2. Electrically polarized surfaces significantly enhanced osteoblast proliferation and differentiation. TRAP activity assays demonstrated effective osteoclast differentiation of RAW264.7 cells, with enhanced activity observed on charged surfaces. Resorption pit assays further revealed improved osteoclast resorption capacity on β-TCP surfaces with a polarized charge. These findings indicate that β-TCP with a highly dense surface charge promotes osteoblast proliferation and differentiation, as well as osteoclast activity and resorption capacity.
Collapse
Affiliation(s)
- Jingpu Zheng
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| | - Kosuke Nozaki
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| | - Kazuaki Hashimoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, Narashino 2750016, Japan;
| | - Kimihiro Yamashita
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi, Tokyo 1730003, Japan
| | - Noriyuki Wakabayashi
- Department of Advanced Prosthodontics, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Yushima, Tokyo 1138549, Japan; (J.Z.); (K.Y.); (N.W.)
| |
Collapse
|
4
|
Bigham A, Zarepour A, Khosravi A, Iravani S, Zarrabi A. 3D and 4D printing of MXene-based composites: from fundamentals to emerging applications. MATERIALS HORIZONS 2024; 11:6257-6288. [PMID: 39279736 DOI: 10.1039/d4mh01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The advent of three-dimensional (3D) and four-dimensional (4D) printing technologies has significantly improved the fabrication of advanced materials, with MXene-based composites emerging as a particularly promising class due to their exceptional electrical, mechanical, and chemical properties. This review explores the fundamentals of MXenes and their composites, examining their unique characteristics and the underlying principles of their synthesis and processing. We highlight the transformative potential of 3D and 4D printing techniques in tailoring MXene-based materials for a wide array of applications. In the field of tissue regeneration, MXene composites offer enhanced biocompatibility and mechanical strength, making them ideal for scaffolds and implants. For drug delivery, the high surface area and tunable surface chemistry of MXenes enable precise control over drug release profiles. In energy storage, MXene-based electrodes exhibit superior conductivity and capacity, paving the way for next-generation batteries and supercapacitors. Additionally, the sensitivity and selectivity of MXene composites make them excellent candidates for various (bio)sensing applications, from environmental monitoring to biomedical diagnostics. By integrating the dynamic capabilities of 4D printing, which introduces time-dependent shape transformations, MXene-based composites can further adapt to complex and evolving functional requirements. This review provides a comprehensive overview of the current state of research, identifies key challenges, and discusses future directions for the development and application of 3D and 4D printed MXene-based composites. Through this exploration, we aim to underscore the significant impact of these advanced materials and technologies on diverse scientific and industrial fields.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites, and Biomaterials, National Research Council (IPCB-CNR), Naples 80125, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
5
|
Tang J, Hu J, Bai X, Wang Y, Cai J, Zhang Z, Geng B, Pan D, Shen L. Near-Infrared Carbon Dots With Antibacterial and Osteogenic Activities for Sonodynamic Therapy of Infected Bone Defects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404900. [PMID: 39295501 DOI: 10.1002/smll.202404900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Repairing infected bone defects is hindered by the presence of stubborn bacterial infections and inadequate osteogenic activity. The incorporation of harmful antibiotics not only fosters the emergence of multidrug-resistant bacteria, but also diminishes the osteogenic properties of scaffold materials. In addition, it is essential to continuously monitor the degradation kinetics of scaffold materials at bone defect sites, yet the majority of bone repair materials lack imaging capability. To address these issues, this study reports for the first time the development of a single nanomaterial with triple functionality: efficient sonodynamic antibacterial activity, accelerated bone defect repair capability, and NIR imaging ability for visualized therapy of infected bone defects. Through rationally regulating the surface functional groups, the obtained multifunctional NIR carbon dots (NIR-CD) exhibit p-n junction-enhanced sonodynamic activity, narrow bandgap-facilitated NIR imaging capability, and negative charge-augmented osteogenic activity. The validation of NIR-CDs antibacterial and osteogenic activities in vivo is conducted by constructing 3D injectable hydrogels encapsulated by NIR-CDs (NIR-CD/GelMA). The implantation of multifunctional NIR-CD/GelMA hydrogel scaffolds in a model of MRSA-infected craniotomy defects results in almost complete restoration of the infected bone defects after 60 days. These findings will provide traceable, renewable, repairable and antibacterial candidate biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Jianfei Tang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinyan Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Xue Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yang Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jinming Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Zhenlin Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Bijiang Geng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dengyu Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Longxiang Shen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
6
|
Bhatia R, Singh A, Singh S, Navneesh, Rawal RK. Emerging trends in nano-carrier based gene delivery systems for targeted cancer therapy. J Drug Deliv Sci Technol 2024; 95:105546. [DOI: 10.1016/j.jddst.2024.105546] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Zhang G, Zhen C, Yang J, Wang J, Wang S, Fang Y, Shang P. Recent advances of nanoparticles on bone tissue engineering and bone cells. NANOSCALE ADVANCES 2024; 6:1957-1973. [PMID: 38633036 PMCID: PMC11019495 DOI: 10.1039/d3na00851g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
With the development of biotechnology, biomaterials have been rapidly developed and shown great potential in bone regeneration therapy and bone tissue engineering. Nanoparticles have attracted the attention of researches and have applied in various fields especially in the biomedical field as the special physicochemical properties. Nanoparticles were found to regulate bone remodeling depending on their size, shape, composition, and charge. Therefore, in-depth research was necessary to provide the basic support to select the most suitable nanoparticles for bone relate diseases treatment. This article reviews the current development of nanoparticles in bone tissue engineering, focusing on drug delivery, gene delivery, and cell labeling. In addition, the research progress on the interaction of nanoparticles with bone cells, focusing on osteoblasts, osteoclasts, and bone marrow mesenchymal stem cells, and the underlying mechanism were also reviewed. Finally, the current challenges and future research directions are discussed. Thus, detailed study of nanoparticles may reveal new therapeutic strategies to improve the effectiveness of bone regeneration therapy or other bone diseases.
Collapse
Affiliation(s)
- Gejing Zhang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Chenxiao Zhen
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University Xi'an 710054 China
| | - Jianping Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| | - Shenghang Wang
- School of Life Sciences, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
- Department of Spine Surgery, Affiliated Longhua People's Hospital, Southern Medical University (Longhua People's Hospital) Shenzhen 518109 China
| | - Yanwen Fang
- Heye Health Technology Co., Ltd Huzhou 313300 China
| | - Peng Shang
- Research & Development Institute of Northwestern Polytechnical University Shenzhen 518057 China
- Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environment Biophysics, Northwestern Polytechnical University Xi'an Shaanxi 710072 China
| |
Collapse
|
8
|
Thangavelu M, Kim PY, Cho H, Song JE, Park S, Bucciarelli A, Khang G. A Gellan Gum, Polyethylene Glycol, Hydroxyapatite Composite Scaffold with the Addition of Ginseng Derived Compound K with Possible Applications in Bone Regeneration. Gels 2024; 10:257. [PMID: 38667676 PMCID: PMC11049517 DOI: 10.3390/gels10040257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Engineered bone scaffolds should mimic the natural material to promote cell adhesion and regeneration. For this reason, natural biopolymers are becoming a gold standard in scaffold production. In this study, we proposed a hybrid scaffold produced using gellan gum, hydroxyapatite, and Poly (ethylene glycol) within the addition of the ginseng compound K (CK) as a candidate for bone regeneration. The fabricated scaffold was physiochemically characterized. The morphology studied by scanning electron microscopy (SEM) and image analysis revealed a pore distribution suitable for cells growth. The addition of CK further improved the biological activity of the hybrid scaffold as demonstrated by the MTT assay. The addition of CK influenced the scaffold morphology, decreasing the mean pore diameter. These findings can potentially help the development of a new generation of hybrid scaffolds to best mimic the natural tissue.
Collapse
Affiliation(s)
| | - Pil-Yun Kim
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| | - Hunhwi Cho
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| | - Jeong-Eun Song
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| | - Sunjae Park
- Department of Polymer Nano Science & Technology and Polymer Materials Fusion Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea;
| | - Alessio Bucciarelli
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Gilson Khang
- Department of Bionanotechnology and Bio-Convergence Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeonbuk, Republic of Korea; (P.-Y.K.); (H.C.); (J.-E.S.)
| |
Collapse
|
9
|
Bauso LV, La Fauci V, Longo C, Calabrese G. Bone Tissue Engineering and Nanotechnology: A Promising Combination for Bone Regeneration. BIOLOGY 2024; 13:237. [PMID: 38666849 PMCID: PMC11048357 DOI: 10.3390/biology13040237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024]
Abstract
Large bone defects are the leading contributor to disability worldwide, affecting approximately 1.71 billion people. Conventional bone graft treatments show several disadvantages that negatively impact their therapeutic outcomes and limit their clinical practice. Therefore, much effort has been made to devise new and more effective approaches. In this context, bone tissue engineering (BTE), involving the use of biomaterials which are able to mimic the natural architecture of bone, has emerged as a key strategy for the regeneration of large defects. However, although different types of biomaterials for bone regeneration have been developed and investigated, to date, none of them has been able to completely fulfill the requirements of an ideal implantable material. In this context, in recent years, the field of nanotechnology and the application of nanomaterials to regenerative medicine have gained significant attention from researchers. Nanotechnology has revolutionized the BTE field due to the possibility of generating nanoengineered particles that are able to overcome the current limitations in regenerative strategies, including reduced cell proliferation and differentiation, the inadequate mechanical strength of biomaterials, and poor production of extrinsic factors which are necessary for efficient osteogenesis. In this review, we report on the latest in vitro and in vivo studies on the impact of nanotechnology in the field of BTE, focusing on the effects of nanoparticles on the properties of cells and the use of biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Luana Vittoria Bauso
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| | | | | | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31, 98168 Messina, Italy; (V.L.F.); (C.L.)
