1
|
Wang J, Guo Z, Fu F. Locomotion behavior of air bubbles on solid surfaces. Adv Colloid Interface Sci 2024; 332:103266. [PMID: 39153417 DOI: 10.1016/j.cis.2024.103266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/19/2024]
Abstract
Air bubbles are a common occurrence in both natural and industrial settings and are a significant topic in the fields of physics, chemistry, engineering, and medicine. The physical phenomena of the contact between bubbles and submerged solid surfaces, as well as the locomotion behavior of bubbles, are worth exploring. Bubbles are generated in an unbounded liquid environment and rise due to unbalanced external forces. Bubbles of different diameters follow different ascending paths, after which they approach, touch, collide, bounce, and finally adsorb to the solid surface, forming a stable three-phase contact line (TPCL). The bubbles are in an unstable state due to the unbalanced external forces on the solid surface and the effects generated by the two-phase contact surface, resulting in different locomotion behaviors on the solid surface. Studying the formation, transport, aggregation, and rupture behaviors of bubbles on solid surfaces can enable the controllable operation of bubbles. This, in turn, can effectively reduce the loss of mechanical apparatus in agro-industrial production activities and improve corresponding production efficiency. Recent research has shown that the degree of bubble wetting on a solid surface is a crucial factor in the locomotion behavior of bubbles on that surface. This has led to significant progress in the study of bubble wetting, which has in turn greatly advanced our understanding of bubble behavior. Based on this, exploring the manipulation process of the directional motion of bubbles is a promising research direction. The locomotion behavior of bubbles on solid surfaces can be controlled by changing external conditions, leading to the integration of bubble behavior in various scientific and technological fields. Studying the dynamics of bubbles in liquids with infinite boundaries is worthwhile. Additionally, the manipulation process and mode of these bubbles is a popular research direction.
Collapse
Affiliation(s)
- Jing Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Feiyan Fu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China.
| |
Collapse
|
2
|
Dai X, Si W, Liu Y, Zhang W, Guo Z. Bubble Unidirectional Transportation on Multipath Aerophilic Surfaces by Adjusting the Surface Microstructure. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11984-11996. [PMID: 38407018 DOI: 10.1021/acsami.3c15880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Comprehending and controlling the behavior of bubbles on solid surfaces is of significant importance in various fields including catalysis and drag reduction, both industrially and scientifically. Herein, Inspired by the superaerophilic properties of the lotus leaf surface, a series of asymmetrically patterned aerophilic surfaces were prepared by utilizing a facile mask-spraying method for directional transport of underwater bubbles. The ability of bubbles to undergo self-driven transportation in an asymmetric pattern is attributed to the natural tendency of bubbles to move toward regions with lower surface energy. In this work, the microstructure of the aerophilic surface is demonstrated as a critical element that influences the self-driven transport of bubbles toward regions of lower surface energy. The microstructure characteristic affects the energy barrier of forming a continuous gas film on the final regions. We classify three distinct bubble behaviors on the aerophilic surface, which align with three different underwater gas film evolution states: Model I, Model II, and Model III. Furthermore, utilizing the energy difference between the energy barrier that forms a continuous gas film and the gas-gas merging, gas-liquid microreaction in a specific destination on the multiple paths can be easily realized by preinjecting a bubble in the final region. This work provides a new view of the microevolutionary process for the diffusion, transport, and merging behavior of bubbles upon contact with an aerophilic pattern surface.
Collapse
Affiliation(s)
- Xin Dai
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Wen Si
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Yifan Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Wenhao Zhang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
3
|
Zhao X, Mao F, Wu J, Lei J, Li L. Facilely tuning the surface wettability of Cu mesh for multi-functional applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Kang SM, An JH. Robust and Transparent Lossless Directional Omniphobic Ultra-Thin Sticker-Type Film with Re-entrant Micro-Stripe Arrays. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39646-39653. [PMID: 35979700 DOI: 10.1021/acsami.2c12398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Directional droplet-sliding control without wetting the surface is immensely required in advanced surface engineering, including biological and chemical analyses or green technology. However, the development of robust and transparent thin sticker-type directional omniphobic films for portable usage in smart microfluidic platforms is rare. In this study, we report a novel perfluoropolyether (PFPE) directional omniphobic film (PDOF). The PDOF is a robust and transparent ultra-thin sticker-type film that can control the anisotropic sliding of various liquid droplets on the surface. The PFPE is a chemically stable and turgid material compared to polydimethylsiloxane (PDMS), which is often used to fabricate liquid-repellent thin films. A well-designed fabrication criterion through adhesion engineering in the soft-molding process was developed using the PFPE to obtain a PDOF with a thickness of 56 μm, with re-entrant micro-stripe structures on the surface. The fabricated PDOF showed intriguing liquid sliding properties based on the direction and spacing of the microstructures. This aspect is defined as an anisotropic factor.
