1
|
Wang T, Zheng X, Chai H, Miao P. DNA Nanostructure Disintegration-Assisted SPAAC Ligation for Electrochemical Biosensing. NANO LETTERS 2024; 24:12233-12238. [PMID: 39287191 DOI: 10.1021/acs.nanolett.4c03394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
MicroRNAs (MiRNAs) are valuable biomarkers for the diagnosis and prognosis of diseases. The development of reliable assays is an urgent pursuit. We herein fabricate a novel electrochemical sensing strategy based on the conformation transitions of DNA nanostructures and click chemistry. Duplex-specific nuclease (DSN)-catalyzed reaction is first used for the disintegration of the DNA triangular pyramid frustum (DNA TPF). A DNA triangle is formed, which in turn assists strain-promoted alkyne-azide cycloaddition (SPAAC) to localize single-stranded DNA probes (P1). After SPAAC ligation, multiple DNA hairpins are spontaneously folded, and the labeled electrochemical species are dragged near the electrode interface. By recording and analyzing the responses, a highly sensitive electrochemical biosensor is established, which exhibits high sensitivity and reproducibility. Clinical applications have been verified with good stability. This sensing strategy relies on the integration of DNA nanostructures and click chemistry, which may inspire further designs for the development of DNA nanotechnology and applications in clinical chemistry.
Collapse
Affiliation(s)
- Tingting Wang
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xingye Zheng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
2
|
Kunachowicz D, Kłosowska K, Sobczak N, Kepinska M. Applicability of Quantum Dots in Breast Cancer Diagnostic and Therapeutic Modalities-A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1424. [PMID: 39269086 PMCID: PMC11396817 DOI: 10.3390/nano14171424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
The increasing incidence of breast cancers (BCs) in the world population and their complexity and high metastatic ability are serious concerns for healthcare systems. Despite the significant progress in medicine made in recent decades, the efficient treatment of invasive cancers still remains challenging. Chemotherapy, a fundamental systemic treatment method, is burdened with severe adverse effects, with efficacy limited by resistance development and risk of disease recurrence. Also, current diagnostic methods have certain drawbacks, attracting attention to the idea of developing novel, more sensitive detection and therapeutic modalities. It seems the solution for these issues can be provided by nanotechnology. Particularly, quantum dots (QDs) have been extensively evaluated as potential targeted drug delivery vehicles and, simultaneously, sensing and bioimaging probes. These fluorescent nanoparticles offer unlimited possibilities of surface modifications, allowing for the attachment of biomolecules, such as antibodies or proteins, and drug molecules, among others. In this work, we discuss the potential applicability of QDs in breast cancer diagnostics and treatment in light of the current knowledge. We begin with introducing the molecular and histopathological features of BCs, standard therapeutic regimens, and current diagnostic methods. Further, the features of QDs, along with their uptake, biodistribution patterns, and cytotoxicity, are described. Based on the reports published in recent years, we present the progress in research on possible QD use in improving BC diagnostics and treatment efficacy as chemotherapeutic delivery vehicles and photosensitizing agents, along with the stages of their development. We also address limitations and open questions regarding this topic.
Collapse
Affiliation(s)
- Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Karolina Kłosowska
- Students' Scientific Association at the Department of Pharmaceutical Biochemistry (SKN No. 214), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Natalia Sobczak
- Students' Scientific Association of Biomedical and Environmental Analyses (SKN No. 85), Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Marta Kepinska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| |
Collapse
|
3
|
Chen J, Zhang Y, Wang X, Li F, Wu S, Wang W, Zhou N. A FRET based ultrasensitive fluorescent aptasensor for 6'-sialyllactose detection. Anal Biochem 2024; 688:115462. [PMID: 38246433 DOI: 10.1016/j.ab.2024.115462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/01/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
As a kind of human milk oligosaccharide, 6'-sialyllactose (6'-SL) plays an important role in promoting infant brain development and improving infant immunity. The content of 6'-SL in infant formula milk powder is thus one of the important nutritional indexes. Since the lacking of efficient and rapid detection methods for 6'-SL, it is of great significance to develop specific recognition elements and establish fast and sensitive detection methods for 6'-SL. Herein, using 6'-SL specific aptamer as the recognition element, catalytic hairpin assembly as the signal amplification technology and quantum dots as the signal label, a fluorescence biosensor based on fluorescence resonance energy transfer (FRET) was constructed for ultra-sensitive detection of 6'-SL. The detection limit of this FRET-based fluorescent biosensor is 0.3 nM, and it has some outstanding characteristics such as high signal-to-noise ratio, low time-consuming, simplicity and high efficiency in the actual sample detection. Therefore, it has broad application prospect in 6'-SL detection.
Collapse
Affiliation(s)
- Jinri Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China; State Key Laboratory of Genetic Engineering, MOE Engineering Research Centre of Gene Technology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuting Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaoli Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fuhou Li
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China
| | - Shaojie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China
| | - Weixia Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, 222005, China
| | - Nandi Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
4
|
Liu WJ, Wang LJ, Zhang CY. Progress in quantum dot-based biosensors for microRNA assay: A review. Anal Chim Acta 2023; 1278:341615. [PMID: 37709484 DOI: 10.1016/j.aca.2023.341615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/15/2023] [Accepted: 07/11/2023] [Indexed: 09/16/2023]
Abstract
MicroRNAs (miRNAs) are responsible for post-transcriptional gene regulation, and may function as valuable biomarkers for diseases diagnosis. Accurate and sensitive analysis of miRNAs is in great demand. Quantum dots (QDs) are semiconductor nanomaterials with superior optoelectronic features, such as high quantum yield and brightness, broad absorption and narrow emission, long fluorescence lifetime, and good photostability. Herein, we give a comprehensive review about QD-based biosensors for miRNA assay. Different QD-based biosensors for miRNA assay are classified by the signal types including fluorescent, electrochemical, electrochemiluminescent, and photoelectrochemical outputs. We highlight the features, principles, and performances of the emerging miRNA biosensors, and emphasize the challenges and perspectives in this field.
Collapse
Affiliation(s)
- Wen-Jing Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Li-Juan Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
5
|
Chai H, Chen X, Shi R, Miao P. Irregular DNA Triangular Prism/Triplex Assembly for Duplicate MiRNA Analysis with Nicking Endonuclease-Mediated Amplification. Anal Chem 2023; 95:4564-4569. [PMID: 36812460 DOI: 10.1021/acs.analchem.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Highly sensitive and selective detection of microRNA (miRNA) is becoming more and more important in the discovery, diagnosis, and prognosis of various diseases. Herein, we develop a three-dimensional DNA nanostructure based electrochemical platform for duplicate detection of miRNA amplified by nicking endonuclease. Target miRNA first helps construction of three-way junction structures on the surfaces of gold nanoparticles. After nicking endonuclease-powered cleavage reactions, single-stranded DNAs labeled with electrochemical species are released. These strands can be facilely immobilized at four edges of the irregular triangular prism DNA (iTPDNA) nanostructure via triplex assembly. By evaluating the electrochemical response, target miRNA levels can be determined. In addition, the triplexes can be disassociated by simply changing pH conditions, and the iTPDNA biointerface can be regenerated for duplicate analyses. The developed electrochemical method not only exhibits an excellent prospect in the detection of miRNA but also may inspire the engineering of recyclable biointerfaces for biosensing platforms.
