1
|
Hu K, Lyu H, Duan H, Hu Z, Shen B. Facilitate the preparation of naturally modified and self-healing superhydrophobic/superoleophilic biochar-based foams for efficient oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133489. [PMID: 38219594 DOI: 10.1016/j.jhazmat.2024.133489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Oil spills are sudden, complex, and long-term hazardous, and the existing adsorption materials still have the disadvantages of small selective adsorption capacity, easy secondary contamination, and difficult to repair after breakage in practical applications. Herein, melamine foam (MF) coated by ball milled biochar (BMBC) and natural beeswax (Wax@BMBC@MF) was prepared by a bio-inspired functionalization method and further added with self-healing function (SH-Wax@BMBC@MF) to cope with complex environments, and applied to oil-water separation for oil adsorption. SEM and FTIR results showed that BMBC and natural beeswax nanoparticles successfully encapsulated the smooth surface of the melamine foam skeleton. The loading of natural beeswax increased the foam's ability to absorb oil and organic solvents from 0.6108-1.134 g to 0.850-1.391 g, and the oil-absorbing capacity of the foam remained at 0. 758-1.263 g after being cut by a knife and self-healing. The oil-absorbing capacity of SH-Wax@BMBC@MF remained in the range of 0.936-1.336 g under acid/alkali environment (pH =1-13). The surface functional groups of BMBC improved the surface roughness of the material and strengthen the MF skeleton to adsorb oils and organic solvents by capillary action. The generation of the di-coordinated structure by Fe3+ and catechol group contributed the restoration of SH-Wax@BMBC@MF structure and oil absorption capacity. SH-Wax@BMBC@MF has superiority of superhydrophobic, superoleophilic, self-healing after damage, and environmental friendliness, which provides a promising solution for the treatment of oil spills at sea.
Collapse
Affiliation(s)
- Kai Hu
- Tianjin Key Laboratory of Clean Energy and Pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and Pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Haonan Duan
- Tianjin Key Laboratory of Clean Energy and Pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zhenzhong Hu
- Tianjin Key Laboratory of Clean Energy and Pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China.
| | - Boxiong Shen
- Tianjin Key Laboratory of Clean Energy and Pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| |
Collapse
|
2
|
Belachew GB, Hu CC, Chang YY, Wang CF, Hung WS, Chen JK, Lai JY. An Eco-Friendly Manner to Prepare Superwetting Melamine Sponges with Switchable Wettability for the Separation of Oil/Water Mixtures and Emulsions. Polymers (Basel) 2024; 16:693. [PMID: 38475376 DOI: 10.3390/polym16050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Oil/water separation processes have garnered significant global attention due to the quick growth in industrial development, recurring chemical leakages, and oil spills. Hence, there is a significant demand for the development of inexpensive superwetting materials in an eco-friendly manner to separate oil/water mixtures and emulsions. In this study, a superwetting melamine sponge (SMS) with switchable wettabilities was prepared by modifying melamine sponge (MS) with sodium dodecanoate. The as-prepared SMS exhibited superhydrophobicity, superoleophilicity, underwater superoleophobicity, and underoil superhydrophobicity. The SMS can be utilized in treating both light and heavy oil/water mixtures through the prewetting process. It demonstrated fast permeation fluxes (reaching 108,600 L m-2 h-1 for a light oil/water mixture and 147,700 L m-2 h-1 for a heavy oil/water mixture) and exhibited good separation efficiency (exceeding 99.56%). The compressed SMS was employed in separating surfactant-stabilized water-in-oil emulsions (SWOEs), as well as surfactant-stabilized oil-in-water emulsions (SOWEs), giving high permeation fluxes (reaching 7210 and 5054 L m-2 h-1, respectively). The oil purity for SWOEs' filtrates surpassed 99.98 wt% and the separation efficiencies of SOWEs exceeded 98.84%. Owing to their remarkable capability for separating oil/water mixtures and emulsions, eco-friendly fabrication method, and feasibility for large-scale production, our SMS has a promising potential for practical applications.
Collapse
Affiliation(s)
- Guyita Berako Belachew
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Yan-Yu Chang
- Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan
| | - Chih-Feng Wang
- Institute of Advanced Semiconductor Packaging and Testing, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Wei-Song Hung
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Taoyuan 320, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan
| |
Collapse
|
3
|
Zhang Y, Hou S, Song H, Qin G, Li P, Zhang K, Li T, Han L, Liu W, Ji S. A green and facile one-step hydration method based on ZIF-8-PDA to prepare melamine composite sponges with excellent hydrophobicity for oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131064. [PMID: 36871461 DOI: 10.1016/j.jhazmat.2023.131064] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Frequent crude oil spills and illegal discharges of industrial organic pollutants cause serious damage to the ecological environment and considerable loss of valuable resources. Therefore, there is an urgent need to develop efficient strategies to separate and recover oils or reagents from sewage. Herein, a green, facile and rapid one-step hydration method was applied to obtain the composite sponge (ZIF-8-PDA@MS) that monodispersed zeolitic imidazolate framework-8 nanoparticles with high porosity and large specific surface area were firmly loaded onto the melamine sponge by ligand exchange and the self-assembly of dopamine. The water contact angle of ZIF-8-PDA@MS with multiscale hierarchical porous structure could reach 162°, which remained stable over a long period of time and a wide pH range. ZIF-8-PDA@MS displayed excellent adsorption capacities (up to 85.45-168.95 g⋅g-1), and could be reused at least 40 times. Besides, ZIF-8-PDA@MS exhibited remarkable photothermal effect. Simultaneously, Silver nanoparticle-immobilized composite sponges were also prepared via in-situ reduction of silver ions to inhibit bacterial contamination. The composite sponge developed in this work can be used not only for the treatment of industrial sewage, but also for the emergency response of large-scale marine oil spill accidents, which has inestimable practical value for water decontamination.