Collapse
Affiliation(s)
- Seong Min Kang
- Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea
| | - Joon Hyung An
- Department of Mechanical Engineering, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
5
|
Rong W, Zhang H, Mao Z, Chen L, Liu X. Improved Stable Drag Reduction of Controllable Laser-Patterned Superwetting Surfaces Containing Bioinspired Micro/Nanostructured Arrays. ACS OMEGA 2022; 7:2049-2063. [PMID: 35071893 PMCID: PMC8771958 DOI: 10.1021/acsomega.1c05507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Superwetting surfaces are widely used in many engineering fields for reducing energy and resistance loss. A facile and efficient method using laser etching has been used to fabricate and control superwettable drag reduction surfaces. Inspired by the self-cleaning theory of lotus leaves, we propose controllable patterned bionic superhydrophobic surfaces (BSSs) simulating the uneven micro/nanostructures of lotus leaves. The superhydrophobicity and drag reduction ratios at low velocities are highly improved using a laser ablation method on metal substrates. However, unstable air layers trapped on superhydrophobic surfaces are usually cut away by a high-velocity flow, which greatly reduces the drag reduction performance. The fabricated bionic superhydrophobic/hydrophilic surfaces (BSHSs) with alternated hydrophilic strips can build a large surface energy barrier to bind the three-phase contact line. It maintains the stable drag reduction by capturing the air bubbles attached to the hydrophilic strips at a high velocity. Three-dimensional simulation analysis and equipment to measure the weak friction of a self-assembled solid-liquid interface are used to explain the drag reduction mechanism and measure the drag reduction ratios at different flow speeds. BSSs achieve an improved drag reduction effect (maximum 52.76%) at a low velocity (maximum 1.5568 m/s). BSHSs maintain an improved and steady drag reduction effect at high speed. The drag reduction ratios can be maintained at about 30% at high speed, with a maximum value of 4.448 m/s. This research has broad application prospects in energy saving, liquid directional transportation, and shipping due to their robust superhydrophobic properties and stable drag reduction effect.
Collapse
Affiliation(s)
- Wanting Rong
- MEMS
Center, Harbin Institute of Technology, Harbin 150001, China
| | - Haifeng Zhang
- Key
Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS
Center, Harbin Institute of Technology, Harbin 150001, China
- State
Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Zhigang Mao
- MEMS
Center, Harbin Institute of Technology, Harbin 150001, China
| | - Liang Chen
- Key
Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS
Center, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaowei Liu
- Key
Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China
- MEMS
Center, Harbin Institute of Technology, Harbin 150001, China
- State
Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
6
|
Wang R, Liu P, Yu X, Sun X, Lai H, Cheng Z. Electrically Induced Underwater Superaerophilicity/Superaerophobicity Switching on Polypyrrole-Coated Mesh Films for Selective Bubble Permeation. Chempluschem 2022; 87:e202100491. [PMID: 35023641 DOI: 10.1002/cplu.202100491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Recently, materials with controllable superwettability have attracted much attention. However, almost all studies focused on controlling wetting of water and oil; research on underwater gas bubble wetting control is still rare. Herein, we report a mesh film prepared by coating polypyrrole (PPy) film on Ti mesh. Briefly, the film mesh is underwater superaerophilic when PPy is doped with perfluorooctanesulfonate ions (PFOS- ), and becomes underwater superaerophobic as the PFOS- are removed. The transition of the wettability can be triggered by electrical stimuli, which is attributed to the cooperative effect between the rough structure and chemical components variation. The controllable wettability allows adjustable bubble permeation. It can be envisioned that the film will provide potential applications in the future, such as underwater bubble capture/release and microfluidic devices.
Collapse
Affiliation(s)
- Ruijie Wang
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Pengchang Liu
- 41 Institute of the Sixth Research Institute, China Aerospace Science and Industry Corporation Institution, Hohhot, Inner Mongolia, 010000, P. R. China
| | - Xiaoyan Yu
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Xinchao Sun
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Hua Lai
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource & Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
7
|
Zhuang K, Yang X, Huang W, Dai Q, Wang X. Efficient Bubble Transport on Bioinspired Topological Ultraslippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61780-61788. [PMID: 34913334 DOI: 10.1021/acsami.1c19414] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) with micro-/nanostructures inspired by the Nepenthes pitcher plant exhibit excellent characteristics in terms of liquid repellency, self-healing, pressure tolerance, and so forth. In particular, stable bubble transport on SLIPS can be achieved when the surface is submerged in water. However, more precise and sophisticated bubble manipulations on SLIPS still remain challenging. In this research, a three-dimensional topological SLIPS combined with a submillimeter rice leaf-like groove array is fabricated to guide the underwater bubble motion precisely. The dynamic behavior and wetting state of bubbles on SLIPS were investigated experimentally. Furthermore, topological SLIPS with different geometric textures were designed and created for sophisticated bubble manipulations, such as fast bubble directional transport and collection. The results indicated that a lubricant with low surface tension and low viscosity could improve the adhesion force to bubbles and the transport velocity of bubbles, simultaneously. The current findings are helpful to deepen the cognition of interaction between bubbles and SLIPS and to promote their wide applications in the field of smart bubble manipulation and catalytic chemistry.