Collapse
Affiliation(s)
- Hua Chai
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250103, China
| | - Ruiju Shi
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China.,Jinan Guoke Medical Technology Development Co., Ltd., Jinan 250103, China
| |
Collapse
|
6
|
Kim D, Lee J, Han J, Lim J, Lim EK, Kim E. A highly specific and flexible detection assay using collaborated actions of DNA-processing enzymes for identifying multiple gene expression signatures in breast cancer. Analyst 2023; 148:316-327. [PMID: 36484412 DOI: 10.1039/d2an01672a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most nucleic acid biosensors employ nucleic acid-processing enzymes to bind, degrade, splice, synthesize, and modify nucleic acids. Utilizing their unique substrate preference, binding mode, and catalytic activity is of great importance in designing nucleic acid biosensors. Combination with DNA-processing enzymes enables them to transform into a new generation of molecular diagnostics tools with enhanced selectivity and sensitivity and reduced reaction time. Here, we report an isothermal amplification strategy by coemploying a structure-specific endonuclease (flap endonuclease 1, FEN1) and a strand-displacing DNA polymerase (Bst DNA polymerase) to detect long RNA targets. This approach couples the FEN1-driven invasive cleavage reaction with toehold-mediated rolling circle amplification (iFEN-tRCA), enabling the highly selective and rapid detection of long RNA targets and offering a detection limit below 10 pM within 1 h. We used two targets, such as human epidermal growth factor receptor 2 (HER2, encoded by ERBB2) and dopamine- and cyclic AMP-regulated phosphoprotein (DARPP, encoded by PPP1R1B), associated with prognosis or response to anticancer therapy. We demonstrated the feasibility and quantitative capability of the iFEN-tRCA assay by assessing the expression of two RNA transcripts (ERBB2 and PPP1R1B) with total RNA extracts purified from human breast cancer cells. Therefore, we envision that the developed assay will provide a suitable prognostic and diagnostic tool for identifying appropriate patients for HER2-targeted therapy and predicting the clinical outcome and occurrence of metastasis relapse in breast cancer.
Collapse
Affiliation(s)
- Dain Kim
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea.
| | - Jiyoung Lee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jueun Han
- Department of Chemistry, Incheon National University, Incheon 22012, Republic of Korea
| | - Jaewoo Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea.
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea. .,Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon 34113, Republic of Korea.,School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunjung Kim
- Department of Bioengineering & Nano-bioengineering, Research Center for Bio Materials and Process Development, Incheon National University, Incheon 22012, Republic of Korea. .,Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
7
|
Ashraf G, Zhong ZT, Asif M, Aziz A, Iftikhar T, Chen W, Zhao YD. State-of-the-Art Fluorescent Probes: Duplex-Specific Nuclease-Based Strategies for Early Disease Diagnostics. BIOSENSORS 2022; 12:bios12121172. [PMID: 36551139 PMCID: PMC9775407 DOI: 10.3390/bios12121172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 05/27/2023]
Abstract
Precision healthcare aims to improve patient health by integrating prevention measures with early disease detection for prompt treatments. For the delivery of preventive healthcare, cutting-edge diagnostics that enable early disease detection must be clinically adopted. Duplex-specific nuclease (DSN) is a useful tool for bioanalysis since it can precisely digest DNA contained in duplexes. DSN is commonly used in biomedical and life science applications, including the construction of cDNA libraries, detection of microRNA, and single-nucleotide polymorphism (SNP) recognition. Herein, following the comprehensive introduction to the field, we highlight the clinical applicability, multi-analyte miRNA, and SNP clinical assays for disease diagnosis through large-cohort studies using DSN-based fluorescent methods. In fluorescent platforms, the signal is produced based on the probe (dyes, TaqMan, or molecular beacon) properties in proportion to the target concentration. We outline the reported fluorescent biosensors for SNP detection in the next section. This review aims to capture current knowledge of the overlapping miRNAs and SNPs' detection that have been widely associated with the pathophysiology of cancer, cardiovascular, neural, and viral diseases. We further highlight the proficiency of DSN-based approaches in complex biological matrices or those constructed on novel nano-architectures. The outlooks on the progress in this field are discussed.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Formation of miRNA Nanoprobes-Conjugation Approaches Leading to the Functionalization. Molecules 2022; 27:molecules27238428. [PMID: 36500520 PMCID: PMC9739806 DOI: 10.3390/molecules27238428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Recently, microRNAs (miRNA) captured the interest as novel diagnostic and prognostic biomarkers, with their potential for early indication of numerous pathologies. Since miRNA is a short, non-coding RNA sequence, the sensitivity and selectivity of their detection remain a cornerstone of scientific research. As such, methods based on nanomaterials have emerged in hopes of developing fast and facile approaches. At the core of the detection method based on nanotechnology lie nanoprobes and other functionalized nanomaterials. Since miRNA sensing and detection are generally rooted in the capture of target miRNA with the complementary sequence of oligonucleotides, the sequence needs to be attached to the nanomaterial with a specific conjugation strategy. As each nanomaterial has its unique properties, and each conjugation approach presents its drawbacks and advantages, this review offers a condensed overview of the conjugation approaches in nanomaterial-based miRNA sensing. Starting with a brief recapitulation of specific properties and characteristics of nanomaterials that can be used as a substrate, the focus is then centered on covalent and non-covalent bonding chemistry, leading to the functionalization of the nanomaterials, which are the most commonly used in miRNA sensing methods.
Collapse
|
9
|
Han Z, Yang C, Xiao D, Lin Y, Wen R, Chen B, He X. A Rapid, Fluorescence Switch-On Biosensor for Early Diagnosis of Sorghum Mosaic Virus. BIOSENSORS 2022; 12:1034. [PMID: 36421152 PMCID: PMC9688095 DOI: 10.3390/bios12111034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
For the first time, a nanobiosensor was established for Sorghum mosaic virus (SrMV) detection. The biosensor consists of cadmium telluride quantum dots (CdTe QDs) conjugated to the specific antibody (Ab) against SrMV coat protein (CP) and carbon quantum dots (C QDs) labeled with SrMV coat protein. The formation of the fluorophore-quencher immunocomplex CdTe QDs-Ab+C QDs-CP led to a distinct decrease in the fluorescence intensity of CdTe QDs. Conversely, the emission intensity of CdTe QDs recovered upon the introduction of unlabeled CP. The developed biosensor showed a limit of detection of 44 nM in a linear range of 0.10-0.54 μM and exhibited the strongest fluorescence intensity (about 47,000 a.u.) at 552 nm. This strategy was applied to detect purified CP in plant sap successfully with a recovery rate between 93-103%. Moreover, the feasibility of the proposed method was further verified by the detection of field samples, and the results were consistent with an enzyme-linked immunosorbent assay (ELISA). Contrarily to ELISA, the proposed biosensor did not require excessive washing and incubation steps, thus the detection could be rapidly accomplished in a few minutes. The high sensitivity and short assay time of this designed biosensor demonstrated its potential application in situ and rapid detection. In addition, the fluorescence quenching of CdTe QDs was attributed to dynamic quenching according to the Stern-Volmer equation.
Collapse
Affiliation(s)
- Zhenlong Han
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Congyuan Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Dan Xiao
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yinfu Lin
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ronghui Wen
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Baoshan Chen
- College of Agriculture, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Xipu He
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| |
Collapse
|
10
|
Kshirsagar PG, Seshacharyulu P, Muniyan S, Rachagani S, Smith LM, Thompson C, Shah A, Mallya K, Kumar S, Jain M, Batra SK. DNA-gold nanoprobe-based integrated biosensing technology for non-invasive liquid biopsy of serum miRNA: A new frontier in prostate cancer diagnosis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 43:102566. [PMID: 35569810 PMCID: PMC9942096 DOI: 10.1016/j.nano.2022.102566] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
Abstract
The low specificity of prostate-specific antigen contributes to overdiagnosis and ov ertreatment of prostate cancer (PCa) patients. Hence, there is an urgent need for inclusive diagnostic platforms that could improve the diagnostic accuracy of PCa. Dysregulated miRNAs are closely associated with the progression and recurrence and have emerged as promising diagnostic and prognostic biomarkers for PCa. Nevertheless, simple, rapid, and ultrasensitive quantification of serum miRNAs is highly challenging. This study designed, synthesized, and demonstrated the practicability of DNA-linked gold nanoprobes (DNA-AuNPs) for the single-step quantification of miR-21/miR-141/miR-375. In preclinical study, the assay differented PCa Pten conditional knockout (PtencKO) mice compared to their age-matched Pten wild-type (PtenWT) control mice. In human sera, receiver operating characteristic (ROC) curve-based correlation analyses revealed clear discrimination between PCa patients from normal healthy controls using training and validation sets. Overall, we established integrated nano-biosensing technology for the PCR-free, non-invasive liquid biopsies of multiple miRNAs for PCa diagnosis.