Collapse
Affiliation(s)
- Yuqi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Siyu Hou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Huilin Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Guowen Qin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Peiqi Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Kaidi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Tengfei Li
- Department of Clinical Pharmacology, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Lingfei Han
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| | - Shunli Ji
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
4
|
Zhang L, Xie J, Luo X, Gong X, Zhu M. Enhanced hydrophobicity of shell-ligand-exchanged ZIF-8/melamine foam for excellent oil-water separation. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Chu Z, Feng Y, Xu T, Zhu C, Li K, Li Y, Yang Y, Yang Z. Magnetic, self-heating and superhydrophobic sponge for solar-driven high-viscosity oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130553. [PMID: 36495637 DOI: 10.1016/j.jhazmat.2022.130553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/21/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
In this work, a novel oil-adsorption sponge with superhydrophobicity was fabricated using polymer-assisted electroless deposition and dip-coating techniques for depositing a rough polydopamine layer, magnetic particles, and low surface energy polydimethylsiloxane onto the surface of a sponge skeleton. The as-prepared superhydrophobic sponge (WCA > 150° and SA < 5°) exhibited rapid adsorption behavior, large adsorption capacity (up to 50.6 times its own dry weight or above 90% of its own volume), excellent durability (above 80% of the adsorption capacity after 80 recycles), and a self-cleaning property owing to sufficient open-cell pores and superelasticity provided by the melamine-formaldehyde host as well as the hierarchical roughness and convenient magnetic recovery enabled by the polymer-assisted electroless deposition approach. The pump-, gravity-, and solar-driven oil-water separation devices based on the fabricated cubic composites were also demonstrated, particularly the separation of high-viscosity oil-water mixtures via the solar-driven mode, demonstrating the broad prospects of such modified sponges in actual applications. This study provides a new avenue for rationally designing novel oil adsorption and separation materials.
Collapse
Affiliation(s)
- Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yibin Feng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Tiantian Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Cuiping Zhu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Kunquan Li
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yu Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| |
Collapse
|
6
|
Gao D, Cheng F, Wang Y, Li C, Yang EM, Li C, Zhang L, Cheng G. Versatile Superhydrophobic Sponge for Separating both Emulsions and Immiscible Oil/water Mixtures. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
7
|
Dong T, Liu Y, Tian N, Zhang Y, Han G, Peng F, Lou CW, Chi S, Liu Y, Liu C, Lin JH. Photothermal and Concus Finn capillary assisted superhydrophobic fibrous network enabling instant viscous oil transport for crude oil cleanup. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130193. [PMID: 36265385 DOI: 10.1016/j.jhazmat.2022.130193] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Rapid and effective removal of highly viscous oil spills from the sea remains a great challenge globally. Superhydrophobic materials are attractive candidates for handling oil spills, but they are restrained to recover oils with low viscosity exclusively. Herein, we report a novel polypyrrole wrapped superhydrophobic fibrous network using cross-shaped polyester fibers as starting blocks. The polypyrrole coating enables the absorbent to convert light to heat, ensuring that the viscosity of heavy oils in the proximity can be easily controlled. In the meanwhile, the special structure of the starting fibers initiates Concus Finn (CFin) capillary allowing instant oil transport in the network. When the absorbent is exposed to light oils (0-500 mPa.s), the oils can be transported instantly via CFin capillary. Interestingly, under synergistic effect of light-to-heat conversion and CFin capillary, a drawing-sticking crude oil strip (105 mPa.s) is sucked instantly against gravity by the absorbent. The absorbent is successfully applied to efficiently separate both oil/water mixtures and oil/water emulsions (efficiency > 99%). Such absorbent can absorb 62.99-74.23 g/g light oils on average and up to 123.3 g/g crude oil under 0-2 sun illumination, holding a huge potential in managing oil spills.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China.
| | - Yanhui Liu
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Na Tian
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Fudi Peng
- Fujian Aton Advanced Materials Science and Technology Co., Ltd, Fujian 350304, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan; College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, PR China
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, PR China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan.
| |
Collapse
|
8
|
Chen Q, Zhang L, Shan Y, Liu Y, Zhao D. Novel Magnetically Driven Superhydrophobic Sponges Coated with Asphaltene/Kaolin Nanoparticles for Effective Oil Spill Cleanup. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3527. [PMID: 36234658 PMCID: PMC9565408 DOI: 10.3390/nano12193527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Fast and effective cleanup of oil spills remains a global challenge. A modified commercial sponge with superhydrophobicity, strong absorption capacity, outstanding magnetic response, and fire resistance were fabricated by a facile and inexpensive route of dip-coated melamine sponge carbonization. The low-cost petroleum asphaltene and kaolin nanoparticles were used as the dip-coating reagent. High absorption capacity of the fabricated sponges allowed rapid and continuous removal of oil contaminants. Taking advantage of the good refractory property, the sponges can be used in burning conditions and directly reused after burning out of the absorbed oil. Reusability tests showed that the modified sponges still maintained high absorption capacity (>85%) after six regeneration and reuse cycles. These characteristics make the fabricated sponge a promising aid to promote effective in situ burning cleanup of oil spills, contributing as a magnetic oil collector and a fire-resistant flexible boom. An example usage scenario of the sponges applied to in situ burning cleanup of oil spills is described.