Collapse
Affiliation(s)
- Kai Zhuang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Xiaolong Yang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
- Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Wei Huang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Qingwen Dai
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| | - Xiaolei Wang
- National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China
| |
Collapse
|
8
|
Wang Z, Liu X, Ji J, Tao T, Zhang T, Xu J, Jiao Y, Liu K. Underwater Drag Reduction and Buoyancy Enhancement on Biomimetic Antiabrasive Superhydrophobic Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48270-48280. [PMID: 34592810 DOI: 10.1021/acsami.1c14342] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A superhydrophobic (SHB) surface with an excellent self-cleaning ability is of great significance in both human survival and industrial fields. However, it is still a challenge to achieve large-area preparation of antiabrasive SHB surfaces with great mechanical robustness for broader applications. Thus, a kind of facile SHB coating with excellent liquid repellency and antiresistance is constructed by spraying a fluorine-free suspension consisting of epoxy resin, hexadecyltrimethoxysilane (HDTMS), and silica nanoparticles on a glass sheet. The SHB coating not only shows high adhesion on various materials but also has high water repellency under various test conditions, including tape peeling after blade scraping, sandpaper abrasion, and immersing in a complex environment. Additionally, the SHB spheres coated with laser-induced microstructure armor could form a continuous gas cavity during the water entry process, which is essential to prolonging the drag reduction ability of SHB coatings in liquid. Finally, the prepared robust SHB coatings have been employed in underwater buoyancy enhancement and reducing fluid resistance, which may open new avenues for underwater drag reduction in the field of marine applications.
Collapse
Affiliation(s)
- Zhaochang Wang
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Xiaojun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Jiawei Ji
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Tongtong Tao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Tao Zhang
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Jimin Xu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Kun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
9
|
Stable drag reduction of anisotropic superhydrophobic/hydrophilic surfaces containing bioinspired micro/nanostructured arrays by laser ablation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126712] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Liu W, Chen X, Jiao Y. Liquid-Infused Microgrooved Slippery Surface Ablated by One-Step Laser Irradiation for Underwater Bubble Directional Manipulation and Anisotropic Spreading. MICROMACHINES 2021; 12:mi12050555. [PMID: 34068111 PMCID: PMC8152748 DOI: 10.3390/mi12050555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022]
Abstract
A pitcher plant is a kind of liquid-infused porous surface that imparts an excellent directional manipulation ability to in-air droplets or underwater bubbles, so it has attracted researchers' attention in both academic and industrial issues. In this work, a kind of liquid-infused anisotropic microgrooved slippery surface (LIAMSS) was fabricated through one-step femtosecond laser irradiation and lubricant coating technology. On the inclined LIAMSS, the underwater bubbles show great directional motion and anisotropic spreading ability under the effect of buoyancy. It should be noted that the interaction between the air and the lubricant layer plays a dominant role in determining the attachment and the movement of the underwater bubble, which could be ascribed to the competition between the adhesion resistance induced by contact angle hysteresis and the drive force induced by buoyancy. Additionally, the bubble shows obvious anisotropy on the LIAMSS with the increase in volume because of the restriction of the slippery area, and the bubble contact angle perpendicular to the grooved region is about 88○ when the bubble volume is 5 μL. We believe that the present findings would accelerate the application of this kind of bubble slippery surface in underwater gas collection and tail gas treatment.
Collapse
Affiliation(s)
- Wei Liu
- College of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China;
| | - Xuehui Chen
- College of Mechanical and Electrical Engineering, Anhui Jianzhu University, Hefei 230601, China;
- Correspondence: (X.C.); (Y.J.)
| | - Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
- Correspondence: (X.C.); (Y.J.)
| |
Collapse
|
11
|
Ji J, Jiao Y, Song Q, Zhang Y, Liu X, Liu K. Bioinspired Geometry-Gradient Metal Slippery Surface by One-Step Laser Ablation for Continuous Liquid Directional Self-Transport. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:5436-5444. [PMID: 33899490 DOI: 10.1021/acs.langmuir.1c00911] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid directional self-transport on the functional surface plays an important role in both industrial and academic fields. Inspired by the natural cactus spine and pitcher plant, we have successfully designed a kind of geometry-gradient slippery surface (GGSS) based on aluminum alloy materials which could actively achieve directional self-movement and also antigravity self-movement of various liquid droplets by topography gradient. The mechanism of liquid directional self-transport was theoretically explored through the mechanical analysis of the triple contact line, which was mainly related to the competition between the driven force induced by Laplace pressure and the adhesive force induced by viscous resistance. The adhesive force between the droplet and the surface was quantitatively measured using a homemade experimental apparatus and the results showed that the lateral adhesive force on the GGSS is much smaller than that on the original surface. Additionally, a series of quantitative experiments were conducted to explore the influence of droplet volume and vertex angle on the transport distance and velocity. Finally, we achieved the antigravity self-transport of the droplet on the inclined GGSS to further verify the self-transport ability of the GGSS. We believe that the proposed GGSS with liquid directional self-transport ability in the present work would provide some potential opportunities in modern tribo-systems to optimize the lubricating qualities, especially the lubrication and friction at the extreme contact interface.