Collapse
Affiliation(s)
- Prakash G. Kshirsagar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Parthasarathy Seshacharyulu
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Satyanarayan Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Lynette M. Smith
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Christopher Thompson
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Kavita Mallya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Omaha, NE, USA.
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.,Corresponding authors: Surinder K. Batra, Ph.D., , Phone: 402-559-5455; Maneesh Jain, Ph.D., , Phone: 402-559-7667
| |
Collapse
|
11
|
Role of Nano-miRNAs in Diagnostics and Therapeutics. Int J Mol Sci 2022; 23:ijms23126836. [PMID: 35743278 PMCID: PMC9223810 DOI: 10.3390/ijms23126836] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNA) are key regulators of gene expression, controlling different biological processes such as cellular development, differentiation, proliferation, metabolism, and apoptosis. The relationships between miRNA expression and the onset and progression of different diseases, such as tumours, cardiovascular and rheumatic diseases, and neurological disorders, are well known. A nanotechnology-based approach could match miRNA delivery and detection to move beyond the proof-of-concept stage. Different kinds of nanotechnologies can have a major impact on the diagnosis and treatment of miRNA-related diseases such as cancer. Developing novel methodologies aimed at clinical practice represents a big challenge for the early diagnosis of specific diseases. Within this context, nanotechnology represents a wide emerging area at the forefront of research over the last two decades, whose potential has yet to be fully attained. Nanomedicine, derived from nanotechnology, can exploit the unique properties of nanometer-sized particles for diagnostic and therapeutic purposes. Through nanomedicine, specific treatment to counteract only cancer-cell proliferation will be improved, while leaving healthy cells intact. In this review, we dissect the properties of different nanocarriers and their roles in the early detection and treatment of cancer.
Collapse
|
12
|
Abstract
Quantum dots (QDs) possess exceptional optoelectronic properties that enable their use in the most diverse applications, namely, in the medical field. The prevalence of cancer has increased and has been considered the major cause of death worldwide. Thus, there has been a great demand for new methodologies for diagnosing and monitoring cancer in cells to provide an earlier prognosis of the disease and contribute to the effectiveness of treatment. Several molecules in the human body can be considered relevant as cancer markers. Studies published over recent years have revealed that micro ribonucleic acids (miRNAs) play a crucial role in this pathology, since they are responsible for some physiological processes of the cell cycle and, most important, they are overexpressed in cancer cells. Thus, the analytical sensing of miRNA has gained importance to provide monitoring during cancer treatment, allowing the evaluation of the disease's evolution. Recent methodologies based on nanochemistry use fluorescent quantum dots for sensing of the miRNA. Combining the unique characteristics of QDs, namely, their fluorescence capacity, and the fact that miRNA presents an aberrant expression in cancer cells, the researchers created diverse strategies for miRNA monitoring. This review aims to present an overview of the recent use of QDs as biosensors in miRNA detection, also highlighting some tutorial descriptions of the synthesis methods of QDs, possible surface modification, and functionalization approaches.
Collapse
Affiliation(s)
- Catarina
S. M. Martins
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal,LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal
| | - Alec P. LaGrow
- International
Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - João A. V. Prior
- LAQV,
REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical
Sciences, Faculty of Pharmacy, University
of Porto, Rua de Jorge Viterbo Ferreira, No. 228, 4050-313 Porto, Portugal,
| |
Collapse
|
13
|
Qiao K, Xu L, Tang J, Wang Q, Lim KS, Hooper G, Woodfield TBF, Liu G, Tian K, Zhang W, Cui X. The advances in nanomedicine for bone and cartilage repair. J Nanobiotechnology 2022; 20:141. [PMID: 35303876 PMCID: PMC8932118 DOI: 10.1186/s12951-022-01342-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/01/2022] [Indexed: 12/24/2022] Open
Abstract
With the gradual demographic shift toward an aging and obese society, an increasing number of patients are suffering from bone and cartilage injuries. However, conventional therapies are hindered by the defects of materials, failing to adequately stimulate the necessary cellular response to promote sufficient cartilage regeneration, bone remodeling and osseointegration. In recent years, the rapid development of nanomedicine has initiated a revolution in orthopedics, especially in tissue engineering and regenerative medicine, due to their capacity to effectively stimulate cellular responses on a nanoscale with enhanced drug loading efficiency, targeted capability, increased mechanical properties and improved uptake rate, resulting in an improved therapeutic effect. Therefore, a comprehensive review of advancements in nanomedicine for bone and cartilage diseases is timely and beneficial. This review firstly summarized the wide range of existing nanotechnology applications in the medical field. The progressive development of nano delivery systems in nanomedicine, including nanoparticles and biomimetic techniques, which are lacking in the current literature, is further described. More importantly, we also highlighted the research advancements of nanomedicine in bone and cartilage repair using the latest preclinical and clinical examples, and further discussed the research directions of nano-therapies in future clinical practice.
Collapse
Affiliation(s)
- Kai Qiao
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Lu Xu
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
- Department of Dermatology, the Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China
| | - Junnan Tang
- Department of Cardiology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 61004, Sichuan, China
| | - Khoon S Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Gary Hooper
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Tim B F Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen, 518172, Guangdong, China
| | - Kang Tian
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Weiguo Zhang
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
| | - Xiaolin Cui
- Department of Bone & Joint, the First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning, China.
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery & Musculoskeletal Medicine, University of Otago, Christchurch, 8011, New Zealand.
| |
Collapse
|
14
|
Li CH, Lv WY, Yang FF, Zhen SJ, Huang CZ. Simultaneous Imaging of Dual microRNAs in Cancer Cells through Catalytic Hairpin Assembly on a DNA Tetrahedron. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12059-12067. [PMID: 35213135 DOI: 10.1021/acsami.1c23227] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurate detection and imaging of tumor-related microRNA (miRNA) in living cells hold great promise for early cancer diagnosis and prognosis. One of the challenges is to develop methods that enable the identification of multiple miRNAs simultaneously to further improve the detection accuracy. Herein, a simultaneous detection and imaging method of two miRNAs was established by using a programmable designed DNA tetrahedron nanostructure (DTN) probe that includes a nucleolin aptamer (AS1411), two miRNA capture strands, and two pairs of metastable catalytic hairpins at different vertexes. The DTN probe exhibited enhanced tumor cell recognition ability, excellent stability and biocompatibility, and fast miRNA recognition and reaction kinetics. It was found that the DTN probe could specifically enter tumor cells, in which the capture strand could hybridize with miRNAs and initiate the catalytic hairpin assembly (CHA) only when the overexpressed miR-21 and miR-155 existed simultaneously, resulting in a distinct fluorescence resonance energy transfer signal and demonstrating the feasibility of this method for tumor diagnosis.
