1
|
Wu R, Hao J, Wang Y. Recent Advances in Engineering of 2D Layered Metal Chalcogenides for Resistive-Type Gas Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404821. [PMID: 39344560 DOI: 10.1002/smll.202404821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/22/2024] [Indexed: 10/01/2024]
Abstract
2D nanomaterials have triggered widespread attention in sensing applications. Especially for 2D layered metal chalcogenides (LMCs), the unique semiconducting properties and high surface area endow them with great potential for gas sensors. The assembly of 2D LMCs with guest species is an effective functionalization method to produce the synergistic effects of hybridization for greatly enhancing the gas-sensing properties. This review starts with the synthetic techniques, sensing properties, and principles, and then comprehensively compiles the advanced achievements of the pristine 2D LMCs gas sensors. Key advances in the development of the functionalization of 2D LMCs for enhancing gas-sensing properties are categorized according to the spatial architectures. It is systematically discussed in three aspects: surface, lattice, and interlayer, to comprehend the benefits of the functionalized 2D LMCs from surface chemical effect, electronic properties, and structure features. The challenges and outlooks for developing high-performance 2D LMCs-based gas sensors are also proposed.
Collapse
Affiliation(s)
- Ruozhen Wu
- Fujian Provincial Collaborative Innovation Center of Bamboo Ecological Industry, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
- Department of Polymer Materials and Engineering, College of Ecology and Resources Engineering, Wuyi University, Wuyishan, 354300, P. R. China
| | - Juanyuan Hao
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - You Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| |
Collapse
|
2
|
Ko JK, Park IH, Hong K, Kwon KC. Recent Advances in Chemoresistive Gas Sensors Using Two-Dimensional Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1397. [PMID: 39269059 PMCID: PMC11397462 DOI: 10.3390/nano14171397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024]
Abstract
Two-dimensional (2D) materials have emerged as a promising candidate in the chemoresistive gas sensor field to overcome the disadvantages of conventional metal-oxide semiconductors owing to their strong surface activities and high surface-to-volume ratio. This review summarizes the various approaches to enhance the 2D-material-based gas sensors and provides an overview of their progress. The distinctive attributes of semiconductor gas sensors employing 2D materials will be highlighted with their inherent advantages and associated challenges. The general operating principles of semiconductor gas sensors and the unique characteristics of 2D materials in gas-sensing mechanisms will be explored. The pros and cons of 2D materials in gas-sensing channels are discussed, and a route to overcome the current challenges will be delivered. Finally, the recent advancements to enhance the performance of 2D-material-based gas sensors including photo-activation, heteroatom doping, defect engineering, heterostructures, and nanostructures will be discussed. This review should offer a broad range of readers a new perspective toward the future development of 2D-material-based gas sensors.
Collapse
Affiliation(s)
- Jae-Kwon Ko
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Analytical Science and Technology, Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - In-Hyeok Park
- Department of Analytical Science and Technology, Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Chonnam National University (CNU), Gwangju 61186, Republic of Korea
| | - Ki Chang Kwon
- Division of Chemical and Material Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| |
Collapse
|
3
|
Tripathi M, Deokar G, Casanova-Chafer J, Jin J, Sierra-Castillo A, Ogilvie SP, Lee F, Iyengar SA, Biswas A, Haye E, Genovese A, Llobet E, Colomer JF, Jurewicz I, Gadhamshetty V, Ajayan PM, Schwingenschlögl U, Costa PMFJ, Dalton AB. Vertical heterostructure of graphite-MoS 2 for gas sensing. NANOSCALE HORIZONS 2024; 9:1330-1340. [PMID: 38808602 DOI: 10.1039/d4nh00049h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
2D materials, given their form-factor, high surface-to-volume ratio, and chemical functionality have immense use in sensor design. Engineering 2D heterostructures can result in robust combinations of desirable properties but sensor design methodologies require careful considerations about material properties and orientation to maximize sensor response. This study introduces a sensor approach that combines the excellent electrical transport and transduction properties of graphite film with chemical reactivity derived from the edge sites of semiconducting molybdenum disulfide (MoS2) through a two-step chemical vapour deposition method. The resulting vertical heterostructure shows potential for high-performance hybrid chemiresistors for gas sensing. This architecture offers active sensing edge sites across the MoS2 flakes. We detail the growth of vertically oriented MoS2 over a nanoscale graphite film (NGF) cross-section, enhancing the adsorption of analytes such as NO2, NH3, and water vapor. Raman spectroscopy, density functional theory calculations and scanning probe methods elucidate the influence of chemical doping by distinguishing the role of MoS2 edge sites relative to the basal plane. High-resolution imaging techniques confirm the controlled growth of highly crystalline hybrid structures. The MoS2/NGF hybrid structure exhibits exceptional chemiresistive responses at both room and elevated temperatures compared to bare graphitic layers. Quantitative analysis reveals that the sensitivity of this hybrid sensor surpasses other 2D material hybrids, particularly in parts per billion concentrations.
Collapse
Affiliation(s)
- M Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| | - G Deokar
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - J Casanova-Chafer
- Universitat Rovira i Virgili, MINOS, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - J Jin
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - A Sierra-Castillo
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur, 5000 Namur, Belgium
| | - S P Ogilvie
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| | - F Lee
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
- International Institute for Nanocomposites Manufacturing (IINM), WMG, University of Warwick, Coventry CV47AL, UK
| | - S A Iyengar
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - A Biswas
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - E Haye
- Laboratoire d'Analyse par Réactions Nucléaires (LARN), Namur Institute of Structured Matter (NISM), University of Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium
| | - A Genovese
- King Abdullah University of Science and Technology, Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - E Llobet
- Universitat Rovira i Virgili, MINOS, Avda. Països Catalans, 26, 43007 Tarragona, Spain
| | - J-F Colomer
- Research Group on Carbon Nanostructures (CARBONNAGe), University of Namur, 5000 Namur, Belgium
| | - I Jurewicz
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - V Gadhamshetty
- Department of Civil and Environmental Engineering, and 2D-Materials for Biofilm Engineering, Science, and Technology Center, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA.
| | - P M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Udo Schwingenschlögl
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - Pedro M F J Costa
- King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, 23955 - 6900, Saudi Arabia
| | - A B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9RH, UK.
| |
Collapse
|
4
|
Tian X, Wang S, Yao B, Wang Z, Chen T, Xiao X, Wang Y. Edge sulfur vacancies riched MoS 2 nanosheets assist PEDOT:PSS flexible film ammonia sensing enhancement for wireless greenhouse vegetables monitoring. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133195. [PMID: 38113740 DOI: 10.1016/j.jhazmat.2023.133195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/21/2023]
Abstract
Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) is a promising NH3 sensing material owing to its super high electrical conductivity, excellent environmental stability, and reversible doping/dedoping nature. However, the low sensitivity and sluggish recovery rate limit its further application in gas sensors. Herein, exfoliated layered MoS2 nanosheets with large-specific surface area and abundant edge sulfur (S) vacancies are utilized to assist PEDOT:PSS and achieve ideal improvement in NH3 sensing performance at room temperature (RT), including high response values, fast response/recovery ability, and excellent sensing stability in complex environment. MoS2 nanosheets are combined with PEDOT:PSS to construct p-n heterojunction, the S vacancies can improve carrier transfer rate and serve as conductive bridge, effective active sites for NH3 adsorption, this series of performance improvement strategies is the significance of this work. Meanwhile, the density-functional theory (DFT), current-voltage (I-V), and in-situ FITR are firstly employed to discuss the sensing mechanisms in detail. Furthermore, integrating MoS2/PEDOT:PSS flexible sensor into a designed printed circuit board to intelligent, visual, and wireless real-time monitoring the NH3 resistance information in a simulated greenhouse vegetables equipment through the smartphone APP has also been successfully implemented.