Collapse
Affiliation(s)
- Jiawei Ji
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Jiao
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Qingrui Song
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Zhang
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaojun Liu
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kun Liu
- Institute of Tribology, School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
12
|
Jiao Y, Zhang Y, Lv X, Ji J, Wang Z, Su Y, Liu X, Liu K. In Situ Tuning Underwater Bubble Movement on Slippery Lubricant-Infused Anisotropic Microgrooved Surface by Unidirectional Mechanical Strain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2140-2145. [PMID: 33523660 DOI: 10.1021/acs.langmuir.0c03330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Numerous studies have focused on designing and fabricating functional interfaces that control movement behavior of underwater gas bubbles, which are ubiquitous in a variety of natural and industrial settings. Nevertheless, developing surfaces with in situ tunable bubble movement remain elusive because of current complicated tuning strategies on the specific materials. Inspired by natural pitcher plant and rice leaves, here we report a kind of slippery lubricant-infused anisotropic microgrooved surface (SLI-AMGS) fabricated by femtosecond laser direct writing technology and realize the in situ reversible switching between underwater bubble sliding and pinning by unidirectional mechanical tensile strain. Different experimental parameters including lubricant oil film thickness, bubble volumes and laser power have been researched to manifest the relationship with bubble sliding behaviors. The underlying mechanism of in situ reversible switching mainly lies on the decrease of the lubricant oil film thickness during the process of mechanical stretching in which the uniform and stable oil film layer becomes uneven. This uneven lubricant oil film results in an extraordinary increase of contact angle hysteresis and resistance. At last, we demonstrate a real-time dynamic modulation of the underwater bubble on the SLI-AMGS with a changing mechanical tensile strain for several repeatable times in different acid-based environments. Our work manifests great potential applications in widespread fields including underwater bubble microfluidics and microbubble robots.
Collapse
Affiliation(s)
- Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Lv
- School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jiawei Ji
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Zhaochang Wang
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yahui Su
- Key Laboratory of Computational Intelligence and Signal Processing Ministry of Education, Anhui University, Hefei, Anhui 230039, China
| | - Xiaojun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Kun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
13
|
Sajid HU, Kiran R. Improving the wettability of structural steels by employing ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Liu X, Yang F, Guo J, Fu J, Guo Z. New insights into unusual droplets: from mediating the wettability to manipulating the locomotion modes. Chem Commun (Camb) 2020; 56:14757-14788. [PMID: 33125006 DOI: 10.1039/d0cc05801g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ability to manipulate droplets can be utilized to develop various smart sensors or actuators, endowing them with fascinating applications for drug delivery, detection of target analytes, environmental monitoring, intelligent control, and so on. However, the stimuli-responsive superhydrophobic/superhydrophilic materials for normal water droplets cannot satisfy the requirements from some certain circumstances, i.e., liquid lenses and biosensors (detection of various additives in water/blood droplets). Stimuli-responsive wetting/dewetting behaviors of exceptional droplets are open issues and are attracting much attention from across the world. In this perspective article, the unconventional droplets are divided into three categories: ionic or surfactant additives in water droplets, oil droplets, and bubble droplets. We first introduce several classical wettability models of droplets and some methods to achieve wettability transition. The unusual droplet motion is also introduced in detail. There are four main types of locomotion modes, which are vertical rebound motion, lateral motion, self-propulsion motion, and anisotropic wettability controlled sliding behavior. The driving mechanism for the droplet motion is briefly introduced as well. Some approaches to achieve this manipulation goal, such as light irradiation, electronic, magnetic, acid-base, thermal, and mechanical ways will be taken into consideration. Finally, the current researches on unconventional droplets extending to polymer droplets and liquid metal droplets on the surface of special wettability materials are summarized and the prospect of unconventional droplet research directions in the field of on-demand transport application will be proposed.
Collapse
Affiliation(s)
- Xianchen Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Fuchao Yang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jie Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China.
| | - Jing Fu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and School of Chemistry and Environment Engineering, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, School of Materials Science & Engineering and Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
15
|
Shi X, Zhang Y, Wu D, Wu T, Jiang S, Jiao Y, Wu S, Zhang Y, Hu Y, Ding W, Chu J. Femtosecond Laser-Assisted Top-Restricted Self-Growth Re-Entrant Structures on Shape Memory Polymer for Dynamic Pressure Resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12346-12356. [PMID: 32967422 DOI: 10.1021/acs.langmuir.0c02335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bioinspired surface material with re-entrant texture has been proven effective in exhibiting good pressure resistance to droplets with low surface tension under static conditions. In this work, we combined femtosecond laser cutting with shape memory polymer (SMP) and tape to fabricate re-entrant micropillar arrays by proposing a top-restricted self-growth (TRSG) strategy. Our proposed TRSG strategy simplifies the fabrication process and improves the processing efficiency of the re-entrant structure-based surface material. The structural parameters of the re-entrant micropillar array (microdisk diameter D, center-to-center distance P, and height H) can be adjusted through our TRSG processing method. To better characterize the anti-infiltration ability of various re-entrant micropillars, we studied the dynamic process of ethylene glycol droplet deformation by applying external vertical vibration to the surface material. Three parameters (vibration mode, amplitude, and frequency) of the external excitation and structural parameters of the re-entrant micropillar array were systemically investigated. We found that the surface material had better dynamic pressure resistance when P and D of the re-entrant texture were 650 and 500 μm, respectively, after heating for 6 min. This work provides new insights into the preparation and characterization of the surface material, which may find potential applications in microdroplet manipulation, drug testing, and biological sensors.