Collapse
Affiliation(s)
- Chun Hong Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Wen Yi Lv
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Fei Fan Yang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shu Jun Zhen
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
15
|
Geng H, Vilms Pedersen S, Ma Y, Haghighi T, Dai H, Howes PD, Stevens MM. Noble Metal Nanoparticle Biosensors: From Fundamental Studies toward Point-of-Care Diagnostics. Acc Chem Res 2022; 55:593-604. [PMID: 35138817 PMCID: PMC7615491 DOI: 10.1021/acs.accounts.1c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Noble metal nanoparticles (NMNPs) have become firmly established as effective agents to detect various biomolecules with extremely high sensitivity. This ability stems from the collective oscillation of free electrons and extremely large electric field enhancement under exposure to light, leading to various light-matter interactions such as localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering. A remarkable feature of NMNPs is their customizability by mechanisms such as particle etching, growth, and aggregation/dispersion, yielding distinct color changes and excellent opportunities for colorimetric biosensing in user-friendly assays and devices. They are readily functionalized with a large variety of capping agents and biomolecules, with resultant bioconjugates often possessing excellent biocompatibility, which can be used to quantitatively detect analytes from physiological fluids. Furthermore, they can possess excellent catalytic properties that can achieve significant signal amplification through mechanisms such as the catalytic transformation of colorless substrates to colored reporters. The various excellent attributes of NMNP biosensors have put them in the spotlight for developing high-performance in vitro diagnostic (IVD) devices that are particularly well-suited to mitigate the societal threat that infectious diseases pose. This threat continues to dominate the global health care landscape, claiming millions of lives annually. NMNP IVDs possess the potential to sensitively detect infections even at very early stages with affordable and field-deployable devices, which will be key to strengthening infectious disease management. This has been the major focal point of current research, with a view to new avenues for early multiplexed detection of infectious diseases with portable devices such as smartphones, especially in resource-limited settings.In this Account, we provide an overview of our original inspiration and efforts in NMNP-based assay development, together with some more sophisticated IVD assays by ourselves and many others. Our work in the area has led to our recent efforts in developing IVDs for high-profile infectious diseases, including Ebola and HIV. We emphasize that integration with digital platforms represents an opportunity to establish and efficiently manage widespread testing, tracking, epidemiological intelligence, and data sharing backed by community participation. We highlight how digital technologies can address the limitations of conventional diagnostic technologies at the point of care (POC) and how they may be used to abate and contain the spread of infectious diseases. Finally, we focus on more recent integrations of noble metal nanoparticles with Raman spectroscopy for accurate, noninvasive POC diagnostics with improved sensitivity and specificity.
Collapse
Affiliation(s)
- Hongya Geng
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Yun Ma
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Tabasom Haghighi
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| | - Philip D Howes
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London SE1 0AA, U.K
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 171 77, Sweden
| |
Collapse
|
16
|
Vilímová I, Chourpa I, David S, Soucé M, Hervé-Aubert K. Two-step formulation of magnetic nanoprobes for microRNA capture. RSC Adv 2022; 12:7179-7188. [PMID: 35424703 PMCID: PMC8982131 DOI: 10.1039/d1ra09016j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
MicroRNAs (miRs) belong to a family of short non-coding endogenous RNAs. Their over-expression correlates with various pathologies: for instance, miRNA-155 (miR-155) is over-expressed upon the development of breast cancers. However, the detection of miRs as disease biomarkers suffers from insufficient sensitivity. In the present study, we propose a protocol for a rapid and efficient generation of magnetic nanoprobes able to capture miR-155, with the aim of increasing its concentration. As a nanoprobe precursor, we first synthesized superparamagnetic iron oxide nanoparticles (SPIONs) coated with covalently attached polyethylene glycol carrying a free biotin terminus (PEG-bi). Using streptavidin–biotin interactions, the nanoprobes were formulated by functionalizing the surface of the nanoparticles with the miR sequence (CmiR) complementary to the target miR-155 (TmiR). The two-step formulation was optimized and validated using several analytical techniques, in particular with Size-Exclusion High Performance Liquid Chromatography (SE-HPLC). Finally, the proof of the nanoprobe affinity to TmiR was made by demonstrating the TmiR capture on model solutions, with the estimated ratio of 18 : 22 TmiR : CmiR per nanoprobe. The nanoprobes were confirmed to be stable after incubation in serum. Two-step formulation of magnetic nanoprobes for microRNA capture.![]()
Collapse
Affiliation(s)
- Iveta Vilímová
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | - Martin Soucé
- EA6295 Nanomédicaments et Nanosondes, Université de Tours Tours France
| | | |
Collapse
|
17
|
Amoshahi H, Shafiee MRM, Kermani S, Mirmohammadi M. A Biosensor for Detection of miR‐106 a by Using Duplex‐Specific Nuclease, Assisted Target, Magnetic Nanoparticles, Gold Nanoparticles and Enzymatic Signal Amplification. ChemistrySelect 2022. [DOI: 10.1002/slct.202103115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Hamzeh Amoshahi
- Department of Chemistry, Najafabad Branch Islamic Azad University Najafabad Iran
| | | | - Shabnam Kermani
- Department of Tissue Engineering Najafabad Branch, Islamic Azad University Najafabad Iran
| | | |
Collapse
|
18
|
Zhang C, Belwal T, Luo Z, Su B, Lin X. Application of Nanomaterials in Isothermal Nucleic Acid Amplification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2102711. [PMID: 34626064 DOI: 10.1002/smll.202102711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/29/2021] [Indexed: 05/26/2023]
Abstract
Because of high sensitivity and specificity, isothermal nucleic acid amplification are widely applied in many fields. To facilitate and improve their performance, various nanomaterials, like nanoparticles, nanowires, nanosheets, nanotubes, and nanoporous films are introduced in isothermal nucleic acid amplification. However, the specific application, roles, and prospect of nanomaterials in isothermal nucleic acid amplification have not been comprehensively reviewed. Here, the application of different nanomaterials (0D, 1D, 2D, and 3D) in isothermal nucleic acid amplification is comprehensively discussed and recent progress in the field is summarized. The nanomaterials are mainly used for reaction enhancer, signal generation/amplification, or surface loading carriers. In addition, 3D nanomaterials can be also functioned as isolated chambers for digital nucleic acid amplification and the tools for DNA sequencing of amplified products. Challenges and future recommendations are also proposed to be better used for recent covid-19 detection, point-of-care diagnostic, food safety, and other fields.
Collapse
Affiliation(s)
- Chao Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Tarun Belwal
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Bin Su
- Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyu Lin
- College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Fuli Institute of Food Science, Zhejiang University, Hangzhou, 310058, China
- Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| |
Collapse
|
19
|
Xiong Y, Li N, Che C, Wang W, Barya P, Liu W, Liu L, Wang X, Wu S, Hu H, Cunningham BT. Microscopies Enabled by Photonic Metamaterials. SENSORS (BASEL, SWITZERLAND) 2022; 22:1086. [PMID: 35161831 PMCID: PMC8840465 DOI: 10.3390/s22031086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
In recent years, the biosensor research community has made rapid progress in the development of nanostructured materials capable of amplifying the interaction between light and biological matter. A common objective is to concentrate the electromagnetic energy associated with light into nanometer-scale volumes that, in many cases, can extend below the conventional Abbé diffraction limit. Dating back to the first application of surface plasmon resonance (SPR) for label-free detection of biomolecular interactions, resonant optical structures, including waveguides, ring resonators, and photonic crystals, have proven to be effective conduits for a wide range of optical enhancement effects that include enhanced excitation of photon emitters (such as quantum dots, organic dyes, and fluorescent proteins), enhanced extraction from photon emitters, enhanced optical absorption, and enhanced optical scattering (such as from Raman-scatterers and nanoparticles). The application of photonic metamaterials as a means for enhancing contrast in microscopy is a recent technological development. Through their ability to generate surface-localized and resonantly enhanced electromagnetic fields, photonic metamaterials are an effective surface for magnifying absorption, photon emission, and scattering associated with biological materials while an imaging system records spatial and temporal patterns. By replacing the conventional glass microscope slide with a photonic metamaterial, new forms of contrast and enhanced signal-to-noise are obtained for applications that include cancer diagnostics, infectious disease diagnostics, cell membrane imaging, biomolecular interaction analysis, and drug discovery. This paper will review the current state of the art in which photonic metamaterial surfaces are utilized in the context of microscopy.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Nantao Li
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Congnyu Che
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
| | - Weijing Wang
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
| | - Priyash Barya
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Weinan Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Leyang Liu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
| | - Xiaojing Wang
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
| | - Shaoxiong Wu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, International Campus, Zhejiang University, Haining 314400, China; (S.W.); (H.H.)
| | - Huan Hu
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, International Campus, Zhejiang University, Haining 314400, China; (S.W.); (H.H.)
