1
|
Barati M, Azadi A, Khoramjouy M, Mortazavi SA, Moghimi HR. Corticosteroid-loaded chitosan-based in-situ forming gel combined with microneedle technology for improvement of burn eschar wound healing. Int J Pharm 2024; 664:124590. [PMID: 39153645 DOI: 10.1016/j.ijpharm.2024.124590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Burn is one of the most common skin injuries and accounts for 300,000 deaths annually. Debridement and antibiotic therapy are major burn treatments, however, as debridement is not always possible and many drugs have poor penetration into necrotic tissue, permeation enhancement is acquired. Another challenge is the short duration of topically applied drugs. This study aims to address both problems by combining in-situ forming gels and microneedles. A chitosan-based in-situ forming gel of hydrocortisone was applied to human burn eschar using microneedles. The formulation was optimized using Design-Expert software. Formulation characterization was done in terms of gelling time and temperature, thermal analysis, release phenomenon, rheology, texture analysis, and stability. Finally, animal studies on mice burn wound treatment were conducted. Results showed that optimized formulation controlled the drug release, and wherever microneedle was used, drug permeation and flux increased (P-value < 0.05). In all ex-vivo and in-vivo stages, gel plus microneedle (length of 1.5 mm and application mode of 2) produced the best results concerning increased flux and faster recovery of burn eschar. In conclusion, the in-situ forming gel with appropriate texture, quality, and stability in combination with microneedle can be a good candidate for the controlled release of drugs in third-degree burn eschars.
Collapse
Affiliation(s)
- Maedeh Barati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Amir Azadi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mona Khoramjouy
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Alireza Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
3
|
Zhang C, Wang Y, Xue Y, Cheng J, Chi P, Wang Z, Li B, Yan T, Wu B, Wang Z. Enhanced Hemostatic and Procoagulant Efficacy of PEG/ZnO Hydrogels: A Novel Approach in Traumatic Hemorrhage Management. Gels 2024; 10:88. [PMID: 38391418 PMCID: PMC10888357 DOI: 10.3390/gels10020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Managing severe bleeding, particularly in soft tissues and visceral injuries, remains a significant challenge in trauma and surgical care. Traditional hemostatic methods often fall short in wet and dynamic environments. This study addresses the critical issue of severe bleeding in soft tissues, proposing an innovative solution using a polyethylene glycol (PEG)-based hydrogel combined with zinc oxide (ZnO). The developed hydrogel forms a dual-network structure through amide bonds and metal ion chelation, resulting in enhanced mechanical properties and adhesion strength. The hydrogel, exhibiting excellent biocompatibility, is designed to release zinc ions, promoting coagulation and accelerating hemostasis. Comprehensive characterization, including gelation time, rheological properties, microstructure analysis, and swelling behavior, demonstrates the superior performance of the PEG/ZnO hydrogel compared to traditional PEG hydrogels. Mechanical tests confirm increased compression strength and adhesive properties, which are crucial for withstanding tissue dynamics. In vitro assessments reveal excellent biocompatibility and enhanced procoagulant ability attributed to ZnO. Moreover, in vivo experiments using rat liver and tail bleeding models demonstrate the remarkable hemostatic performance of the PEG/ZnO hydrogel, showcasing its potential for acute bleeding treatment in both visceral and peripheral scenarios.
Collapse
Affiliation(s)
- Chuyue Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Yifan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Yuan Xue
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Junyao Cheng
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Pengfei Chi
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Zhaohan Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Bo Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Taoxu Yan
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
- Chinese PLA Medical School, Beijing 100853, China
| | - Bing Wu
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Zheng Wang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
4
|
Gharios R, Francis RM, DeForest CA. Chemical and Biological Engineering Strategies to Make and Modify Next-Generation Hydrogel Biomaterials. MATTER 2023; 6:4195-4244. [PMID: 38313360 PMCID: PMC10836217 DOI: 10.1016/j.matt.2023.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
There is a growing interest in the development of technologies to probe and direct in vitro cellular function for fundamental organoid and stem cell biology, functional tissue and metabolic engineering, and biotherapeutic formulation. Recapitulating many critical aspects of the native cellular niche, hydrogel biomaterials have proven to be a defining platform technology in this space, catapulting biological investigation from traditional two-dimensional (2D) culture into the 3D world. Seeking to better emulate the dynamic heterogeneity characteristic of all living tissues, global efforts over the last several years have centered around upgrading hydrogel design from relatively simple and static architectures into stimuli-responsive and spatiotemporally evolvable niches. Towards this end, advances from traditionally disparate fields including bioorthogonal click chemistry, chemoenzymatic synthesis, and DNA nanotechnology have been co-opted and integrated to construct 4D-tunable systems that undergo preprogrammed functional changes in response to user-defined inputs. In this Review, we highlight how advances in synthetic, semisynthetic, and bio-based chemistries have played a critical role in the triggered creation and customization of next-generation hydrogel biomaterials. We also chart how these advances stand to energize the translational pipeline of hydrogels from bench to market and close with an outlook on outstanding opportunities and challenges that lay ahead.