Collapse
Affiliation(s)
- Xiangchao Shi
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yachao Zhang
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Tao Wu
- Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026, China
| | - Shaojun Jiang
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Sizhu Wu
- School of Instrument Science and Optoelectronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Weiping Ding
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behaviour and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Wang T, Zheng M, Wang L, Ji L, Wang S. Crucial role of an aerophobic substrate in bubble-propelled nanomotor aggregation. NANOTECHNOLOGY 2020; 31:355504. [PMID: 32403095 DOI: 10.1088/1361-6528/ab92c6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A bubble-propelled autonomous micro/nanomotor (MNM) is a device driven by a catalytic reaction that involves a solid-liquid-gas interface, which in turn is a key factor in achieving effective propulsion. Generally, modifying the liquid phase by adding surfactants can improve propulsion, but it has several disadvantages. It is reported that the rapid separation of bubbles will accelerate the movement of MNMs. Our focus is on methods to drive the motor efficiently by controlling the wettability of the solid phase, accelerating bubble separation without compromising the activity of the catalyst. In this study, different from most of the previous studies on moving MNMs, a static Pt loaded TiO2 nanowire aggregation was utilized as a nanomotor aggregation to investigate the wettability of the solid phase on bubble release. In comparison to an underwater aerophilic solid phase, in which bubbles are strongly held on the surface, the nanomotor's aggregation showed good aerophobicity. In particular, after UV illumination for 30 s, the nanomotor's aggregation became superaerophobic, which significantly promoted the release of O2 bubbles. The results of this study reveal how to modify the detachment behaviour of bubbles by controlling the aerophobic behaviour of solid surfaces of autonomous MNMs in an aqueous medium.
Collapse
Affiliation(s)
- Tao Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | | | | | |
Collapse
|
17
|
Li C, Jiao Y, Lv X, Wu S, Chen C, Zhang Y, Li J, Hu Y, Wu D, Chu J. In Situ Reversible Tuning from Pinned to Roll-Down Superhydrophobic States on a Thermal-Responsive Shape Memory Polymer by a Silver Nanowire Film. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13464-13472. [PMID: 32100537 DOI: 10.1021/acsami.9b20223] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Shape memory polymer (SMP) surfaces with tunable wettability have attracted extensive attention due to their widespread applications. However, there have been rare reports on in situ tuning wettability with SMP materials. In this paper, we reported a kind of distinct superhydrophobic SMP microconed surface on the silver nanowire (AgNW) film to achieve in situ reversible transition between pinned and roll-down states. The mechanism is taking advantage of the in situ heating functionality of the silver nanowire film by voltage, which provides the transition energy for SMP to achieve the fixation and recovery of temporary shape. It is noteworthy that the reversible transition could be repeated many times (>100 cycles), and we quantitatively investigate the shape memory ability of microcones with varied height and space under different applied voltages. These results show that the tilted microcones could recover its original upright state under a small voltage (4-11 V) in a short time, and the shortest recovery time is about 0.5 min under an applied voltage of ∼10 V. Finally, we utilize SMP microcone arrays with tunable wettability to realize lossless droplet transportation, and the tilted microconed surface also achieves liquid unidirectional transport due to its anisotropic water adhesion force. The robust microconed SMP surface with reversible morphology transitions will have far-ranging applications including droplet manipulation, reprogrammable fog harvesting, and so on.
Collapse
Affiliation(s)
- Chuanzong Li
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Lv
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Sizhu Wu
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
18
|
Lian Z, Xu J, Yu Z, Yu P, Ren W, Wang Z, Yu H. Bioinspired Reversible Switch between Underwater Superoleophobicity/Superaerophobicity and Oleophilicity/Aerophilicity and Improved Antireflective Property on the Nanosecond Laser-Ablated Superhydrophobic Titanium Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6573-6580. [PMID: 31742380 DOI: 10.1021/acsami.9b17639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this work, the bioinspired reversible switch between underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity and improved antireflective property were successfully demonstrated on the nanosecond laser-structured titanium surfaces. Titanium materials were first transformed to be superhydrophobic after nanosecond laser ablation and low-temperature annealing treatments, showing oleophilicity/aerophilicity in water. If the surfaces were prewetted with absolute ethanol and then immersed into water, the surfaces showed superoleophobicity/superaerophobicity. More importantly, the underwater oleophilicity/aerophilicity of the surfaces could be easily recovered by natural drying, and the switch between the underwater superoleophobicity/superaerophobicity and oleophilicity/aerophilicity could be repeated many cycles. Moreover, based on the original antireflective performance of the surface of the laser-ablated micro/nanoscale structures, we demonstrated that the inspired improved antireflective property could be skillfully realized by the prewetting treatment. The developed bioinspired multifunctional materials provide a versatile platform for the potential applications, such as controlling oil droplets, bubbles, and optical behavior.
Collapse
|
19
|
Gao A, Fan H, Zhang G, Zhao S, Cui J, Yan Y. Facile construction of gas diode membrane towards in situ gas consumption via coupling two chemical reactions. J Colloid Interface Sci 2019; 557:282-290. [PMID: 31525665 DOI: 10.1016/j.jcis.2019.08.105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/24/2019] [Accepted: 08/28/2019] [Indexed: 11/19/2022]
Abstract
Controlling the bubbles' behavior on a solid surface is significant for exploring more related applications and thus recently has attracted increased investigations. Based on this, a Janus poly (l-lactic acid) (PLLA) membrane with definitely opposite water wettability in air and opposite bubble wettability underwater was successfully fabricated in this work. The obtained Janus membrane exhibited unidirectional transport for air bubble underwater from the superaerophilic side to superaerophobic side, meanwhile prevented the permeation of water medium from both sides under low pressure. This special membrane was designed to couple two chemical reactions. During the designed chemical reaction process, the feature of bubble unidirectional transport allowed the carbon dioxide (CO2) produced in one reaction system to transport through the resultant membrane into another reaction system, wherein it could be consumed. Meanwhile, the anti-water-permeation function of the membrane guaranteed that the two chemical reactions could be performed independently. We believe that the present research could broaden the potential applications of membranes with super-wetting character for gas bubbles.