| |
Collapse
|
10
|
Fu C, Brand HS, Nazmi K, Werner A, van Splunter A, Bikker FJ. Carbon dots combined with phytosphingosine inhibit acid-induced demineralization of hydroxyapatite in vitro. Arch Oral Biol 2024; 160:105911. [PMID: 38335699 DOI: 10.1016/j.archoralbio.2024.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
OBJECTIVES To study the effects of carbon dots (CDs), in combination with phytosphingosine (PHS), against acid-induced demineralization of hydroxyapatite in vitro. METHODS CDs were generated from citric acid and urea by microwave heating. Transmission electron microscope (TEM), FT-IR, and fluorescence intensity were used to characterize the CDs. A hydroxyapatite (HAp) model was used to investigate the protective effects of CDs, PHS, and their combinations with and without a salivary pellicle against acid-induced demineralization in vitro. Ca2+ release as a parameter to evaluate the inhibition of demineralization was measured by capillary electrophoresis. The interactions between CDs, PHS, and HAp discs were investigated using a fluorescence detector. RESULTS Uniform-sized CDs were synthesized, showing typical optical characteristics. CDs exhibited no inhibition of acid-induced demineralization in vitro, in contrast to PHS. Notably, a pre-coating of CDs increased the protective effects of PHS against acid-induced demineralization, which was not disturbed by the presence of a salivary pellicle and Tween 20. Scanning electron microscope (SEM) confirmed the binding and layers formed of both CDs and PHS to the HAp surfaces. Based on fluorescence spectra CDs binding to HAp seemed to be dependent on Ca2+ and PO43- interactions. CONCLUSIONS CDs combined with PHS showed protective effects against acid-induced demineralization of HAp discs in vitro.
Collapse
Affiliation(s)
- Cuicui Fu
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands.
| | - Henk S Brand
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Kamran Nazmi
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Arie Werner
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Annina van Splunter
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| | - Floris J Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam 1081LA, the Netherlands
| |
Collapse
|
11
|
Qasim SSB, Trajkovski B, Zafiropoulos GG. The response of human osteoblasts on bovine xenografts with and without hyaluronate used in bone augmentation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:880-897. [PMID: 38346177 DOI: 10.1080/09205063.2024.2311454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
The aim of the in vitro study was to asses the effect of hyaluronate in conjunction with bovine derived xenografts on the viability, proliferation on day 4, 7 and 10, expression of early osteogenic differentiation marker Alkaline phosphatase on day 14 and 21, collagen, calcium deposition on day 14, 21 and 28 and cellular characteristics, as assessed through live cell image analysis, confocal laser scanning microscopy and scanning electron microscopy, in primary human osteoblasts compared to three bovine xenografts without hyaluronate. All experiments were performed in triplicates. Data were compared between groups and timepoints using one-way analysis of variance (ANOVA). Bonferroni post hoc test were further used for multiple comparison between groups (p < .05) An increase in cell viability (p < .05) and enhanced ALP activity was observed in all xenografts. Specimens containing hyaluronate showed a highest significant difference (23755 ± 29953, p < .0001). The highest levels of calcium (1.60 ± 0.30) and collagen (1.92 ± 0.09, p < .0001) deposition were also observed with hyaluronate loaded groups. The osteoblasts were well attached and spread on all xenograft groups. However, a higher number of cells were observed with hyaluronate functionalized xenograft (76.27 ± 15.11, (p < .0001) in live cell image analysis and they migrated towards the graft boundaries. The biofunctionalization of xenografts with hyaluronate improves their in vitro performance on human osteoblasts. This suggests that hyaluronate might be able to improve the bone regeneration when using such xenografts.
Collapse
Affiliation(s)
- Syed Saad Bin Qasim
- Department of Bioclinical Sciences, College of Dentistry, Kuwait University, Safat, Kuwait
| | - Branko Trajkovski
- Faculty of Dentistry, College of Dentistry, Kuwait University, Safat, Kuwait
| | | |
Collapse
|
12
|
Kumar V, Mirsky SK, Shaked NT, Gazit E. High Quantum Yield Amino Acid Carbon Quantum Dots with Unparalleled Refractive Index. ACS NANO 2024; 18:2421-2433. [PMID: 38190624 PMCID: PMC10811667 DOI: 10.1021/acsnano.3c10792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Carbon quantum dots (CQDs) are one of the most promising types of fluorescent nanomaterials due to their exceptional water solubility, excellent optical properties, biocompatibility, chemical inertness, excellent refractive index, and photostability. Nitrogen-containing CQDs, which include amino acid based CQDs, are especially attractive due to their high quantum yield, thermal stability, and potential biomedical applications. Recent studies have attempted to improve the preparation of amino acid based CQDs. However, the highest quantum yield obtained for these dots was only 44%. Furthermore, the refractive indices of amino acid derived CQDs were not determined. Here, we systematically explored the performance of CQDs prepared from all 20 coded amino acids using modified hydrothermal techniques allowing more passivation layers on the surface of the dots to optimize their performance. Intriguingly, we obtained the highest refractive indices ever reported for any CQDs. The values differed among the amino acids, with the highest refractive indices found for positively charged amino acids including arginine-CQDs (∼2.1), histidine-CQDs (∼2.0), and lysine-CQDs (∼1.8). Furthermore, the arginine-CQDs reported here showed a nearly 2-fold increase in the quantum yield (∼86%) and a longer decay time (∼8.0 ns) compared to previous reports. In addition, we also demonstrated that all amino acid based CQD materials displayed excitation-dependent emission profiles (from UV to visible) and were photostable, water-soluble, noncytotoxic, and excellent for high contrast live cell imaging or bioimaging. These results indicate that amino acid based CQD materials are high-refractive-index materials applicable for optoelectronic devices, bioimaging, biosensing, and studying cellular organelles in vivo. This extraordinary RI may be highly useful for exploring cellular elements with different densities.
Collapse
Affiliation(s)
- Vijay
Bhooshan Kumar
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Simcha K. Mirsky
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Natan T. Shaked
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ehud Gazit
- The
Shmunis School of Biomedicine and Cancer Research, George S. Wise
Faculty of Life Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department of Materials
Science and Engineering and Department of Biomedical Engineering,
Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
13
|
Mauro N, Calabrese G, Sciortino A, Rizzo MG, Messina F, Giammona G, Cavallaro G. Microporous Fluorescent Poly(D,L-lactide) Acid-Carbon Nanodot Scaffolds for Bone Tissue Engineering Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:449. [PMID: 38255617 PMCID: PMC10820564 DOI: 10.3390/ma17020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
In this study, we introduce novel microporous poly(D,L-lactide) acid-carbon nanodot (PLA-CD) nanocomposite scaffolds tailored for potential applications in image-guided bone regeneration. Our primary objective was to investigate concentration-dependent structural variations and their relevance to cell growth, crucial aspects in bone regeneration. The methods employed included comprehensive characterization techniques such as DSC/TGA, FTIR, rheological, and degradation assessments, providing insights into the scaffolds' thermoplastic behavior, microstructure, and stability over time. Notably, the PLA-CD scaffolds exhibited distinct self-fluorescence, which persisted after 21 days of incubation, allowing detailed visualization in various multicolor modalities. Biocompatibility assessments were conducted by analyzing human adipose-derived stem cell (hADSC) growth on PLA-CD scaffolds, with results substantiated through cell viability and morphological analyses. hADSCs reached a cell viability of 125% and penetrated throughout the scaffold after 21 days of incubation. These findings underscore the scaffolds' potential in bone regeneration and fluorescence imaging. The multifunctional nature of the PLA-CD nanocomposite, integrating diagnostic capabilities with tunable properties, positions it as a promising candidate for advancing bone tissue engineering. Our study not only highlights key aspects of the investigation but also underscores the scaffolds' specific application in bone regeneration, providing a foundation for further research and optimization in this critical biomedical field.
Collapse
Affiliation(s)
- Nicolò Mauro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Giovanna Calabrese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Alice Sciortino
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Maria G. Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98168 Messina, Italy; (G.C.); (M.G.R.)
| | - Fabrizio Messina
- Department of Chimica e Fisica “E. Segrè”, Università Degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy; (A.S.); (F.M.)
| | - Gaetano Giammona
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| | - Gennara Cavallaro
- Department of “Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche” (STEBICEF), Università Degli Studi di Palermo, Via Archirafi 32, 90123 Palermo, Italy; (G.G.); (G.C.)
| |
Collapse
|
14
|
Huang H, Qiang L, Fan M, Liu Y, Yang A, Chang D, Li J, Sun T, Wang Y, Guo R, Zhuang H, Li X, Guo T, Wang J, Tan H, Zheng P, Weng J. 3D-printed tri-element-doped hydroxyapatite/ polycaprolactone composite scaffolds with antibacterial potential for osteosarcoma therapy and bone regeneration. Bioact Mater 2024; 31:18-37. [PMID: 37593495 PMCID: PMC10432151 DOI: 10.1016/j.bioactmat.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
The resection of malignant osteosarcoma often results in large segmental bone defects, and the residual cells can facilitate recurrence. Consequently, the treatment of osteosarcoma is a major challenge in clinical practice. The ideal goal of treatment for osteosarcoma is to eliminate it thoroughly, and repair the resultant bone defects as well as avoid bacterial infections. Herein, we fabricated a selenium/strontium/zinc-doped hydroxyapatite (Se/Sr/Zn-HA) powder by hydrothermal method, and then employed it with polycaprolactone (PCL) as ink to construct composite scaffolds through 3D printing, and finally introduced them in bone defect repair induced by malignant osteosarcoma. The resultant composite scaffolds integrated multiple functions involving anti-tumor, osteogenic, and antibacterial potentials, mainly attributed to the anti-tumor effects of SeO32-, osteogenic effects of Sr2+ and Zn2+, and antibacterial effects of SeO32- and Zn2+. In vitro studies confirmed that Se/Sr/Zn-HA leaching solution could induce apoptosis of osteosarcoma cells, differentiation of MSCs, and proliferation of MC3T3-E1 while showing excellent antibacterial properties. In vivo tests demonstrated that Se/Sr/Zn-HA could significantly suppress tumors after 8 days of injection, and the Se/Sr/Zn-HA-PCLs scaffold repaired femoral defects effectively after 3 months of implantation. Summarily, the Se/Sr/Zn-HA-PCLs composite scaffolds developed in this study were effective for tumor treatment, bone defect repair, and post-operative anti-infection, which provided a great potential to be a facile therapeutic material for osteosarcoma resection.