Collapse
Affiliation(s)
- Ryan Gharios
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Ryan M. Francis
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA 98105, USA
- Department of Bioengineering, University of Washington, Seattle WA 98105, USA
- Department of Chemistry, University of Washington, Seattle WA 98105, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle WA 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle WA 98105, USA
| |
Collapse
|
5
|
Li Y, Zhang X, Zhang X, Zhang Y, Hou D. Recent Progress of the Vat Photopolymerization Technique in Tissue Engineering: A Brief Review of Mechanisms, Methods, Materials, and Applications. Polymers (Basel) 2023; 15:3940. [PMID: 37835989 PMCID: PMC10574968 DOI: 10.3390/polym15193940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Vat photopolymerization (VP), including stereolithography (SLA), digital light processing (DLP), and volumetric printing, employs UV or visible light to solidify cell-laden photoactive bioresin contained within a vat in a point-by-point, layer-by-layer, or volumetric manner. VP-based bioprinting has garnered substantial attention in both academia and industry due to its unprecedented control over printing resolution and accuracy, as well as its rapid printing speed. It holds tremendous potential for the fabrication of tissue- and organ-like structures in the field of regenerative medicine. This review summarizes the recent progress of VP in the fields of tissue engineering and regenerative medicine. First, it introduces the mechanism of photopolymerization, followed by an explanation of the printing technique and commonly used biomaterials. Furthermore, the application of VP-based bioprinting in tissue engineering was discussed. Finally, the challenges facing VP-based bioprinting are discussed, and the future trends in VP-based bioprinting are projected.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xueqin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Xin Zhang
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Yuxuan Zhang
- FuYang Sineva Materials Technology Co., Ltd., Beijing 100176, China
| | - Dan Hou
- Chinese Academy of Meteorological Sciences, China National Petroleum Corporation, Beijing 102206, China
| |
Collapse
|
6
|
Younas F, Zaman M, Aman W, Farooq U, Raja MAG, Amjad MW. Thiolated Polymeric Hydrogels for Biomedical Applications: A Review. Curr Pharm Des 2023; 29:3172-3186. [PMID: 37622704 DOI: 10.2174/1381612829666230825100859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Hydrogels are a three-dimensional (3D) network of hydrophilic polymers. The physical and chemical crosslinking of polymeric chains maintains the structure of the hydrogels even when they are swollen in water. They can be modified with thiol by thiol epoxy, thiol-ene, thiol-disulfide, or thiol-one reactions. Their application as a matrix for protein and drug delivery, cellular immobilization, regenerative medicine, and scaffolds for tissue engineering was initiated in the early 21st century. This review focuses on the ingredients, classification techniques, and applications of hydrogels, types of thiolation by different thiol-reducing agents, along with their mechanisms. In this study, different applications for polymers used in thiolated hydrogels, including dextran, gelatin, polyethylene glycol (PEG), cyclodextrins, chitosan, hyaluronic acid, alginate, poloxamer, polygalacturonic acid, pectin, carrageenan gum, arabinoxylan, carboxymethyl cellulose (CMC), gellan gum, and polyvinyl alcohol (PVA) are reviewed.
Collapse
Affiliation(s)
- Farhan Younas
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Waqar Aman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | - Umer Farooq
- Faculty of Pharmacy, University of Central Punjab, Lahore, Pakistan
| | | | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, PA 15213, USA
| |
Collapse
|
7
|
Hong SM, Hwang SH. Synthesis and Characterization of Multifunctional Secondary Thiol Hardeners Using 3-Mercaptobutanoic Acid and Their Thiol-Epoxy Curing Behavior. ACS OMEGA 2022; 7:21987-21993. [PMID: 35785300 PMCID: PMC9245090 DOI: 10.1021/acsomega.2c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
3-Mercaptobutanoic acid (3-MBA) was synthesized by the less odorous Michael addition pathway using an isothiouronium salt intermediate. Using the synthesized 3-MBA, multifunctional secondary thiol (sec-thiol) compounds were obtained and applied to thiol-epoxy curing systems as hardeners. As the functionality of the sec-thiol hardeners increased, the purity of the product obtained after distillation decreased. The equivalent epoxy mixtures with multifunctional sec-thiol hardeners were evaluated based on their impact on the curing behavior in thiol-epoxy click reactions by differential scanning calorimetry. The thermal features of sec-thiol-epoxy click reactions in the presence of a base catalyst were assessed according to the functionality of the sec-thiol hardeners. Our results showed that sec-thiol hardeners with less reactivity to the epoxy group provide long-term storage stability for the formulated epoxy resin, promising for industrial applications.