Collapse
Affiliation(s)
- Qiang Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Lingling Zhang
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Yuanhang Shan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Yindong Liu
- Petrochemical Research Institute, PetroChina Co., Ltd., Beijing 100195, China
| | - Dongfeng Zhao
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
9
|
Wu Z, Zheng K, Cheng Z, Zhou S. Solar-Assisted Superhydrophobic MoS 2/PDMS/MS Sponge for the Efficient Cleanup of Viscous Oil. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10902-10914. [PMID: 36004428 DOI: 10.1021/acs.langmuir.2c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Industrialization releases many high-viscosity oil pollutants into the environment, requiring a hydrophobic recyclable oil-absorbing material. Therefore, a self-heating and superhydrophobic melamine sponge (MS) by connecting polydimethylsiloxane (PDMS) was coated with functionalized molybdenum disulfide (MoS2) nanosheets on a three-dimensional microstructure of a commercial MS (MoS2/PDMS/MS) via a simple and low-cost dip-coating method. The prepared sponge showed a water contact angle of 151.8°, indicating that the modified sponge exhibited superhydrophobicity. Due to the addition of MoS2, the modified sponge can convert light into heat, and its surface could be heated to 59.7 °C within 30 s. Because of the excellent MoS2/PDMS/MS photothermal performance, the sponge could decrease the viscosity of the high-viscosity oil, absorbing the high-viscosity oil efficiently. After simultaneous thermal analysis and repeated compression tests, the modified sponge exhibited high thermochemical stability, mechanical property, and reusability. This superhydrophobic multifunctional sponge shows excellent potential for high-viscosity oil absorption.
Collapse
Affiliation(s)
- Zhuobin Wu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Ke Zheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, P. R. China
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zuqin Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
| | - Shaoqi Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, P. R. China
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, P. R. China
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
10
|
Dan H, Ji K, Gao Y, Yin W, Gao B, Yue Q. Fabrication of superhydrophobic Enteromorpha-derived carbon aerogels via NH 4H 2PO 4 modification for multi-behavioral oil/water separation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155869. [PMID: 35561933 DOI: 10.1016/j.scitotenv.2022.155869] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Hydrophobic and oleophilic biomass-based block materials are considered to be highly promising candidates used for oil/water separation. However, the crucial hydrophobic modification process often involves various toxic and hazardous organic substances or requires high energy inputs. Inspired by the flame retardant principle of phosphorus-containing flame retardants, herein, an Enteromorpha-derived carbon (ADP-EP) aerogel with a water contact angle of 144.2° was prepared by successive freeze-shaping, freeze-drying and low-temperature carbonization treatment (300 °C), using NH4H2PO4 (ADP) as a modifier. The results demonstrated that the introduction of NH4H2PO4 could largely facilitate the removal of oxygenated groups from the pristine EP aerogels and enhance their surface roughness, thereby achieving surface hydrophobic modification. Featuring intrinsic low density, rich porosity and strong lipophilicity, the as-fabricated ADP-EP aerogels exhibited exceptional performance in both oil spill adsorption (~140 g/g) and water-in-oil emulsion separation. Moreover, the good reusability for oil uptake was also realized thanks to its robust mechanical compressibility and thermal stability. This work provides a facile, economical and eco-friendly route to obtain a desirable hydrophobic/oleophilic surface.
Collapse
Affiliation(s)
- Hongbing Dan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Kaidi Ji
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Yue Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Weiyan Yin
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
11
|
Ma S, Xu M, Zhao Z, Pan J, Zhao S, Xue J, Ye Z. Preparation of 3D superhydrophobic porous g-C3N4 nanosheets@carbonized kapok fiber composites for oil/water separation and treating organic pollutants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Li J, Li N, Zheng Y, Lou D, Jiang Y, Jiang J, Xu Q, Yang J, Sun Y, Pan C, Wang J, Peng Z, Zheng Z, Liu W. Interfacially Locked Metal Aerogel Inside Porous Polymer Composite for Sensitive and Durable Flexible Piezoresistive Sensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201912. [PMID: 35748166 PMCID: PMC9376829 DOI: 10.1002/advs.202201912] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Indexed: 05/31/2023]
Abstract
Flexible pressure sensors play significant roles in wearable devices, electronic skins, and human-machine interface (HMI). However, it remains challenging to develop flexible piezoresistive sensors with outstanding comprehensive performances, especially with excellent long-term durability. Herein, a facile "interfacial locking strategy" has been developed to fabricate metal aerogel-based pressure sensors with excellent sensitivity and prominent stability. The strategy broke the bottleneck of the intrinsically poor mechanical properties of metal aerogels by grafting them on highly elastic melamine sponge with the help of a thin polydimethylsiloxane (PDMS) layer as the interface-reinforcing media. The hierarchically porous conductive structure of the ensemble offered the as-prepared flexible piezoresistive sensor with a sensitivity as high as 12 kPa-1 , a response time as fast as 85 ms, and a prominent durability over 23 000 compression cycles. The excellent comprehensive performance enables the successful application of the flexible piezoresistive sensor as two-dimensional (2D) array device as well as three-dimensional (3D) force-detecting device for real-time monitoring of HMI activities.