Collapse
Affiliation(s)
- Ailin Gao
- Key Lab of Rubber-plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Huiqin Fan
- Key Lab of Rubber-plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Guangfa Zhang
- Key Lab of Rubber-plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Zhao
- Key Lab of Rubber-plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jian Cui
- Key Lab of Rubber-plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yehai Yan
- Key Lab of Rubber-plastics, Ministry of Education/Shandong Provincial Key Lab of Rubber-plastics, School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
20
|
Li J, Guo Z. Patterned Slippery Surface for Bubble Directional Transportation and Collection Fabricated via a Facile Method. RESEARCH 2019; 2019:9139535. [PMID: 31922143 PMCID: PMC6946277 DOI: 10.34133/2019/9139535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Directional manipulation of underwater bubbles on a solid surface has attracted much attention due to its large-scale applications such as electrocatalytic gas evolution reactions, wastewater remediation, and solar energy harvesting. In this work, the patterned slippery surface (PSS) is fabricated via a facile method where the patterned pathways are fabricated by means of etching the pristine copper sheet. These patterned surfaces consisted of pristine copper and modified oxide copper which exhibit different wettability for bubble and water. The superhydrophobic and aerophilic surface can efficiently capture bubbles, and the infused oil layer is beneficial for reducing the resistance during transportation. Furthermore, the bubble can move upward, downward, and horizontally. Hence, it is easy to realize the bubble's transportation and collection on the functional surfaces.
Collapse
Affiliation(s)
- Jian Li
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.,State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
21
|
Chu D, Sun X, Hu Y, Duan JA. Substrate-independent, switchable bubble wettability surfaces induced by ultrasonic treatment. SOFT MATTER 2019; 15:7398-7403. [PMID: 31464333 DOI: 10.1039/c9sm01404g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surfaces with switchable bubble wettability have attracted increasing interest due to their wide applications in the field of underwater drag reduction, gas collection and site water treatment. In this paper, a fast, simple and substrate-independent method that achieved reversible switching between underwater superaerophilicity and superaerophobicity on femtosecond laser induced superhydrophobic surfaces by alternative ultrasonic treatment in water and drying in air was reported. After laser processing, the as-prepared superhydrophobic surface showed underwater superaerophilicity due to the trapped air layer. In contrast, after ultrasonic treatment, the trapped air layer was removed and after being dipped into water again, the surfaces showed underwater superaerophobicity. The underwater superaerophobic surface easily recovered its superaerophilicity by drying the sample in air. Therefore, the as-prepared superhydrophobic surfaces could capture or repel air bubbles in water by selectively switching between underwater superaerophilicity and superaerophobicity. Furthermore, by combining hole processing and double side treatment, the sample allowed bubbles to pass through when the surface had underwater superaerophilicity and the sample intercepted the bubbles when the surface had underwater superaerophobicity. This switchable bubble wettability may provide an efficient route for gas bubble and water separation.
Collapse
Affiliation(s)
- Dongkai Chu
- State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, 410083, P. R. China.
| | | | | | | |
Collapse
|
22
|
Zhang Y, Jiao Y, Chen C, Zhu S, Li C, Li J, Hu Y, Wu D, Chu J. Reversible Tuning between Isotropic and Anisotropic Sliding by One-Direction Mechanical Stretching on Microgrooved Slippery Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10625-10630. [PMID: 31291116 DOI: 10.1021/acs.langmuir.9b01035] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dynamically responsive liquid-infused interfacial materials have broad technological implications in manipulating droplet motions. However, present works are mainly about reversible tuning of the isotropic slippery surface; the reversible switching between isotropic and anisotropic sliding has not been deeply explored. Here, we report a kind of liquid-infused elastic-grooved surface (LIEGS) by femtosecond laser ablation and realize reversible switching between isotropic and anisotropic sliding by one-direction mechanical stretching. Under mechanical stretching and strain release, droplet motion can be reversibly switched between the sliding and pinned states along the perpendicular direction to the grooves, whereas the droplet keeps sliding along the parallel direction to the grooves. The mechanism of reversible switching mainly contributes to the decrease of film thickness during the stretching process in which the film thickness decreases from 13 to 4 μm with the increase of the strain from 0 to 60%. Finally, we demonstrate the real-time flexible control over a droplet sliding/pinned on the strain-changing LIEGS.
Collapse
Affiliation(s)
- Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Chao Chen
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Suwan Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Chuanzong Li
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
23
|
Liu Z, Zhang H, Han Y, Huang L, Chen Y, Liu J, Wang X, Liu X, Ling S. Superaerophilic Wedge-Shaped Channels with Precovered Air Film for Efficient Subaqueous Bubbles/Jet Transportation and Continuous Oxygen Supplementation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23808-23814. [PMID: 31252508 DOI: 10.1021/acsami.9b08085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pumpless and directed gas transportation in aqueous environments has promising application prospects in various domains. So far, researches on gas transportation based on superaerophilic channels are limited to the transportation of fewer bubbles with low transportation velocity. How to enhance the transportation velocity and realize the transportation of a large quantity of bubbles (especially for gas jet) for practical applications remain unclear. Here, a half-open wedge-shaped channel with subaqueous superaerophilicity is fabricated, which demonstrates excellent bubble affinity and can realize the pumpless and directed bubble transportation. It is proposed that a Laplace force is the main driving force during the transportation and the magnitude of the force is influenced by both the wedge angle of the channel and geometric parameters of the bubble whereas the direction of the force is determined by the orientation of the channel. By applying a precovered air film on the subaqueous superaerophilic wedge-shaped channel, bubbles demonstrate a higher transportation velocity. Additionally, the prepared channel shows an outstanding affinity to oxygen jet at high flux, which can be utilized to transport oxygen for continuous subaqueous oxygen supplementation.