- State Key Laboratory of Fluid Power & Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Brian T. Cunningham
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA; (Y.X.); (N.L.); (P.B.); (W.L.); (L.L.)
- Holonyak Micro and Nanotechnology Laboratory, Champaign, IL 61822, USA; (C.C.); (W.W.); (X.W.)
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL 61822, USA
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA
- Cancer Center at Illinois, Urbana, IL 61801, USA
| |
Collapse
|
20
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
21
|
Hong CA, Park JC, Na H, Jeon H, Nam YS. Short DNA-catalyzed formation of quantum dot-DNA hydrogel for enzyme-free femtomolar specific DNA assay. Biosens Bioelectron 2021; 182:113110. [PMID: 33812283 DOI: 10.1016/j.bios.2021.113110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Fast, sensitive, specific, and user-friendly DNA assay is a key technique for the next generation point-of-care molecular diagnosis. However, high-cost, time-consuming, and complicated enzyme-based DNA amplification step is essential to achieve high sensitivity. Herein, a short target DNA-catalyzed formation of quantum dot (QD)-DNA hydrogel is proposed as a new DNA assay platform satisfying the above requirements. A single-stranded target DNA catalyzes the opening cycle of DNA hairpin loops, which are quickly self-assembled with DNA-functionalized QDs to generate QD-DNA hydrogel. The three-dimensional hydrogel network allows efficient resonance energy transfer, dramatically lowering the limit of detection down to ~6 fM without enzymatic DNA amplification. The QD-DNA hydrogel also enables a rapid detection (1 h) with high specificity even for a single-base mismatch. The clinical applicability of the QD-DNA hydrogel is demonstrated for the Klebsiella pneumoniae carbapenemase gene, one of the key targets of drug-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Cheol Am Hong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jae Chul Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyebin Na
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Huiju Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
22
|
Lv J, Liu S, Miao Y. Synthesis of biological quantum dots based on single-strand DNA and its application in melamine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 248:119254. [PMID: 33310270 DOI: 10.1016/j.saa.2020.119254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
By taking TC base-rich single-stranded DNA (ssDNA) as the raw material, a fluorescent biological quantum dots (Bio-dots) probe was prepared in one step through hydrothermal method, where its lifetime was greatly extended in comparison with Carbon quantum dots (CQDs), reaching 10.7 ns. The fluorescent detection of melamine in milk samples was realized by using the base pairing principle. Under the optimal conditions, the linear range of Bio-dots probe fluorescence sensor for melamine detection is 5-600 μM, and the detection limit is (3σ) 1.4 μM. Bio-dots can not only emit photoluminescence, but also detect target molecules as a functional recognition group. As the raw material ssDNA was basically non-toxic and there was no toxic substances participated in its synmanuscript process, this Bio-dots probe was a kind of green and environmentally-friendly photoluminescent functional material.
Collapse
Affiliation(s)
- Jinzhi Lv
- Shanxi Normal University, Linfen 041004, PR China.
| | - Shuying Liu
- Shanxi Normal University, Linfen 041004, PR China
| | - Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
23
|
Shandilya R, Ranjan S, Khare S, Bhargava A, Goryacheva IY, Mishra PK. Point-of-care diagnostics approaches for detection of lung cancer-associated circulating miRNAs. Drug Discov Today 2021; 26:1501-1509. [PMID: 33647439 DOI: 10.1016/j.drudis.2021.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Circulating cell-free miRNAs (ccf-miRs) have gained significant interest as biomarkers for lung cancer (LC) diagnosis. However, the clinical application of ccf-miRs is mainly limited by time, cost, and expertise-related problems of existing detection strategies. Recently, the development of different point-of-care (POC) approaches offers useful on-site platforms, because these technologies have important features such as portability, rapid turnaround time, minimal sample requirement, and cost-effectiveness. In this review, we discuss different POC approaches for detecting ccf-miRs and highlight the utility of incorporating nanomaterials for enhanced biorecognition and signal transduction, further improving their diagnostic applicability in LC settings.
Collapse
Affiliation(s)
- Ruchita Shandilya
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Shashi Ranjan
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Surbhi Khare
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Arpit Bhargava
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Irina Yu Goryacheva
- Department of General and Inorganic Chemistry, Institute of Chemistry, Saratov State University, Saratov, Russia
| | - Pradyumna Kumar Mishra
- Department of Molecular Biology, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| |
Collapse
|
24
|
Xia Y, Chen T, Zhang L, Zhang X, Shi W, Chen G, Chen W, Lan J, Li C, Sun W, Chen J. Colorimetric detection of exosomal microRNA through switching the visible-light-induced oxidase mimic activity of acridone derivate. Biosens Bioelectron 2021; 173:112834. [DOI: 10.1016/j.bios.2020.112834] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/31/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023]
|
25
|
Gao Z, Yuan H, Mao Y, Ding L, Effah CY, He S, He L, Liu LE, Yu S, Wang Y, Wang J, Tian Y, Yu F, Guo H, Miao L, Qu L, Wu Y. In situ detection of plasma exosomal microRNA for lung cancer diagnosis using duplex-specific nuclease and MoS 2 nanosheets. Analyst 2021; 146:1924-1931. [PMID: 33491014 DOI: 10.1039/d0an02193h] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) encapsulated in tumor-derived exosomes are becoming ideal biomarkers for the early diagnosis and prognosis of lung cancer. However, the accuracy and sensitivity are often hampered by the extraction process of exosomal miRNA using traditional methods. Herein, this study developed a fluorogenic quantitative detection method for exosomal miRNA using the fluorescence quenching properties of molybdenum disulfide (MoS2) nanosheets and the enzyme-assisted signal amplification properties of duplex-specific nuclease (DSN). First, a fluorescently-labeled nucleic acid probe was used to hybridize the target miRNA to form a DNA/RNA hybrid structure. Under the action of the DSN, the DNA single strand in the DNA/RNA hybrid strand was selectively digested into smaller oligonucleotide fragments. At the same time, the released miRNA target triggers the next reaction cycle, so as to achieve signal amplification. Then, MoS2 was used to selectively quench the fluorescence of the undigested probe leaving the fluorescent signal of the fluorescently-labeled probe fragments. The fluorometric signals for miRNA-21 had a maximum excitation/emission wavelength of 488/518 nm. Most importantly, the biosensor was then applied for the accurate quantitative detection of miRNA-21 in exosome lysates extracted from human plasma and this method was able to successfully distinguish lung cancer patients from healthy people. This biosensor provides a simple, rapid, and a highly specific quantitative method for exosomal miRNA and has promising potential to be used in the early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Zibo Gao
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ravi P, Singh SP, Kang JW, Tran S, Dasari RR, So PTC, Liepmann D, Katti K, Katti D, Renugopalakrishnan V, Paulmurugan R. Spectrochemical Probing of MicroRNA Duplex Using Spontaneous Raman Spectroscopy for Biosensing Applications. Anal Chem 2020; 92:14423-14431. [PMID: 32985868 DOI: 10.1021/acs.analchem.0c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs are emerging as both diagnostic and therapeutic targets in different human pathologies. An accurate understanding of the structural dependency of microRNAs for their biological functions is essential for designing synthetic oligos with various base and linkage modifications that can transform into highly sensitive diagnostic devices and therapeutic molecules. In this proof-of-principle study, we have utilized label-free spontaneous Raman spectroscopy to understand the structural differences in sense and antisense microRNA-21 by hybridizing them with complementary RNA and DNA oligos. Overall, the results suggest that the changes in the Raman band at 785 cm-1 originating from the phosphodiester bond of the nucleic acid backbone, linking 5' phosphate of the nucleic acid with 3' OH of the other nucleotide, can serve as a marker to identify these structural variations. Our results support the application of Raman spectroscopy in discerning intramolecular (ssRNA and ssDNA) and intermolecular (RNA-RNA, RNA-DNA, and DNA-DNA hybrids) interactions of nucleic acids. This is potentially useful for developing biosensors to quantify microRNAs in clinical samples and to design therapeutic microRNAs with robust functionality.