Collapse
Affiliation(s)
- Hao Huang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Lei Qiang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Minjie Fan
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Yihao Liu
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Anchun Yang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Dongbiao Chang
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinsheng Li
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Tong Sun
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Yiwei Wang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Ruoyi Guo
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Hanjie Zhuang
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Xiangyu Li
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Tailin Guo
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopedic Implant, Department of Orthopedic Surgery Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200011, PR China
| | - Huan Tan
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| | - Pengfei Zheng
- Department of Orthopaedic Surgery, Children's Hospital of Nanjing Medical University, Nanjing 210008, PR China
| | - Jie Weng
- Key Laboratory of Advanced Technologies of Materials (MOE), School of Materials Science and Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, PR China
| |
Collapse
|
15
|
Wang J, Fu Y, Gu Z, Pan H, Zhou P, Gan Q, Yuan Y, Liu C. Multifunctional Carbon Dots for Biomedical Applications: Diagnosis, Therapy, and Theranostic. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303773. [PMID: 37702145 DOI: 10.1002/smll.202303773] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/27/2023] [Indexed: 09/14/2023]
Abstract
Designing suitable nanomaterials is an ideal strategy to enable early diagnosis and effective treatment of diseases. Carbon dots (CDs) are luminescent carbonaceous nanoparticles that have attracted considerable attention. Through facile synthesis, they process properties including tunable light emission, low toxicity, and light energy transformation, leading to diverse applications as optically functional materials in biomedical fields. Recently, their potentials have been further explored, such as enzyme-like activity and ability to promote osteogenic differentiation. Through refined synthesizing strategies carbon dots, a rich treasure trove for new discoveries, stand a chance to guide significant development in biomedical applications. In this review, the authors start with a brief introduction to CDs. By presenting mechanisms and examples, the authors focus on how they can be used in diagnosing and treating diseases, including bioimaging failure of tissues and cells, biosensing various pathogenic factors and biomarkers, tissue defect repair, anti-inflammation, antibacterial and antiviral, and novel oncology treatment. The introduction of the application of integrated diagnosis and treatment follows closely behind. Furthermore, the challenges and future directions of CDs are discussed. The authors hope this review will provide critical perspectives to inspire new discoveries on CDs and prompt their advances in biomedical applications.
Collapse
Affiliation(s)
- Jiayi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yu Fu
- School of Aerospace Engineering and Applied Mechanics, Tongji University, Zhangwu Road 100, Shanghai, 200092, P. R. China
| | - Zhanghao Gu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hao Pan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Panyu Zhou
- Department of Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Qi Gan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yuan Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Material Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
16
|
Stocco TD, Zhang T, Dimitrov E, Ghosh A, da Silva AMH, Melo WCMA, Tsumura WG, Silva ADR, Sousa GF, Viana BC, Terrones M, Lobo AO. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. Int J Nanomedicine 2023; 18:6153-6183. [PMID: 37915750 PMCID: PMC10616695 DOI: 10.2147/ijn.s436867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
Carbon-based nanomaterials (CBNs) are a category of nanomaterials with various systems based on combinations of sp2 and sp3 hybridized carbon bonds, morphologies, and functional groups. CBNs can exhibit distinguished properties such as high mechanical strength, chemical stability, high electrical conductivity, and biocompatibility. These desirable physicochemical properties have triggered their uses in many fields, including biomedical applications. In this review, we specifically focus on applying CBNs as scaffolds in tissue engineering, a therapeutic approach whereby CBNs can act for the regeneration or replacement of damaged tissue. Here, an overview of the structures and properties of different CBNs will first be provided. We will then discuss state-of-the-art advancements of CBNs and hydrogels as scaffolds for regenerating various types of human tissues. Finally, a perspective of future potentials and challenges in this field will be presented. Since this is a very rapidly growing field, we expect that this review will promote interdisciplinary efforts in developing effective tissue regeneration scaffolds for clinical applications.
Collapse
Affiliation(s)
- Thiago Domingues Stocco
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - Tianyi Zhang
- Pennsylvania State University, University Park, PA, USA
| | | | - Anupama Ghosh
- Department of Chemical and Materials Engineering (DEQM), Pontifical Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Wanessa C M A Melo
- FTMC, State Research institute Center for Physical Sciences and Technology, Department of Functional Materials and Electronics, Vilnius, Lithuanian
| | - Willian Gonçalves Tsumura
- Bioengineering Program, Scientific and Technological Institute, Brazil University, São Paulo, SP, Brazil
| | - André Diniz Rosa Silva
- FATEC, Ribeirão Preto, SP, Brazil
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Gustavo F Sousa
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | - Bartolomeu C Viana
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| | | | - Anderson Oliveira Lobo
- Interdisciplinary Laboratory for Advanced Materials (LIMAV), BioMatLab Group, Materials Science and Engineering Graduate Program, Federal University of Piauí (UFPI), Teresina, PI, Brazil
| |
Collapse
|
17
|
Abd-Elkawi M, Sharshar A, Misk T, Elgohary I, Gadallah S. Effect of calcium carbonate nanoparticles, silver nanoparticles and advanced platelet-rich fibrin for enhancing bone healing in a rabbit model. Sci Rep 2023; 13:15232. [PMID: 37709814 PMCID: PMC10502137 DOI: 10.1038/s41598-023-42292-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
This study aimed to evaluate the efficacy of calcium carbonate nanoparticles (CCNPs) to induce new bone formation in a critical size segmental bone defect in rabbit's radius when used alone, combined with silver nanoparticles (AgNPs) as a paste, or as a composite containing CCNPs, AgNPs, and advanced platelet-rich fibrin (A-PRF). Thirty-six adult apparently healthy male New Zealand White rabbits aging from 5 to 6 months and weighting 3.5 ± 0.5 kg were used. The animals were divided into four groups; control group, CCNPs group, CCNPs/AgNPs paste group, and CCNPs/AgNPs/A-PRF composite group. The animals were investigated at 4, 8, and 12 weeks post-implantation in which the healing was evaluated using computed tomographic (CT) and histopathological evaluation. The results revealed that CCNPs/AgNPs paste and CCNPs/AgNPs/A-PRF composite has a superior effect regarding the amount and the quality of the newly formed bone compared to the control and the CCNPs alone. In conclusion, addition of AgNPs and/or A-PRF to CCNPs has reduced its resorption rate and improved its osteogenic and osteoinductive properties.
Collapse
Affiliation(s)
- Mohamed Abd-Elkawi
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, New Valley University, Alkharga, New Valley, 2715, Egypt.
| | - Ahmed Sharshar
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Tarek Misk
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Islam Elgohary
- Department of Pathology, Agricultural Research Center (ARC), Animal Health Research Institute (AHRI), Eldokki, Giza, Egypt
| | - Shaaban Gadallah
- Department of Surgery, Radiology and Anesthesiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
18
|
Gu L, Huang R, Ni N, Gu P, Fan X. Advances and Prospects in Materials for Craniofacial Bone Reconstruction. ACS Biomater Sci Eng 2023; 9:4462-4496. [PMID: 37470754 DOI: 10.1021/acsbiomaterials.3c00399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The craniofacial region is composed of 23 bones, which provide crucial function in keeping the normal position of brain and eyeballs, aesthetics of the craniofacial complex, facial movements, and visual function. Given the complex geometry and architecture, craniofacial bone defects not only affect the normal craniofacial structure but also may result in severe craniofacial dysfunction. Therefore, the exploration of rapid, precise, and effective reconstruction of craniofacial bone defects is urgent. Recently, developments in advanced bone tissue engineering bring new hope for the ideal reconstruction of the craniofacial bone defects. This report, presenting a first-time comprehensive review of recent advances of biomaterials in craniofacial bone tissue engineering, overviews the modification of traditional biomaterials and development of advanced biomaterials applying to craniofacial reconstruction. Challenges and perspectives of biomaterial development in craniofacial fields are discussed in the end.
Collapse
Affiliation(s)
- Li Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Rui Huang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ni Ni
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Ping Gu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
19
|
Farshidfar N, Fooladi S, Nematollahi MH, Iravani S. Carbon dots with tissue engineering and regenerative medicine applications. RSC Adv 2023; 13:14517-14529. [PMID: 37197681 PMCID: PMC10183719 DOI: 10.1039/d3ra02336b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Carbon dots (CDs) with unique physicochemical features such as exceptional biocompatibility, low cost, eco-friendliness, abundant functional groups (e.g., amino, hydroxyl, and carboxyl), high stability, and electron mobility have been broadly investigated in nano- and biomedicine. In addition, the controlled architecture, tunable fluorescence emission/excitation, light-emitting potential, high photostability, high water solubility, low cytotoxicity, and biodegradability make these carbon-based nanomaterials suitable for tissue engineering and regenerative medicine (TE-RM) purposes. However, there are still limited pre- and clinical assessments, because of some important challenges such as the scaffold inconsistency and non-biodegradability in addition to the lack of non-invasive methods to monitor tissue regeneration after implantation. In addition, the eco-friendly synthesis of CDs exhibited some important advantages such as environmentally friendly properties, low cost, and simplicity compared to the conventional synthesis techniques. Several CD-based nanosystems have been designed with stable photoluminescence, high-resolution imaging of live cells, excellent biocompatibility, fluorescence properties, and low cytotoxicity, which make them promising candidates for TE-RM purposes. Combining attractive fluorescence properties, CDs have shown great potential for cell culture and other biomedical applications. Herein, recent advancements and new discoveries of CDs in TE-RM are considered, focusing on challenges and future perspectives.