Collapse
Affiliation(s)
- Xu Tian
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 6500504 Kunming, People's Republic of China
| | - Shanli Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 6500504 Kunming, People's Republic of China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 6500504 Kunming, People's Republic of China
| | - Zhezhe Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 6500504 Kunming, People's Republic of China
| | - Ting Chen
- Institute of Materials Science & Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xuechun Xiao
- Key Lab of Quantum Information of Yunnan Province, Yunnan University, 6500504 Kunming, People's Republic of China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, 6500504 Kunming, People's Republic of China; Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, 650504 Kunming, People's Republic of China.
| |
Collapse
|
5
|
Wang L, Xu F, Zhang C, Wageh S, Al-Hartomy OA, Zhang B, Yang T, Zhang H. Chemiresistive gas sensor based on Mo 0.5W 0.5S 2 alloy nanoparticles with good selectivity and ppb-level limit of detection to ammonia. Mikrochim Acta 2023; 190:283. [PMID: 37415040 DOI: 10.1007/s00604-023-05843-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 07/08/2023]
Abstract
Transition metal dichalcogenides (TMDs) are promising materials for chemiresistive gas sensor, while TMD alloys (two chalcogenide or/and metal elements) with tunable electronic structures have drawn little attention in gas sensing. Herein, Mo0.5W0.5S2 alloy nanoparticles (NPs) were prepared by a facile sonication exfoliation method and then tested for ammonia sensing. The crystal structure, geometric morphology, and elemental composition of Mo0.5W0.5S2 NPs were investigated. The gas sensing measurements demonstrated Mo0.5W0.5S2 NPs with good response to ammonia at 80 °C with a limit of detection down to 500 part per billion (ppb). The sensor also displayed good stability as well as superb selectivity to ammonia in the presence of interferences, such as methanol, acetone, benzene, and cyclohexane. The theoretical calculations revealed Mo and W atoms at edges (such as Mo0.5W0.5S2 (010)) of sheet-like NPs as the active sites for ammonia adsorption. Electrons donated by the adsorbed ammonia were combined with holes in p-type Mo0.5W0.5S2 NPs, and the concentration of the main charge carrier was reduced, resulting in resistance enhancement.
Collapse
Affiliation(s)
- Lude Wang
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, No. 138 Xianling Rd, Nanjing, 210023, China
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Feicui Xu
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chen Zhang
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Bin Zhang
- Otolaryngology Department and Biobank of the First Affiliated Hospital, Shenzhen Second People's Hospital, Health Science Center, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Tingqiang Yang
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Han Zhang
- School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
6
|
Liu X, Niu Y, Jin D, Zeng J, Li W, Wang L, Hou Z, Feng Y, Li H, Yang H, Lee YK, French PJ, Wang Y, Zhou G. Patching sulfur vacancies: A versatile approach for achieving ultrasensitive gas sensors based on transition metal dichalcogenides. J Colloid Interface Sci 2023; 649:909-917. [PMID: 37390538 DOI: 10.1016/j.jcis.2023.06.092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Transition metal dichalcogenides (TMDCs) garner significant attention for their potential to create high-performance gas sensors. Despite their favorable properties such as tunable bandgap, high carrier mobility, and large surface-to-volume ratio, the performance of TMDCs devices is compromised by sulfur vacancies, which reduce carrier mobility. To mitigate this issue, we propose a simple and universal approach for patching sulfur vacancies, wherein thiol groups are inserted to repair sulfur vacancies. The sulfur vacancy patching (SVP) approach is applied to fabricate a MoS2-based gas sensor using mechanical exfoliation and all-dry transfer methods, and the resulting 4-nitrothiophenol (4NTP) repaired molybdenum disulfide (4NTP-MoS2) is prepared via a sample solution process. Our results show that 4NTP-MoS2 exhibits higher response (increased by 200 %) to ppb-level NO2 with shorter response/recovery times (61/82 s) and better selectivity at 25 °C compared to pristine MoS2. Notably, the limit of detection (LOD) toward NO2 of 4NTP-MoS2 is 10 ppb. Kelvin probe force microscopy (KPFM) and density functional theory (DFT) reveal that the improved gas sensing performance is mainly attributed to the 4NTP-induced n-doping effect on MoS2 and the corresponding increment of surface absorption energy to NO2. Additionally, our 4NTP-induced SVP approach is universal for enhancing gas sensing properties of other TMDCs, such as MoSe2, WS2, and WSe2.
Collapse
Affiliation(s)
- Xiangcheng Liu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Yue Niu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China; School of Physical Sciences, Great Bay University, Dongguan 523000, PR China.
| | - Duo Jin
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Junwei Zeng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Wanjiang Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Lirong Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics South China Normal University, Guangzhou 510006, PR China
| | - Zhipeng Hou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute for Advanced Materials, South China Academy of Advanced Optoelectronics South China Normal University, Guangzhou 510006, PR China
| | - Yancong Feng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| | - Haihong Yang
- Department of Thoracic Oncology, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510006, PR China
| | - Yi-Kuen Lee
- Department of Mechanical & Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong Special Administrative Region
| | - Paddy J French
- BE Laboratory, EWI, Delft University of Technology, Delft 2628CD, the Netherlands
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China.