Collapse
|
8
|
Beaumont M, Jahn E, Mautner A, Veigel S, Böhmdorfer S, Potthast A, Gindl-Altmutter W, Rosenau T. Facile Preparation of Mechanically Robust and Functional Silica/Cellulose Nanofiber Gels Reinforced with Soluble Polysaccharides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:895. [PMID: 35335708 PMCID: PMC8949125 DOI: 10.3390/nano12060895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Nanoporous silica gels feature extremely large specific surface areas and high porosities and are ideal candidates for adsorption-related processes, although they are commonly rather fragile. To overcome this obstacle, we developed a novel, completely solvent-free process to prepare mechanically robust CNF-reinforced silica nanocomposites via the incorporation of methylcellulose and starch. Significantly, the addition of starch was very promising and substantially increased the compressive strength while preserving the specific surface area of the gels. Moreover, different silanes were added to the sol/gel process to introduce in situ functionality to the CNF/silica hydrogels. Thereby, CNF/silica hydrogels bearing carboxyl groups and thiol groups were produced and tested as adsorber materials for heavy metals and dyes. The developed solvent-free sol/gel process yielded shapable 3D CNF/silica hydrogels with high mechanical strength; moreover, the introduction of chemical functionalities further widens the application scope of such materials.
Collapse
Affiliation(s)
- Marco Beaumont
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Elisabeth Jahn
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Andreas Mautner
- Faculty of Chemistry, Institute of Materials Chemistry and Research, Polymer and Composite Engineering (PaCE) Group, University of Vienna, Währinger Street 42, 1090 Vienna, Austria;
| | - Stefan Veigel
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (S.V.); (W.G.-A.)
| | - Stefan Böhmdorfer
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Antje Potthast
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
| | - Wolfgang Gindl-Altmutter
- Department of Material Sciences and Process Engineering, Institute of Wood Technology and Renewable Materials, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (S.V.); (W.G.-A.)
| | - Thomas Rosenau
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria; (E.J.); (S.B.); (A.P.)
- Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Turku, Finland
| |
Collapse
|
9
|
Jin M, Koçer G, Paez JI. Luciferin-Bioinspired Click Ligation Enables Hydrogel Platforms with Fine-Tunable Properties for 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5017-5032. [PMID: 35060712 DOI: 10.1021/acsami.1c22186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is an increasing interest in coupling reactions for cross-linking of cell-encapsulating hydrogels under biocompatible, chemoselective, and tunable conditions. Inspired by the biosynthesis of luciferins in fireflies, here we exploit the cyanobenzothiazole-cysteine (CBT-Cys) click ligation to develop polyethylene glycol hydrogels as tunable scaffolds for cell encapsulation. Taking advantage of the chemoselectivity and versatility of CBT-Cys ligation, a highly flexible gel platform is reported here. We demonstrate luciferin-inspired hydrogels with important advantages for cell encapsulation applications: (i) gel precursors derived from inexpensive reagents and with good stability in aqueous solution (>4 weeks), (ii) adjustable gel mechanics within physiological ranges (E = 180-6240 Pa), (iii) easy tunability of the gelation rate (seconds to minutes) by external means, (iv) high microscale homogeneity, (v) good cytocompatibility, and (iv) regulable biological properties. These flexible and robust CBT-Cys hydrogels are proved as supportive matrices for 3D culture of different cell types, namely, fibroblasts and human mesenchymal stem cells. Our findings expand the toolkit of click chemistries for the fabrication of tunable biomaterials.
Collapse
Affiliation(s)
- Minye Jin
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
- Chemistry Department, Saarland University, 66123 Saarbrücken, Germany
| | - Gülistan Koçer
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| | - Julieta I Paez
- INM-Leibniz Institute for New Materials, Campus D2-2, 66123 Saarbrücken, Germany
| |
Collapse
|
10
|
Kalayci K, Frisch H, Barner-Kowollik C, Truong VX. Green Light Enabled Staudinger-Bertozzi Ligation. Chem Commun (Camb) 2022; 58:6397-6400. [DOI: 10.1039/d2cc00911k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We introduce a visible light-induced Staudinger-Bertozzi ligation via photo-uncaging of a triphenylphosphine moiety with a photolabile coumarin derivative. Our action plot study examines the conversion as the function of wavelength,...