Collapse
Affiliation(s)
- Ziai Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Heng Zhang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yuqi Han
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Liu Huang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Yang Chen
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Jiyu Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Xuyue Wang
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Xin Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Siying Ling
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116024 , P. R. China
| |
Collapse
|
24
|
Lv X, Jiao Y, Wu S, Li C, Zhang Y, Li J, Hu Y, Wu D. Anisotropic Sliding of Underwater Bubbles On Microgrooved Slippery Surfaces by One-Step Femtosecond Laser Scanning. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20574-20580. [PMID: 31090393 DOI: 10.1021/acsami.9b06849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Slippery liquid-infused surfaces (SLIPS) with excellent liquid sliding abilities have attracted great attention due to their multifunctions in broad fields. However, current research is mainly concentrated on the isotropic SLIPS, and there are few studies about the fabrication of anisotropic SLIPS and the investigation of anisotropic bubble sliding. Herein, we reported a kind of distinct periodic microgrooved slippery surface (MGSS) by one-step femtosecond laser scanning and realized bubble anisotropic sliding in a liquid system. The MGSS enables the bubble to slide along the direction of grooves but prevents the bubble from sliding along the perpendicular direction to the groove. The mechanism is mainly related to the energy barrier difference caused by the spin-coating oil film thickness and the groove height along the parallel and perpendicular directions. The relationship between the driven force of buoyancy and the resistance of contact angle hysteresis was investigated by theoretical analysis, and the theoretical prediction showed a great adherence with the experimental results. We also studied the influence of laser power and groove period on the degree of anisotropy, and it was found that the groove space has little effect on the degree of anisotropy and the strongest bubble anisotropy can reach nearly 80°. Finally, the MGSS was successfully used in anisotropic bubble transportation on flat and curved surfaces. We believe that such functional surfaces will be promising candidates for manipulating bubble directional sliding behavior and further underwater gas collection.
Collapse
Affiliation(s)
- Xiaodong Lv
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Sizhu Wu
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Chuanzong Li
- School of Instrument Science and Opto-electronics Engineering , Hefei University of Technology , Hefei 230009 , China
| | - Yiyuan Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
25
|
Yong J, Singh SC, Zhan Z, Chen F, Guo C. Substrate-Independent, Fast, and Reversible Switching between Underwater Superaerophobicity and Aerophilicity on the Femtosecond Laser-Induced Superhydrophobic Surfaces for Selectively Repelling or Capturing Bubbles in Water. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8667-8675. [PMID: 30698002 PMCID: PMC6396345 DOI: 10.1021/acsami.8b21465] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 05/30/2023]
Abstract
In this paper, the reversible switching between underwater (super-) aerophilicity and superaerophobicity was achieved on various femtosecond (fs) laser-induced superhydrophobic surfaces. A range of materials including Al, stainless steel, Cu, Ni, Si, poly(tetrafluoroethylene), and polydimethylsiloxane were first transformed to superhydrophobic after the formation of surface microstructures through fs laser treatment. These surfaces showed (super-) aerophilicity when immersed in water. In contrast, if the surface was prewetted with ethanol and then dipped into water, the surfaces showed superaerophobicity in water. The underwater aerophilicity of the superhydrophobic substrates could easily recover by drying. The switching between the underwater aerophilicity and superaerophobicity can be fast repeated many cycles and is substrate-independent in stark contrast to common wettability-switchable surfaces based on stimuli-responsive chemistry. Therefore, the as-prepared superhydrophobic surfaces can capture or repel air bubbles in water by selectively switching between underwater superaerophobicity and aerophilicity. Finally, we demonstrated that the underwater bubbles could pass through an underwater aerophilic porous sheet but were intercepted by an underwater superaerophobic porous sheet. The selective passage of the underwater bubbles was achieved by the reversible switching between the underwater aerophilicity and superaerophobicity. We believe that this substrate-independent and fast method of switching air wettability has important applications in controlling air behavior in water.