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, PR China
| |
Collapse
|
7
|
Lee J, Park M, Song YG, Cho D, Lee K, Shim YS, Jeon S. Role of graphene quantum dots with discrete band gaps on SnO 2 nanodomes for NO 2 gas sensors with an ultralow detection limit. NANOSCALE ADVANCES 2023; 5:2767-2775. [PMID: 37205284 PMCID: PMC10186987 DOI: 10.1039/d2na00925k] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023]
Abstract
NO2 is a major air pollutant that should be monitored due to its harmful effects on the environment and human health. Semiconducting metal oxide-based gas sensors have been widely explored owing to their superior sensitivity towards NO2, but their high operating temperature (>200 °C) and low selectivity still limit their practical use in sensor devices. In this study, we decorated graphene quantum dots (GQDs) with discrete band gaps onto tin oxide nanodomes (GQD@SnO2 nanodomes), enabling room temperature (RT) sensing towards 5 ppm NO2 gas with a noticeable response ((Ra/Rg) - 1 = 4.8), which cannot be matched using pristine SnO2 nanodomes. In addition, the GQD@SnO2 nanodome based gas sensor shows an extremely low detection limit of 1.1 ppb and high selectivity compared to other pollutant gases (H2S, CO, C7H8, NH3, and CH3COCH3). The oxygen functional groups in GQDs specifically enhance NO2 accessibility by increasing the adsorption energy. Strong electron transfer from SnO2 to GQDs widens the electron depletion layer at SnO2, thereby improving the gas response over a broad temperature range (RT-150 °C). This result provides a basic perspective for utilizing zero-dimensional GQDs in high-performance gas sensors operating over a wide range of temperatures.
Collapse
Affiliation(s)
- Jinho Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
| | - Minsu Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University Evanston IL 60208 USA
| | - Young Geun Song
- Electronic Materials Research Center, Korea Institute of Science and Technology (KIST) Seoul 02791 Republic of Korea
| | - Donghwi Cho
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology Yuseong Daejeon 34114 Republic of Korea
| | - Kwangjae Lee
- Department of Information Security Engineering, Sangmyung University Cheonan 31066 Republic of Korea
| | - Young-Seok Shim
- School of Energy, Materials and Chemical Engineering, Korea University of Technology and Education Cheonan 31253 Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Department of Materials Science and Engineering, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
8
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
9
|
Kim T, Lee TH, Park SY, Eom TH, Cho I, Kim Y, Kim C, Lee SA, Choi MJ, Suh JM, Hwang IS, Lee D, Park I, Jang HW. Drastic Gas Sensing Selectivity in 2-Dimensional MoS 2 Nanoflakes by Noble Metal Decoration. ACS NANO 2023; 17:4404-4413. [PMID: 36825770 DOI: 10.1021/acsnano.2c09733] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Noble metal nanoparticle decoration is a representative strategy to enhance selectivity for fabricating chemical sensor arrays based on the 2-dimensional (2D) semiconductor material, represented by molybdenum disulfide (MoS2). However, the mechanism of selectivity tuning by noble metal decoration on 2D materials has not been fully elucidated. Here, we successfully decorated noble metal nanoparticles on MoS2 flakes by the solution process without using reducing agents. The MoS2 flakes showed drastic selectivity changes after surface decoration and distinguished ammonia, hydrogen, and ethanol gases clearly, which were not observed in general 3D metal oxide nanostructures. The role of noble metal nanoparticle decoration on the selectivity change is investigated by first-principles density functional theory (DFT) calculations. While the H2 sensitivity shows a similar tendency with the calculated binding energy, that of NH3 is strongly related to the binding site deactivation due to preferred noble metal particle decoration at the MoS2 edge. This finding is a specific phenomenon which originates from the distinguished structure of the 2D material, with highly active edge sites. We believe that our study will provide the fundamental comprehension for the strategy to devise the highly efficient sensor array based on 2D materials.
Collapse
Affiliation(s)
- Taehoon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Yun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Incheol Cho
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Yeonhoo Kim
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34133, Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Sol A Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | | | - Donghwa Lee
- Department of Materials Science and Engineering and Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea
| |
Collapse
|
10
|
Ryu J, Shim S, Song J, Park J, Kim HS, Lee SK, Shin JC, Mun J, Kang SW. Effect of Measurement System Configuration and Operating Conditions on 2D Material-Based Gas Sensor Sensitivity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:573. [PMID: 36770534 PMCID: PMC9919673 DOI: 10.3390/nano13030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Gas sensors applied in real-time detection of toxic gas leakage, air pollution, and respiration patterns require a reliable test platform to evaluate their characteristics, such as sensitivity and detection limits. However, securing reliable characteristics of a gas sensor is difficult, owing to the structural difference between the gas sensor measurement platform and the difference in measurement methods. This study investigates the effect of measurement conditions and system configurations on the sensitivity of two-dimensional (2D) material-based gas sensors. Herein, we developed a testbed to evaluate the response characteristics of MoS2-based gas sensors under a NO2 gas flow, which allows variations in their system configurations. Additionally, we demonstrated that the distance between the gas inlet and the sensor and gas inlet orientation influences the sensor performance. As the distance to the 2D gas sensor surface decreased from 4 to 2 mm, the sensitivity of the sensor improved to 9.20%. Furthermore, when the gas inlet orientation was perpendicular to the gas sensor surface, the sensitivity of the sensor was the maximum (4.29%). To attain the optimum operating conditions of the MoS2-based gas sensor, the effects of measurement conditions, such as gas concentration and temperature, on the sensitivity of the gas sensor were investigated.
Collapse
Affiliation(s)
- Jongwon Ryu
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Seob Shim
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Jeongin Song
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jaeseo Park
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Precision Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ha Sul Kim
- Department of Physics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seoung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jae Cheol Shin
- Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, Republic of Korea
| | - Jihun Mun
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sang-Woo Kang
- Advanced Instrumentation Institute, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
- Precision Measurement, University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
11
|
Park S, Song J, Kim TK, Choi KH, Hyeong SK, Ahn M, Kim HR, Bae S, Lee SK, Hong BH. Photothermally Crumpled MoS 2 Film as an Omnidirectionally Stretchable Platform. SMALL METHODS 2022; 6:e2200116. [PMID: 35460198 DOI: 10.1002/smtd.202200116] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Molybdenum disulfide (MoS2 ) is considered a fascinating material for next-generation semiconducting applications due to its outstanding mechanical stability and direct transition characteristics comparable to silicon. However, its application to stretchable platforms still is a challenging issue in wearable logic devices and sensors with noble form-factors required for future industry. Here, an omnidirectionally stretchable MoS2 platform with laser-induced strained structures is demonstrated. The laser patterning induces the pyrolysis of MoS2 precursors as well as the weak adhesion between Si and SiO2 layers. The photothermal expansion of the Si layer results in the crumpling of SiO2 and MoS2 layers and the field-effect transistors with the crumpled MoS2 are found to be suitable for strain sensor applications. The electrical performance of the crumpled MoS2 depends on the degree of stretching, showing the stable omnidirectional stretchability up to 8% with approximately four times higher saturation current than its initial state. This platform is expected to be applied to future electronic devices, sensors, and so on.