Collapse
Affiliation(s)
- Jian Li
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Ning Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Dongyang Lou
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yue Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Jiaxi Jiang
- Center for Advanced Mechanics and MaterialsApplied Mechanics LaboratoryDepartment of Engineering MechanicsTsinghua UniversityBeijing100084P. R. China
| | - Qunhui Xu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Jing Yang
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Yujing Sun
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Chuxuan Pan
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Jianlan Wang
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of chemistrySun Yat‐sen UniversityGuangzhou510006P. R. China
| | - Wei Liu
- The Key Laboratory of Low‐Carbon Chemistry & Energy Conservation of Guangdong ProvinceKey Laboratory for Polymeric Composite and Functional Materials of Ministry of EducationState Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Materials Science and EngineeringSun Yat‐sen UniversityGuangzhou510006P. R. China
| |
Collapse
|
13
|
Zheng K, Li W, Zhou S, Huang G. Facile one-step fabrication of superhydrophobic melamine sponges by poly(phenol-amine) modification method for effective oil-water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128348. [PMID: 35101760 DOI: 10.1016/j.jhazmat.2022.128348] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Although polydopamine (PDA)-related modification is widely studied in the fabrication of superhydrophobic sponges, the high cost of dopamine limits its widespread application. To imitate PDA modification, a low-cost and facile one-step poly(phenol-amine) modification was performed on melamine sponges in this study. Low-cost catechol and diethylenetriamine (DETA) were used as the monomers, and n-dodecanethiol was used as an additive in the one-step modification. The results confirmed that the poly(phenol-amine) aggregations were successfully anchored on the sponge skeleton surface and that the aggregations were formed via the Schiff base reaction and the Michael addition reaction. Furthermore, the as-prepared sponges still showed excellent mechanical properties after modification. Additionally, the optimally modified sponge (MS-0.5) exhibited superhydrophobic properties with a contact angle value above 150° under various environments, high oil-absorption capacity for various oils and organic solvents, high continuous oil-water separation performance with efficiency greater than 98.8% in 30 cycles, outstanding demulsification performance with 99.52% toward oil-in-water emulsion, and excellent recoverability and long-term stability. Thus, this work provides a feasible facile one-step modification method that can be used in place of PDA-related modification.
Collapse
Affiliation(s)
- Ke Zheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China; School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China
| | - Wenxi Li
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
| | - Shaoqi Zhou
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China; College of Resource and Environmental Engineering, Guizhou University, Guiyang 550003, PR China; Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China; School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou 510006, PR China.
| | - Guoru Huang
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510640, PR China
| |
Collapse
|
14
|
Ejeta DD, Tan FH, Mathivathanan A, Juang TY, Abu-Omar MM, Wang CF, Lin CH, Lai JY. Preparation of fluorine- and nanoparticle-free superwetting polybenzoxazine/cellulose composites for efficient oil/water separations. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
15
|
Sun X, Feng S, Zhang Z, Zhang P, Zhao J, Gao Y, Yun J. Preparation and properties of a silver particle-coated and 1-dodecanethiol-modified superhydrophobic melamine sponge for oil/water separation. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Gong L, Zhu H, Wu W, Lin D, Yang K. A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127980. [PMID: 34883374 DOI: 10.1016/j.jhazmat.2021.127980] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Oil spills and organic solvents leakages have led to serious environmental problems, which calls for the emerging materials for the separation of oil/organic solvents from water effectively. Herein, a superhydrophobic/superoleophilic, SHMP-1@Sponge, with water contact angle (WCA) of 156° and oil contact angle of 0°, was fabricated by dip coating polymer SHMP-1 powder onto the skeleton of 3D melamine sponge. The SHMP-1@Sponge featured large specific surface area (556 m2/g) as well as high chemical and mechanical durability. SHMP-1@Sponge can absorb up to 40-105 times of its own weight of light and heavy oils/organic solvents in seconds, and it can be recycled for 25 times by squeezing. Moreover, the separation efficiency of immiscible oil/water mixtures and oil-in-water emulsions by SHMP-1@Sponge are > 99.5%. SHMP-1@Sponge shows tremendous absorption capacity for chloroform-in-water emulsions (1460 mg/g) compared with nitrobenzene-in-water (1290 mg/g) and diesel-in-water emulsions (980 mg/g), which is the strongest superhydrophobic absorbent for surfactant-stabilized oil-in-water emulsions reported to date. The durable SHMP-1@Sponge fabricated by loading superhydrophobic polymer with large surface area onto 3D sponge makes it a promising material for oil/water separation in realistic aquatic environments.
Collapse
Affiliation(s)
- Li Gong
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Hongxia Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wenhao Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Daohui Lin
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Yang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environmental Pollution and Ecological Health of Ministry of Education, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China.
| |
Collapse
|
17
|
Xu M, Ma S, Li J, Yuan M, Gao J, Xue J, Wang M. Multifunctional 3D polydimethylsiloxane modified MoS2@biomass-derived carbon composite for oil/water separation and organic dye adsorption/photocatalysis. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
18
|
Tian N, Wu S, Han G, Zhang Y, Li Q, Dong T. Biomass-derived oriented neurovascular network-like superhydrophobic aerogel as robust and recyclable oil droplets captor for versatile oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127393. [PMID: 34656938 DOI: 10.1016/j.jhazmat.2021.127393] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Using tubular kapok fibers (KF) and sodium alginate (SA) as the natural building block, we put forward a novel oriented neurovascular network-like superhydrophobic aerogel with robust dry and wet compression resilience by directional freeze-drying and chemical vapor deposition. In the block, SA forms aligned channel structures providing space for rapid oil transmission, while KF serves as vascular-like capillaries acting as instant "tentacle" to capture the tiny oil droplets in water, facilitating fascinating oil capture efficiency for versatile oil/water separation, The aerogel after dry and wet compression (under a strain of 60%) can recover 96.0% and 97.3% its original, respectively, facilitating stable oil recovery (81.1-89.8%) by squeezing, high separation efficiency (99.04-99.64%) and permeation flux separating oil contaminants from water. A pump-supported experiment shows the aerogel efficiently collecting oil contaminants from the water's surface and bottom by 11503-25611 L·m-2·h-1. Particularly, the aerogel as robust oil droplets captor facilely achieves isolation of 99.39-99.68% emulsified oils from oil/water emulsions by novel oil trapping mechanism which simply involves exerting kinetic energy on emulsified oils through repeated oscillation, potentially indicating a simple and efficient alternative to membrane-based oily wastewater remediation via filtration.