Collapse
Affiliation(s)
- Preetham Ravi
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States.,Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Surya Pratap Singh
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka 580011, India
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah Tran
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| | - Ramachandra R Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dorian Liepmann
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Kalpana Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| |
Collapse
|
27
|
Huang P, Guo X, Jin Y, Huang Q. A novel DSN-based fluorescence assay for MicroRNA-133a detection and its application for LVH diagnosis in maintenance hemodialysis patients. J Clin Lab Anal 2020; 34:e23438. [PMID: 32677047 PMCID: PMC7595923 DOI: 10.1002/jcla.23438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
Left ventricular hypertrophy (LVH) is the most powerful predictor of cardiovascular mortality in maintenance hemodialysis (MHD) patients. Circulating microRNA-133a (miR-133a) was reported to be a potential biomarker for LVH in MHD patients. The aim of this experiment is to establish a novel DSN (duplex-specific-nuclease)-based fluorescence assay for the ultrasensitive detection of miR-133a and investigate its application for LVH diagnosis in MHD patients. The results indicate DSN enzyme combined with ultrathin metallic MoS2 nanosheets presents high sensitivity, specificity, and low fluorescence background for miR-133a detection. Then, circulating miR-133a levels in plasma from 40 MHD patients and 20 healthy controls are analyzed by such assay. The levels of miR-133a are down-regulated in MHD patients with LVH compared to MHD patients without LVH and healthy controls, and the ROC (receiver operating characteristic) curve shows strong separation between MHD with LVH patients and MHD without LVH patients. Furthermore, the liner regression analysis shows negative correlation of miR-133a level and interventricular septum thickness (IVS) as well as left ventricular mass index (LVMI), the indicators of LVH. Therefore, our findings reveal DSN-based fluorescence assay for miR-133a is suitable for LVH diagnosis in MHD patients.
Collapse
Affiliation(s)
- Pei Huang
- Department of Oncology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Xuedan Guo
- Department of Oncology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yan Jin
- Department of Gastroenterology, Wuxi No. 2 People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Qing Huang
- Department of Emergency, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| |
Collapse
|
28
|
Wu Y, Cui S, Li Q, Zhang R, Song Z, Gao Y, Chen W, Xing D. Recent advances in duplex-specific nuclease-based signal amplification strategies for microRNA detection. Biosens Bioelectron 2020; 165:112449. [DOI: 10.1016/j.bios.2020.112449] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 02/06/2023]
|
29
|
Chen M, Grazon C, Sensharma P, Nguyen TT, Feng Y, Chern M, Baer RC, Varongchayakul N, Cook K, Lecommandoux S, Klapperich CM, Galagan JE, Dennis AM, Grinstaff MW. Hydrogel-Embedded Quantum Dot-Transcription Factor Sensors for Quantitative Progesterone Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43513-43521. [PMID: 32893612 DOI: 10.1021/acsami.0c13489] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Immobilization of biosensors in or on a functional material is critical for subsequent device development and translation to wearable technology. Here, we present the development and assessment of an immobilized quantum dot-transcription factor-nucleic acid complex for progesterone detection as a first step toward such device integration. The sensor, composed of a polyhistidine-tagged transcription factor linked to a quantum dot and a fluorophore-modified cognate DNA, is embedded within a hydrogel as an immobilization matrix. The hydrogel is optically transparent, soft, and flexible as well as traps the quantum dot-transcription factor DNA assembly but allows free passage of the analyte, progesterone. Upon progesterone exposure, DNA dissociates from the quantum dot-transcription factor DNA assembly resulting in an attenuated ratiometric fluorescence output via Förster resonance energy transfer. The sensor performs in a dose-dependent manner with a limit of detection of 55 nM. Repeated analyte measurements are similarly successful. Our approach combines a systematically characterized hydrogel as an immobilization matrix and a transcription factor-DNA assembly as a recognition/transduction element, offering a promising framework for future biosensor devices.
Collapse
Affiliation(s)
- Mingfu Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Chloé Grazon
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- CNRS, Bordeaux INP, LCPO, UMR 5629, Univ. Bordeaux, F-33600 Pessac, France
| | - Prerana Sensharma
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Thuy T Nguyen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Yunpeng Feng
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Margaret Chern
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - R C Baer
- Department of Microbiology, Boston University, Boston, Massachusetts 02118, United States
| | - Nitinun Varongchayakul
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Katherine Cook
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | | | - Catherine M Klapperich
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - James E Galagan
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Microbiology, Boston University, Boston, Massachusetts 02118, United States
| | - Allison M Dennis
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division of Materials Science and Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
30
|
Bagyinszky E, Giau VV, An SA. Transcriptomics in Alzheimer's Disease: Aspects and Challenges. Int J Mol Sci 2020; 21:E3517. [PMID: 32429229 PMCID: PMC7278930 DOI: 10.3390/ijms21103517] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Although the heritability of AD is high, the knowledge of the disease-associated genes, their expression, and their disease-related pathways remain limited. Hence, finding the association between gene dysfunctions and pathological mechanisms, such as neuronal transports, APP processing, calcium homeostasis, and impairment in mitochondria, should be crucial. Emerging studies have revealed that changes in gene expression and gene regulation may have a strong impact on neurodegeneration. The mRNA-transcription factor interactions, non-coding RNAs, alternative splicing, or copy number variants could also play a role in disease onset. These facts suggest that understanding the impact of transcriptomes in AD may improve the disease diagnosis and also the therapies. In this review, we highlight recent transcriptome investigations in multifactorial AD, with emphasis on the insights emerging at their interface.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - Vo Van Giau
- Department of Industrial and Environmental Engineering, Graduate School of Environment, Gachon University, Seongnam 13120, Korea;
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| | - SeongSoo A. An
- Department of Bionano Technology, Gachon University, Seongnam 13120, Korea
| |
Collapse
|
31
|
Interfacing DNA with nanoparticles: Surface science and its applications in biosensing. Int J Biol Macromol 2020; 151:757-780. [DOI: 10.1016/j.ijbiomac.2020.02.217] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 12/17/2022]
|
32
|
Mohammadniaei M, Koyappayil A, Sun Y, Min J, Lee MH. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosens Bioelectron 2020; 159:112208. [PMID: 32364932 DOI: 10.1016/j.bios.2020.112208] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023]
Abstract
Multiple and sensitive detection of oncomiRs for accurate cancer diagnostics is still a challenge. Here, a synergetic amplification strategy was introduced by combining a MXene-based electrochemical signal amplification and a duplex-specific nuclease (DSN)-based amplification system for rapid, attomolar and concurrent quantification of multiple microRNAs on a single platform in total plasma. Synthesized MXene-Ti3C2Tx modified with 5 nm gold nanoparticles (AuNPs) was casted on a dual screen-printed gold electrode to host vast numbers of DNA probes identically co-immobilized on dedicated electrodes. Interestingly, presence of MXene provided biofouling resistance and enhanced the electrochemical signals by almost 4 folds of magnitude, attributed to its specious surface area and remarkable charge mobility. The 5 nm AuNPs were perfectly distributed within the whole flaky architect of the MXene to give rise to the electrochemical performance of MXene and provide the thiol-Au bonding feature. This synergetic strategy reduced the DSN-based biosensors' assay time to 80 min, provided multiplexability, antifouling activity, substantial sensitivity and specificity (single mutation recognition). The limit of detection of the proposed biosensor for microRNA-21 and microRNA-141 was respectively 204 aM and 138 aM with a wide linear range from 500 aM to 50 nM. As a proof of concept, this newly-developed strategy was coupled with a 96-well adaptive sensing device to successfully profile three cancer plasma samples based on their altered oncomiR abundances.