Collapse
Affiliation(s)
- Seoungwoong Park
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Jaekwang Song
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Tae Kyung Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Kwang-Hun Choi
- Department of Materials Science and Engineering, Seoul National University, 1-Gwanak-ro, Seoul, 08826, Republic of Korea
| | - Seok-Ki Hyeong
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Minchul Ahn
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
| | - Hwa Rang Kim
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
- Graphene Square Inc., Suwon, Gyeonggi, 16229, South Korea
| | - Sukang Bae
- Functional Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Seoung-Ki Lee
- School of Materials Science and Engineering, Pusan National University, 2, Busandaehak-ro-63-beon-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Byung Hee Hong
- Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Graphene Research Center, Advanced Institute of Convergence Technology, Seoul National University, Suwon, Gyeonggi, 16229, South Korea
- Graphene Square Inc., Suwon, Gyeonggi, 16229, South Korea
| |
Collapse
|
12
|
Choi HK, Park J, Gwon OH, Kim JY, Kang SJ, Byun HR, Shin B, Jang SG, Kim HS, Yu YJ. Gate-Tuned Gas Molecule Sensitivity of a Two-Dimensional Semiconductor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23617-23623. [PMID: 35549073 DOI: 10.1021/acsami.2c02380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this work, we develop a gate-tunable gas sensor based on a MoS2/hBN heterostructure field effect transistor. Through experimental measurements and numerical simulations, we systematically reveal a principle that relates the concentration of the target gas and sensing signals (ΔI/I0) as a function of gate bias. Because a linear relationship between ΔI/I0 and the gas concentration guarantees reliable sensor operation, the optimal gate bias condition for linearity was investigated. Taking NO2 and NH3 as target molecules, it is clarified that the bias condition greatly depends on the electron accepting/donating nature of the gas. The effects of the bandgap and polarity of the transition metal dichalcogenides (TMDC) channel are also discussed. In order to achieve linearly increasing signals that are stable with respect to the gas concentration, a sufficiently large VBG within VBG > 0 is required. We expect this work will shed light on a way to precisely design reliable semiconducting gas sensors based on the characteristics of TMDC and target gas molecules.
Collapse
Affiliation(s)
- Hong Kyw Choi
- Electronics and Telecommunications Research Institute (ETRI), 218 Gajeong-ro, Yuseong-gu, Daejeon 34129, Korea
| | - Jaesung Park
- Korea Research Institute of Standards and Science (KRISS), Daejeon 305-340, Korea
| | - Oh Hun Gwon
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Jong Yun Kim
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Seok-Ju Kang
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Hye Ryung Byun
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - BeomKyu Shin
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Seo Gyun Jang
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| | - Han Seul Kim
- Center for Supercomputing Applications, National Institute of Supercomputing and Networking, Korea Institute of Science and Technology Information (KISTI), Daejeon 34141, Korea
| | - Young-Jun Yu
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea
| |
Collapse
|
13
|
Le VT, Vasseghian Y, Doan VD, Nguyen TTT, Thi Vo TT, Do HH, Vu KB, Vu QH, Dai Lam T, Tran VA. Flexible and high-sensitivity sensor based on Ti 3C 2-MoS 2 MXene composite for the detection of toxic gases. CHEMOSPHERE 2022; 291:133025. [PMID: 34848226 DOI: 10.1016/j.chemosphere.2021.133025] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/06/2021] [Accepted: 11/19/2021] [Indexed: 05/27/2023]
Abstract
It is vital to have high sensitivity in gas sensors to allow the exact detection of dangerous gases in the air and at room temperature. In this study, we used 2D MXenes and MoS2 materials to create a Ti3C2-MoS2 composite with high metallic conductivity and a wholly functionalized surface for a significant signal. At room temperature, the Ti3C2-MoS2 composite demonstrated clear signals, cyclic response curves to NO2 gas, and gas concentration-dependent. The sensitivities of the standard Ti3C2-MoS2 (TM_2) composite (20 wt% MoS2) rose dramatically to 35.8%, 63.4%, and 72.5% when increasing NO2 concentrations to 10 ppm, 50 ppm, and 100 ppm, respectively. In addition, the composite showed reaction signals to additional hazardous gases, such as ammonia and methane. Our findings suggest that highly functionalized metallic sensing channels could be used to construct multigas-detecting sensors that are very sensitive in air and at room temperature.
Collapse
Affiliation(s)
- Van Thuan Le
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam; The Faculty of Natural Science, Duy Tan University, 03 Quang Trung, Da Nang, 55000, Viet Nam
| | - Yasser Vasseghian
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Van Dat Doan
- The Faculty of Chemical Engineering, Industrial University of Ho Chi Minh City, Ho Chi Minh City, 70000, Viet Nam
| | - Thi Thu Trang Nguyen
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam
| | - Thu-Thao Thi Vo
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Ha Huu Do
- School of Chemical Engineering and Materials Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Khanh B Vu
- Department of Chemical Engineering, School of Biotechnology, International University, Ho Chi Minh City, Viet Nam; Vietnam National University, Ho Chi Minh City, Viet Nam.
| | - Quang Hieu Vu
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, Ward 13, District 4, Ho Chi Minh City, Viet Nam.
| | - Tran Dai Lam
- Institute for Tropical Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Viet Nam.
| | - Vy Anh Tran
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, 13120, Republic of Korea.
| |
Collapse
|
14
|
Suh JM, Cho D, Lee S, Lee TH, Jung JW, Lee J, Cho SH, Eom TH, Hong JW, Shim YS, Jeon S, Jang HW. Rationally Designed TiO 2 Nanostructures of Continuous Pore Network for Fast-Responding and Highly Sensitive Acetone Sensor. SMALL METHODS 2021; 5:e2100941. [PMID: 34928023 DOI: 10.1002/smtd.202100941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/13/2021] [Indexed: 06/14/2023]
Abstract
For the last several years, indoor air quality monitoring has been a significant issue due to the increasing time portion of indoor human activities. Especially, the early detection of volatile organic compounds potentially harmful to the human body by the prolonged exposure is the primary concern for public human health, and such technology is imperatively desired. In this study, highly porous and periodic 3D TiO2 nanostructures are designed and studied for this concern. Specifically, extremely high gas molecule accessibility throughout the whole nanostructures and precisely controlled internecks of 3D TiO2 nanostructures can achieve an unprecedented gas response of 299 to 50 ppm CH3 COCH3 with an extremely fast response time of less than 1s. The systematic approach to utilize the whole inner and outer surfaces of the gas sensing materials and periodically formed internecks to localize the current paths in this study can provide highly promising perspectives to advance the development of chemoresistive gas sensors using metal oxide nanostructures for the Internet of Everything application.