Collapse
Affiliation(s)
- Nima Farshidfar
- Orthodontic Research Center, School of Dentistry, Shiraz University of Medical Sciences Shiraz Iran
| | - Saba Fooladi
- Student Research Committee, Kerman University of Medical Sciences Kerman Iran
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences Kerman Iran
- Department of Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences Kerman Iran
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences 81746-73461 Isfahan Iran
| |
Collapse
|
20
|
Qu X, Guo Y, Xie C, Li S, Liu Z, Lei B. Photoactivated MXene Nanosheets for Integrated Bone-Soft Tissue Therapy: Effect and Potential Mechanism. ACS NANO 2023; 17:7229-7240. [PMID: 37017455 DOI: 10.1021/acsnano.2c10103] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The bone defects caused by trauma are inevitably accompanied by soft tissue damage. The development of multifunctional bioactive biomaterials with integrated bone and soft tissue regeneration is necessary and needed urgently in orthopedics. In this work, we found that the photoactivated MXene (Ti3C2Tx) nanosheet showed positive effects on promoting both bone and soft tissue regeneration. We further investigated the detailed effect and potential mechanism of photoactivated MXene on tissue regeneration. Photoactivated MXene shows a good thermal effect and robust antibacterial activity to inhibit the expression of inflammation factors and methicillin-resistant Staphylococcus aureus (MRSA) infection and induces the expression of pro-angiogenic factors and soft tissue wound repair. Photoactivated MXene can also regulate the osteogenic differentiation of adipose-derived stem cells (ADSCs) through the ERK signaling pathway by activating the heat shock protein 70 (HSP70) and enhancing the repair of bone tissue. This work sheds light on the development of bioactive MXene with photothermal activation as an efficient strategy for bone and soft tissue regeneration simultaneously.
Collapse
Affiliation(s)
- Xiaoyan Qu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Yi Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Chenxi Xie
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Sihua Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
| | - Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bo Lei
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Instrument Analysis Center, Xi'an Jiaotong University, Xi'an, 710054, China
| |
Collapse
|
21
|
Tang S, Liang J, Li O, Shao N, Jin Y, Ni J, Fei X, Li Z. Morphology-Tailored Hydroxyapatite Nanocarrier for Rhizosphere-Targeted Phosphorus Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206954. [PMID: 36599675 DOI: 10.1002/smll.202206954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
High hydrophilicity and soil fixation collectively hamper the delivery of phosphorus (P) released from conventional chemical phosphorus fertilizers (CPFs) to plant rhizosphere for efficient uptake. Here, a phosphorus nutrient nanocarrier (PNC) based on morphology-tailored nanohydroxyapatite (HAP) is constructed. By virtue of kinetic control of building blocks with designed calcium phosphate intermediates, rod-like and hexagonal prism-like PNCs are synthesized, both having satisfactory hydrophobicity (water contact angle of 105.4- 132.9°) and zeta potential (-17.43 to -58.4 mV at pH range from 3 to 13). Greenhouse experiments demonstrate that the P contents increase by up to 183% in maize rhizosphere and up to 16% in maize biomass when compared to the CPF. Due to the water potential gradient driven by photosynthesis and transpiration, both PNCs are stably transported to maize rhizosphere, and they are capable to counteract soil fixation prior to uptake by plant roots. Within the synergies of the HAP morphological characteristics and triggered phosphate starvation response, root anatomy confirms that two pathways are elucidated to enhance plant P replenishment from the PNCs. Together with structure tunability and facile synthesis, our results offer a new nanodelivery prototype to accommodate plant physiological traits by tailoring the morphology of HAP.
Collapse
Affiliation(s)
- Siqi Tang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiaming Liang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ouyang Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ningning Shao
- Institute of Technology for Marine Civil Engineering, Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Yongsheng Jin
- College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing, 102208, P. R. China
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xunchang Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Zhenshan Li
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
22
|
Zhou Z, Zhou A, Jalil AT, Saleh MM, Huang C. Carbon nanoparticles-based hydrogel nanocomposite induces bone repair in vivo. Bioprocess Biosyst Eng 2023; 46:577-588. [PMID: 36580135 DOI: 10.1007/s00449-022-02843-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
The main objective of the current study is to fabricate a 3D scaffold using alginate hydrogel implemented with carbon nanoparticles (CNPs) as the filler. The SEM imaging revealed that the scaffold possesses a porous internal structure with interconnected pores. The swelling value of the scaffolds (more than 400%) provides a wet niche for bone cell proliferation and migration. The in vitro evaluations showed that the scaffolds were hemocompatible (with hemolysis induction lower than 5%) and cytocompatible (inducing significant proliferative effect (cell viability of 121 ± 4%, p < 0.05) for AlG/CNPs 10%). The in vivo studies showed that the implantation of the fabricated 3D nanocomposite scaffolds induced a bone-forming effect and mediated bone formation into the induced bone defect. In conclusion, these results implied that the fabricated NFC-integrated 3D scaffold exhibited promising characteristics beneficial for bone regeneration and can be applied as the bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Orthopaedic Surgery, Yangzhou Hongquan Hospital, Yangzhou, 225200, China
| | - Ao Zhou
- Department of Bone and Soft Tissue Oncology, Cancer Hospital Affiliated to Chongqing University, Chongqing, 400020, China
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Hilla, 51001, Babylon, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq.,Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Chengjun Huang
- Center for Joint Surgery, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
23
|
Huang S, Song Y, Zhang JR, Chen X, Zhu JJ. Antibacterial Carbon Dots-Based Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207385. [PMID: 36799145 DOI: 10.1002/smll.202207385] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The emergence and global spread of bacterial resistance to conventionally used antibiotics have highlighted the urgent need for new antimicrobial agents that might replace antibiotics. Currently, nanomaterials hold considerable promise as antimicrobial agents in anti-inflammatory therapy. Due to their distinctive functional physicochemical characteristics and exceptional biocompatibility, carbon dots (CDs)-based composites have attracted a lot of attention in the context of these antimicrobial nanomaterials. Here, a thorough assessment of current developments in the field of antimicrobial CDs-based composites is provided, starting with a brief explanation of the general synthesis procedures, categorization, and physicochemical characteristics of CDs-based composites. The many processes driving the antibacterial action of these composites are then thoroughly described, including physical destruction, oxidative stress, and the incorporation of antimicrobial agents. Finally, the obstacles that CDs-based composites now suffer in combating infectious diseases are outlined and investigated, along with the potential applications of antimicrobial CDs-based composites.
Collapse
Affiliation(s)
- Shan Huang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Yuexin Song
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Jian-Rong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaojun Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
24
|
Zhang R, Hou Y, Sun L, Liu X, Zhao Y, Zhang Q, Zhang Y, Wang L, Li R, Wang C, Wu X, Li B. Recent advances in carbon dots: synthesis and applications in bone tissue engineering. NANOSCALE 2023; 15:3106-3119. [PMID: 36723029 DOI: 10.1039/d2nr05951g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bone tissue engineering (BTE), based on the perfect combination of seed cells, scaffold materials and growth factors, has shown unparalleled potential in the treatment of bone defects and related diseases. As the site of cell attachment, proliferation and differentiation, scaffolds composed of biomaterials play a crucial role in BTE. Over the past years, carbon dots (CDs), a new type of carbon-based nanomaterial, have attracted extensive research attention due to their good biocompatibility, unique optical properties, and abundant functional groups. This paper reviews recent research progress in the use of CDs in the field of BTE. Firstly, different preparation methods of CDs are summarized. Then, the properties and categories of CDs applied in BTE are described in detail. Subsequently, the applications of CDs in BTE, including osteogenesis, fluorescence tracing, phototherapy and antibacterial activity, are presented. Finally, the challenges and future perspectives of CDs in BTE are briefly discussed to give a comprehensive picture of CDs. This review provides a theoretical basis and advanced design strategies for the application of CDs in BTE.
Collapse
Affiliation(s)
- Ran Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yuxi Hou
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Lingxiang Sun
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiaoming Liu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Yifan Zhao
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Qingmei Zhang
- Taiyuan University of Science and Technology, Taiyuan 030024, Shanxi, China
| | - Yanjie Zhang
- Research Institute of Photonics, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Lu Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Ran Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Chunfang Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Xiuping Wu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| | - Bing Li
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan 030001, Shanxi, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan 030001, Shanxi, China
| |
Collapse
|
25
|
Chen Y, Li X. The utilization of carbon-based nanomaterials in bone tissue regeneration and engineering: Respective featured applications and future prospects. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
26
|
Chen M, Sun Y, Hou Y, Luo Z, Li M, Wei Y, Chen M, Tan L, Cai K, Hu Y. Constructions of ROS-responsive titanium-hydroxyapatite implant for mesenchymal stem cell recruitment in peri-implant space and bone formation in osteoporosis microenvironment. Bioact Mater 2022; 18:56-71. [PMID: 35387165 PMCID: PMC8961459 DOI: 10.1016/j.bioactmat.2022.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 01/17/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
To solve the issue of unsatisfactory recruitment of mesenchymal stem cells (MSCs) around implant in osteoporotic fractures, we fabricated a ROS-responsive system on titanium surface through hydroxyapatite coating and biomolecule grafting. The porous hydroxyapatite and phosphorylated osteogenic growth peptides (p-OGP) were introduced onto titanium surface to synergistically improve osteogenic differentiation of MSCs. After the p-OGP-promoted expression of osteogenic related proteins, the calcium and phosphate ions were released through the degradation of hydroxyapatite and integrated into bone tissues to boost the mineralization of bone matrix. The ROS-triggered release of DNA aptamer (Apt) 19S in the osteoporotic microenvironment guides MSC migration to implant site due to its high affinity with alkaline phosphatase on the membrane of MSCs. Once MSCs reached the implant interface, their osteogenic differentiation potential was enhanced by p-OGP and hydroxyapatite to promote bone regeneration. The study here provided a simple and novel strategy to prepare functional titanium implants for osteoporotic bone fracture repair.