Collapse
Affiliation(s)
- Mohsen Mohammadniaei
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Aneesh Koyappayil
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea
| | - Yi Sun
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, DK, 2800, Denmark
| | - Junhong Min
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul, 06910, Republic of Korea.
| |
Collapse
|
33
|
Emerging isothermal amplification technologies for microRNA biosensing: Applications to liquid biopsies. Mol Aspects Med 2020; 72:100832. [DOI: 10.1016/j.mam.2019.11.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/06/2019] [Accepted: 11/10/2019] [Indexed: 02/07/2023]
|
34
|
A carbon nanoparticle and DNase I-Assisted amplified fluorescent biosensor for miRNA analysis. Talanta 2020; 213:120816. [PMID: 32200921 DOI: 10.1016/j.talanta.2020.120816] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/24/2022]
Abstract
Nucleic acid-based biosensors have become powerful tools in biomedical applications. But the stability issue seriously limits their wide applications. Fortunately, the emergence of carbon nanoparticles (CNPs), which can effectively protect DNA probes from enzymatic digestion and unspecific protein binding, provides a good solution. In this work, a DNase I-aided cyclic enzymatic amplification method (CEAM) for microRNA analysis has been developed based on the coupling use of nucleic acid probes with specific molecular recognition ability as well as CNPs with excellent biostability. The method is simple and sensitive, with a detection limit down to 3.2 pM. Furthermore, satisfactory results are achieved for miRNA analysis in breast cancer cell lysate, demonstrating the applicability in disease diagnosis. The ingenious combination of CNPs and nucleic acid probes can open a new chapter in the development of versatile analytical strategies that holds great potentials for clinical diagnosis, food safety, and environmental monitoring.
Collapse
|
35
|
Semiconductor quantum dot FRET: Untangling energy transfer mechanisms in bioanalytical assays. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115750] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
36
|
Iglesias MS, Grzelczak M. Using gold nanoparticles to detect single-nucleotide polymorphisms: toward liquid biopsy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:263-284. [PMID: 32082965 PMCID: PMC7006498 DOI: 10.3762/bjnano.11.20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/02/2023]
Abstract
The possibility of detecting genetic mutations rapidly in physiological media through liquid biopsy has attracted the attention within the materials science community. The physical properties of nanoparticles combined with robust transduction methods ensure an improved sensitivity and specificity of a given assay and its implementation into point-of-care devices for common use. Covering the last twenty years, this review gives an overview of the state-of-the-art of the research on the use of gold nanoparticles in the development of colorimetric biosensors for the detection of single-nucleotide polymorphism as cancer biomarker. We discuss the main mechanisms of the assays that either are assisted by DNA-based molecular machines or by enzymatic reactions, summarize their performance and provide an outlook towards future developments.
Collapse
Affiliation(s)
- María Sanromán Iglesias
- Centro de Física de Materiales CSIC-UPV/EHU and Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 5, 20018 Donostia-Sebastián, Spain
| | - Marek Grzelczak
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
37
|
Zhu X, Wang K, Jin Y, Wang S, Liu X, Liu H, Zhou P, Yang C, Han Z. Multiplexed fluorometric determination for three microRNAs in acute myocardial infarction by using duplex-specific nuclease and MoS2 nanosheets. Mikrochim Acta 2019; 187:15. [DOI: 10.1007/s00604-019-3896-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
|
38
|
Yang Y, Mao G, Ji X, He Z. DNA-templated quantum dots and their applications in biosensors, bioimaging, and therapy. J Mater Chem B 2019; 8:9-17. [PMID: 31750850 DOI: 10.1039/c9tb01870k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past 10 years, DNA functionalized quantum dots (QDs) have attracted considerable attention in sensing and imaging of disease-relevant biological targets, as well as cancer therapy. Considerable efforts have been devoted to obtaining DNA functionalized QDs with enhanced stability and quantum yield. Here, we focus on a one-pot method, in which phosphorothioate-modified DNA is used as the co-ligand on the basis of the strong binding of sulfur and Cd2+. After a short summary of the preparation of DNA-templated QDs, versatile bioapplications based on the constructed ratiometric fluorescent probes, nanobeacons and multiple bottom-up assemblies will be discussed. A substantial part of the review will focus on these applications, ranging from small molecule, biological macromolecule, cancer cell and pathogen sensing to in vitro and in vivo imaging. Besides, drug or siRNA delivery based on DNA-templated QD assemblies will also be briefly discussed here.
Collapse
Affiliation(s)
- Yeling Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Guobin Mao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Xinghu Ji
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
39
|
Chinnappan R, Mohammed R, Yaqinuddin A, Abu-Salah K, Zourob M. Highly sensitive multiplex detection of microRNA by competitive DNA strand displacement fluorescence assay. Talanta 2019; 200:487-493. [DOI: 10.1016/j.talanta.2019.03.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/31/2022]
|
40
|
Recent advances on nanomaterials-based fluorimetric approaches for microRNAs detection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110007. [PMID: 31500008 DOI: 10.1016/j.msec.2019.110007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/09/2019] [Accepted: 07/19/2019] [Indexed: 12/18/2022]
Abstract
MicroRNAs are types of small single-stranded endogenous highly conserved non-coding RNAs, which play main regulatory functions in a wide range of cellular and physiological events, such as proliferation, differentiation, neoplastic transformation, and cell regeneration. Recent findings have proved a close association between microRNAs expression and the development of many diseases, indicating the importance of microRNAs as clinical biomarkers and targets for drug discovery. However, due to a number of prominent characteristics like small size, high sequence similarity and low abundance, sensitive and selective identification of microRNAs has rather been a hardship through routine traditional assays, including quantitative polymerase chain reaction, microarrays, and northern blotting analysis. More recently, the soaring progression in nanotechnology and fluorimetric methodologies in combination with nanomaterials have promised microRNAs detection with high sensitivity, efficiency and selectivity, excellent reproducibility and lower cost. Therefore, this review will represent an overview of latest advances in microRNAs detection through nanomaterials-based fluorescent methods, like gold nanoparticles, silver and copper nanoclusters, graphene oxide, and magnetic silicon nanoparticles.
