1
|
Cui C, Fan Y, Chen Y, Wei R, Lv J, Yan M, Jiang D, Liu Z. Molecular imprinting-based Ru@SiO 2-embedded covalent organic frameworks composite for electrochemiluminescence detection of cyanidin-3-O-glucoside. Talanta 2024; 274:125997. [PMID: 38569369 DOI: 10.1016/j.talanta.2024.125997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
Cyanidin-3-O-glucoside (C3G), a natural antioxidant, plays multiple physiological or pathological roles in maintaining human health; thereby, designing advanced sensors to achieve specific recognition and high-sensitivity detection of C3G is significant. Herein, an imprinted-type electrochemiluminescence (ECL) sensing platform was developed using core-shell Ru@SiO2-CMIPs, which were prepared by covalent organic framework (COF)-based molecularly imprinted polymers (CMIPs) embedded in luminescent Ru@SiO2 cores. The C3G-imprinted COF shell not only helps generate a steady-enhanced ECL signal, but also enables specific recognition of C3G. When C3G is bound to Ru@SiO2-CMIPs with abundant imprinted cavities, resonance energy transfer (RET) behavior is triggered, resulting in a quenched ECL response. The constructed Ru@SiO2-CMIPs nanoprobes exhibit ultra-high sensitivity, absolute specificity, and an ultra-low detection limit (0.15 pg mL-1) for analyzing C3G in food matrices. This study provides a means to construct an efficient and reliable molecular imprinting-based ECL sensor for food analysis.
Collapse
Affiliation(s)
- Chen Cui
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Yunfeng Fan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Yaxuan Chen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Renlong Wei
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jie Lv
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Meng Yan
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhimin Liu
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Maru K, Singh A, Jangir R, Jangir KK. Amyloid detection in neurodegenerative diseases using MOFs. J Mater Chem B 2024; 12:4553-4573. [PMID: 38646795 DOI: 10.1039/d4tb00373j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Neurodegenerative diseases (amyloid diseases such as Alzheimer's and Parkinson's), stemming from protein misfolding and aggregation, encompass a spectrum of disorders with severe systemic implications. Timely detection is pivotal in managing these diseases owing to their significant impact on organ function and high mortality rates. The diverse array of amyloid disorders, spanning localized and systemic manifestations, underscores the complexity of these conditions and highlights the need for advanced detection methods. Traditional approaches have focused on identifying biomarkers using imaging techniques (PET and MRI) or invasive procedures. However, recent efforts have focused on the use of metal-organic frameworks (MOFs), a versatile class of materials known for their unique properties, in revolutionizing amyloid disease detection. The high porosity, customizable structures, and biocompatibility of MOFs enable their integration with biomolecules, laying the groundwork for highly sensitive and specific biosensors. These sensors have been employed using electrochemical and photophysical techniques that target amyloid species under neurodegenerative conditions. The adaptability of MOFs allows for the precise detection and quantification of amyloid proteins, offering potential advancements in early diagnosis and disease management. This review article delves into how MOFs contribute to detecting amyloid diseases by categorizing their uses based on different sensing methods, such as electrochemical (EC), electrochemiluminescence (ECL), fluorescence, Förster resonance energy transfer (FRET), up-conversion luminescence resonance energy transfer (ULRET), and photoelectrochemical (PEC) sensing. The drawbacks of MOF biosensors and the challenges encountered in the field are also briefly explored from our perspective.
Collapse
Affiliation(s)
- Ketan Maru
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Amarendra Singh
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | - Ritambhara Jangir
- Sardar Vallabhbhai National Institute of Technology, Ichchanath, Surat-395 007, Gujarat, India.
| | | |
Collapse
|
3
|
Zheng K, Pan J, Yu Z, Yi C, Li MJ. A smartphone-assisted electrochemiluminescent detection of miRNA-21 in situ using Ru(bpy) 32+@MOF. Talanta 2024; 268:125310. [PMID: 37866303 DOI: 10.1016/j.talanta.2023.125310] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/08/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
We have proposed a signal dual-amplification electrochemiluminescence (ECL) strategy based on tris(2,2'-bipyridyl)ruthenium(II) (Ru(bpy)32+) as chromophores confined with three-dimensional (3D) zinc oxalate metal-organic frameworks (Ru(bpy)32+@MOFs) for the detection of miRNA-21. The three-dimensional chromophore connectivity in zinc oxalate MOFs provided a network among Ru(bpy)32+ units, shielding the chromophores from solvent molecules and resulting in high Ru(II) complex emission efficiency. Additionally, we discovered that magnetic beads (MBs) used as carrier for enriched signals contribute to enhanced ECL intensity of the chromophore. To evaluate its clinical application, we applied this method to determine the concentration of miRNA-21 solutions ranging from 1.56 to 100 nM, obtaining a calibration curve of ECL intensity versus logarithm of concentration (logC) of miRNA-21 with a high correlation coefficient. This work demonstrates the construction of a signal amplification strategy ECL biosensor for miRNA using Ru(bpy)32+@MOF systems and its application in ECL detection for analyte methodology.
Collapse
Affiliation(s)
- Kai Zheng
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, China
| | - Jiangfei Pan
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zipei Yu
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Changqing Yi
- Key Laboratory of Sensing Technology and Biomedical Instruments (Guangdong Province), School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, 510006, China; Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China.
| | - Mei-Jin Li
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, China.
| |
Collapse
|
4
|
Hu H, Cui H, Yin X, Fan Q, Shuai H, Zhang J, Liao F, Xiong W, Jiang H, Fan H, Liu W, Wei G. Dual-mode fluorescence and electrochemiluminescence sensors based on Ru-MOF nanosheets for sensitive detection of apoE genes. J Mater Chem B 2024; 12:701-709. [PMID: 38131524 DOI: 10.1039/d3tb01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A fluorescence-electrochemiluminescence (FL-ECL) dual-mode sensor for apoE gene detection has been developed, leveraging the unique properties of ruthenium metal organic framework nanosheets (RuMOFNSs). The system utilizes the quenching effect of the Ru(bpy)32+ ECL signal by ferrocene, leading to the synthesis of a multi-electron electrical signal marker, bisferrocene. By immobilizing the P-DNA on RuMOFNSs, bisferrocene quenches both FL and ECL signals. The addition of T-DNA and the consequent formation of double-stranded DNA enable the ExoIII enzyme to excise the bisferrocene fragment, restoring the signals. The sensor demonstrates wide detection linear ranges (1 fM to 1 nM for FL and 0.01 fM to 10 pM for ECL) and remarkable sensitivity (0.048 fM for FL and 0.016 fM for ECL). The dual-mode design offers enhanced reliability through a self-correction feature, reducing false positives. Compared to single-mode sensors, the dual-mode sensor shows significant advantages. Real-world testing confirms the sensor's capacity for robust detection in actual samples, underscoring its promising application in early disease diagnosis. This innovative approach opens up avenues for multi-signal response sensors, offering significant potential for diagnostic technologies.