Collapse
Affiliation(s)
- Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Donghwi Cho
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sangmin Lee
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae-Wook Jung
- Structural Safety & Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, 34057, Republic of Korea
| | - Jinho Lee
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Hwan Cho
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Hoon Eom
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung-Wuk Hong
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Seok Shim
- Division of Materials Science and Engineering, Silla University, Busan, 46958, Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| |
Collapse
|
15
|
Ding Z, Li C, Da B, Liu J. Charging effect induced by electron beam irradiation: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 22:932-971. [PMID: 34790064 PMCID: PMC8592625 DOI: 10.1080/14686996.2021.1976597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Charging effect frequently occurs when characterizing nonconductive materials using electrons as probes and/or signals and can impede the acquisition of useful information about the material under investigation. It is not adequate to investigate it merely by experiments, but theoretical investigations, for which the Monte Carlo method is a suitable tool, are also necessary. In this paper we review Monte Carlo simulations and selected experiments, intending to provide general insight into the charging effects induced by electron beam irradiation. We will introduce categories of the charging effect, the theoretical framework that is adopted in Monte Carlo modeling of the charging effect and present some typical simulation results. At last, with the knowledge on charging effect imparted by the above contents, we will discuss the measures that can be used for minimizing it.
Collapse
Affiliation(s)
- Z.J. Ding
- Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Chao Li
- Department of Physics and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Bo Da
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, Tsukuba, Japan
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, Tsukuba, Japan
| | - Jiangwei Liu
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| |
Collapse
|
16
|
Ishag A, Sun Y. Recent Advances in Two-Dimensional MoS 2 Nanosheets for Environmental Application. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alhadi Ishag
- College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, People’s Republic of China
| | - Yubing Sun
- College of Environmental Science and Technology, North China Electric Power University, Beijing, 102206, People’s Republic of China
| |
Collapse
|
17
|
Xu Y, Xie J, Zhang Y, Tian F, Yang C, Zheng W, Liu X, Zhang J, Pinna N. Edge-enriched WS 2 nanosheets on carbon nanofibers boosts NO 2 detection at room temperature. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125120. [PMID: 33485227 DOI: 10.1016/j.jhazmat.2021.125120] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/23/2020] [Accepted: 01/10/2021] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) hold great promise for room temperature (RT) NO2 sensors. However, the exposure of the edges of TMDs with high adsorption capability and electronic activity remains a great obstacle to achieve high sensor sensitivity. Herein, we demonstrate a high-performance RT NO2 gas sensor based on WS2 nanosheets/carbon nanofibers (CNFs) composite with abundant intentionally exposed WS2 edges. Few-layer WS2 nanosheets are anchored on CNFs through a hydrothermal process. The approach permits to achieve a coating presenting an optimized active surface area and accessibility of the sensing layers. The exposure of WS2 edges remarkably improves the sensing properties. Consequently, the WS2@CNFs composite exhibits excellent selectivity to NO2 at RT with improved response and much lower detection limit in comparison to the WS2 and CNFs counterparts. Density functional theory (DFT) calculations verify a surprisingly strong NO2 adsorption on WS2 edge sites (adsorption energy 3.40 eV) with a partial charge transfer of 0.394e, while a week adsorption on the basal surface of WS2 (adsorption energy 0.25 eV) with a partial charge transfer of 0.171e. The strategy proposed herein will be instructive to the design of efficient material structures for low-power NO2 sensors with optimized performances.
Collapse
Affiliation(s)
- Yongshan Xu
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Jiayue Xie
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Yunfan Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - FengHui Tian
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Chen Yang
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Wei Zheng
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Xianghong Liu
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| | - Jun Zhang
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China.
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
18
|
Cao J, Chen Q, Wang X, Zhang Q, Yu HD, Huang X, Huang W. Recent Development of Gas Sensing Platforms Based on 2D Atomic Crystals. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9863038. [PMID: 33982003 PMCID: PMC8086560 DOI: 10.34133/2021/9863038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/22/2021] [Indexed: 11/24/2022]
Abstract
Sensors, capable of detecting trace amounts of gas molecules or volatile organic compounds (VOCs), are in great demand for environmental monitoring, food safety, health diagnostics, and national defense. In the era of the Internet of Things (IoT) and big data, the requirements on gas sensors, in addition to sensitivity and selectivity, have been increasingly placed on sensor simplicity, room temperature operation, ease for integration, and flexibility. The key to meet these requirements is the development of high-performance gas sensing materials. Two-dimensional (2D) atomic crystals, emerged after graphene, have demonstrated a number of attractive properties that are beneficial to gas sensing, such as the versatile and tunable electronic/optoelectronic properties of metal chalcogenides (MCs), the rich surface chemistry and good conductivity of MXenes, and the anisotropic structural and electronic properties of black phosphorus (BP). While most gas sensors based on 2D atomic crystals have been incorporated in the setup of a chemiresistor, field-effect transistor (FET), quartz crystal microbalance (QCM), or optical fiber, their working principles that involve gas adsorption, charge transfer, surface reaction, mass loading, and/or change of the refractive index vary from material to material. Understanding the gas-solid interaction and the subsequent signal transduction pathways is essential not only for improving the performance of existing sensing materials but also for searching new and advanced ones. In this review, we aim to provide an overview of the recent development of gas sensors based on various 2D atomic crystals from both the experimental and theoretical investigations. We will particularly focus on the sensing mechanisms and working principles of the related sensors, as well as approaches to enhance their sensing performances. Finally, we summarize the whole article and provide future perspectives for the development of gas sensors with 2D materials.
Collapse
Affiliation(s)
- Jiacheng Cao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qian Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qiang Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hai-Dong Yu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| |
Collapse
|
19
|
Steffi AP, Balaji R, Chen S, Prakash N, Narendhar C. Rational Construction of SiO
2
/MoS
2
/TiO
2
Composite Nanostructures for Anti‐Biofouling and Anti‐Corrosion Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202004263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alexander Pinky Steffi
- Department of Nanoscience and Technology Sri Ramakrishna Engineering College Coimbatore Tamil Nadu India
| | - Ramachandran Balaji
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei Taiwan 106, ROC Tel: +886 2270 17147 Fax: +886 2270 25238
| | - Shen‐Ming Chen
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei Taiwan 106, ROC Tel: +886 2270 17147 Fax: +886 2270 25238
| | - Natarajan Prakash
- Department of Nanoscience and Technology Sri Ramakrishna Engineering College Coimbatore Tamil Nadu India
| | - Chandharasekar Narendhar
- Department of Nanoscience and Technology Sri Ramakrishna Engineering College Coimbatore Tamil Nadu India
| |
Collapse
|
20
|
Cho D, Suh JM, Nam S, Park SY, Park M, Lee TH, Choi KS, Lee J, Ahn C, Jang HW, Shim Y, Jeon S. Optically Activated 3D Thin-Shell TiO 2 for Super-Sensitive Chemoresistive Responses: Toward Visible Light Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001883. [PMID: 33552851 PMCID: PMC7856904 DOI: 10.1002/advs.202001883] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/13/2020] [Indexed: 05/28/2023]
Abstract
One of the well-known strategies for achieving high-performance light-activated gas sensors is to design a nanostructure for effective surface responses with its geometric advances. However, no study has gone beyond the benefits of the large surface area and provided fundamental strategies to offer a rational structure for increasing their optical and chemical performances. Here, a new class of UV-activated sensing nanoarchitecture made of highly periodic 3D TiO2, which facilitates 55 times enhanced light absorption by confining the incident light in the nanostructure, is prepared as an active gas channel. The key parameters, such as the total 3D TiO2 film and thin-shell thicknesses, are precisely optimized by finite element analysis. Collectively, this fundamental design leads to ultrahigh chemoresistive response to NO2 with a theoretical detection limit of ≈200 ppt. The demonstration of high responses with visible light illumination proposes a future perspective for light-activated gas sensors based on semiconducting oxides.