Collapse
Affiliation(s)
- Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuting Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yanhua Hou
- Chongqing Engineering Research Center of Pharmaceutical Science, Chongqing Medical and Pharmaceutical College, Chongqing, 401331, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing, 400044, China
| | - Yujia Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Maowen Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lu Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
27
|
Zhu L, Kong W, Ma J, Zhang R, Qin C, Liu H, Pan S. Applications of carbon dots and its modified carbon dots in bone defect repair. J Biol Eng 2022; 16:32. [PMID: 36419160 PMCID: PMC9682789 DOI: 10.1186/s13036-022-00311-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022] Open
Abstract
Bone defect repair is a continual and complicated process driven by a variety of variables. Because of its bright multicolor luminescence, superior biocompatibility, water dispersibility, and simplicity of synthesis from diverse carbon sources, carbon dots (CDs) have received a lot of interest. It has a broad variety of potential biological uses, including bone defect repair, spinal cord injury, and wound healing. Materials including CDs as the matrix or major component have shown considerable benefits in enabling bone defect healing in recent years. By altering the carbon dots or mixing them with other wound healing-promoting agents or materials, the repair effect may be boosted even further. The report also shows and discusses the use of CDs to heal bone abnormalities. The study first presents the fundamental features of CDs in bone defect healing, then provides CDs manufacturing techniques that should be employed in bone defect repair, and lastly examines their development in the area of bioengineering, particularly in bone defect repair. In this work, we look at how carbon dots and their alteration products may help with bone defect healing by being antibacterial, anti-infective, osteogenic differentiation-promoting, and gene-regulating.
Collapse
Affiliation(s)
- Longchuan Zhu
- grid.452829.00000000417660726Department of Orthopedic Surgery, Second Hospital Jilin University, Ziqiang St 218, 130041 Changchun, People’s Republic of China
| | - Weijian Kong
- grid.452829.00000000417660726Department of Orthopedic Surgery, Second Hospital Jilin University, Ziqiang St 218, 130041 Changchun, People’s Republic of China
| | - Jijun Ma
- Department of Orthopedic Surgery, Baicheng Hospital Traditional Chinese Medicine, Jilin, People’s Republic of China
| | - Renfeng Zhang
- grid.452829.00000000417660726Department of Orthopedic Surgery, Second Hospital Jilin University, Ziqiang St 218, 130041 Changchun, People’s Republic of China
| | - Cheng Qin
- grid.452829.00000000417660726Department of Orthopedic Surgery, Second Hospital Jilin University, Ziqiang St 218, 130041 Changchun, People’s Republic of China
| | - Hao Liu
- grid.452829.00000000417660726Department of Orthopedic Surgery, Second Hospital Jilin University, Ziqiang St 218, 130041 Changchun, People’s Republic of China
| | - Su Pan
- grid.452829.00000000417660726Department of Orthopedic Surgery, Second Hospital Jilin University, Ziqiang St 218, 130041 Changchun, People’s Republic of China
| |
Collapse
|
28
|
Tian H, Wu R, Feng N, Zhang J, Zuo J. Recent advances in hydrogels-based osteosarcoma therapy. Front Bioeng Biotechnol 2022; 10:1042625. [PMID: 36312544 PMCID: PMC9597306 DOI: 10.3389/fbioe.2022.1042625] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteosarcoma (OS), as a typical kind of bone tumors, has a high incidence among adolescents. Traditional tumor eradication avenues for OS such as chemotherapy, surgical therapy and radiation therapy usually have their own drawbacks including recurrence and metastasis. In addition, another serious issue in the treatment of OS is bone repair because the bone after tumor invasion usually has difficulty in repairing itself. Hydrogels, as a synthetic or natural platform with a porous three-dimensional structure, can be applied as desirable platforms for OS treatment. They can not only be used as carriers for tumor therapeutic drugs but mimic the extracellular matrix for the growth and differentiation of mesenchymal stem cells (MSCs), thus providing tumor treatment and enhancing bone regeneration at the same time. This review focuses the application of hydrogels in OS suppression and bone regeneration, and give some suggests on future development.
Collapse
Affiliation(s)
- Hao Tian
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ronghui Wu
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Na Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinrui Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science, Wuhan, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Jinrui Zhang, ; Jianlin Zuo,
| |
Collapse
|
29
|
Biowaste-Derived Carbon Dots: A Perspective on Biomedical Potentials. Molecules 2022; 27:molecules27196186. [PMID: 36234727 PMCID: PMC9573568 DOI: 10.3390/molecules27196186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 02/06/2023] Open
Abstract
Today, sustainable and natural resources including biowastes have been considered attractive starting materials for the fabrication of biocompatible and biodegradable carbon dots (CDs) due to the benefits of availability, low cost, biorenewability, and environmentally benign attributes. These carbonaceous nanomaterials have been widely explored in the field of sensing/imaging, optoelectronics, photocatalysis, drug/gene delivery, tissue engineering, regenerative medicine, and cancer theranostics. Designing multifunctional biowaste-derived CDs with a high efficacy-to-toxicity ratio for sustained and targeted drug delivery, along with imaging potentials, opens a new window of opportunity toward theranostic applications. However, crucial challenges regarding the absorption/emission wavelength, up-conversion emission/multiphoton fluorescence mechanisms, and phosphorescence of these CDs still need to be addressed to attain the maximum functionality and efficacy. Future studies ought to focus on optimizing the synthesis techniques/conditions, evaluating the influence of nucleation/growth process on structures/properties, controlling their morphology/size, and finding the photoluminescence mechanisms. Reproducibility of synthesis techniques is another critically important factor that needs to be addressed in the future. Herein, the recent developments related to the biowaste-derived CDs with respect to their biomedical applications are deliberated, focusing on important challenges and future perspectives.
Collapse
|
30
|
Wang N, Xie Y, Xi Z, Mi Z, Deng R, Liu X, Kang R, Liu X. Hope for bone regeneration: The versatility of iron oxide nanoparticles. Front Bioeng Biotechnol 2022; 10:937803. [PMID: 36091431 PMCID: PMC9452849 DOI: 10.3389/fbioe.2022.937803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Although bone tissue has the ability to heal itself, beyond a certain point, bone defects cannot rebuild themselves, and the challenge is how to promote bone tissue regeneration. Iron oxide nanoparticles (IONPs) are a magnetic material because of their excellent properties, which enable them to play an active role in bone regeneration. This paper reviews the application of IONPs in bone tissue regeneration in recent years, and outlines the mechanisms of IONPs in bone tissue regeneration in detail based on the physicochemical properties, structural characteristics and safety of IONPs. In addition, a bibliometric approach has been used to analyze the hot spots and trends in the field in order to identify future directions. The results demonstrate that IONPs are increasingly being investigated in bone regeneration, from the initial use as magnetic resonance imaging (MRI) contrast agents to later drug delivery vehicles, cell labeling, and now in combination with stem cells (SCs) composite scaffolds. In conclusion, based on the current research and development trends, it is more inclined to be used in bone tissue engineering, scaffolds, and composite scaffolds.
Collapse
Affiliation(s)
- Nan Wang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yimin Xie
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhipeng Xi
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zehua Mi
- Hospital for Skin Diseases, Institute of Dermatology Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Rongrong Deng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyu Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ran Kang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Xin Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Orthopedics, Nanjing Lishui Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
31
|
Marycz K, Kornicka-Garbowska K, Patej A, Sobierajska P, Kotela A, Turlej E, Kepska M, Bienko A, Wiglusz RJ. Aminopropyltriethoxysilane (APTES)-Modified Nanohydroxyapatite (nHAp) Incorporated with Iron Oxide (IO) Nanoparticles Promotes Early Osteogenesis, Reduces Inflammation and Inhibits Osteoclast Activity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2095. [PMID: 35329547 PMCID: PMC8953252 DOI: 10.3390/ma15062095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/02/2022]
Abstract
Due to its increased prevalence, osteoporosis (OP) represents a great challenge to health care systems and brings an economic burden. To overcome these issues, treatment plans that suit the need of patients should be developed. One of the approaches focuses on the fabrication of personalized biomaterials, which can restore the balance and homeostasis of disease-affected bone. In the presented study, we fabricated nanometer crystalline hydroxyapatite (nHAp) and iron oxide (IO) nanoparticles stabilized with APTES and investigated whether they can modulate bone cell metabolism and be useful in the fabrication of personalized materials for OP patients. Using a wide range of molecular techniques, we have shown that obtained nHAp@APTES promotes viability and RUNX-2 expression in osteoblasts, as well as reducing activity of critical proinflammatory cytokines while inhibiting osteoclast activity. Materials with APTES modified with nHAp incorporated with IO nanoparticles can be applied to support the healing of osteoporotic bone fractures as they enhance metabolic activity of osteoblasts and diminish osteoclasts' metabolism and inflammation.