Collapse
Affiliation(s)
- Huiting Hu
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hanfeng Cui
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Xia Yin
- JiangXi Province Hospital of Integrated Chinese and Western Medicine, Nan Chang, JiangXi 330004, China
| | - Qiqi Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hai Shuai
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Jing Zhang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Fusheng Liao
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Wei Xiong
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hedong Jiang
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Hao Fan
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Wenming Liu
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| | - Guobing Wei
- JiangXi University of Chinese Medicine, Nan Chang, JiangXi 330004, China.
| |
Collapse
|
5
|
Yang J, Qin D, Wang N, Wu Y, Fang K, Deng B. Electrochemiluminescence resonance energy transfer between a Ru-ZnMOF self-enhanced luminophore and a double quencher ZnONF@PDA to detect NSE. Analyst 2023; 148:4539-4547. [PMID: 37585262 DOI: 10.1039/d3an01106b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The construction of advanced systems capable of accurately detecting neuron-specific enolase (NSE) is essential for rapidly diagnosing small-cell lung cancer. In this study, an electrochemiluminescence (ECL) resonance energy transfer immunosensor was proposed for the ultra-sensitive detection of NSE. The co-reactants C2O42- and Ru(bpy)32+ were integrated to form a self-enhanced ECL luminophore (Ru-ZnMOF) as the ECL donor. The abundant carboxyl functional groups of Ru-ZnMOF supported antibody 1 via an amidation reaction. Polydopamine-modified zinc dioxide nanoflowers, as ECL acceptors, inhibited Ru-ZnMOF ECL signaling. The linear range of NSE was 10 fg mL-1 to 100 ng mL-1 with a detection limit of 3.3 fg mL-1 (S/N = 3), which is suitably low for determining NSE in real samples.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Na Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Kanjun Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
6
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
7
|
Cui C, Lin X, Lv J, Guo H, Shen L, Xiang G, Zhao W, Jiang D. Electrochemiluminescence resonance energy transfer between Ru(bpy) 32+@Cu 3(HHTP) 2 and GO-Au composites for C-reactive protein detection. Talanta 2023; 263:124709. [PMID: 37267886 DOI: 10.1016/j.talanta.2023.124709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023]
Abstract
Designing innovative electrochemiluminescence (ECL) immunosensors is critical for the detection of biomarkers with a low concentration and the precise evaluation of clinical diseases. Herein, a Cu3(hexahydroxytriphenylene)2 (Cu3(HHTP)2) nanoflake-based sandwich-type ECL immunosensor was constructed for C-Reactive Protein (CRP) detection. The Cu3(HHTP)2 nanoflake, an electronically conductive metal-organic framework (MOF), has a periodically arranged porous structure with a cavity size of 2 nm, which not only accommodates a large amount of Ru(bpy)32+ but also confines the spatial diffusion of active species. Therefore, the Ru(bpy)32+-loaded Cu3(HHTP)2 nanocomplex (Ru@CuMOF) as an ECL emitter exhibits an enhanced ECL efficiency. The ECL resonance energy transfer (ECL-RET) was accomplished by combining Ru@CuMOF used as a donor with gold nanoparticles-functionalized graphene oxide nanosheets (GO-Au) utilized as an acceptor. This should be ascribed to the fact that the ECL emission spectrum of Ru@CuMOF shows the strongest signal intensity at 615 nm, overlapping with the absorption spectrum of GO-Au at 580-680 nm. Targeted detection of CRP in human serum samples was achieved by the sandwich-type immunosensor based on the ECL-RET mechanism with a 0.26 pg mL-1 detection limit. The electro-activated hybrids of Cu3(HHTP)2 and ECL emitters provide a new sensing strategy for the high-sensitivity detection of disease markers.
Collapse
Affiliation(s)
- Chen Cui
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China.
| | - Xinyao Lin
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Jie Lv
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Hang Guo
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Lu Shen
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Guoqiang Xiang
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Wenjie Zhao
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Dechen Jiang
- State Key Laboratory of Analytical Chemistry for Life and School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Yang J, Qin D, Wang N, Wu Y, Fang K, Deng B. Au@NiFeMOFs as the signal quencher of Au@g-C 3N 4NSs composite for sensitive "on-off" electrochemiluminescence immunosensing of beta-2-microglobulin. Talanta 2023; 261:124672. [PMID: 37196401 DOI: 10.1016/j.talanta.2023.124672] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
In this study, an electrochemiluminescence resonance energy transfer (ECL-RET) immunosensor was constructed to detect beta-2-microglobulin (B2M). As a donor-acceptor pair, a carbon nitride nanosheet modified with gold nanoparticles (Au@g-C3N4NSs) and a nickel- and iron-based organic framework modified with gold nanoparticles (Au@NiFeMOFs) were prepared. The sandwich immunosensor was successfully constructed so that ECL-RET occurred between Au@NiFeMOFs and Au@g-C3N4NSs. The ECL intensity of the immunosensor decreased with the increase the B2M concentration due to the low conductivity of B2M. The linear range of the ECL-RET immunosensor was from 10 fg/mL to 10 ng/mL, and the limit of detection was 2.3 fg/mL (S/N = 3). The developed immunosensor had high sensitivity, high specificity, and excellent stability. It could realize the sensitivity test of B2M and provide a novel idea for the detection of biomarkers.
Collapse
Affiliation(s)
- Juan Yang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Dongmiao Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Na Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yusheng Wu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Kanjun Fang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Biyang Deng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
9
|
Leite JP, Figueira F, Mendes RF, Almeida Paz FA, Gales L. Metal-Organic Frameworks as Sensors for Human Amyloid Diseases. ACS Sens 2023; 8:1033-1053. [PMID: 36892002 PMCID: PMC10043940 DOI: 10.1021/acssensors.2c02741] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Metal-organic frameworks (MOFs) are versatile compounds with emergent applications in the fabrication of biosensors for amyloid diseases. They hold great potential in biospecimen protection and unprecedented probing capabilities for optical and redox receptors. In this Review, we summarize the main methodologies employed in the fabrication of MOF-based sensors for amyloid diseases and collect all available data in the literature related to their performance (detection range, limit of detection, recovery, time of analysis, among other parameters). Nowadays, MOF sensors have evolved to a point where they can, in some cases, outperform technologies employed in the detection of several amyloid biomarkers (amyloid β peptide, α-synuclein, insulin, procalcitonin, and prolactin) present in biological fluids, such as cerebrospinal fluid and blood. A special emphasis has been given by researchers on Alzheimer's disease monitoring to the detriment of other amyloidosis that are underexploited despite their societal relevance (e.g., Parkinson's disease). There are still important obstacles to overcome in order to selectively detect the various peptide isoforms and soluble amyloid species associated with Alzheimer's disease. Furthermore, MOF contrast agents for imaging peptide soluble oligomers in living humans are also scarce (if not nonexistent), and action in this direction is unquestionably required to clarify the contentious link between the amyloidogenic species and the disease, guiding research toward the most promising therapeutic strategies.