Collapse
Affiliation(s)
- Donghwi Cho
- Department of Materials Science and EngineeringCenter for Bio‐Integrated Electronics at the Simpson Querrey Institute for BioNanotechnologyNorthwestern UniversityEvanstonIL60208USA
| | - Jun Min Suh
- Department of Materials Science and EngineeringResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Sang‐Hyeon Nam
- Department of Materials Science and EngineeringKAIST Institute for the NanocenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Seo Yun Park
- Department of Materials Science and EngineeringResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Minsu Park
- Department of Materials Science and EngineeringKAIST Institute for the NanocenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and EngineeringResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Kyoung Soon Choi
- National research Facilities and Equipment Center (NFEC)Korea Basic Science Institute (KBSI)Daejeon34133Republic of Korea
| | - Jinho Lee
- Department of Materials Science and EngineeringKAIST Institute for the NanocenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| | - Changui Ahn
- Engineering Ceramic CenterKorea Institute of Ceramic Engineering and TechnologyIcheon17303Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and EngineeringResearch Institute of Advanced MaterialsSeoul National UniversitySeoul08826Republic of Korea
| | - Young‐Seok Shim
- Division of Materials Science and EngineeringSilla UniversityBusan46958Republic of Korea
| | - Seokwoo Jeon
- Department of Materials Science and EngineeringKAIST Institute for the NanocenturyKorea Advanced Institute of Science and Technology (KAIST)Daejeon34141Republic of Korea
| |
Collapse
|
21
|
Agrawal AV, Kumar N, Kumar M. Strategy and Future Prospects to Develop Room-Temperature-Recoverable NO 2 Gas Sensor Based on Two-Dimensional Molybdenum Disulfide. NANO-MICRO LETTERS 2021; 13:38. [PMID: 33425474 PMCID: PMC7780921 DOI: 10.1007/s40820-020-00558-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/29/2020] [Indexed: 05/12/2023]
Abstract
Nitrogen dioxide (NO2), a hazardous gas with acidic nature, is continuously being liberated in the atmosphere due to human activity. The NO2 sensors based on traditional materials have limitations of high-temperature requirements, slow recovery, and performance degradation under harsh environmental conditions. These limitations of traditional materials are forcing the scientific community to discover future alternative NO2 sensitive materials. Molybdenum disulfide (MoS2) has emerged as a potential candidate for developing next-generation NO2 gas sensors. MoS2 has a large surface area for NO2 molecules adsorption with controllable morphologies, facile integration with other materials and compatibility with internet of things (IoT) devices. The aim of this review is to provide a detailed overview of the fabrication of MoS2 chemiresistance sensors in terms of devices (resistor and transistor), layer thickness, morphology control, defect tailoring, heterostructure, metal nanoparticle doping, and through light illumination. Moreover, the experimental and theoretical aspects used in designing MoS2-based NO2 sensors are also discussed extensively. Finally, the review concludes the challenges and future perspectives to further enhance the gas-sensing performance of MoS2. Understanding and addressing these issues are expected to yield the development of highly reliable and industry standard chemiresistance NO2 gas sensors for environmental monitoring.
Collapse
Affiliation(s)
- Abhay V. Agrawal
- Functional and Renewable Energy Materials Laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| | - Naveen Kumar
- Functional and Renewable Energy Materials Laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| | - Mukesh Kumar
- Functional and Renewable Energy Materials Laboratory, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| |
Collapse
|
22
|
Cui H, Zheng K, Xie Z, Yu J, Zhu X, Ren H, Wang Z, Zhang F, Li X, Tao LQ, Zhang H, Chen X. Tellurene Nanoflake-Based NO 2 Sensors with Superior Sensitivity and a Sub-Parts-per-Billion Detection Limit. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47704-47713. [PMID: 33017141 DOI: 10.1021/acsami.0c15964] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Industrial production, environmental monitoring, and clinical medicine put forward urgent demands for high-performance gas sensors. Two-dimensional (2D) materials are regarded as promising gas-sensing materials owing to their large surface-to-volume ratio, high surface activity, and abundant surface-active sites. However, it is still challenging to achieve facilely prepared materials with high sensitivity, fast response, full recovery, and robustness in harsh environments for gas sensing. Here, a combination of experiments and density functional theory (DFT) calculations is performed to explore the application of tellurene in gas sensors. The prepared tellurene nanoflakes via facile liquid-phase exfoliation show an excellent response to NO2 (25 ppb, 201.8% and 150 ppb, 264.3%) and an ultralow theory detection limit (DL) of 0.214 ppb at room temperature, which is excellent compared to that of most reported 2D materials. Furthermore, tellurene sensors present a fast response (25 ppb, 83 s and 100 ppb, 26 s) and recovery (25 ppb, 458 s and 100 ppb, 290 s). The DFT calculations further clarify the reasons for enhanced electrical conductivity after NO2 adsorption because of the interfacial electron transfer from tellurene to NO2, revealing an underlying explanation for tellurene-based gas sensors. These results indicate that tellurene is eminently promising for detecting NO2 with superior sensitivity, favorable selectivity, an ultralow DL, fast response-recovery, and high stability.