Collapse
|
11
|
Hung HS, Kao WC, Shen CC, Chang KB, Tang CM, Yang MY, Yang YC, Yeh CA, Li JJ, Hsieh HH. Inflammatory Modulation of Polyethylene Glycol-AuNP for Regulation of the Neural Differentiation Capacity of Mesenchymal Stem Cells. Cells 2021; 10:2854. [PMID: 34831077 PMCID: PMC8616252 DOI: 10.3390/cells10112854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
A nanocomposite composed of polyethylene glycol (PEG) incorporated with various concentrations (~17.4, ~43.5, ~174 ppm) of gold nanoparticles (Au) was created to investigate its biocompatibility and biological performance in vitro and in vivo. First, surface topography and chemical composition was determined through UV-visible spectroscopy (UV-Vis), Fourier-transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), scanning electron microscopy (SEM), free radical scavenging ability, and water contact angle measurement. Additionally, the diameters of the PEG-Au nanocomposites were also evaluated through dynamic light scattering (DLS) assay. According to the results, PEG containing 43.5 ppm of Au demonstrated superior biocompatibility and biological properties for mesenchymal stem cells (MSCs), as well as superior osteogenic differentiation, adipocyte differentiation, and, particularly, neuronal differentiation. Indeed, PEG-Au 43.5 ppm induced better cell adhesion, proliferation and migration in MSCs. The higher expression of the SDF-1α/CXCR4 axis may be associated with MMPs activation and may have also promoted the differentiation capacity of MSCs. Moreover, it also prevented MSCs from apoptosis and inhibited macrophage and platelet activation, as well as reactive oxygen species (ROS) generation. Furthermore, the anti-inflammatory, biocompatibility, and endothelialization capacity of PEG-Au was measured in a rat model. After implanting the nanocomposites into rats subcutaneously for 4 weeks, PEG-Au 43.5 ppm was able to enhance the anti-immune response through inhibiting CD86 expression (M1 polarization), while also reducing leukocyte infiltration (CD45). Moreover, PEG-Au 43.5 ppm facilitated CD31 expression and anti-fibrosis ability. Above all, the PEG-Au nanocomposite was evidenced to strengthen the differentiation of MSCs into various cells, including fat, vessel, and bone tissue and, particularly, nerve cells. This research has elucidated that PEG combined with the appropriate amount of Au nanoparticles could become a potential biomaterial able to cooperate with MSCs for tissue regeneration engineering.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
- Translational Medicine Research, China Medical University Hospital, Taichung 40402, Taiwan
| | - Wei-Chien Kao
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
- Department of Physical Therapy, Hung Kuang University, Taichung 433304, Taiwan
- Basic Medical Education Center, Central Taiwan University of Science and Technology, Taichung 406053, Taiwan
| | - Kai-Bo Chang
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Cheng-Ming Tang
- College of Oral Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| | - Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
| | - Yi-Chin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 407204, Taiwan; (C.-C.S.); (M.-Y.Y.); (Y.-C.Y.)
| | - Chun-An Yeh
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Jia-Jhan Li
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan; (W.-C.K.); (K.-B.C.); (C.-A.Y.); (J.-J.L.)
| | - Hsien-Hsu Hsieh
- Blood Bank, Taichung Veterans General Hospital, Taichung 407204, Taiwan;
| |
Collapse
|
12
|
Hong SM, Kim OY, Hwang SH. Optimization of synthetic parameters of high-purity trifunctional mercaptoesters and their curing behavior for the thiol-epoxy click reaction. RSC Adv 2021; 11:34263-34268. [PMID: 35497273 PMCID: PMC9042355 DOI: 10.1039/d1ra05981e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
The direct esterification reaction between 3-mercaptopropionic acid (3-MPA) and trimethylolpropane (TMP) was conducted in the presence of various catalyst concentrations of p-toluenesulfonic acid (p-TSA) to examine the optimized synthetic conditions needed to produce high-purity trimethylolpropane-tris(3-mercaptopropionate) (TMPMP). The purity of the desired TMPMP and uncompleted side-product reduced as the acid catalyst concentration in this esterification reaction increased while the generation of thioester-based side-product increased. The equivalent ratio between epoxy and the manufactured TMPMP was maintained at 1 : 1 to monitor the curing behavior of the thiol–epoxy click reaction using the DSC technique. The thermal features of the base-catalyzed TMPMP-cured epoxy resin were assessed according to the purity of the TMPMP curing agent. The direct esterification reaction between 3-mercaptopropionic acid and trimethylolpropane was conducted in the presence of various catalyst concentrations to find a synthetic route for high-purity trimethylolpropane-tris(3-mercaptopropionate).![]()
Collapse
Affiliation(s)
- Seung-Mo Hong
- Materials Chemistry & Engineering Laboratory, School of Polymer System Engineering, Dankook University Yongin Gyeonggi-do 16890 Republic of Korea
| | - Oh Young Kim
- Materials Chemistry & Engineering Laboratory, School of Polymer System Engineering, Dankook University Yongin Gyeonggi-do 16890 Republic of Korea
| | - Seok-Ho Hwang
- Materials Chemistry & Engineering Laboratory, School of Polymer System Engineering, Dankook University Yongin Gyeonggi-do 16890 Republic of Korea
| |
Collapse
|
13
|
Han X, Wu Y, Shan Y, Zhang X, Liao J. Effect of Micro-/Nanoparticle Hybrid Hydrogel Platform on the Treatment of Articular Cartilage-Related Diseases. Gels 2021; 7:gels7040155. [PMID: 34698122 PMCID: PMC8544595 DOI: 10.3390/gels7040155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/05/2023] Open
Abstract
Joint diseases that mainly lead to articular cartilage injury with prolonged severe pain as well as dysfunction have remained unexplained for many years. One of the main reasons is that damaged articular cartilage is unable to repair and regenerate by itself. Furthermore, current therapy, including drug therapy and operative treatment, cannot solve the problem. Fortunately, the micro-/nanoparticle hybrid hydrogel platform provides a new strategy for the treatment of articular cartilage-related diseases, owing to its outstanding biocompatibility, high loading capability, and controlled release effect. The hybrid platform is effective for controlling symptoms of pain, inflammation and dysfunction, and cartilage repair and regeneration. In this review, we attempt to summarize recent studies on the latest development of micro-/nanoparticle hybrid hydrogel for the treatment of articular cartilage-related diseases. Furthermore, some prospects are proposed, aiming to improve the properties of the micro-/nanoparticle hybrid hydrogel platform so as to offer useful new ideas for the effective and accurate treatment of articular cartilage-related diseases.