Collapse
Affiliation(s)
- José P Leite
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Flávio Figueira
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo F Mendes
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Filipe A Almeida Paz
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís Gales
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC-Instituto de Biologia Molecular e Celular Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
10
|
Wang C, Liu S, Ju H. Electrochemiluminescence nanoemitters for immunoassay of protein biomarkers. Bioelectrochemistry 2023; 149:108281. [PMID: 36283193 DOI: 10.1016/j.bioelechem.2022.108281] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 12/05/2022]
Abstract
The family of electrochemiluminescent luminophores has witnessed quick development since the electrochemiluminescence (ECL) phenomenon of silicon nanoparticles was first reported in 2002. Moreover, these developed ECL nanoemitters have extensively been applied in sensitive detection of protein biomarker by combining with immunological recognition. This review firstly summarized the origin and development of various ECL nanoemitters including inorganic and organic nanomaterials, with an emphasis on metal-organic frameworks (MOFs)-based ECL nanoemitters. Several effective strategies to amplify the ECL response of nanoemitters and improve the sensitivity of immunosensing were discussed. The application of ECL nanoemitters in immunoassay of protein biomarkers for diagnosis of cancers and other diseases, especially lung cancer and heart diseases, was comprehensively presented. The recent development of ECL imaging with the nanoemitters as ECL tags for detection of multiplex protein biomarkers on single cell membrane also attracted attention. Finally, the future opportunities and challenges in the ECL biosensing field were highlighted.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Songqin Liu
- State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Tajahmadi S, Molavi H, Ahmadijokani F, Shamloo A, Shojaei A, Sharifzadeh M, Rezakazemi M, Fatehizadeh A, Aminabhavi TM, Arjmand M. Metal-organic frameworks: A promising option for the diagnosis and treatment of Alzheimer's disease. J Control Release 2023; 353:1-29. [PMID: 36343762 DOI: 10.1016/j.jconrel.2022.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/22/2022]
Abstract
Beta-amyloid (Aβ) peptide is one of the main characteristic biomarkers of Alzheimer's disease (AD). Previous clinical investigations have proposed that unusual concentrations of this biomarker in cerebrospinal fluid, blood, and brain tissue are closely associated with the AD progression. Therefore, the critical point of early diagnosis, prevention, and treatment of AD is to monitor the levels of Aβ. In view of the potential of metal-organic frameworks (MOFs) for diagnosing and treating the AD, much attention has been focused in recent years. This review discusses the latest advances in the applications of MOFs for the early diagnosis of AD via fluorescence and electrochemiluminescence (ECL) detection of AD biomarkers, fluorescence detection of the main metal ions in the brain (Zn2+, Cu2+, Mn2+, Fe3+, and Al3+) in addition to magnetic resonance imaging (MRI) of the Aβ plaques. The current challenges and future strategies for translating the in vitro applications of MOFs into in vivo diagnosis of the AD are discussed.
Collapse
Affiliation(s)
- Shima Tajahmadi
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Hossein Molavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran; Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran
| | - Farhad Ahmadijokani
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada
| | - Amir Shamloo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Mechanical Engineering, Sharif University of Technology, Azadi Ave., Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran 11155-9161, Iran.
| | - Akbar Shojaei
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran; Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Ali Fatehizadeh
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tejraj M Aminabhavi
- School of Advanced Sciences, KLE Technological University, Hubballi, Karnataka 580 031, India; School of Engineering, UPES, Bidholi, Dehradun, Uttarakhand 248 007, India.
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
12
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
13
|
Duan X, Zhang N, Li Z, Zhang L, Sun F, Zhou Z, Liu H, Guo Y, Sun X, Jiang J, Zhang D. Ultrasensitive Electrochemiluminescent Aptasensor for Trace Detection of Kanamycin based-on Novel Semi-sandwich Gadolinium Phthalocyanine Complex and Dysprosium Metal-Organic Framework. J Colloid Interface Sci 2022; 632:171-178. [DOI: 10.1016/j.jcis.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022]
|
14
|
Zhao C, Xie Z, Ma C, Deng X, Hong C, Sun S. Highly Stable Hybrid Ligand Double-Enhanced Electrochemiluminescence for Sensitive Detection of Cu2+. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Zhao G, Dong X, Du Y, Zhang N, Bai G, Wu D, Ma H, Wang Y, Cao W, Wei Q. Enhancing Electrochemiluminescence Efficiency through Introducing Atomically Dispersed Ruthenium in Nickel-Based Metal-Organic Frameworks. Anal Chem 2022; 94:10557-10566. [PMID: 35839514 DOI: 10.1021/acs.analchem.2c02334] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The successful application of electrochemiluminescence (ECL) in various fields required continuous exploration of novel ECL signal emitters. In this work, we have proposed a pristine ECL luminophor named NiRu MOFs, which owned extremely high and stable ECL transmission efficiency and was synthesized via a straightforward two-step hydrothermal pathway. The foundation framework of pure Ni-MOFs with the initial structure was layered-pillared constructed by the coordinated octahedrally divalent between nickel and terephthalic acid (BDC). The terephthalates were coordinated and pillared directly to the nickel hydroxide layers and the three-dimensional framework was formed, which had a weak ECL response strength. Then, the ruthenium pyridine complex was recombined with pure Ni-MOFs to produce NiRu MOFs and part of the introduced ruthenium was atomically dispersed in the layered-pillared structure through an ion-exchange method, which led to the ECL luminous efficiency being significantly boosted more than pure Ni-MOFs. In order to verify the superiority of this newly synthesized illuminant, an ECL immunoassay model has been designed, and the results demonstrated that it had extremely strong and steady signal output in practical application. This study realized an efficient platform in ECL immunoassay application with the limit of detection of 0.32 pg mL-1 for neuron-specific enolase (NSE). Therefore, the approach which combined the pristine pure Ni-MOFs and the star-illuminant ruthenium pyridine complex would provide a convenient and meaningful solution for exploring the next-generation ECL emitters.
Collapse
Affiliation(s)
- Guanhui Zhao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Xue Dong
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Nuo Zhang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Guozhen Bai
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wei Cao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction and Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
16
|
Bezuneh TT, Fereja TH, Kitte SA, Li H, Jin Y. Gold nanoparticle-based signal amplified electrochemiluminescence for biosensing applications. Talanta 2022; 248:123611. [PMID: 35660995 DOI: 10.1016/j.talanta.2022.123611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/05/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Since the content levels of biomarkers at the early stage of many diseases are generally lower than the detection threshold concentration, achieving ultrasensitive and accurate detection of these biomarkers is still one of the major goals in bio-analysis. To achieve ultrasensitive and reliable bioassay, it requires developing highly sensitive biosensors. Among all kinds of biosensors, electrogenerated chemiluminescence (ECL) based biosensors have attracted enormous attention due to their excellent properties. In order to improve the performance of ECL biosensors, gold nanoparticles (Au NPs) have been widely utilized as signal amplification tags. The introduction of Au NPs could dramatically enhance the performance of the constructed ECL biosensors via diverse ways such as electrode modification material, efficient energy acceptor in ECL resonant energy transfer (ECL-RET), reaction catalyst, surface plasmon resonance (SPR) enhancer, and as nanocarrier. Herein, we summarize recent developments and progress of ECL biosensors based on Au NPs signal amplification strategies. We will cover ECL applications of Au NPs as a signal amplification tag in the detection of proteins, metal ions, nucleic acids, small molecules, living cells, exosomes, and cell imaging. Finally, brief summary and future outlooks of this field will be presented.
Collapse
Affiliation(s)
- Terefe Tafese Bezuneh
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China; Department of Chemistry, College of Natural Sciences, Arbaminch University, P.O. Box 21, Arbaminch, Ethiopia
| | - Tadesse Haile Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; Department of Pharmacy, College of Medicine and Health Science, Ambo University, P.O. Box 19, Ambo, Ethiopia
| | - Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China.