Collapse
Affiliation(s)
- Heping Cui
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Kai Zheng
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Zhongjian Xie
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiabing Yu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Xiangyi Zhu
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Hao Ren
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Zeping Wang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Feng Zhang
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Xiandong Li
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Lu-Qi Tao
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| | - Han Zhang
- Shenzhen Engineering Laboratory of Phosphorene and Optoelectronics, SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xianping Chen
- Key Laboratory of Optoelectronic Technology & Systems, Education Ministry of China, and College of Optoelectronic Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
23
|
Lee D, Jang AR, Kim JY, Lee G, Jung DW, Lee TI, Lee JO, Kim JJ. Phase-dependent gas sensitivity of MoS 2 chemical sensors investigated with phase-locked MoS 2. NANOTECHNOLOGY 2020; 31:225504. [PMID: 32069439 DOI: 10.1088/1361-6528/ab776b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In the present study, phase-dependent gas sensitivities of MoS2 chemical sensors were examined. While 1T-phase MoS2 (1T-MoS2) has shown better chemical sensitivity than has 2H-phase MoS2 (2H-MoS2), the instability of the 1T phase has been hindering applications of 1T-MoS2 as chemical sensors. Here, the chemical sensitivity of MoS2 locked in its 1T phase by using a ZnO phase lock was investigated. To develop MoS2 chemical sensors locked in the 1T phase, we synthesized a multi-dimensional nanomaterial by growing ZnO nanorods onto MoS2 nanosheets (ZnO@1T-MoS2). Raman spectroscopy and x-ray photoelectron spectroscopy analyses of such phase-locked 1T-MoS2 subjected to flash light irradiation 100 times confirmed its robustness. ZnO nanomaterials hybridized on MoS2 nanosheets not only froze the MoS2 at its 1T phase, but also increased the active surface area for chemical sensing. The resulting hybridized material showed better response, namely better sensitivity, to NO2 gas exposure at room temperature than did 1T-MoS2 and 2H-MoS2. This result indicated that increased surface area and heterojunction formation between MoS2 and ZnO constitute a more promising route for improving sensitivity than using the 1T phase itself.
Collapse
Affiliation(s)
- Doeun Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Gajeong-ro 141, Daejeon 34114, Republic of Korea. Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang L, Wang L, Yang G, Xie Q, Zhong S, Su X, Hou Y, Zhang B. Improvement of Sensing Properties for Copper Phthalocyanine Sensors Based on Polymer Nanofibers Scaffolds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4532-4539. [PMID: 32272836 DOI: 10.1021/acs.langmuir.9b03636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An effectual and understandable route for the fabrication techniques of stereoscopic NO2 sensor is provided in this work. As the gas-sensing layer of the sensor, copper phthalocyanine (CuPc) grew on the top of poly(vinyl alcohol) (PVA) nanofibers (NFs). The sensitivity of the CuPc/PVA NFs stereoscopic sensors to NO2 was over 829%/ppm, while the sensitivity of the continuous CuPc films sensors was 2 orders of magnitude lower than that of the stereoscopic ones. To the responsivities at 25 ppm of NO2, the CuPc/PVA NFs stereoscopic sensors were about four times stronger than that of the continuous CuPc films sensors. For the recovery time, the CuPc/PVA NFs stereoscopic sensors were over eight times faster than the continuous CuPc films sensors. This general tactic can be used to prepare various toxic gas sensors to improve the overall performance of the devices.
Collapse
Affiliation(s)
- Lu Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Lijuan Wang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Guocheng Yang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Qiang Xie
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Sai Zhong
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Xin Su
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Yuhang Hou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| | - Bo Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, P R China
| |
Collapse
|
25
|
Zhu P, Li S, Zhao C, Zhang Y, Yu J. 3D synergistical rGO/Eu(TPyP)(Pc) hybrid aerogel for high-performance NO 2 gas sensor with enhanced immunity to humidity. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121426. [PMID: 31635817 DOI: 10.1016/j.jhazmat.2019.121426] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
The prevalence of Internet of Things and portable electronics create an unprecedented demand for the high performance gas sensors. To pursuit such sensor, sandwich-type (phthalocyaninato)(porphyrinato) europium double-decker complex Eu(TPyP)(Pc) [TPyP = meso-tetra(4-pyridyl)porphyrin; Pc = phthalocyanine] was in situ self-assembled on the surface of reduced graphene oxide (rGO) driven by the π-π interaction, forming a 3D synergistical rGO/Eu(TPyP)(Pc) hybrid aerogel. The resulting aerogel not only effectively integrates the gas sensing of Eu(TPyP)(Pc) and good conductivity of rGO, but also exhibited a prominent synergy effect. Ascribed to the attractive properties, the fabricated NO2 gas sensor exhibits superior sensitivity and selectivity in the range of 0.5 to 100 ppm with an extremely low theoretical limit level of detection (80 ppb) at ambient temperature. The response and recovery time of rGO/Eu(TPyP)(Pc) hybrid aerogel based sensor to20 ppm NO2 were 172 and 828 s, respectively. Remarkably, the hydrophobic porous structure of rGO/Eu(TPyP)(Pc) hybrid aerogel endows the prepared sensor with excellent immunity to high relative humidity, which conquered the key technical issue of real application. The present sensor, simultaneously featured with high performance, low-power consumption, and good tolerance to environmental variations, is anticipated to offer the "on-site" and "on-line" measurement tool in real samples.
Collapse
Affiliation(s)
- Peihua Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Shanshan Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Chuanrui Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China; Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, University of Jinan, Jinan, 250022, China.
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
26
|
Kim Y, Kwon KC, Kang S, Kim C, Kim TH, Hong SP, Park SY, Suh JM, Choi MJ, Han S, Jang HW. Two-Dimensional NbS 2 Gas Sensors for Selective and Reversible NO 2 Detection at Room Temperature. ACS Sens 2019; 4:2395-2402. [PMID: 31339038 DOI: 10.1021/acssensors.9b00992] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transition metal dichalcogenides (TMDs) have attracted enormous attention in diverse research fields. Especially, gas sensors are considered in a promising application exploiting TMDs. However, the studies are confined to only major TMDs such as MoS2 and WS2. Particularly, the chemoresistive sensing properties of two-dimensional (2D) NbS2 have never been explored. For the first time, we report room temperature NO2 sensing characteristics of 2D NbS2 nanosheets and the sensing mechanisms using first-principles calculations based on density functional theory. The results demonstrate that the NbS2 edges possessing different configurations depending on synthetic conditions differ in the sensing ability of the TMD nanosheets. This study not only broadens the potential of 2D NbS2 for gas sensing applications, but also presents the important role of edge configuration of TMDs depending on synthetic conditions for further studies.
Collapse
Affiliation(s)
- Yeonhoo Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Ki Chang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Sungwoo Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Changyeon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hoon Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung-Pyo Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Yun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungwu Han
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
27
|
Hasani A, Van Le Q, Tekalgne M, Choi MJ, Choi S, Lee TH, Kim H, Ahn SH, Jang HW, Kim SY. Fabrication of a WS 2/p-Si Heterostructure Photocathode Using Direct Hybrid Thermolysis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29910-29916. [PMID: 31322852 DOI: 10.1021/acsami.9b08654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
P-N heterostructures based on transition-metal dichelcongenides (TMDs) and a conventional semiconductor, such as p-Si, have been considered a promising structure for next-generation electronic devices and applications. However, synthesis of high-quality, wafer-scale TMDs, particularly WS2 on p-Si, is challenging. Herein, we propose an efficient method to directly grow WS2 crystals on p-Si via a hybrid thermolysis process. The WO3 is deposited to prepare the p-Si surface for coating of the (NH4)2WS4 precursor and converted to WS2/p-Si during thermolysis. Moreover, the WS2/p-Si heterojunction photocathode is fabricated and used in solar hydrogen production. The fabricated n-WS2/p-Si heterojunction provided an onset potential of +0.022 V at 10 mA/cm2 and a benchmark current density of -9.8 ± 1.2 mA/cm2 at 0 V. This method reliably and efficiently produced high-quality, wafer-scale WS2 crystals and overcame the challenges associated with previous approaches. The approach developed in this research demonstrates a magnificent progress in the fabrication of 2D material-based electronic devices.