Collapse
|
14
|
Zhuang Y, Cui W. Biomaterial-based delivery of nucleic acids for tissue regeneration. Adv Drug Deliv Rev 2021; 176:113885. [PMID: 34324886 DOI: 10.1016/j.addr.2021.113885] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/13/2022]
Abstract
Gene therapy is a promising novel method of tissue regeneration by stimulating or inhibiting key signaling pathways. However, their therapeutic applications in vivo are largely limited by several physiological obstacles, such as degradation of nucleases, impermeability of cell membranes, and transport to the desired intracellular compartments. Biomaterial-based gene delivery systems can overcome the problems of stability and local drug delivery, and can temporarily control the overexpression of therapeutic genes, leading to the local production of physiologically relevant levels of regulatory factors. But the gene delivery of biomaterials for tissue regeneration relies on multi-factor design. This review aims to outline the impact of gene delivery methods, therapeutic genes and biomaterials selection on this strategy, emphatically introduce the latest developments in the design of gene delivery vehicles based on biomaterials, summarize the mechanism of nucleic acid for tissue regeneration, and explore the strategies of nucleic acid delivery vehicles for various tissue regeneration.
Collapse
Affiliation(s)
- Yaping Zhuang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention, Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China.
| |
Collapse
|
15
|
McMillan A, Nguyen MK, Huynh CT, Sarett SM, Ge P, Chetverikova M, Nguyen K, Grosh D, Duvall CL, Alsberg E. Hydrogel microspheres for spatiotemporally controlled delivery of RNA and silencing gene expression within scaffold-free tissue engineered constructs. Acta Biomater 2021; 124:315-326. [PMID: 33465507 DOI: 10.1016/j.actbio.2021.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Delivery systems for controlled release of RNA interference (RNAi) molecules, including small interfering (siRNA) and microRNA (miRNA), have the potential to direct stem cell differentiation for regenerative musculoskeletal applications. To date, localized RNA delivery platforms in this area have focused predominantly on bulk scaffold-based approaches, which can interfere with cell-cell interactions important for recapitulating some native musculoskeletal developmental and healing processes in tissue regeneration strategies. In contrast, scaffold-free, high density human mesenchymal stem cell (hMSC) aggregates may provide an avenue for creating a more biomimetic microenvironment. Here, photocrosslinkable dextran microspheres (MS) encapsulating siRNA-micelles were prepared via an aqueous emulsion method and incorporated within hMSC aggregates for localized and sustained delivery of bioactive siRNA. siRNA-micelles released from MS in a sustained fashion over the course of 28 days, and the released siRNA retained its ability to transfect cells for gene silencing. Incorporation of fluorescently labeled siRNA (siGLO)-laden MS within hMSC aggregates exhibited tunable siGLO delivery and uptake by stem cells. Incorporation of MS loaded with siRNA targeting green fluorescent protein (siGFP) within GFP-hMSC aggregates provided sustained presentation of siGFP within the constructs and prolonged GFP silencing for up to 15 days. This platform system enables sustained gene silencing within stem cell aggregates and thus shows great potential in tissue regeneration applications. STATEMENT OF SIGNIFICANCE: This work presents a new strategy to deliver RNA-nanocomplexes from photocrosslinked dextran microspheres for tunable presentation of bioactive RNA. These microspheres were embedded within scaffold-free, human mesenchymal stem cell (hMSC) aggregates for sustained gene silencing within three-dimensional cell constructs while maintaining cell viability. Unlike exogenous delivery of RNA within culture medium that suffers from diffusion limitations and potential need for repeated transfections, this strategy provides local and sustained RNA presentation from the microspheres to cells in the constructs. This system has the potential to inhibit translation of hMSC differentiation antagonists and drive hMSC differentiation toward desired specific lineages, and is an important step in the engineering of high-density stem cell systems with incorporated instructive genetic cues for application in tissue regeneration.