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, No. 5625 Renmin Street, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
17
|
Exploring the Photophysical Properties of UiO-67 MOF Doped with Rhenium Carbonyl Complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2022. [DOI: 10.1016/j.jpap.2022.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Ratiometric electrochemical immunoassay for procalcitonin based on dual signal probes: Ag NPs and Nile blue A. Mikrochim Acta 2022; 189:126. [PMID: 35230535 DOI: 10.1007/s00604-022-05225-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/09/2022] [Indexed: 10/19/2022]
Abstract
In order to determine procalcitonin, a sandwich-type ratiometic electrochemical immunosensor was developed by differential pulse voltammetry (DPV). Due to high chemical stability and good biocompatibility, graphitic carbon nitride (g-C3N4) could be used as feasible supporter to carry silver nanoparticles (Ag NPs) with an obvious oxidative peak (measured typically at + 0.3 V vs. SCE). Ag NPs loaded onto g-C3N4 were not only beneficial to prevent the agglomeration of Ag NPs, but also favorable to improve the electron transfer velocity of g-C3N4. Moreover, the g-C3N4-Ag NPs as the matrix could immobilize primary antibody by Ag-N bond. Nile blue A (NBA), an excellent redox probe based on the redox reaction with two-electrons, provides a current signal at - 0.38 V (vs. SCE). Zr-based metal organic framework (UiO-67), an ideal framework material with large specific surface area and high porosity, could absorb the substantial water-soluble NBA by electrostatic adsorption. The UiO-67 modified by NBA (NBA-UiO-67) owned admirable biocompatibility and was a qualifying marker to load the secondary antibody. For the immunosensor, the current ratio of NBA to Ag NPs (INBA/IAg NPs) was increased as the concentrations of PCT increased. Under the optimum conditions, the linear range of the immunosensor was 0.005 to 50 ng/mL; the detection limit was 1.67 pg/mL (S/N = 3), which reflected the excellent analytical performance of the sensor. The proposed immunosensor strategy is a simple and dependable platform, with great application potential in biometric analysis.
Collapse
|
19
|
Liu XM, Wang YL, Ren SW, Cao JT, Liu YM. H 2O 2-activated independently bidirectional regulation for a sensitive and accurate electrochemiluminescence ratiometric analysis. Analyst 2022; 147:2508-2514. [DOI: 10.1039/d2an00601d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel ECL ratiometric sensor was developed based on H2O2 activated independently bidirectional regulation strategy.
Collapse
Affiliation(s)
- Xiang-Mei Liu
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yu-Ling Wang
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Shu-Wei Ren
- Xinyang Central Hospital, Xinyang 464000, China
| | - Jun-Tao Cao
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Yan-Ming Liu
- College of Chemistry and Chemical Engineering, Xinyang key laboratory of functional nanomaterials for bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
20
|
Han T, Cao Y, Chen HY, Zhu JJ. Versatile porous nanomaterials for electrochemiluminescence biosensing: Recent advances and future perspective. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
21
|
Gogoi H, Maddala BG, Ali F, Datta A. Role of Solvent in Electron-Phonon Relaxation Dynamics in Core-Shell Au-SiO 2 Nanoparticles. Chemphyschem 2021; 22:2201-2206. [PMID: 34402561 DOI: 10.1002/cphc.202100592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 01/03/2023]
Abstract
Relaxation dynamics of plasmons in Au-SiO2 core-shell nanoparticles have been followed by femtosecond pump-probe technique. The effect of excitation pump energy and surrounding medium on the time constants associated with the hot electron relaxation has been elucidated. A gradual increase in the electron-phonon relaxation time with pump energy is observed and can be attributed to the higher perturbation of the electron distribution in AuNPs at higher pump energy. Variation in time constants for the electron-phonon relaxation in different solvents is rationalized on the basis of their thermal conductivities, which govern the rate of dissipation of heat of photoexcited electrons in the nanoparticles. On the other hand, phonon-phonon relaxation is found to be much less effective than electron-phonon relaxation for the dissipation of energy of the excited electron and the time constants associated with it remain unaffected by thermal conductivity of the solvent.
Collapse
Affiliation(s)
- Hemen Gogoi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Bala Gopal Maddala
- Department of Chemistry, IIT Bombay, IITB-Monash Research Academy, Mumbai, 400076, India
| | - Fariyad Ali
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| |
Collapse
|
22
|
Xia M, Zhou F, Feng X, Sun J, Wang L, Li N, Wang X, Wang G. A DNAzyme-Based Dual-Stimuli Responsive Electrochemiluminescence Resonance Energy Transfer Platform for Ultrasensitive Anatoxin-a Detection. Anal Chem 2021; 93:11284-11290. [PMID: 34342436 DOI: 10.1021/acs.analchem.1c02417] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An effective and precise electrochemiluminescence resonance energy transfer (ECL-RET), including the efficient regulation over the proximity of a donor and an acceptor and the reliable stimuli responsive as well as the avoidance of undesirable probes leakage, etc., is significant for the development of an accurate and sensitive ECL detection method; yet, the current literature in documentation involves only a limited range of such ECL-RET systems. Herein, we propose an ECL-RET strategy with dually quenched ultralow background signals and a dual-stimuli responsive, accurate signal output for the ultrasensitive and reliable detection of anatoxin-a (ATX-a). The dual quenching is accomplished by an integrated ECL-RET probe of metal organic frameworks (MOFs) encapsulated into Ru(bpy)32+ (Ru-MOF) (donor) coated with silver nanoparticles (AgNPs) shell (acceptor 1) and close proximity with DNA-ferrocene (Fc) (acceptor 2). Multistimuli responsive DNAzyme facilitated the accurate signal switch by both target ATX-a and hydrogen peroxide (H2O2). Because of the specific recognition of the aptamer toward ATX-a, an intricate design of the DNA sequence enabled the exposure of the Ag+-dependent DNAzyme sequence and H2O2 in situ generated Ag+ triggering a catalytic cleavage reaction to freely release the two ECL-RET energy acceptors, thus switching the ECL signal significantly and achieving ultrasensitive detection. It is noteworthy that AgNPs are key in this ECL-RET strategy, serving both as the gate-keepers for avoiding ECL probes leakage and also the ECL energy acceptors, and mostly importantly serving as the redox substrate for the subsequent DNAzyme catalytic signal switch. The proposed ECL-RET aptasensor for ATX-a detection displayed splendid monitoring performance with a quite low detection limit of 0.00034 mg mL-1. This sensor not only led to the development of a dual-quenching ECL-RET system but also provided meaningful multistimuli responsive ECL biosensing platform construction, which shows a promising application prospect in complicated sample analysis.