Collapse
Affiliation(s)
- Amirhossein Hasani
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-dimensional Functional Materials, Institute of Interdisciplinary Convergence Research , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Quyet Van Le
- Institute of Research and Development , Duy Tan University , Da Nang 550000 , Vietnam
| | - Mahider Tekalgne
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-dimensional Functional Materials, Institute of Interdisciplinary Convergence Research , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Min-Ju Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Seokhoon Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Hayeong Kim
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-dimensional Functional Materials, Institute of Interdisciplinary Convergence Research , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Sang Hyun Ahn
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-dimensional Functional Materials, Institute of Interdisciplinary Convergence Research , Chung-Ang University , 84 Heukseok-ro , Dongjak-gu, Seoul 06974 , Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Soo Young Kim
- Department of Materials Science and Engineering , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| |
Collapse
|
28
|
Li W, Zhang Y, Long X, Cao J, Xin X, Guan X, Peng J, Zheng X. Gas Sensors Based on Mechanically Exfoliated MoS 2 Nanosheets for Room-Temperature NO 2 Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E2123. [PMID: 31071927 PMCID: PMC6539376 DOI: 10.3390/s19092123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 04/30/2019] [Accepted: 05/06/2019] [Indexed: 11/28/2022]
Abstract
The unique properties of MoS2 nanosheets make them a promising candidate for high-performance room temperature gas detection. Herein, few-layer MoS2 nanosheets (FLMN) prepared via mechanical exfoliation are coated on a substrate with interdigital electrodes for room-temperature NO2 detection. Interestingly, compared with other NO2 gas sensors based on MoS2, FLMN gas sensors exhibit high responsivity for room-temperature NO2 detection, and NO2 is easily desorbed from the sensor surface with an ultrafast recovery behavior, with recovery times around 2 s. The high responsivity is related to the fact that the adsorbed NO2 can affect the electron states within the entire material, which is attributed to the very small thickness of the MoS2 nanosheets. First-principles calculations were carried out based on the density functional theory (DFT) to verify that the ultrafast recovery behavior arises from the weak van der Waals binding between NO2 and the MoS2 surface. Our work suggests that FLMN prepared via mechanical exfoliation have a great potential for fabricating high-performance NO2 gas sensors.
Collapse
Affiliation(s)
- Wenli Li
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
| | - Yong Zhang
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China.
| | - Xia Long
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
| | - Juexian Cao
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China.
| | - Xin Xin
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
| | - Xiaoxiao Guan
- School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
| | - Jinfeng Peng
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Xuejun Zheng
- School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
29
|
Kwon KC, Suh JM, Lee TH, Choi KS, Hong K, Song YG, Shim YS, Shokouhimehr M, Kang CY, Kim SY, Jang HW. SnS 2 Nanograins on Porous SiO 2 Nanorods Template for Highly Sensitive NO 2 Sensor at Room Temperature with Excellent Recovery. ACS Sens 2019; 4:678-686. [PMID: 30799610 DOI: 10.1021/acssensors.8b01526] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to develop high performance chemoresistive gas sensors for Internet of Everything applications, low power consumption should be achieved due to the limited battery capacity of portable devices. One of the most efficient ways to reduce power consumption is to lower the operating temperature to room temperature. Herein, we report superior gas sensing properties of SnS2 nanograins on SiO2 nanorods toward NO2 at room temperature. The gas response is as high as 701% for 10 ppm of NO2 with excellent recovery characteristics and the theoretical detection limit is evaluated to be 408.9 ppb at room temperature, which has not been reported for SnS2-based gas sensors to the best of our knowledge. The SnS2 nanograins on the template used in this study have excessive sulfur component (Sn:S = 1:2.33) and exhibit p-type conduction behavior. These results will provide a new perspective of nanostructured two-dimensional materials for gas sensor applications on demand.
Collapse
Affiliation(s)
- Ki Chang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae Hyung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Soon Choi
- Advanced Nano-Surface Research Group, Korea Basic Science Institute (KBSI), Daejeon 34133, Republic of Korea
| | - Kootak Hong
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Geun Song
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Display and Nanosystem Laboratory, College of Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Young-Seok Shim
- Department of Materials Science and Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Chong-Yun Kang
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Soo Young Kim
- School of Chemical Engineering and Materials Science, Integrative Research Center for Two-Dimensional Functional Materials, Institute of Interdisciplinary Convergence Research, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
30
|
Yi SY, Song YG, Park JY, Suh JM, Kim GS, Shim YS, Yuk JM, Kim S, Jang HW, Ju BK, Kang CY. Morphological Evolution Induced through a Heterojunction of W-Decorated NiO Nanoigloos: Synergistic Effect on High-Performance Gas Sensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7529-7538. [PMID: 30672291 DOI: 10.1021/acsami.8b18678] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Morphological evolution accompanying a surface roughening and preferred orientation is an effective way to realize a high-performance gas sensor because of its significant potential as a chemical catalyst through chemical potentials and atomic energy states. In this work, we investigated a heterojunction of double-side-W-decorated NiO nanoigloos fabricated through radio frequency sputtering and a soft-template method. Interestingly, a morphological evolution characterized by a pyramidal rough surface and the preferred orientation of the (111) plane was observed upon decorating the bare NiO nanoigloos with W. The underlying mechanism of the morphological evolution was precisely demonstrated based on the van der Drift competitive growth model originating from the oxygen transport and chemical strain in the lattice. The gas sensing properties of W-decorated NiO show an excellent NO2 response and selectivity when compared to other gases. In addition, high response stability was evaluated under interference gas and humidity conditions. The synergistic effects on the sensing performance were interpreted on the basis of the morphological evolution of W-decorated NiO nanoigloos.
Collapse
Affiliation(s)
- Seung Yeop Yi
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| | - Young Geun Song
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| | - Jae Yeol Park
- Department of Materials Science & Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Jun Min Suh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | - Gwang Su Kim
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| | - Young-Seok Shim
- Department of Materials Science & Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Jong Min Yuk
- Department of Materials Science & Engineering , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Sangtae Kim
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials , Seoul National University , Seoul 08826 , Republic of Korea
| | | | - Chong-Yun Kang
- Center for Electronic Materials , Korea Institute of Science and Technology (KIST) , Seoul 02791 , Republic of Korea
| |
Collapse
|