Collapse
|
16
|
Thiolated polymeric hydrogels for biomedical application: Cross-linking mechanisms. J Control Release 2021; 330:470-482. [DOI: 10.1016/j.jconrel.2020.12.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
17
|
Graney PL, Lai K, Post S, Brito I, Cyster J, Singh A. Organoid Polymer Functionality and Mode of Klebsiella Pneumoniae Membrane Antigen Presentation Regulates Ex Vivo Germinal Center Epigenetics in Young and Aged B Cells. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2001232. [PMID: 33692664 PMCID: PMC7939142 DOI: 10.1002/adfm.202001232] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Antibiotic-resistant bacteria are a major global health threat that continues to rise due to a lack of effective vaccines. Of concern are Klebsiella pneumoniae that fail to induce in vivo germinal center B cell responses, which facilitate antibody production to fight infection. Immunotherapies using antibodies targeting antibiotic-resistant bacteria are emerging as promising alternatives, however, they cannot be efficiently derived ex vivo, necessitating the need for immune technologies to develop therapeutics. Here, PEG-based immune organoids were developed to elucidate the effects of polymer end-point chemistry, integrin ligands, and mode of K. pneumoniae antigen presentation on germinal center-like B cell phenotype and epigenetics, to better define the lymph node microenvironment factors regulating ex vivo germinal center dynamics. Notably, PEG vinyl sulfone or acrylate failed to sustain primary immune cells, but functionalization with maleimide (PEG-4MAL) led to B cell expansion and germinal center-like induction. RNA sequencing analysis of lymph node stromal and germinal center B cells showed niche associated heterogeneity of integrin-related genes. Incorporation of niche-mimicking peptides revealed that collagen-1 promoted germinal center-like dynamics and epigenetics. PEG-4MAL organoids elucidated the impact of K. pneumoniae outer membrane-embedded protein antigen versus soluble antigen presentation on germinal centers and preserved the response across young and aged mice.
Collapse
Affiliation(s)
- Pamela L. Graney
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
| | - Kristine Lai
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
| | - Sarah Post
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Biological and Biomedical Sciences, Cornell University, Ithaca, NY
| | - Ilana Brito
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
| | - Jason Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA
| | - Ankur Singh
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA
- Corresponding author:
| |
Collapse
|
18
|
Kim S, Lee M. Rational design of hydrogels to enhance osteogenic potential. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:9508-9530. [PMID: 33551566 PMCID: PMC7857485 DOI: 10.1021/acs.chemmater.0c03018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Bone tissue engineering (BTE) encompasses the field of biomaterials, cells, and bioactive molecules to successfully guide the growth and repair of bone tissue. Current BTE strategies rely on delivering osteogenic molecules or cells via scaffolding materials. However, growth factor- and stem cell-based treatments have several limitations, such as source restriction, low stability, difficulties in predicting long-term efficacy, and high costs, among others. These issues have promoted the development of material-based therapy with properties of accessibility, high stability, tunable efficacy, and low-cost production. Hydrogels are widely used in BTE applications because of their unique hydrophilic nature and tunable physicochemical properties to mimic the native bone environment. However, current hydrogel materials are not ideal candidates due to minimal osteogenic capability on their own. Therefore, recent studies of BTE hydrogels attempt to counterbalance these issues by modifying their biophysical properties. In this article, we review recent progress in the design of hydrogels to instruct osteogenic potential, and present strategies developed to precisely control its bone healing properties.
Collapse
Affiliation(s)
- Soyon Kim
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, USA
- Department of Bioengineering, University of California, Los Angeles, USA
| |
Collapse
|
19
|
Pérez del Río E, Santos F, Rodriguez Rodriguez X, Martínez-Miguel M, Roca-Pinilla R, Arís A, Garcia-Fruitós E, Veciana J, Spatz JP, Ratera I, Guasch J. CCL21-loaded 3D hydrogels for T cell expansion and differentiation. Biomaterials 2020; 259:120313. [DOI: 10.1016/j.biomaterials.2020.120313] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 01/21/2023]
|
20
|
Tran HD, Park KD, Ching YC, Huynh C, Nguyen DH. A comprehensive review on polymeric hydrogel and its composite: Matrices of choice for bone and cartilage tissue engineering. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
Magli S, Rossi GB, Risi G, Bertini S, Cosentino C, Crippa L, Ballarini E, Cavaletti G, Piazza L, Masseroni E, Nicotra F, Russo L. Design and Synthesis of Chitosan-Gelatin Hybrid Hydrogels for 3D Printable in vitro Models. Front Chem 2020; 8:524. [PMID: 32760695 PMCID: PMC7373092 DOI: 10.3389/fchem.2020.00524] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/22/2020] [Indexed: 12/23/2022] Open
Abstract
The development of 3D printable hydrogels based on the crosslinking between chitosan and gelatin is proposed. Chitosan and gelatin were both functionalized with methyl furan groups. Chemical modification was performed by reductive amination with methyl furfural involving the lysine residues of gelatin and the amino groups of chitosan to generate hydrogels with tailored properties. The methyl furan residues present in both polymers were exploited for efficient crosslinking via Diels-Alder ligation with PEG-Star-maleimide under cell-compatible conditions. The obtained chitosan-gelatin hybrid was employed to formulate hydrogels and 3D printable biopolymers and its processability and biocompatibility were preliminarily investigated.