Collapse
Affiliation(s)
- Krzysztof Marycz
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Katarzyna Kornicka-Garbowska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
- International Institute of Translational Medicine, Jesionowa 11, Malin, 55-114 Wisznia Mała, Poland
| | - Adrian Patej
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Paulina Sobierajska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| | - Andrzej Kotela
- Collegium Medicum, Cardinal Stefan Wyszynski University (UKSW), Woycickiego 1/3, 01-938 Warsaw, Poland;
| | - Eliza Turlej
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Martyna Kepska
- The Department of Experimental Biology, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, Norwida 27B, 50-375 Wroclaw, Poland; (K.K.-G.); (E.T.); (M.K.)
| | - Alina Bienko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie14 Street, 50-383 Wroclaw, Poland;
| | - Rafal J. Wiglusz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okolna 2, 50-422 Wroclaw, Poland; (A.P.); (P.S.)
| |
Collapse
|
32
|
Kumar VB, Porat Z, Gedanken A. Synthesis of Doped/Hybrid Carbon Dots and Their Biomedical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:898. [PMID: 35335711 PMCID: PMC8951121 DOI: 10.3390/nano12060898] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/07/2023]
Abstract
Carbon dots (CDs) are a novel type of carbon-based nanomaterial that has gained considerable attention for their unique optical properties, including tunable fluorescence, stability against photobleaching and photoblinking, and strong fluorescence, which is attributed to a large number of organic functional groups (amino groups, hydroxyl, ketonic, ester, and carboxyl groups, etc.). In addition, they also demonstrate high stability and electron mobility. This article reviews the topic of doped CDs with organic and inorganic atoms and molecules. Such doping leads to their functionalization to obtain desired physical and chemical properties for biomedical applications. We have mainly highlighted modification techniques, including doping, polymer capping, surface functionalization, nanocomposite and core-shell structures, which are aimed at their applications to the biomedical field, such as bioimaging, bio-sensor applications, neuron tissue engineering, drug delivery and cancer therapy. Finally, we discuss the key challenges to be addressed, the future directions of research, and the possibilities of a complete hybrid format of CD-based materials.
Collapse
Affiliation(s)
- Vijay Bhooshan Kumar
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
- Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ze’ev Porat
- Division of Chemistry, Nuclear Research Center-Negev, Beer-Sheva 8419001, Israel
- Unit of Environmental Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
33
|
Wu J, Chen G, Jia Y, Ji C, Wang Y, Zhou Y, Leblanc RM, Peng Z. Carbon dot composites for bioapplications: a review. J Mater Chem B 2022; 10:843-869. [PMID: 35060567 DOI: 10.1039/d1tb02446a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Carbon dots (CDs) have received extensive attention in the last decade for their excellent optical, chemical and biological properties. In recent years, CD composites have also received significant attention due to their ability to improve the intrinsic properties and expand the application scope of CDs. In this article, the synthesis processes of four types of CD composites (metal-CD, nonmetallic inorganics-CD, and organics-CD as well as multi-components-CD composites) are systematically summarized first. Then the recent advancements in the bioapplications (bioimaging, drug delivery and biosensing) of these composites are also highlighted and discussed. Last, the current challenges and future trends of CD composites in biomedical fields are discussed.
Collapse
Affiliation(s)
- Jiajia Wu
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Gonglin Chen
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yinnong Jia
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Chunyu Ji
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| | - Yuting Wang
- Yunnan Provincial Key Laboratory of Pharmacology for Natural Products, School of Pharmaceutical Sciences, Kunming Medical University, Kunming 650500, People's Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, USA
| | - Zhili Peng
- School of Materials and Energy, Yunnan University, Kunming 650091, People's Republic of China.
| |
Collapse
|
34
|
Fang H, Zhu D, Yang Q, Chen Y, Zhang C, Gao J, Gao Y. Emerging zero-dimensional to four-dimensional biomaterials for bone regeneration. J Nanobiotechnology 2022; 20:26. [PMID: 34991600 PMCID: PMC8740479 DOI: 10.1186/s12951-021-01228-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/26/2021] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the most sophisticated and dynamic tissues in the human body, and is characterized by its remarkable potential for regeneration. In most cases, bone has the capacity to be restored to its original form with homeostatic functionality after injury without any remaining scarring. Throughout the fascinating processes of bone regeneration, a plethora of cell lineages and signaling molecules, together with the extracellular matrix, are precisely regulated at multiple length and time scales. However, conditions, such as delayed unions (or nonunion) and critical-sized bone defects, represent thorny challenges for orthopedic surgeons. During recent decades, a variety of novel biomaterials have been designed to mimic the organic and inorganic structure of the bone microenvironment, which have tremendously promoted and accelerated bone healing throughout different stages of bone regeneration. Advances in tissue engineering endowed bone scaffolds with phenomenal osteoconductivity, osteoinductivity, vascularization and neurotization effects as well as alluring properties, such as antibacterial effects. According to the dimensional structure and functional mechanism, these biomaterials are categorized as zero-dimensional, one-dimensional, two-dimensional, three-dimensional, and four-dimensional biomaterials. In this review, we comprehensively summarized the astounding advances in emerging biomaterials for bone regeneration by categorizing them as zero-dimensional to four-dimensional biomaterials, which were further elucidated by typical examples. Hopefully, this review will provide some inspiration for the future design of biomaterials for bone tissue engineering.
Collapse
Affiliation(s)
- Haoyu Fang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Daoyu Zhu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qianhao Yang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Changqing Zhang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China.
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
35
|
Li X, Zheng M, Wang H, Meng Y, Wang D, Liu L, Zeng Q, Xu X, Zhou D, Sun H. Synthesis of carbon dots with strong luminescence in both dispersed and aggregated states by tailoring sulfur doping. J Colloid Interface Sci 2021; 609:54-64. [PMID: 34894555 DOI: 10.1016/j.jcis.2021.11.179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 02/06/2023]
Abstract
Carbon dots (CDots), a class of environmentally friendly carbon-based luminescent nanomaterial, have been applied in a wide variety of fields, including bioimaging and light-emitting diodes (LEDs). Prior to these applications, however, CDots usually require modifications because some of its limitations (e.g., the aggregation-induced luminescence quenching) make it difficult to apply in solid state. In order to realize CDots-based multiple applications simultaneously, this paper examines how CDots with a strong greenish-yellow fluorescence in both dispersed and aggregated states are prepared by microwave-assisted heating salicylic acid and thiourea. Based on control testing and the analysis of density functional theory calculations, S element from thiourea is doped into CDots and proves to be critical in governing the photoluminescence (PL) emission color. Featured with excellent biocompatibility and photostability, the dispersed CDots with photoluminescence quantum yields (32%) are able to function as a biological imaging reagent in vitro and in vivo without any side effect. Furthermore, the aggregated CDots also exhibit high photoluminescence quantum yields (26%) and remarkable resistance to organic solvent. These advantages will ensure that S-doped CDots can be applied as a color conversion layer so that white LEDs with different Commission International de L'Eclariage coordinates and tunable color temperature can be fabricated.
Collapse
Affiliation(s)
- Xianjing Li
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, PR China
| | - Mengdan Zheng
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, PR China
| | - Haijing Wang
- Department of Chemistry, Durham University, Durham DH1 3LE, UK
| | - Yuan Meng
- School and Hospital of Stomatology, China Medical University, Shenyang 110122, PR China
| | - Duan Wang
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, PR China
| | - Lili Liu
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, PR China
| | - Qinghui Zeng
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China
| | - Xiaowei Xu
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, PR China.
| | - Ding Zhou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China.
| | - Hongchen Sun
- Hospital of Stomatology, Jilin University, Changchun 130021, PR China; Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
36
|
Foessl I, Bassett JHD, Bjørnerem Å, Busse B, Calado Â, Chavassieux P, Christou M, Douni E, Fiedler IAK, Fonseca JE, Hassler E, Högler W, Kague E, Karasik D, Khashayar P, Langdahl BL, Leitch VD, Lopes P, Markozannes G, McGuigan FEA, Medina-Gomez C, Ntzani E, Oei L, Ohlsson C, Szulc P, Tobias JH, Trajanoska K, Tuzun Ş, Valjevac A, van Rietbergen B, Williams GR, Zekic T, Rivadeneira F, Obermayer-Pietsch B. Bone Phenotyping Approaches in Human, Mice and Zebrafish - Expert Overview of the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal traits TranslatiOnal NEtwork"). Front Endocrinol (Lausanne) 2021; 12:720728. [PMID: 34925226 PMCID: PMC8672201 DOI: 10.3389/fendo.2021.720728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/21/2021] [Indexed: 12/16/2022] Open
Abstract
A synoptic overview of scientific methods applied in bone and associated research fields across species has yet to be published. Experts from the EU Cost Action GEMSTONE ("GEnomics of MusculoSkeletal Traits translational Network") Working Group 2 present an overview of the routine techniques as well as clinical and research approaches employed to characterize bone phenotypes in humans and selected animal models (mice and zebrafish) of health and disease. The goal is consolidation of knowledge and a map for future research. This expert paper provides a comprehensive overview of state-of-the-art technologies to investigate bone properties in humans and animals - including their strengths and weaknesses. New research methodologies are outlined and future strategies are discussed to combine phenotypic with rapidly developing -omics data in order to advance musculoskeletal research and move towards "personalised medicine".