Collapse
Affiliation(s)
- Mengmeng Xia
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Fu Zhou
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiuyun Feng
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jiahui Sun
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Li Wang
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Na Li
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China
| | - Guangfeng Wang
- Key Laboratory of Chem-Biosensing and Key Laboratory of Functional Molecular Solids of Anhui Province, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, China
| |
Collapse
|
23
|
Dong X, Du Y, Zhao G, Cao W, Fan D, Kuang X, Wei Q, Ju H. Dual-signal electrochemiluminescence immunosensor for Neuron-specific enolase detection based on "dual-potential" emitter Ru(bpy) 32+ functionalized zinc-based metal-organic frameworks. Biosens Bioelectron 2021; 192:113505. [PMID: 34298497 DOI: 10.1016/j.bios.2021.113505] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/12/2021] [Indexed: 11/29/2022]
Abstract
Neuron-specific enolase (NSE) is the preferred marker for monitoring small cell lung cancer and neuroblastoma. We devised a dual-signal ratiometric electrochemiluminescence (ECL) sensing strategy for sensitive detection of NSE. In this work, Ru (bpy)32+ functionalized zinc-based metal-organic framework (Ru-MOF-5) nanoflowers (NFs) with plentiful carboxyl groups provide an excellent biocompatible sensing platform for the construction of immunosensor. Importantly, Ru-MOF-5 NFs possess stable and efficient "dual-potential" ECL emission of cathode (-1.5 V) and anode (1.5 V) in the existence of co-reactant K2S2O8. Simultaneously, the cathode ECL emitter ZnO-AgNPs are employed as the secondary antibody marker, whose participation amplify the cathode ECL signal as well attenuate the anode ECL emission of Ru-MOF-5 NFs. By monitoring the ECL dual-signal of -1.5 V and 1.5 V and calculating their ratios, a ratiometric strategy of quantified readout proportional is implemented for the proposed immunosensor to precise analyze NSE. Based on optimization conditions, the ECL immunosensor displays the wide linear range of 0.0001 ng/mL to 200 ng/mL and the minimum detection limit is 0.041 pg/mL. The "dual-potential" ratiometric ECL immunosensor effectively reduces system error or background signal by self-calibration from both emissions and improves detection reliability. The dual-signal ratiometric strategy with satisfactory reproducibility and stability provides further development possibilities for other biomolecular detection and analysis.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Wei Cao
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Dawei Fan
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Xuan Kuang
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China.
| | - Huangxian Ju
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, Shandong, China; State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
24
|
Fathima Fasna PH, Sasi S. A Comprehensive Overview on Advanced Sensing Applications of Functional Metal Organic Frameworks (MOFs). ChemistrySelect 2021. [DOI: 10.1002/slct.202101533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- P. H. Fathima Fasna
- Department of Chemistry Maharaja's College Park Avenue Road Ernakulam Kerala India
| | - Sreesha Sasi
- Department of Chemistry Maharaja's College Park Avenue Road Ernakulam Kerala India
| |
Collapse
|
25
|
Li J, Shan X, Jiang D, Wang Y, Wang W, Chen Z. A novel electrochemiluminescence sensor based on resonance energy transfer from MoS 2QDs@g-C 3N 4 to NH 2-SiO 2@PTCA for glutathione assay. Analyst 2021; 145:7616-7622. [PMID: 33001071 DOI: 10.1039/d0an01542c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In this work, a solid-state electrochemiluminescence (ECL) sensor based on resonance energy transfer (RET) was proposed using MoS2QDs@g-C3N4 as a donor and NH2-SiO2@PTCA as an acceptor. Herein, MoS2QDs could significantly facilitate the stability and efficiency of the ECL of g-C3N4. PTCA provided a large platform to anchor NH2-SiO2 nanoparticles. The prepared MoS2QDs@g-C3N4 exhibited good spectral overlap with the UV-vis absorption spectrum of NH2-SiO2@PTCA. Based on this, we designed an "off-on" ECL sensing strategy for sensitive and selective detection of glutathione (GSH). Under the best conditions, the linear range of the sensor for GSH detection was from 0.001 to 100 μM with a detection limit of 0.63 nM (S/N = 3). More importantly, GSH in commercial samples can be detected using the proposed sensor, which indicated its superior detection capabilities and potential application value in commercial medicines.
Collapse
Affiliation(s)
- Jingxian Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | | | | | | | | | | |
Collapse
|
26
|
Gao H, Zhang Z, Zhang Y, Yu H, Rong S, Meng L, Song S, Mei Y, Pan H, Chang D. Electrochemiluminescence immunosensor for cancer antigen 125 detection based on novel resonance energy transfer between graphitic carbon nitride and NIR CdTe/CdS QDs. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Kamyabi MA, Alipour Z, Moharramnezhad M. An enzyme-free electrochemiluminescence insulin probe based on the regular attachment of ZnO nanoparticles on a 3-D nickel foam and H 2O 2 as an efficient co-reactant. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1003-1012. [PMID: 33533767 DOI: 10.1039/d0ay02071k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, a highly sensitive, fast, and enzyme-free electrochemiluminescence (ECL) probe based on the decoration of zinc oxide nanoparticles on nickel foam is proposed for insulin determination. A silica film was employed as a size adjusting agent for the modification of the nickel foam surface with ZnO nanoparticles (ZnO NPs). The ECL of the ZnO NP/Ni foam was investigated in a natural medium in the presence of hydrogen peroxide (H2O2) as an efficient co-reactant. With increasing insulin concentration, a remarkable improvement in ECL signal was observed, which proved the enhancing effect of insulin on the ECL emission. The characterization of the ZnO-NP/Ni-foam electrode was performed via electrochemical impedance spectroscopy, Brunauer-Emmett-Teller (BET) surface area measurement, X-ray diffraction, field emission scanning electron microscopy (FESEM), and energy-dispersive X-ray analysis techniques. The fabricated electrode was applied for the trace analysis of insulin using the ultrasensitive ECL method in a phosphate buffer solution. Under the optimal conditions, the results showed excellent performance during insulin determination with a wide linear range of 3.57 × 10-15 M to 2.94 × 10-9 M, a low detection limit of 1.00 × 10-16 M, and a relative standard deviation of 1.03%. The proposed ECL sensor with excellent reproducibility, long-term stability, and high selectivity was used for insulin determination in real serum samples with acceptable outcomes.
Collapse
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran.
| | | | | |
Collapse
|
28
|
|
29
|
Xue Y, Han Y, Xia H, Fan Y, Peng C, Xing H, Li J, Wang E. Bifunctional Nanoprobes Used for Label‐Free Determination of Cardiac Troponin I. ChemElectroChem 2020. [DOI: 10.1002/celc.202001150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuan Xue
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yanchao Han
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Hongyin Xia
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Yongchao Fan
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Chao Peng
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Huanhuan Xing
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Jing Li
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 P. R. China
- University of Science and Technology of China Hefei Anhui 230026 P. R. China
| |
Collapse
|
30
|
Electrochemiluminescence behaviour of silver/ZnIn2S4/reduced graphene oxide composites quenched by Au@SiO2 nanoparticles for ultrasensitive insulin detection. Biosens Bioelectron 2020; 162:112235. [DOI: 10.1016/j.bios.2020.112235] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/08/2020] [Accepted: 04/21/2020] [Indexed: 12/16/2022]
|
31
|
Li J, Jiang D, Shan X, Wang W, Chen Z. An “off-on” electrochemiluminescence aptasensor for microcystin-LR assay based on the resonance energy transfer from PTCA/NH2-MIL-125(Ti) to gold nanoparticles. Mikrochim Acta 2020; 187:474. [DOI: 10.1007/s00604-020-04453-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/12/2020] [Indexed: 01/25/2023]
|
32
|
Zhou J, Li Y, Wang W, Tan X, Lu Z, Han H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens Bioelectron 2020; 164:112332. [PMID: 32553355 DOI: 10.1016/j.bios.2020.112332] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 11/29/2022]
Abstract
Metal-organic frameworks (MOFs) as porous materials have attracted much attention in various fields such as gas storage, catalysis, separation, and nanomedical engineering. However, their applications in electrochemiluminescence (ECL) biosensing are limited due to the poor conductivity, lack of modification sites, low stability and specificity, and weak biocompatibility. Integrating the functional materials into MOF structures endows MOF composites with improved conductivity and stability and facilitates the design of ECL sensors with multifunctional MOFs, which are potentially advantageous over their individual components. This review summarizes the strategies for designing ECL-active MOF composites including using luminophore as a ligand, in situ encapsulation of luminophore within the framework, and post-synthetic modification. As-prepared MOF composites can serve as innovative emitters, luminophore carriers, electrode modification materials and co-reaction accelerators in ECL biosensors. The sensing applications of ECl-active MOF composites in the past five years are highlighted including immunoassays, genosensors, and small molecule detection. Finally, the prospects and challenges associated with MOF composites and their related materials for ECL biosensing are tentatively proposed.