Collapse
Affiliation(s)
- Na Tian
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Shaohua Wu
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Qiang Li
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Ting Dong
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| |
Collapse
|
19
|
Chu Z, Li Y, Zhou A, Zhang L, Zhang X, Yang Y, Yang Z. Polydimethylsiloxane-decorated magnetic cellulose nanofiber composite for highly efficient oil-water separation. Carbohydr Polym 2022; 277:118787. [PMID: 34893220 DOI: 10.1016/j.carbpol.2021.118787] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/02/2022]
Abstract
Developing three-dimensional porous hydrophobic and oleophilic materials (3D-PHOMs) for efficient and selective oil-water separation is important to clean up oil spills and organic pollutants. However, 3D-PHOMs are still confined to lab-scale research due to several crucial drawbacks. Herein, a hydrophobic oil-water separation composite, containing cellulose nanofiber (delignificated porous wood, PW) substrate, magnetic nickel (Ni) layer and hydrophobic polydimethylsiloxane (PDMS) coating, is prepared using electroless deposition (ELD) and surface modification techniques. Owing to the porosity, hydrophobicity (>130° of water contact angle), lipophilicity, convenient magnetic collection and high cycle compressibility, the as-fabricated PDMS-Ni-PW exhibits excellent oil adsorption capacity (>60% of the volumetric absorption capacity) and outstanding cyclic stability (>80% of the adsorption capacity after 200 cycles). Thanks to the low surface energy and rough surface structure, the adsorbent demonstrates superior oil-retention ability (>80% at 200 rpm). Also, the oil-collecting apparatus is successfully designed to continuously separate various oils, e.g., n-hexane and dichloromethane, from water due to the unidirectional liquid transport of the adsorbent. These excellent properties make PDMS-modified cellulose nanofiber a promising candidate for oil-water separation.
Collapse
Affiliation(s)
- Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Yongtao Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Aiqun Zhou
- Hunan College of Information, Changsha 410200, China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China
| | - Xiaochun Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou 510665, China.
| | - Yu Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Zhu Y, Du Y, Su J, Mo Y, Yu S, Wang Z. Durable superhydrophobic melamine sponge based on polybenzoxazine and Fe3O4 for oil/water separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119130] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Mukherjee S, Amarnath N, Lochab B. Oxazine Ring-Substituted 4th Generation Benzoxazine Monomers & Polymers: Stereoelectronic Effect of Phenyl Substituents on Thermal Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sourav Mukherjee
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida Uttar Pradesh 201314, India
| | - Nagarjuna Amarnath
- Polymeric Materials and Mechanical Engineering, Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM, Wiener Srasse 12, 28359 Bremen, Germany
| | - Bimlesh Lochab
- Materials Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Greater Noida Uttar Pradesh 201314, India
| |
Collapse
|
22
|
Pang Y, Yu Z, Chen L, Chen H. Superhydrophobic polyurethane sponges modified by sepiolite for efficient oil-water separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127175] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
23
|
Dong T, Li Q, Tian N, Zhao H, Zhang Y, Han G. Concus Finn Capillary driven fast viscous oil-spills removal by superhydrophobic cruciate polyester fibers. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126133. [PMID: 34229398 DOI: 10.1016/j.jhazmat.2021.126133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Developing functional materials integrating multi-tasking oil/water separation performances is significant but challenging for the remediation of large-scale oil spills causing pernicious environmental damages. Herein, a novel Concus Finn Capillary driven oil sorbent (OSCPF) fabricated by aligning superhydrophobic cruciate polyester fibers based on yarn spinning mechanism is designed to realize the clean-up of oil spills and various oil/water mixtures at high speeds. Instantaneous oil diffusion is achieved by abrupt Concus Finn Capillary driven oil-flows along aligned channels. This advance reduces the penetrating time for viscous crude oils by 95.00% comparing with that of non-oriented circular polyester fibers. The OSCPF possess great oil sorption capacity of 54.36-124.71 g/g and can separate oils from immiscible oil/water mixtures, including seawater, soap-water, CuCl2-water, and KMnO4-water, and surfactant-stabilized O/W emulsions by the way of adsorption with satisfactory separation efficiency (99.41-99.83%). Especially, the OSCPF is effectively used to enclose oil spills to prevent rapid oil diffusion and in-situ continuously collect the spillages from water surface and underwater by pumping device with recovery rates of 15,727-104,227 L·m-2·h-1. Considering the unique structural design, fast oil sorption speed, and low operating cost, this work provides a prospective oil remover addressing the remediation of catastrophic multi-tasking oil/water pollutions.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| | - Qiang Li
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Na Tian
- College of Textile and Clothing, Qingdao University, #308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Haiguang Zhao
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| | - Guangting Han
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao, PR China.
| |
Collapse
|
24
|
Preparation of a main-chain-type polybenzoxazine-modified melamine sponge via non-solvent-induced phase inversion for oil absorption and very-high-flux separation of water-in-oil emulsions. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118387] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Banerjee K, Madhyastha R, Nakajima Y, Maruyama M, Madhyastha H. Nanoceutical Adjuvants as Wound Healing Material: Precepts and Prospects. Int J Mol Sci 2021; 22:4748. [PMID: 33947121 PMCID: PMC8124138 DOI: 10.3390/ijms22094748] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Dermal wound healing describes the progressive repair and recalcitrant mechanism of 12 damaged skin, and eventually, reformatting and reshaping the skin. Many probiotics, nutritional supplements, metal nanoparticles, composites, skin constructs, polymers, and so forth have been associated with the improved healing process of wounds. The exact mechanism of material-cellular interaction is a point of immense importance, particularly in pathological conditions such as diabetes. Bioengineered alternative agents will likely continue to dominate the outpatient and perioperative management of chronic, recalcitrant wounds as new products continue to cut costs and improve the wound healing process. This review article provides an update on the various remedies with confirmed wound healing activities of metal-based nanoceutical adjuvanted agents and also other nano-based counterparts from previous experiments conducted by various researchers.