Collapse
Affiliation(s)
- Jiale Yong
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
- Shaanxi
Key Laboratory of Photonics Technology for Information, School of
Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Subhash C. Singh
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Zhibing Zhan
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Feng Chen
- Shaanxi
Key Laboratory of Photonics Technology for Information, School of
Electronics & Information Engineering, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Chunlei Guo
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
26
|
Yang X, Choi WT, Liu J, Liu X. Droplet Mechanical Hand Based on Anisotropic Water Adhesion of Hydrophobic-Superhydrophobic Patterned Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:935-942. [PMID: 30630312 DOI: 10.1021/acs.langmuir.8b03969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superhydrophobic copper surfaces patterned with non-round hydrophobic areas were fabricated by a combination of through-mask chemical oxidation and fluorocarbon film deposition techniques. The anisotropic sliding resistance of droplets on typical non-round hydrophobic patterns such as semicircle, V-shape, and line segment hydrophobic patterns was observed. The dependence of sliding anisotropy on the pattern shape and dimensions was investigated. Results showed that the experimental sliding resistance was in good agreement with the calculated data using a classical drag-resistance model (Furmidge equation). By taking advantage of the anisotropic sliding resistance, these patterned surfaces can be used as droplet mechanical hands to capture, transfer, mix, and release in situ micro droplets by simply moving the surfaces in different directions. A droplet pinned on a non-round hydrophobic pattern can be captured by lifting a surface with another non-round hydrophobic pattern in a large-sliding-resistance direction after touching it, while the captured droplet can be released in situ with nearly no mass loss by horizontally moving the surface in the low-sliding-resistance direction. The lossless droplet manipulations using hydrophobic/superhydrophobic patterned surfaces have advantages of being low in cost and easy to operate and may have great promising applications to high throughput drug screening, molecular detection, and other lab-on-chip devices.
Collapse
Affiliation(s)
- Xiaolong Yang
- National Key Laboratory of Science and Technology on Helicopter Transmission , Nanjing University of Aeronautics and Astronautics , Nanjing 210016 , PR China
| | - Won Tae Choi
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Jiyu Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116023 , PR China
| | - Xin Liu
- Key Laboratory for Precision and Non-traditional Machining Technology of the Ministry of Education , Dalian University of Technology , Dalian 116023 , PR China
| |
Collapse
|
27
|
Jiao Y, Lv X, Zhang Y, Li C, Li J, Wu H, Xiao Y, Wu S, Hu Y, Wu D, Chu J. Pitcher plant-bioinspired bubble slippery surface fabricated by femtosecond laser for buoyancy-driven bubble self-transport and efficient gas capture. NANOSCALE 2019; 11:1370-1378. [PMID: 30604827 DOI: 10.1039/c8nr09348b] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Functional materials with specific bubble wettability play an important role in manipulating the behavior of underwater gas bubbles. Inspired by the natural Pitcher plant, we designed a large area lubricated slippery surface (LSS) by femtosecond laser processing for buoyancy-driven bubble self-transport and efficient gas capture. The mechanism of bubble self-transport involves a competition between the buoyancy and the resistance due to drag force and hysteresis. The transportation velocity of the bubbles on the LSS is strongly associated with the surface tension of the lubricants. The lower the surface tension, the higher the sliding velocity. On the basis of sufficient bubble adhesion, the shaped LSS tracks are fabricated to guide the bubble movement and achieve continuous manipulation between bubble merging and detachment. We demonstrate that these designable pathways on the LSS not only manipulate bubble behavior in a two-dimensional space but also realize three-dimensional movement of bubbles on the Mobius-striped LSS. Finally, a gas catcher decorated with large area LSS is manufactured for underwater bubble capture, which maintains a high capture efficiency (more than 90%) with an air output of ∼3.4 L min-1. This finding reveals a meaningful interaction between the underwater bubbles and the LSS surface, accelerating the applications of bubble slippery surfaces in underwater flammable gas collection and tail gas treatment.
Collapse
Affiliation(s)
- Yunlong Jiao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei 230026, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Gao D, Cao J, Guo Z. Underwater manipulation of oil droplets and bubbles on superhydrophobic surfaces via switchable adhesion. Chem Commun (Camb) 2019; 55:3394-3397. [DOI: 10.1039/c9cc00271e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UV light-responsive reversible switching of oil droplet and bubble adhesion underwater is realized to manipulate oil droplet or bubble motion and transportation.
Collapse
Affiliation(s)
- Dejun Gao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
- State Key Laboratory of Solid Lubrication
| | - Jian Cao
- State Key Laboratory of Advanced Welding and Joining
- Harbin Institute of Technology
- Harbin 150001
- P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou
- P. R. China
| |
Collapse
|
29
|
Yin K, Yang S, Dong X, Chu D, Duan JA, He J. Ultrafast Achievement of a Superhydrophilic/Hydrophobic Janus Foam by Femtosecond Laser Ablation for Directional Water Transport and Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31433-31440. [PMID: 30183242 DOI: 10.1021/acsami.8b11894] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Water scarcity is a serious global challenge, especially in arid and desert regions. Functional devices for directional water transport and fog collection have received increasing attention. Existing methods and technologies suffer from low fog-collecting efficiencies, complicated fabrication processes, and high fabrication costs. Herein, we report a simple and low-cost method to rapidly fabricate nanoparticle-covered microstructures on one side of a copper foam surface, using one-step femtosecond laser direct writing technology, which enormously improved processing efficiency. The resulting foam exhibits superhydrophilic/hydrophobic Janus properties. The foam allows water droplets to pass from the hydrophobic side to the superhydrophilic side, but not in the opposite direction. The Janus foam can therefore be used for harvesting water in fog environments, and the maximum water-collecting efficiency is 3.7 g cm-2 h-1, which is much better than existing data. The Janus foam exhibits excellent stability during abrasion and hydraulic wash tests. This water-collecting design may provide an efficient route for overcoming future water shortages.
Collapse
Affiliation(s)
| | | | | | - Dongkai Chu
- The Institute of Optics , University of Rochester , Rochester , New York 14627 , United States
| | | | | |
Collapse
|