Collapse
Affiliation(s)
- Jiaojiao Zhou
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Li
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuecai Tan
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Guangxi Colleges and Universities for Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530008, China
| | - Zhicheng Lu
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Heyou Han
- State Key Laboratory of Agricultural Microbiology, College of Food Science and Technology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
33
|
Multicomponent nanohybrids of nickel/ferric oxides and nickel cobaltate spinel derived from the MOF-on-MOF nanostructure as efficient scaffolds for sensitively determining insulin. Anal Chim Acta 2020; 1110:44-55. [DOI: 10.1016/j.aca.2020.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/08/2020] [Accepted: 03/09/2020] [Indexed: 12/29/2022]
|
34
|
Yao CX, Zhao N, Liu JC, Chen LJ, Liu JM, Fang GZ, Wang S. Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food. Polymers (Basel) 2020; 12:E691. [PMID: 32244951 PMCID: PMC7183274 DOI: 10.3390/polym12030691] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 01/28/2023] Open
Abstract
The high speed of contaminants growth needs the burgeoning of new analytical techniques to keep up with the continuous demand for monitoring and legislation on food safety and environmental pollution control. Metal-organic frameworks (MOFs) are a kind of advanced crystal porous materials with controllable apertures, which are self-assembled by organic ligands and inorganic metal nodes. They have the merits of large specific surface areas, high porosity and the diversity of structures and functions. Latterly, the utilization of metal-organic frameworks has attracted much attention in environmental protection and the food industry. MOFs have exhibited great value as sensing materials for many targets. Among many sensing methods, fluorometric sensing is one of the widely studied methods in the detection of harmful substances in food and environmental samples. Fluorometric detection based on MOFs and its functional materials is currently one of the most key research subjects in the food and environmental fields. It has gradually become a hot research direction to construct the highly sensitive rapid sensors to detect harmful substances in the food matrix based on metal-organic frameworks. In this paper, we introduced the synthesis and detection application characteristics (absorption, fluorescence, etc.) of metal-organic frameworks. We summarized their applications in the MOFs-based fluorometric detection of harmful substances in food and water over the past few years. The harmful substances mainly include heavy metals, organic pollutants and other small molecules, etc. On this basis, the future development and possible application of the MOFs have prospected in this review paper.
Collapse
Affiliation(s)
- Chi-Xuan Yao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Ning Zhao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Ji-Chao Liu
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Li-Jun Chen
- Beijing San Yuan foods co., LTD., No. 8 Yingchang Road, Yinghai, Daxing District, Beijing 100076, China;
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| | - Guo-Zhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (C.-X.Y.); (G.-Z.F.)
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China; (N.Z.); (J.-M.L.)
| |
Collapse
|
35
|
Wang H, Liao L, Chai Y, Yuan R. Sensitive immunosensor based on high effective resonance energy transfer of lucigenin to the cathodic electrochemiluminescence of tris(bipyridine) Ru(II) complex. Biosens Bioelectron 2020; 150:111915. [PMID: 31784309 DOI: 10.1016/j.bios.2019.111915] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/17/2019] [Accepted: 11/21/2019] [Indexed: 01/04/2023]
Abstract
Electrochemiluminescence resonance energy transfer (ECL-RET) has been attracting much focus as an effective approach for great ECL enhancement. Here, we found that lucigenin (Luc) could serve as a new energy transfer donor and greatly improve the cathodic ECL of bis(2,2'-bipyridyl)(4'-methyl-[2,2']bipyridinyl-4-carboxylicacid) ruthenium(II) (Ru(Bpy)2(Mcbpy)2+, acceptor). Then, both Luc and Ru(Bpy)2(Mcbpy)2+ were largely co-immobilized onto the PdCu nanocrystals and polyethyleneimine (PEI) modified single-walled carbon nanohorns (SWCNHs-PdCuNCs-PEI) through π-π stacking and crosslinking reaction, respectively. By this way, the excellent electrocatalytic behavior and high loading capability for both Luc and Ru(Bpy)2(Mcbpy)2+ of SWCNHs-PdCuNCs-PEI effectively facilitated the ECL reaction. Particularly, the co-immobilization strategy making the donor (Luc)/acceptor (Ru(Bpy)2(Mcbpy)2+) pairs co-exist in the same nano-composite could obviously increase the ECL-RET efficiency by shortening the electron-transfer path and reducing energy loss, further significantly improving the ECL signal. Combining the obtained nano-composite (Luc-SWCNHs-PdCuNCs-PEI-Ru(Bpy)2(Mcbpy)2+) with sandwiched immunoreaction, an ECL immunosensor was constructed for β2-microglobulin (β2-M) measurement. And as a result, it exhibited excellent performance in sensitivity, stability and selectivity. The establishment of the new effective donor/acceptor pairs for ECL-RET and the co-immobilization strategy of making those donor/acceptor pairs largely co-exist in the same nano-composite would greatly improve the ECL efficiency and motivate the wider application of ECL technology.
Collapse
Affiliation(s)
- Haijun Wang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Linli Liao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yaqin Chai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
36
|
Resonance energy transfer in electrochemiluminescent and photoelectrochemical bioanalysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115745] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Hou F, Hu XB, Ma SH, Cao JT, Liu YM. Construction of electrochemiluminescence sensing platform with in situ generated coreactant strategy for sensitive detection of prostate specific antigen. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Afreen S, He Z, Xiao Y, Zhu JJ. Nanoscale metal-organic frameworks in detecting cancer biomarkers. J Mater Chem B 2020; 8:1338-1349. [PMID: 31999289 DOI: 10.1039/c9tb02579k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Following the efficient performance of metal-organic frameworks (MOFs) as recognition elements in gas sensors, biosensors based on MOFs are now being investigated to capture and quantify potential cancer biomarkers, such as circulating tumor cells (CTCs), nucleic acids and proteins. The current status of MOF-based biosensors in the detection of early stages of cancer is in its infancy, although it has significantly emerged since the beginning of this decade. That said, salient research has been conducted in the past five years to utilize the distinctive porous crystalline structure of MOFs for highly sensitive and selective detection of cancer biomarkers. In this pursual, MOFs designed with bimetallic assembly, doped with magnetic nanoparticles, coated with polymers, and even conjugated with peptides or oligonucleotides have shown promising outcomes in detecting CTCs, nucleic acids and proteins. In particular, aptamer-conjugated MOFs are able to perform at a lower limit of detection down to the femtomolar, implying their efficacy for the point of care testing in clinical trials. In this way, aptasensors based on aptamer-conjugated MOFs present a newer sub-branch, to be coined as a MOFTA sensor in the current review. Considering the emerging progress and promising outcomes of MOFTA sensors as well as a variety of MOF-based techniques of detecting cancer biomarkers, this review will highlight their significant advances and related aspects in the recent five years on the context of detecting CTCs, nucleic acids and proteins for the early-stage detection of cancer.