Collapse
Affiliation(s)
- Kaushita Banerjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, India;
| | - Radha Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan; (R.M.); (Y.N.); (M.M.)
| | - Yuichi Nakajima
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan; (R.M.); (Y.N.); (M.M.)
| | - Masugi Maruyama
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan; (R.M.); (Y.N.); (M.M.)
| | - Harishkumar Madhyastha
- Department of Applied Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan; (R.M.); (Y.N.); (M.M.)
| |
Collapse
|
26
|
Holley NP, Lee JG, Valsaraj KT, Bharti B. Synthesis and characterization of ZEin-based Low Density Porous Absorbent (ZELDA) for oil spill recovery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Maggay IV, Chang Y, Venault A, Dizon GV, Wu CJ. Functionalized porous filtration media for gravity-driven filtration: Reviewing a new emerging approach for oil and water emulsions separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117983] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Zhai G, Qi L, He W, Dai J, Xu Y, Zheng Y, Huang J, Sun D. Durable super-hydrophobic PDMS@SiO 2@WS 2 sponge for efficient oil/water separation in complex marine environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116118. [PMID: 33280919 DOI: 10.1016/j.envpol.2020.116118] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The robust and eco-friendly super-hydrophobic sponge with remarkable performances has been potential adsorption material for the treatment of offshore oil spills. In this work, the durable PDMS@SiO2@WS2 sponge was fabricated via a green and facile one-step dipping method. The mixed tungsten disulfide (WS2) microparticles and hydrophobic SiO2 nanoparticles were immobilized on the sponge by non-toxic polydimethylsiloxane (PDMS) glue tier, which featured the hierarchical structure and extreme water repellency with the water contact angle of 158.8 ± 1.4°. The obtained PDMS@SiO2@WS2 sponge exhibits high oil adsorption capacity with 12-112 times of its own weight, and oil/water selectivity with separation efficiency over 99.85%. Notably, when subjected to the complex marine environment including high temperature, corrosive condition, insolation, and strong wind and waves, the modified sponge can maintain sable super-hydrophobicity with water contact angle over 150°. Moreover, it possesses superior mechanical stability for sustainable reusability and oil recovery. The sponge fabricated by non-toxic modifiers along with its sable super-hydrophobicity in complex marine environment makes it a potential material for practical applications.
Collapse
Affiliation(s)
- Guanzhong Zhai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Lixue Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Wang He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Yanmei Zheng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Daohua Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China.
| |
Collapse
|
29
|
Dey D, Mondal A, Nag S, Mondal U, Hirani H, Banerjee P. The designed synthesis of a hydrophobic covalent polymer composite to expel toxic dyes and oil from wastewater: theoretical corroboration. NEW J CHEM 2021. [DOI: 10.1039/d0nj04949b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In pursuit of addressing a global issue linked to the purification of contaminated water bodies, hydrophobic covalent organic framework (CPCMERI-2020) and its post-synthetically modified composites CPWCS and MS@CPWCS are reported herein.
Collapse
Affiliation(s)
- Debanjan Dey
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| | - Amita Mondal
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Department of Chemistry
- National Institute of Technology
| | - Somrita Nag
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| | - Udayan Mondal
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| | - Harish Hirani
- Mechanical Engineering Department
- Indian Institute of Technology
- Delhi-110016
- India
| | - Priyabrata Banerjee
- CSIR-Central Mechanical Engineering Research Institute
- Durgapur 713209
- India
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad 201002
| |
Collapse
|
30
|
Thirukumaran P, Parveen AS, Ramkumar V, Santhamoorthy M, Kim SC. A sustainable strategy for the remediation of oil/water separation using polybenzoxazine/stearic acid functionalized porous carbon. NEW J CHEM 2021. [DOI: 10.1039/d1nj02829d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fabrication of superhydrophobic and superoleophilic polybenzoxazine-stearic acid based melamine sponge for industrial oil/water pollution treatments.
Collapse
Affiliation(s)
| | | | - Vanaraj Ramkumar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
31
|
Trybuła D, Marszałek-Harych A, Gazińska M, Berski S, Jędrzkiewicz D, Ejfler J. N-Activated 1,3-Benzoxazine Monomer as a Key Agent in Polybenzoxazine Synthesis. Macromolecules 2020; 53:8202-8215. [PMID: 33116333 PMCID: PMC7584366 DOI: 10.1021/acs.macromol.0c02036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Indexed: 01/10/2023]
Abstract
![]()
A novel and successful
application of ring-closing reactions of
aminophenols has been proposed for the formation of a new type of
1,3-benzoxazine ionic derivatives. The optimization of the reaction
and detailed computational studies have been reported for the estimation
of heterocyclic ring stability and its further transformation, which
is crucial in the polymerization process. The molecular structure
of the obtained compounds has been fully characterized by applying
X-ray analysis and spectroscopic methods. The novel benzoxazines undergo
an intriguing thermal reaction leading to classical benzoxazines and
chloroalkanes, which is the first step of transformation before polymerization.
To gain more insights into the transformation behavior of ionic benzoxazine
derivatives, the Fourier transform infrared (FT-IR) spectra of gaseous
products were recorded in experiments with near simultaneous FT-IR/TGA
measurements. The combination of thermogravimetry with FT-IR spectroscopy
enables the quantitative and qualitative characterization of thermal
transformation products and clarification of the reaction mechanism.
The experimental data have been verified by applying DFT(B3LYP) and
DFT(M062x) theoretical studies.