Collapse
Affiliation(s)
- Sofia Magli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Beatrice Rossi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Giulia Risi
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Sabrina Bertini
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Cesare Cosentino
- G. Ronzoni Institute for Chemical and Biochemical Research, Milan, Italy
| | - Luca Crippa
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Elisa Ballarini
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Guido Cavaletti
- Department of Medical and Surgical Science, University of Milano-Bicocca, Milan, Italy
| | - Laura Piazza
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Elisa Masseroni
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Francesco Nicotra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
22
|
Chen L, Zheng Y, Meng X, Wei G, Dietliker K, Li Z. Delayed Thiol-Epoxy Photopolymerization: A General and Effective Strategy to Prepare Thick Composites. ACS OMEGA 2020; 5:15192-15201. [PMID: 32637792 PMCID: PMC7331066 DOI: 10.1021/acsomega.0c01170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 05/08/2023]
Abstract
Photoinduced thiol-epoxy click polymerization possesses both the characteristics and advantages of photopolymerization and click reactions. However, the photopolymerization of pigmented or highly filled thiol-epoxy thick composites still remains a great challenge due to the light screening effect derived from the competitive absorption, reflection, and scattering of the pigments or functional fillers. In this article, we present a simple and versatile strategy to prepare thick composites via delayed thiol-epoxy photopolymerization. The irradiation of a small area with a light-emitting diode (LED) point light source at room temperature leads to the decomposition of a photobase generator and the released active basic species can uniformly disperse throughout the whole system, including unirradiated areas, via mechanical stirring. No polymerization was observed at room temperature and therefore the liquid formulations can be further processed with molds of arbitrary size and desired shapes. It is only by increasing the temperature that base-catalyzed thiol-epoxy polymerization occurs and controllable preparation of thick thiol-epoxy materials can be achieved. The formed networks display excellent uniformity in different radii and depths with comparable functionality conversions, similar T g values, and thermal decomposition temperatures. The presented strategy can be applied to prepare thick composites with glass fibers possessing improved mechanical properties and dark composites containing 2 wt % carbon nanotubes.
Collapse
Affiliation(s)
- Li Chen
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Changzhou
Radiation Curing Material Engineering Technology Research Center, Jiangsu Kailin Ruiyang Chemical Co., Ltd., Liyang 213364, China
| | - Yuanjian Zheng
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoyan Meng
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International
Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guo Wei
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Changzhou
Radiation Curing Material Engineering Technology Research Center, Jiangsu Kailin Ruiyang Chemical Co., Ltd., Liyang 213364, China
| | - Kurt Dietliker
- International
Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department
of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Zhiquan Li
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International
Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
23
|
Yu T, Wang H, Zhang Y, Wang X, Han B. The Delivery of RNA-Interference Therapies Based on Engineered Hydrogels for Bone Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:445. [PMID: 32478058 PMCID: PMC7235334 DOI: 10.3389/fbioe.2020.00445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) is an efficient post-transcriptional gene modulation strategy mediated by small interfering RNAs (siRNAs) and microRNAs (miRNAs). Since its discovery, RNAi has been utilized extensively to diagnose and treat diseases at both the cellular and molecular levels. However, the application of RNAi therapies in bone regeneration has not progressed to clinical trials. One of the major challenges for RNAi therapies is the lack of efficient and safe delivery vehicles that can actualize sustained release of RNA molecules at the target bone defect site and in surrounding cells. One promising approach to achieve these requirements is encapsulating RNAi molecules into hydrogels for delivery, which enables the nucleic acids to be delivered as RNA conjugates or within nanoparticles. Herein, we reviewed recent investigations into RNAi therapies for bone regeneration where RNA delivery was performed by hydrogels.
Collapse
Affiliation(s)
- Tingting Yu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yunfan Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
24
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
25
|
Colorimetric assay of tyrosinase inhibition using melanocyte laden hydrogel fabricated by digital light processing printing. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
26
|
Paez JI, Farrukh A, Valbuena-Mendoza R, Włodarczyk-Biegun MK, Del Campo A. Thiol-Methylsulfone-Based Hydrogels for 3D Cell Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:8062-8072. [PMID: 31999422 DOI: 10.1021/acsami.0c00709] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Thiol-maleimide and thiol-vinylsulfone cross-linked hydrogels are widely used systems in 3D culture models, in spite of presenting uncomfortable reaction kinetics for cell encapsulation: too fast (seconds for thiol-maleimide) or too slow (minutes-hours for thiol-vinylsulfone). Here, we introduce the thiol-methylsulfone reaction as alternative cross-linking chemistry for cell encapsulation, particularized for PEG-hydrogels. The thiol-methylsulfone reaction occurs at high conversion and at intermediate reaction speed (seconds-minutes) under physiological pH range. These properties allow easy mixing of hydrogel precursors and cells to render homogeneous cell-laden gels at comfortable experimental time scales. The resulting hydrogels are cytocompatible and show comparable hydrolytic stability to thiol-vinylsulfone gels. They allow direct bioconjugation of thiol-derivatized ligands and tunable degradation kinetics by cross-linking with degradable peptide sequences. 3D cell culture of two cell types, fibroblasts and human umbilical vein endothelial cells (HUVECs), is demonstrated.