Collapse
Affiliation(s)
- Sadia Afreen
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | | | | | | |
Collapse
|
39
|
Pan M, Yang J, Liu K, Yin Z, Ma T, Liu S, Xu L, Wang S. Noble Metal Nanostructured Materials for Chemical and Biosensing Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E209. [PMID: 31991797 PMCID: PMC7074850 DOI: 10.3390/nano10020209] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/26/2022]
Abstract
Nanomaterials with unique physical and chemical properties have attracted extensive attention of scientific research and will play an increasingly important role in the future development of science and technology. With the gradual deepening of research, noble metal nanomaterials have been applied in the fields of new energy materials, photoelectric information storage, and nano-enhanced catalysis due to their unique optical, electrical and catalytic properties. Nanostructured materials formed by noble metal elements (Au, Ag, etc.) exhibit remarkable photoelectric properties, good stability and low biotoxicity, which received extensive attention in chemical and biological sensing field and achieved significant research progress. In this paper, the research on the synthesis, modification and sensing application of the existing noble metal nanomaterials is reviewed in detail, which provides a theoretical guidance for further research on the functional properties of such nanostructured materials and their applications of other nanofields.
Collapse
Affiliation(s)
- Mingfei Pan
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingying Yang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Kaixin Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zongjia Yin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tianyu Ma
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengmiao Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Longhua Xu
- School of Food Science and Engineering, Shandong Agricultural University, Shandong 271018, China;
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China; (M.P.); (J.Y.); (K.L.); (Z.Y.); (T.M.); (S.L.)
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
40
|
Chen ML, Feng YY, Wang SY, Cheng YH, Zhou ZH. Metal-Organic Frameworks with Double Channels for Rapid and Reversible Adsorption of 1,2-Ethylenediamine and Gases. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1412-1418. [PMID: 31841307 DOI: 10.1021/acsami.9b20184] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Selective liquid and gas adsorptions are important for environmental control and industrial processes. Here, unique porous lanthanide-organic frameworks of [Ln2(1,3-pdta)2(H2O)2]n2n- {Ln = La (1), Ce (2), Pr (3), and Nd (4), 1,3-pdta = CH2[CH2N(CH2CO2H)2]2} are template-synthesized by 1,2-ethylenediamine and fully characterized, which possess hydrophobic and hydrophilic open channels simultaneously. The skeletons are stable up to 200 °C. Obvious downfield shifts have been observed for 1,2-ethylenediamine in the confined channel with solid-state 13C NMR measurement. The ammonium salt is directly used for the removal of 1,2-ethylenediamine in water. Its saturated adsorption capacity is reached in <1 min and can be regenerated easily with a similar uptake capacity. Moreover, the materials can also selectively adsorb O2, CH4, and CO2, respectively, which is useful for CO2/CH4, CO2/H2, and O2/N2 separation. The combined hydrophobic and hydrophilic open channels of the lanthanides make them promising functional materials for the elimination of 1,2-ethylenediamine and gas separations.
Collapse
Affiliation(s)
- Mao-Long Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
- College of Chemistry and Food Engineering , Changsha University of Science & Technology , Changsha 410114 , China
| | - Yan-Ying Feng
- College of Chemistry and Food Engineering , Changsha University of Science & Technology , Changsha 410114 , China
| | - Si-Yuan Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yun-Hui Cheng
- College of Chemistry and Food Engineering , Changsha University of Science & Technology , Changsha 410114 , China
| | - Zhao-Hui Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| |
Collapse
|
41
|
Khan MS, Ameer H, Ali A, Manzoor R, Yang L, Feng R, Jiang N, Wei Q. Electrochemiluminescence behaviour of silver/silver orthophosphate/graphene oxide quenched by Pd@Au core-shell nanoflowers for ultrasensitive detection of insulin. Biosens Bioelectron 2020; 147:111767. [DOI: 10.1016/j.bios.2019.111767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/24/2019] [Accepted: 10/07/2019] [Indexed: 12/21/2022]
|
42
|
Husain RA, Barman SR, Chatterjee S, Khan I, Lin ZH. Enhanced biosensing strategies using electrogenerated chemiluminescence: recent progress and future prospects. J Mater Chem B 2020; 8:3192-3212. [DOI: 10.1039/c9tb02578b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An overview of enhancement strategies for highly sensitive ECL-based sensing of bioanalytes enabling early detection of cancer.
Collapse
Affiliation(s)
- Rashaad A. Husain
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Snigdha Roy Barman
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Subhodeep Chatterjee
- Department of Power Mechanical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Imran Khan
- Institute of NanoEngineering and MicroSystems
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
| | - Zong-Hong Lin
- Institute of Biomedical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Taiwan
- Department of Power Mechanical Engineering
| |
Collapse
|
43
|
Lu HJ, Xu JJ, Zhou H, Chen HY. Recent advances in electrochemiluminescence resonance energy transfer for bioanalysis: Fundamentals and applications. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115746] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Mendes RF, Figueira F, Leite JP, Gales L, Almeida Paz FA. Metal–organic frameworks: a future toolbox for biomedicine? Chem Soc Rev 2020; 49:9121-9153. [DOI: 10.1039/d0cs00883d] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present review focuses on the use of Metal–Organic Frameworks, (MOFs) highlighting the most recent developments in the biological field and as bio-sensors.
Collapse
Affiliation(s)
- Ricardo F. Mendes
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - Flávio Figueira
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| | - José P. Leite
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Luís Gales
- Abel Salazar Biomedical Sciences Institute
- University of Porto
- 4169-007 Porto
- Portugal
- IBMC – Instituto de Biologia Molecular e Celular
| | - Filipe A. Almeida Paz
- Department of Chemistry
- CICECO – Aveiro Institute of Materials
- University of Aveiro
- 3810-193 Aveiro
- Portugal
| |
Collapse
|
45
|
Dong X, Zhao G, Li X, Miao J, Fang J, Wei Q, Cao W. Electrochemiluminescence immunoassay for the N-terminal pro-B-type natriuretic peptide based on resonance energy transfer between a self-enhanced luminophore composed of silver nanocubes on gold nanoparticles and a metal-organic framework of type MIL-125. Mikrochim Acta 2019; 186:811. [PMID: 31745662 DOI: 10.1007/s00604-019-3969-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/22/2019] [Indexed: 12/20/2022]
Abstract
The N-terminal pro-B-type natriuretic peptide (NT-proBNP) is a marker of heart failure. A novel sandwich type electrochemiluminescence (ECL) immunoassay is described for the NT-proBNP. The method is based on ECL resonance energy transfer (RET) between silver nanocubes that were covered with semicarbazide-modified gold nanoparticles (AgNC-sem@AuNPs) as the donor, and a Ti(IV)-based metal-organic framework of type MIL-125 as the acceptor. The ECL signal was strongly amplified by increasing the luminous efficiency. ECL-RET occurs due to the partial overlap between the ECL emission of the AgNC-sem@AuNPs (emission wavelength at 470 nm to 900 nm) and the visible absorption spectrum of MIL-125 (absorption wavelength at 406 nm to 900 nm). This results in the quenching of ECL. The AgNC-sem@AuNPs were placed on the electrode. The antibody was immobilized on AgNC-sem@AuNPs via Au-NH2 bond, and MIL-125 was utilized as a label for the secondary antibody. The assay works in the 0.25 pg mL-1 to 100 ng mL-1 concentration range and has a 0.11 pg mL-1 lower detection limit (at S/N = 3). Graphical abstract Schematic representation of self-enhanced luminescence mechanism (semicarbazide (Sem) as co-reaction accelerator) and Electrochemiluminescence resonance energy transfer (ECL-RET): silver nanocubes (AgNCs) as the energy donor and MIL-125 as the energy acceptor.