Collapse
Affiliation(s)
- Danuta Trybuła
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | | | - Małgorzata Gazińska
- Department of Engineering and Technology of Polymers, Faculty of Chemistry, Wrocław University of Science and Technology, 27 Wybrzeże Wyspiańskiego, Wrocław 50-370, Poland
| | - Sławomir Berski
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Dawid Jędrzkiewicz
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| | - Jolanta Ejfler
- Faculty of Chemistry, University of Wrocław, 14 F. Joliot-Curie, Wrocław 50-383, Poland
| |
Collapse
|
32
|
Yang S, Chen L, Liu S, Hou W, Zhu J, Zhang Q, Zhao P. Robust Bifunctional Compressed Carbon Foam for Highly Effective Oil/Water Emulsion Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:44952-44960. [PMID: 32916046 DOI: 10.1021/acsami.0c11879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we report the pure compressed carbon foam (CCF) that offers a brand-new solution for separating emulsified oil/water mixtures. The CCF was fabricated by low-temperature carbonization of three-dimensional commercial melamine foam, which was then compressed without any further chemical modification. The CCF has amphiphilicity in air, underwater superoleophobicity, and underoil superhydrophobicity; therefore, it has been proved to be successfully utilized in highly emulsified oil-in-water and water-in-oil emulsions with excellent separation efficiencies, and it merely relies on gravity in the absence of external force. The CCF can also maintain its superwetting property under different harsh conditions, including strong acid, alkali, and salt solution conditions; this property offers great opportunities for widespread applications. Importantly, the CCF exhibits excellent permeability, separation efficiency, antifouling, and reusability performance. This novel CCF material has great potential application in handling oily wastewater owing to its low-cost raw materials, easily scaled-up preparation process, excellent antifouling property, and high separation capacity of materials.
Collapse
Affiliation(s)
- Sudong Yang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Lin Chen
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Shuai Liu
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, P. R. China
| | - Wenjie Hou
- Shanxi Coal and Chemical Technology Institute Co., Ltd., Xi'an 710070, P. R. China
| | - Jie Zhu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Qian Zhang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| | - Peng Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, P. R. China
| |
Collapse
|
33
|
Zeng ZWS, Taylor SE. Facile preparation of superhydrophobic melamine sponge for efficient underwater oil-water separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116996] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Wang F, Dai J, Huang L, Si Y, Yu J, Ding B. Biomimetic and Superelastic Silica Nanofibrous Aerogels with Rechargeable Bactericidal Function for Antifouling Water Disinfection. ACS NANO 2020; 14:8975-8984. [PMID: 32644778 DOI: 10.1021/acsnano.0c03793] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Disinfecting drinking water in a reliable, sustainable, and affordable manner is a great challenge, especially for water contaminated with pathogenic microbes, and traditional water disinfection strategies still suffer from biofouling, irreversible depletion of disinfectants, and energy consumption. In this study, we developed biomimetic and superelastic skeletal-structured silica nanofibrous aerogels (SNAs) with rechargeable bactericidal and antifouling property via the combination of electrospun silica nanofibers and a functional Si-O-Si bonding network. The premise for our design is that the Si-O-Si network comprising rechargeable N-halamine moieties can provide the aerogels with structural stability yet durable bactericidal activity. The resulting aerogels exhibit intriguing properties of high porosity, superhydrophilicity, superelasticity, rechargeable chlorination capability (>4800 ppm), and exceptional bactericidal activity (99.9999%), enabling the aerogels to effectively disinfect the bacteria-contaminated water with ultrahigh flux (57 600 L m-2 h-1) and antifouling function. The synthesis of the SNAs opens pathways for exploring antibacterial and antifouling materials in a renewable and nanofibrous form.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianwu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
35
|
Peng Y, Liu Y, Dai J, Cao L, Liu X. A sustainable strategy for remediation of oily sewage: Clean and safe. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Yao H, Lu X, Chen S, Yu C, He QS, Xin Z. A Robust Polybenzoxazine/SiO2 Fabric with Superhydrophobicity for High-Flux Oil/Water Separation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongjie Yao
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xin Lu
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Siwei Chen
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changyong Yu
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Quan Sophia He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, Truro B2N 5E3, Nova Scotia, Canada
| | - Zhong Xin
- Shanghai Key Laboratory of Multiphase Structural Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
37
|
Wang F, Dou L, Dai J, Li Y, Huang L, Si Y, Yu J, Ding B. In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperature‐Invariant Superelasticity over One Million Compressions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Lvye Dou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Jianwu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Yuyao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
- Innovation Center for Textile Science and TechnologyDonghua University Shanghai 200051 China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
- Innovation Center for Textile Science and TechnologyDonghua University Shanghai 200051 China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
- Innovation Center for Textile Science and TechnologyDonghua University Shanghai 200051 China
| |
Collapse
|
38
|
Wang F, Dou L, Dai J, Li Y, Huang L, Si Y, Yu J, Ding B. In situ Synthesis of Biomimetic Silica Nanofibrous Aerogels with Temperature‐Invariant Superelasticity over One Million Compressions. Angew Chem Int Ed Engl 2020; 59:8285-8292. [DOI: 10.1002/anie.202001679] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Indexed: 01/25/2023]
Affiliation(s)
- Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Lvye Dou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Jianwu Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Yuyao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
- Innovation Center for Textile Science and TechnologyDonghua University Shanghai 200051 China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
- Innovation Center for Textile Science and TechnologyDonghua University Shanghai 200051 China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextilesDonghua University Shanghai 201620 China
- Innovation Center for Textile Science and TechnologyDonghua University Shanghai 200051 China
| |
Collapse
|
39
|
Zhou F, Zhang J, Xie PF, Li Y. Acrylate copolymer-based super oil absorption resins: effects of steric hindrance of the monomer. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00997-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Jin L, Wang Y, Xue T, Xie J, Xu Y, Yao Y, Li X. Smart Amphiphilic Random Copolymer-Coated Sponge with pH-Switchable Wettability for On-Demand Oil/Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14473-14480. [PMID: 31621327 DOI: 10.1021/acs.langmuir.9b02583] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
To prepare intelligent controllable oil/water separation materials with high mechanical stability and good recyclability, we fabricated a novel pH-controlled wettability melamine sponge by using a facile dip-coating method. The coated sponge exhibits reversibly switchable wettability between superhydrophilicity-superoleophobicity through acidic surrounding and superhydrophobicity-superoleophilicity under neutral or alkaline conditions. The as-prepared sponge possesses excellent absorption capacity (46.06-122.81 g/g) and oil/water separation efficiency (above 98%). The coated sponge also has good mechanical stability and recyclability which means it can be reused for absorption and oil/water separation. This smart porous material, which can flexibly transform wettability on demand, has great application prospects in oil/water separation.