Collapse
|
41
|
Wang Y, Kim E, Lin Y, Kim N, Kit-Anan W, Gopal S, Agarwal S, Howes PD, Stevens MM. Rolling Circle Transcription-Amplified Hierarchically Structured Organic-Inorganic Hybrid RNA Flowers for Enzyme Immobilization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22932-22940. [PMID: 31252470 PMCID: PMC6613047 DOI: 10.1021/acsami.9b04663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/03/2019] [Indexed: 05/07/2023]
Abstract
Programmable nucleic acids have emerged as powerful building blocks for the bottom-up fabrication of two- or three-dimensional nano- and microsized constructs. Here we describe the construction of organic-inorganic hybrid RNA flowers (hRNFs) via rolling circle transcription (RCT), an enzyme-catalyzed nucleic acid amplification reaction. These hRNFs are highly adaptive structures with controlled sizes, specific nucleic acid sequences, and a highly porous nature. We demonstrated that hRNFs are applicable as potential biological platforms, where the hRNF scaffold can be engineered for versatile surface functionalization and the inorganic component (magnesium ions) can serve as an enzyme cofactor. For surface functionalization, we proposed robust and straightforward approaches including in situ synthesis of functional hRNFs and postfunctionalization of hRNFs that enable facile conjugation with various biomolecules and nanomaterials (i.e., proteins, enzymes, organic dyes, inorganic nanoparticles) using selective chemistries (i.e., avidin-biotin interaction, copper-free click reaction). In particular, we showed that hRNFs can serve as soft scaffolds for β-galactosidase immobilization and greatly enhance enzymatic activity and stability. Therefore, the proposed concepts and methodologies are not only fundamentally interesting when designing RNA scaffolds or RNA bionanomaterials assembled with enzymes but also have significant implications on their future utilization in biomedical applications ranging from enzyme cascades to biosensing and drug delivery.
Collapse
Affiliation(s)
| | | | - Yiyang Lin
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nayoung Kim
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Worrapong Kit-Anan
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Sahana Gopal
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Shweta Agarwal
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Molly M. Stevens
- Department of Materials, Department of Bioengineering,
and Institute of Biomedical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
42
|
Zhu CS, Zhu L, Tan DA, Qiu XY, Liu CY, Xie SS, Zhu LY. Avenues Toward microRNA Detection In Vitro: A Review of Technical Advances and Challenges. Comput Struct Biotechnol J 2019; 17:904-916. [PMID: 31346383 PMCID: PMC6630062 DOI: 10.1016/j.csbj.2019.06.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 02/07/2023] Open
Abstract
Over the decades, the biological role of microRNAs (miRNAs) in the post-transcriptional regulation of gene expression has been discovered in many cancer types, thus initiating the tremendous expectation of their application as biomarkers in the diagnosis, prognosis, and treatment of cancer. Hence, the development of efficient miRNA detection methods in vitro is in high demand. Extensive efforts have been made based on the intrinsic properties of miRNAs, such as low expression levels, high sequence homology, and short length, to develop novel in vitro miRNA detection methods with high accuracy, low cost, practicality, and multiplexity at point-of-care settings. In this review, we mainly summarized the newly developed in vitro miRNA detection methods classified by three key elements, including biological recognition elements, additional micro-/nano-materials and signal transduction/readout elements, their current challenges and further applications are also discussed.
Collapse
Affiliation(s)
- Chu-shu Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lingyun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| | - De-an Tan
- Department of Clinical Laboratory, Hospital of National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Xin-yuan Qiu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Chuan-yang Liu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Si-si Xie
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
| | - Lv-yun Zhu
- Department of Biology and Chemistry, College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, Hunan 410073, PR China
- Corresponding authors.
| |
Collapse
|
43
|
Abstract
Specific nucleic acid detection in vitro or in vivo has become increasingly important in the discovery of genetic diseases, diagnosing pathogen infection and monitoring disease treatment. One challenge, however, is that the amount of target nucleic acid in specimens is limited. Furthermore, direct sensing methods are also unable to provide sufficient sensitivity and specificity. Fortunately, due to advances in nanotechnology and nanomaterials, nanotechnology-based bioassays have emerged as powerful and promising approaches providing ultra-high sensitivity and specificity in nucleic acid detection. This chapter presents an overview of strategies used in the development and integration of nanotechnology for nucleic acid detection, including optical and electrical detection methods, and nucleic acid assistant recycling amplification strategies. Recent 5 years representative examples are reviewed to demonstrate the proof-of-concept with promising applications for DNA/RNA detection and the underlying mechanism for detection of DNA/RNA with the higher sensitivity and selectivity. Furthermore, a brief discussion of common unresolved issues and future trends in this field is provided both from fundamental and practical point of view.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
44
|
Shandilya R, Bhargava A, Bunkar N, Tiwari R, Goryacheva IY, Mishra PK. Nanobiosensors: Point-of-care approaches for cancer diagnostics. Biosens Bioelectron 2019; 130:147-165. [PMID: 30735948 DOI: 10.1016/j.bios.2019.01.034] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Accepted: 01/12/2019] [Indexed: 12/24/2022]
|
45
|
Jumeaux C, Kim E, Howes PD, Kim H, Chandrawati R, Stevens MM. Detection of microRNA biomarkers via inhibition of DNA-mediated liposome fusion. NANOSCALE ADVANCES 2019; 1:532-536. [PMID: 36132259 PMCID: PMC9473185 DOI: 10.1039/c8na00331a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 06/01/2023]
Abstract
We report the specific and sensitive detection of microRNA using an inverse DNA-mediated liposome fusion assay. This assay is homogeneous, and does not require washing, separation, or enzyme-associated amplification steps. By fine-tuning the surface functionalisation of the liposomes, liposome concentration, and assay temperature, we demonstrated a sub-nanomolar limit of detection for the target.
Collapse
Affiliation(s)
- Coline Jumeaux
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Eunjung Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Philip D Howes
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Hyemin Kim
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Rona Chandrawati
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
46
|
Advanced methods for microRNA biosensing: a problem-solving perspective. Anal Bioanal Chem 2019; 411:4425-4444. [PMID: 30710205 DOI: 10.1007/s00216-019-01621-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/07/2019] [Accepted: 01/16/2019] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) present several features that make them more difficult to analyze than DNA and RNA. For this reason, efforts have been made in recent years to develop innovative platforms for the efficient detection of microRNAs. The aim of this review is to provide an overview of the sensing strategies able to deal with drawbacks and pitfalls related to microRNA detection. With a critical perspective of the field, we identify the main challenges to be overcome in microRNA sensing, and describe the areas where several innovative approaches are likely to come for managing those issues that put limits on improvement to the performances of the current methods. Then, in the following sections, we critically discuss the contribution of the most promising approaches based on the peculiar properties of nanomaterials or nanostructures and other hybrid strategies which are envisaged to support the adoption of these new methods useful for the detection of miRNA as biomarkers of practical clinical utility. Graphical abstract ᅟ.
Collapse
|
47
|
Yang Z, Qin L, Yang D, Chen W, Qian Y, Jin J. Signal amplification method for miR-205 assay through combining graphene oxide with duplex-specific nuclease. RSC Adv 2019; 9:27341-27346. [PMID: 35529221 PMCID: PMC9070658 DOI: 10.1039/c9ra04663a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/27/2019] [Indexed: 11/28/2022] Open
Abstract
Since microRNA-205 (miR-205) is a predictive biomarker for anti-radiation of nasopharyngeal carcinoma (NPC), quantitative detection of miR-205 is important for developing personalized strategies for the treatment of NPC. In this investigation, based on the graphene oxide sensor and duplex specific nuclease (DSN) for fluorescence signal amplification, a highly sensitive detection method for miR-205 was designed. A target-recycling mechanism is employed, where a single miR-205 target triggers the cleavage of many DNA signal probes. The method shows the ability to analyze miR-205 in solution, and it can detect miR-205 at concentrations as low as 132 pmol L−1 with a linear range of 5–40 nmol L−1. Furthermore, the method is specific in that it distinguishes between a target miRNA and a sequence with single base, double base and three base mismatches, as well as other miRNAs. Considering simplicity and excellent sensitivity/specificity, it is promising for applications in radioresistance studies as well as the early clinical diagnosis of NPC. A signal amplified method for detecting a biomarker of radiation-resistant nasopharyngeal carcinoma using graphene oxide and duplex-specific nuclease was constructed.![]()
Collapse
Affiliation(s)
- Zhaoqi Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Lan Qin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Dutao Yang
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Weixia Chen
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Yue Qian
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| | - Jian Jin
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi 214122
- China
| |
Collapse
|