Collapse
Affiliation(s)
- Xue Dong
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xuan Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - JunCong Miao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Jinglong Fang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Wei Cao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| |
Collapse
|
46
|
Ma C, Cao Y, Gou X, Zhu JJ. Recent Progress in Electrochemiluminescence Sensing and Imaging. Anal Chem 2019; 92:431-454. [PMID: 31679341 DOI: 10.1021/acs.analchem.9b04947] [Citation(s) in RCA: 283] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yue Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Xiaodan Gou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
47
|
An Y, Liu Y, Bian H, Wang Z, Wang P, Zheng Z, Dai Y, Whangbo MH, Huang B. Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce 4+-coordinated bipyridinedicarboxylate ligands. Sci Bull (Beijing) 2019; 64:1502-1509. [PMID: 36659558 DOI: 10.1016/j.scib.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023]
Abstract
UiO-67 is a Zr-based metal-organic framework (MOF) containing an organic linker namely, the dianion of biphenyl-4,4'-dicarboxylic acid (bpdc). Ce4+ metal ions (0.02 Ce to Zr atom ratio) were incorporated into UiO-67 via partially replacing bpdc with the dianion of 2,2'-bipyridine-5,5'-dicarboxylic acid (bpydc); thus, the latter forms a bpydc-Ce complex. The resulting product (i.e., UiO-67-Ce) demonstrated a photocatalytic hydrogen evolution rate that was over 10 times higher than that of UiO-67. Through this modification, a new energy transfer channel is opened up. The energy transfer between the bpdc and bpydc-Ce ligands (i.e., from excited bpdc to bpydc-Ce) weakened the recombination of the charge carriers, which was confirmed by photoluminescence, emission lifetime, and transient absorption measurements. This study presents a new way to construct highly efficient MOF photocatalysts.
Collapse
Affiliation(s)
- Yang An
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Shaanxi Normal University, Xi'an 710119, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan 250100, China
| | - Myung-Hwan Whangbo
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter (FJIRSM), Chinese Academy of Sciences, Fuzhou 350002, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
| |
Collapse
|
48
|
Shan X, Pan T, Pan Y, Wang W, Chen X, Shan X, Chen Z. Highly Sensitive and Selective Detection of Pb(II) by NH
2
−SiO
2
/Ru(bpy)
3
2+
−UiO66 based Solid‐state ECL Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiaomeng Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
| | - Tao Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
| | - Yuting Pan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
| | - Wenchang Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou 213164 China
| | - Xiaohui Chen
- School of Chemistry and Material EngineeringChangzhou Vocational Institute of Engineering Changzhou 213164 China
| | - Xueling Shan
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou 213164 China
| | - Zhidong Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical EngineeringChangzhou University Changzhou 213164 China
- Advanced Catalysis and Green Manufacturing Collaborative Innovation CenterChangzhou University Changzhou 213164 China
| |
Collapse
|
49
|
Bai W, Cui A, Liu M, Qiao X, Li Y, Wang T. Signal-Off Electrogenerated Chemiluminescence Biosensing Platform Based on the Quenching Effect between Ferrocene and Ru(bpy) 32+-Functionalized Metal-Organic Frameworks for the Detection of Methylated RNA. Anal Chem 2019; 91:11840-11847. [PMID: 31414596 DOI: 10.1021/acs.analchem.9b02569] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N6-methyladenine (m6A), one of the most common chemical modifications of eukaryotic RNA, participates in many important biological processes. An effective strategy for the quantitative determination of m6A is of great significance. Herein, we used methylated microRNA-21 (miRNA21) as the model target to propose a simple and sensitive electrogenerated chemiluminescence (ECL) biosensing platform to detect a specific m6A RNA sequence. This strategy is based on the fact that the anti-m6A-antibody can specifically recognize and bind to the m6A site in the RNA sequence, resulting in a quenching effect between Ru(bpy)32+-functionalized metal-organic frameworks and ferrocene. Luminescent metal-organic frameworks (Ru@MOFs) not only act as ECL indicators but also serve as nanoreactors for the relative ECL reactions owing to their porous or multichannel structure, which overcomes the fact that Ru(bpy)32+ is easily released when used for aqueous-phase detection, thus enhancing the ECL efficiency. Moreover, the ECL method has fewer modification steps and uses only one antibody to recognize the target RNA sequence, which simplifies the operation process and reduces the detection time, presenting a wide linear range (0.001-10 nM) for m6A RNA determination with a low detection limit (0.0003 nM). Additionally, this developed strategy was validated for m6A RNA detection in human serum. Thus, the ECL biosensing method provides a new method for m6A RNA determination that is simple, highly specific, and sensitive.
Collapse
Affiliation(s)
- Wanqiao Bai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Aiping Cui
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Meizhou Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
50
|
Zhu S, Wang S, Xia M, Wang B, Huang Y, Zhang D, Zhang X, Wang G. Intracellular Imaging of Glutathione with MnO 2 Nanosheet@Ru(bpy) 32+-UiO-66 Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31693-31699. [PMID: 31339687 DOI: 10.1021/acsami.9b11025] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Fluorescent detection of glutathione (GSH) in the living system has attracted much attention, but current fluorescent probes are usually exposed to the exterior environment, leading to photobleaching and premature leakage and subsequently limiting the sensitivity and photostability. Herein, luminescent metal-organic frameworks [Ru(bpy)32+ encapsulated in UiO-66] coated with manganese dioxide nanosheets [MnO2 NS@Ru(bpy)32+-UiO-66] were prepared by an in situ growth method and further explored to construct a GSH-switched fluorescent sensing platform. Because of the splendid fluorescence quenching ability, special probe leakage blocking role and distinguished recognition of the MnO2 NS, and the improved fluorescence of Ru(bpy)32+ by UiO-66, a low background, highly sensitive and selective detection of GSH with a low limit of detection as 0.28 μM was realized. At the same time, the preparation of MnO2 NS@Ru(bpy)32+-UiO-66 nanocomposites is simple and less toxic, and there was no notable loss of cell survivability after being exposed to MnO2 NS@Ru(bpy)32+-UiO-66 below the concentrations of 120 μg mL-1 for 24 h. Consequently, the results coming from this effort suggest that the new sensing platform will have a great potential in the detection of GSH in living cells.
Collapse
|