Collapse
Affiliation(s)
- Julieta I Paez
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Aleeza Farrukh
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
| | - Rocío Valbuena-Mendoza
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| | | | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials , Campus D2-2 , 66123 Saarbrücken , Germany
- Saarland University , Chemistry Department , 66123 Saarbrücken , Germany
| |
Collapse
|
27
|
Hoang Thi TT, Sinh LH, Huynh DP, Nguyen DH, Huynh C. Self-Assemblable Polymer Smart-Blocks for Temperature-Induced Injectable Hydrogel in Biomedical Applications. Front Chem 2020; 8:19. [PMID: 32083052 PMCID: PMC7005785 DOI: 10.3389/fchem.2020.00019] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/08/2020] [Indexed: 12/29/2022] Open
Abstract
Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly of polymer smart-blocks have been widely investigated as drug delivery systems and platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly play an important role in fabrication of hydrogels because they can self-assemble to induce the gelation of their copolymer in aqueous solution. The self-assembly occurs in response to an external stimulus change, such as temperature, pH, glucose, ionic strength, light, magnetic field, electric field, or their combination, which results in property transformations like hydrophobicity, ionization, and conformational change. The self-assembly smart-block based copolymers exist as a solution in aqueous media at certain conditions that are suitable for mixing with bioactive molecules and/or cells. However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks under exposure to an external stimulus change in vitro or injection into the living body for a controllable release of loaded bioactive molecules or serving as a biomaterial scaffold for tissue regeneration. This work reports current scenery in the development of these self-assembly smart-blocks for fabrication of temperature-induced injectable physically cross-linked hydrogels and their potential application as drug delivery systems and platforms for tissue engineering.
Collapse
Affiliation(s)
- Thai Thanh Hoang Thi
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Le Hoang Sinh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| | - Dai Phu Huynh
- Faculty of Materials Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam
| | - Dai Hai Nguyen
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Cong Huynh
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
28
|
Khan AH, Cook JK, Wortmann WJ, Kersker ND, Rao A, Pojman JA, Melvin AT. Synthesis and characterization of thiol‐acrylate hydrogels using a base‐catalyzed Michael addition for 3D cell culture applications. J Biomed Mater Res B Appl Biomater 2020; 108:2294-2307. [DOI: 10.1002/jbm.b.34565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Anowar H. Khan
- Department of ChemistryLouisiana State University Baton Rouge Louisiana
| | - Jeffery K. Cook
- Department of Chemical & Biomolecular EngineeringUniversity of California Berkeley California
| | - Wayne J. Wortmann
- Cain Department of Chemical EngineeringLouisiana State University Baton Rouge Louisiana
| | - Nathan D. Kersker
- Department of ChemistryLouisiana State University Baton Rouge Louisiana
| | - Asha Rao
- Cain Department of Chemical EngineeringLouisiana State University Baton Rouge Louisiana
| | - John A. Pojman
- Department of ChemistryLouisiana State University Baton Rouge Louisiana
| | - Adam T. Melvin
- Cain Department of Chemical EngineeringLouisiana State University Baton Rouge Louisiana
| |
Collapse
|
29
|
Xin F, Han J, Pan H, Sun F. Surface microstructures and properties of thiol-epoxy/thiol-Si-methacrylate hybrid polymer networks prepared by UV-induced polymerization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1698965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fuhua Xin
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Junyi Han
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - He Pan
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Fang Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
- Anqing Research Institute, Beijing University of Chemical Technology, High-Tech District, Anqing City, Anhui, China
| |
Collapse
|
30
|
Injectable hydrogel composed of hydrophobically modified chitosan/oxidized-dextran for wound healing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109930. [DOI: 10.1016/j.msec.2019.109930] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 01/16/2023]
|
31
|
Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Nguyen MK, Huynh CT, Gilewski A, Wilner SE, Maier KE, Kwon N, Levy M, Alsberg E. Covalently tethering siRNA to hydrogels for localized, controlled release and gene silencing. SCIENCE ADVANCES 2019; 5:eaax0801. [PMID: 31489374 PMCID: PMC6713499 DOI: 10.1126/sciadv.aax0801] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/19/2019] [Indexed: 05/19/2023]
Abstract
Small interfering RNA (siRNA) has found many applications in tissue regeneration and disease therapeutics. Effective and localized siRNA delivery remains challenging, reducing its therapeutic potential. Here, we report a strategy to control and prolong siRNA release by directly tethering transfection-capable siRNA to photocrosslinked dextran hydrogels. siRNA release is governed via the hydrolytic degradation of ester and/or disulfide linkages between the siRNA and hydrogels, which is independent of hydrogel degradation rate. The released siRNA is shown to be bioactive by inhibiting protein expression in green fluorescent protein-expressing HeLa cells without the need of a transfection agent. This strategy provides an excellent platform for controlling nucleic acid delivery through covalent bonds with a biomaterial and regulating cellular gene expression, which has promising potential in many biomedical applications.
Collapse
Affiliation(s)
- Minh Khanh Nguyen
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Cong Truc Huynh
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Alex Gilewski
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Samantha E. Wilner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Keith E. Maier
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Nicholas Kwon
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Mathew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Vitrisa Therapeutics Inc., 701 W Main St. Suite 200, Durham, NC 27701, USA
| | - Eben Alsberg
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Orthopaedic Surgery, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|