Collapse
Affiliation(s)
- Ines Foessl
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Åshild Bjørnerem
- Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Norwegian Research Centre for Women’s Health, Oslo University Hospital, Oslo, Norway
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - Ângelo Calado
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
| | | | - Maria Christou
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Eleni Douni
- Institute for Bioinnovation, Biomedical Sciences Research Center “Alexander Fleming”, Vari, Greece
- Department of Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Imke A. K. Fiedler
- Department of Osteology and Biomechanics, University Medical Center, Hamburg-Eppendorf, Hamburg, Germany
| | - João Eurico Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Centro Académico de Medicina de Lisboa, Lisboa, Portugal
- Rheumatology Department, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), Lisbon Academic Medical Centre, Lisbon, Portugal
| | - Eva Hassler
- Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University Graz, Graz, Austria
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Erika Kague
- The School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel
| | - Patricia Khashayar
- Center for Microsystems Technology, Imec and Ghent University, Ghent, Belgium
| | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Victoria D. Leitch
- Innovative Manufacturing Cooperative Research Centre, Royal Melbourne Institute of Technology, School of Engineering, Carlton, VIC, Australia
| | - Philippe Lopes
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Georgios Markozannes
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece
- Department of Health Services, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, United States
| | - Ling Oei
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Claes Ohlsson
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Drug Treatment, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pawel Szulc
- INSERM UMR 1033, University of Lyon, Lyon, France
| | - Jonathan H. Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School, Bristol, University of Bristol, Bristol, United Kingdom
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC Rotterdam, Rotterdam, Netherlands
| | - Şansın Tuzun
- Physical Medicine & Rehabilitation Department, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Amina Valjevac
- Department of Human Physiology, School of Medicine, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Bert van Rietbergen
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Tatjana Zekic
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | - Barbara Obermayer-Pietsch
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Endocrine Lab Platform, Medical University of Graz, Graz, Austria
| |
Collapse
|
37
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
38
|
Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021; 8:4039-4076. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.
Collapse
Affiliation(s)
- Shrinath Bhat
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - U T Uthappa
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.,Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| |
Collapse
|
39
|
Kang MS, Jang HJ, Lee SH, Lee JE, Jo HJ, Jeong SJ, Kim B, Han DW. Potential of Carbon-Based Nanocomposites for Dental Tissue Engineering and Regeneration. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5104. [PMID: 34501203 PMCID: PMC8434078 DOI: 10.3390/ma14175104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 11/16/2022]
Abstract
While conventional dental implants focus on mechanical properties, recent advances in functional carbon nanomaterials (CNMs) accelerated the facilitation of functionalities including osteoinduction, osteoconduction, and osseointegration. The surface functionalization with CNMs in dental implants has emerged as a novel strategy for reinforcement and as a bioactive cue due to their potential for mechanical reinforcing, osseointegration, and antimicrobial properties. Numerous developments in the fabrication and biological studies of CNMs have provided various opportunities to expand their application to dental regeneration and restoration. In this review, we discuss the advances in novel dental implants with CNMs in terms of tissue engineering, including material combination, coating strategies, and biofunctionalities. We present a brief overview of recent findings and progression in the research to show the promising aspect of CNMs for dental implant application. In conclusion, it is shown that further development of surface functionalization with CNMs may provide innovative results with clinical potential for improved osseointegration after implantation.
Collapse
Affiliation(s)
- Moon Sung Kang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Hee Jeong Jang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Seok Hyun Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
| | - Ji Eun Lee
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | - Hyo Jung Jo
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| | | | - Bongju Kim
- Dental Life Science Research Institute/Innovation Research & Support Center for Dental Science, Seoul National University Dental Hospital, Seoul 03080, Korea
| | - Dong-Wook Han
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (M.S.K.); (H.J.J.); (S.H.L.)
- Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Korea; (J.E.L.); (H.J.J.)
| |
Collapse
|
40
|
Liao J, Shi K, Jia Y, Wu Y, Qian Z. Gold nanorods and nanohydroxyapatite hybrid hydrogel for preventing bone tumor recurrence via postoperative photothermal therapy and bone regeneration promotion. Bioact Mater 2021; 6:2221-2230. [PMID: 33553811 PMCID: PMC7829101 DOI: 10.1016/j.bioactmat.2021.01.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Osteosarcoma is a malignant bone tumor, which often occurs in adolescents. However, surgical resection usually fails to completely remove the tumor clinically, which has been the main cause of postoperative recurrence and metastasis, resulting in the high death rate of patients. At the same time, osteosarcoma invades a large area of the bone defect, which cannot be self-repaired and seriously affects the life quality of the patients. Herein, a bifunctional methacrylated gelatin/methacrylated chondroitin sulfate hydrogel hybrid gold nanorods (GNRs) and nanohydroxyapatite (nHA), which possessed excellent photothermal effect, was constructed to eradicate residual tumor after surgery and bone regeneration. In vitro, K7M2wt cells (a mouse bone tumor cell line) can be efficiently eradicated by photothermal therapy of the hybrid hydrogel. Meanwhile, the hydrogel mimics the extracellular matrix to promote proliferation and osteogenic differentiation of mesenchymal stem cells. The GNRs/nHA hybrid hydrogel was capable of photothermal treatment of postoperative tumors and bone defect repair in a mice model of tibia osteosarcoma. Therefore, the hybrid hydrogel possesses dual functions of tumor therapy and bone regeneration, which shows great potential in curing bone tumors and provides a new hope for tumor-related bone complex disease.
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Yanpeng Jia
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy, State Key Laboratory and Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, P.R. China
| |
Collapse
|
41
|
Khajuria DK, Karasik D. Novel model of restricted mobility induced osteopenia in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:1031-1038. [PMID: 32383168 DOI: 10.1111/jfb.14369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/31/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Immobilization, such as prolonged bed rest, is a risk factor for bone loss in humans. Motivated by the emerging utility of zebrafish (Danio rerio) as an animal of choice for the study of musculoskeletal disease, here we report a model of restricted mobility induced osteopenia in adult zebrafish. Aquatic tanks with small cubical compartments to restrict the movement and locomotion of single fish were designed and fabricated for this study. Adult zebrafish were divided into two groups: a normal control (CONT) and a restricted mobility group (RMG) (18 fish/group). Six fish from each group were euthanized on days 14, 21 and 35 of the movement restriction. By using microcomputed tomography (micro-CT), we assessed bone volume/tissue volume (BV/TV) and bone density in the whole skeleton of the fish. Furthermore, we assessed skeletal shape in the vertebrae (radius, length, volume, neural and haemal arch aperture areas, neural and haemal arch angle, and thickness of the intervertebral space), single vertebra bone volume and bone density. Movement restriction significantly decreased vertebral skeletal parameters such as radius, length, volume, arch aperture areas and angles as well as the thickness of the intervertebral space in RMG. Furthermore, restricted mobility significantly (P < 0.001) decreased BV/TV and bone density as compared to the CONT group, starting as early as 14 days. By analysing zebrafish from CONT and RMG, we show that micro-CT imaging is a sensitive method to quantify distinct skeletal properties in zebrafish. We further defined the micro-CT parameters which can be used to examine the effects of restricted mobility on the skeleton of the fish. Our findings propose a rapid and effective osteopenia "stabulation" model, which could be used widely for osteoporosis drug screening.
Collapse
Affiliation(s)
- Deepak Kumar Khajuria
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Department of Orthopaedics and Rehabilitation, Penn State University, College of Medicine, Hershey, Pennsylvania, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
42
|
Das P, Ganguly S, Margel S, Gedanken A. Immobilization of Heteroatom-Doped Carbon Dots onto Nonpolar Plastics for Antifogging, Antioxidant, and Food Monitoring Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3508-3520. [PMID: 33705147 DOI: 10.1021/acs.langmuir.1c00471] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work presents the facile synthesis of heteroatom-doped fluorescent carbon quantum dots (C-dots), which could serve as an antioxidant. Herein, nitrogen, phosphorous, and sulfur codoped carbon dots (NPSC-dots) have been synthesized by a single-step hydrothermal strategy. Owing to the radical scavenging activity of the NPSC-dots, they were tested against several methods as well as in practical applications. The antioxidant ability of the NPSC-dots was efficiently utilized on plastic films by coating with these NPSC-dots. For the very first time, NPSC-dots were immobilized onto nonpolar plastic films (polypropylene) via photochemical covalent grafting to extend the shelf life of food items or storage without affecting the quality of plastic films. The NPSC-dot-coated PP film with negligible deterioration of transparency was extensively studied using scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) analysis, X-ray photoelectron spectroscopy (XPS), contact angle measurement, and thermogravimetric analysis (TGA). The fluorescent character, antioxidant ability, and durability under different solvent systems of the coated film were examined. Also, the coated films were extensively and rigorously evaluated against simulated drastic environmental conditions to ensure the durability and antifogging application.
Collapse
Affiliation(s)
- Poushali Das
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Departments of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sayan Ganguly
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Departments of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Departments of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Aharon Gedanken
- Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Departments of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
43
|
Hu Y, Chen Y, Tang Q, Liu H. A sandwich-type ECL immunosensor for the sensitive determination of CEA content based on red emission carbon quantum dots as luminophores. NEW J CHEM 2021. [DOI: 10.1039/d1nj01002f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel electrochemiluminescent immunosensor was constructed based on the quenching effect between red emission carbon quantum dots and aminated graphene.
Collapse
Affiliation(s)
- Yuefang Hu
- College of Materials and Chemical Engineering
- Hezhou University
- Hezhou
- China
| | - Yuxin Chen
- Faculty of Chinese Medicine Science, Guangxi University of Chinese Medicine
- Nanning
- China
| | - Quan Tang
- College of Materials and Chemical Engineering
- Hezhou University
- Hezhou
- China
| | - Hanfu Liu
- College of Pharmacy, Guilin Medical University
- Guilin
- China
| |
Collapse
|
44
|
Koshani R, Tavakolian M, van de Ven TGM. Cellulose-based dispersants and flocculants. J Mater Chem B 2020; 8:10502-10526. [PMID: 33136107 DOI: 10.1039/d0tb02021d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Natural dispersants and flocculants, often referred to as dispersion stabilizers and liquid-solid separators, respectively, have secured a promising role in the bioprocessing community. They have various applications, including in biomedicine and in environmental remediation. A large fraction of existing dispersants and flocculants are synthesized from non-safe chemical compounds such as polyacrylamide and surfactants. Despite numerous advantages of synthetic dispersants and flocculants, issues such as renewability, sustainability, biocompatibility, and cost efficiency have shifted attention towards natural homologues, in particular, cellulose-based ones. Within the past decade, cellulose derivatives, obtained via chemical and mechanical treatments of cellulose fibrils, have successfully been used for these purposes. In this review article, by dividing the functional cellulosic compounds into "polymeric" and "nanoscale" categories, we provide insight into the engineering pathways, the structural frameworks, and surface chemistry of these "green" types of dispersants and flocculants. A summary of their efficiency and the controlling parameters is also accompanied by recent advances in their applications in each section. We are confident that the emergence of cellulose-based dispersing and flocculating agents will extend the boundaries of sustainable green technology.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada. and Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada.
| | - Mandana Tavakolian
- Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada. and Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, QC H3A 0C5, Canada
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada. and Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Center, McGill University, 3420 University Street, Montréal, QC H3A 2A7, Canada.
| |
Collapse
|
45
|
Bu W, Xu X, Wang Z, Jin N, Liu L, Liu J, Zhu S, Zhang K, Jelinek R, Zhou D, Sun H, Yang B. Ascorbic Acid-PEI Carbon Dots with Osteogenic Effects as miR-2861 Carriers to Effectively Enhance Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50287-50302. [PMID: 33121247 DOI: 10.1021/acsami.0c15425] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nucleic acid transfer has shown significant potential in the treatment of bone damage because of its long lasting local effect and lower cost. Nonviral vectors, such as nanomaterials, with higher biocompatibility are increasedly applied in the study of bone defect repair. Carbon dots with various reactive groups on the surface not only provide a unique surface to carry therapeutic genes, but also some carbon dots have been reported to promote osteogenic differentiation. The bone regeneration effect of carbon dots in vivo, however, is rarely investigated. MiR-2861 has revealed osteogenic differentiation effects. In the current study, we created ascorbic acid-PEI carbon dots (CD), which were able to carry miR-2861, by the microwave-assisted pyrolysis method. Results demonstrated that CD had excellent fluorescence stability leading to good fluorescence imaging in vitro and in vivo. CD was efficiently internalized into bone marrow stromal cells (BMSCs) through the clathrin-mediated endocytosis pathway and distributed in the mitochondria, endoplasmic reticulum, lysosome, and nucleus. Results from alkaline phosphatase staining, alizarin red staining, and reverse transcription real-time PCR (RT-QPCR) showed that our CD indeed had osteogenic effects in vitro. Flow cytometry data indicated that CD could efficiently deliver miR-2861 into BMSCs in vitro, and CD carrying miR-2861 (CD@miR) had the strongest osteogenic effects. Analyses of hematology, serum biochemistry, and histology showed that CD and CD@miR did not have cytotoxicity and had higher biocompatibility in vivo. Most interestingly, CD and miR-2861 in the CD@miR could act synergistically to promote osteogenic differentiation in vitro and new bone regeneration in vivo remarkably. Our results clearly indicate that the osteogenic CD delivering osteogenic therapeutic gene, miR-2861, can obtain much stronger bone regeneration ability, suggesting that our CD has great potential in future clinical application.
Collapse
Affiliation(s)
- Wenhuan Bu
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Dental Materials, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Center Laboratory, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Xiaowei Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Zilin Wang
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Nianqiang Jin
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Lili Liu
- Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| | - Jie Liu
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Wuhan University, Wuhan 430000, China
| | - Shoujun Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Kai Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Raz Jelinek
- Department of Chemistry, Ilse Katz Institute for Nanotechnology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Ding Zhou
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Hongchen Sun
- Liaoning Provincial Key Laboratory of Oral Diseases, School of Stomatology, China Medical University, Shenyang 110001, China
- Department of Oral Pathology, School of Stomatology, China Medical University, Shenyang 110001, China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
46
|
Li LS, Xu L. Highly fluorescent N,S,P tri-doped carbon dots for Cl− detection and their assistance of TiO2 as the catalyst in the degradation of methylene blue. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112772] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Wu T, Li B, Wang W, Chen L, Li Z, Wang M, Zha Z, Lin Z, Xia H, Zhang T. Strontium-substituted hydroxyapatite grown on graphene oxide nanosheet-reinforced chitosan scaffold to promote bone regeneration. Biomater Sci 2020; 8:4603-4615. [PMID: 32627770 DOI: 10.1039/d0bm00523a] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The strontium-substituted hydroxyapatite (SrHA) is a commonly used material in bone regeneration for its good osteoconductivity and high alkaline phosphatase (ALP) activity. Scaffolds used in bone defects require a high compressive modulus. However, the SrHA nanoparticle-doped scaffold cannot properly fit the required mechanical properties. Therefore, a lot of effort has been used to fabricate synthetic bone scaffolds with biocompatibility, suitable mechanical properties, antibacterial ability and osteoconductivity. Here, we used a facile hydrothermal method to synthesize graphene oxide (GO)-reinforced SrHA nanoparticles. The incorporation of GO can be used as nucleation and growth active sites of hydroxyapatite. In addition, GO is easy to self-assemble into a layered structure in the dispersion, which can effectively regulate the deposition of hydroxyapatite on the surface of GO. The scaffold was fabricated using a freeze-drying method by incorporating SrHA/GO nanoparticles into chitosan (CS) and quaternized chitosan (QCS) mixed solutions. The compressive modulus of the CS/QCS/SrHA/GO scaffold reached 438.5 kPa, which was 4-fold higher than that of the CS/QCS scaffold. The CS/QCS/SrHA/GO scaffold exhibited significantly higher in vitro mineralization levels and ALP activity. In vivo rat skull repair indicated that the CS/QCS/SrHA/GO scaffold had a significant role in promoting bone regeneration. This study provides a new strategy for modifying hydroxyapatite to satisfy the biomedical demand of bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tingting Wu
- Institute of Orthopedic Diseases and Center for Joint Surgery and Sports Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wu J, Zhang M, Cheng J, Zhang Y, Luo J, Liu Y, Kong H, Qu H, Zhao Y. Effect of Lonicerae japonicae Flos Carbonisata-Derived Carbon Dots on Rat Models of Fever and Hypothermia Induced by Lipopolysaccharide. Int J Nanomedicine 2020; 15:4139-4149. [PMID: 32606669 PMCID: PMC7297362 DOI: 10.2147/ijn.s248467] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Introduction A correlation is established between the efficacy of Chinese herbal medicine and its charcoal drugs. Lonicerae japonicae Flos (LJF) is commonly used to treat fever, carbuncle, and tumors, among others. LJF Carbonisatas (LJFC) is preferred for detoxifying and relieving dysentery and its related symptoms. However, the mechanisms underlying the effects of LJFC remain unknown. Aim The aim of this study was to explore the effects of LJFC-derived carbon dots (LJFC-CDs) on lipopolysaccharide (LPS)-induced fever and hypothermia rat models. Methods LJFC-CDs were characterized using transmission electron microscopy, high-resolution transmission electron microscopy, Fourier-transform infrared, ultraviolet, fluorescence, X-ray photoelectron spectroscopy, X-ray diffraction and high-performance liquid chromatography. The anti-inflammatory effects of LJFC-CDs were evaluated and confirmed using rat models of LPS-induced fever or hypothermia. Results The LJFC-CDs ranged from 1.0 to 10.0 nm in diameter, with a yield of 0.5%. LJFC-CDs alleviated LPS-induced inflammation, as demonstrated by the expression of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 and the recovery of normal body temperature. Conclusion LJFC-CDs may have an anti-inflammatory effect and a potential to alleviate fever and hypothermia caused by inflammation.
Collapse
Affiliation(s)
- Jiashu Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yue Zhang
- School of Science Life, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yuhan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| |
Collapse
|
49
|
Cao J, Lian R, Jiang X, Liu X. Formation of Porous Apatite Layer after Immersion in SBF of Fluorine-Hydroxyapatite Coatings by Pulsed Laser Deposition Improved in Vitro Cell Proliferation. ACS APPLIED BIO MATERIALS 2020; 3:3698-3706. [DOI: 10.1021/acsabm.0c00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jinxing Cao
- International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China
| | - Ruizhe Lian
- International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China
| | - Xiaohong Jiang
- International Chinese-Belorussian Scientific Laboratory on Vacuum-Plasma Technology, Nanjing University of Science and Technology, 200, Xiaolingwei Street, Nanjing 210094, China
| | - Xin Liu
- Department of Orthopaedics, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
50
|
Yu L, Rowe DW, Perera IP, Zhang J, Suib SL, Xin X, Wei M. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18235-18249. [PMID: 32212615 DOI: 10.1021/acsami.0c00275] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As one of the major challenges in the field of tissue engineering, large skeletal defects have attracted wide attention from researchers. Collagen (Col) and hydroxyapatite (HA), the most abundant protein and the main component in natural bone, respectively, are usually used as a biomimetic composite material in tissue engineering due to their excellent biocompatibility and biodegradability. In this study, novel intrafibrillar mineralized Col-HA-based scaffolds, constructed in either cellular or lamellar microstructures, were established through a biomimetic method to enhance the new bone-regenerating capability of tissue engineering scaffolds. Moreover, iron (Fe) and manganese (Mn), two of the essential trace elements in the body, were successfully incorporated into the lamellar scaffold to further improve the osteoinductivity of these biomaterials. It was found that the lamellar scaffolds demonstrated better osteogenic abilities compared to both in-house and commercial Col-HA-based cellular scaffolds in vitro and in vivo. Meanwhile, Fe/Mn incorporation further amplified the osteogenic promotion of the lamellar scaffolds. More importantly, a synergistic effect was observed in the Fe and Mn dual-element-incorporated lamellar scaffolds for both in vitro osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in vivo bone regeneration loaded with fresh bone marrow cells. This study provides a simple but practical strategy for the creation of functional scaffolds for bone regeneration.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, United States
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | | | | | | | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut 06032, United States
| | - Mei Wei
- Department of Mechanical Engineering, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|