Collapse
Affiliation(s)
- Ling Jin
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yijing Wang
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Tao Xue
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Jing Xie
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yesheng Xu
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Yuan Yao
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Xinxin Li
- Key Laboratory of Specially Functional Polymeric Materials and Related Technology of the Ministry of Education, School of Materials Science and Engineering , East China University of Science and Technology , Shanghai 200237 , China
| |
Collapse
|
41
|
Shome A, Maji K, Rather AM, Yashwanth A, Patel DK, Manna U. A Scalable Chemical Approach for the Synthesis of a Highly Tolerant and Efficient Oil Absorbent. Chem Asian J 2019; 14:4732-4740. [DOI: 10.1002/asia.201901102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/16/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Arpita Shome
- Department of ChemistryIndian Instituteof Technology Guwahati Amingaon, Kamrup Assam 781039 India
| | - Kousik Maji
- Department of ChemistryIndian Instituteof Technology Guwahati Amingaon, Kamrup Assam 781039 India
| | - Adil Majeed Rather
- Department of ChemistryIndian Instituteof Technology Guwahati Amingaon, Kamrup Assam 781039 India
| | - Arcot Yashwanth
- Department of ChemistryIndian Instituteof Technology Guwahati Amingaon, Kamrup Assam 781039 India
| | - Deepak Kumar Patel
- Department of ChemistryIndian Instituteof Technology Guwahati Amingaon, Kamrup Assam 781039 India
| | - Uttam Manna
- Department of ChemistryIndian Instituteof Technology Guwahati Amingaon, Kamrup Assam 781039 India
- Centre for NanotechnologyIndian Instituteof Technology Guwahati, Amingaon, Kamrup Assam 781039 India
| |
Collapse
|
42
|
Doan HN, Nguyen DK, Vo PP, Hayashi K, Kinashi K, Sakai W, Tsutsumi N, Huynh DP. Facile and Scalable Fabrication of Porous Polystyrene Fibers for Oil Removal by Centrifugal Spinning. ACS OMEGA 2019; 4:15992-16000. [PMID: 31592142 PMCID: PMC6777073 DOI: 10.1021/acsomega.9b02091] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/03/2019] [Indexed: 05/09/2023]
Abstract
The demand for an efficient oil sorbent with high sorption capacity, low cost, scalable fabrication, and high selectivity for the cleanup of spreading oil on water is increasingly urgent due to the frequent occurrence of oil spill accidents in seawater all over the world. In this study, porous polystyrene (PS) fibers with high hydrophobicity and superoleophilicity were directly fabricated by a centrifugal spinning method (CS). The effect of solvents, tetrahydrofuran (THF), and dimethylformamide (DMF) on the morphology and porous structure of the polystyrene fibers was evaluated by using scanning electron microscopy and nitrogen adsorption-desorption experiments. The formation mechanism for the porous structure on the fibers was also evaluated. The oil sorption capacities of the PS fibers for silicon oil, pump oil, and vegetable oil were investigated. The highest oil sorption capacity was found in PS fibers fabricated from PS solution with a THF/DMF weight ratio of 1/3, which exhibited the highest specific surface area, pore volume, and porosity. The high productivity and highly porous structure of PS fibers indicate that CS is a promising method to fabricate porous fibers for the cleanup of oil spills.
Collapse
Affiliation(s)
- Hoan Ngoc Doan
- Doctor’s Program of Materials
Chemistry, Graduate school of
Science and Technology, Internship Student, Master’s Program of Innovative
Materials, and Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Dien Kim Nguyen
- Doctor’s Program of Materials
Chemistry, Graduate school of
Science and Technology, Internship Student, Master’s Program of Innovative
Materials, and Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
- Faculty of Materials Technology, Ho Chi Minh City University of Technology and Polymer Research Center,
Ho Chi Minh City University of Technology, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Phu Phong Vo
- Doctor’s Program of Materials
Chemistry, Graduate school of
Science and Technology, Internship Student, Master’s Program of Innovative
Materials, and Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Kohei Hayashi
- Doctor’s Program of Materials
Chemistry, Graduate school of
Science and Technology, Internship Student, Master’s Program of Innovative
Materials, and Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Kenji Kinashi
- Doctor’s Program of Materials
Chemistry, Graduate school of
Science and Technology, Internship Student, Master’s Program of Innovative
Materials, and Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
- E-mail:
| | - Wataru Sakai
- Doctor’s Program of Materials
Chemistry, Graduate school of
Science and Technology, Internship Student, Master’s Program of Innovative
Materials, and Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Naoto Tsutsumi
- Doctor’s Program of Materials
Chemistry, Graduate school of
Science and Technology, Internship Student, Master’s Program of Innovative
Materials, and Faculty of Materials Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585, Japan
| | - Dai Phu Huynh
- Faculty of Materials Technology, Ho Chi Minh City University of Technology and Polymer Research Center,
Ho Chi Minh City University of Technology, Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
43
|
Hu J, Zhu J, Jiang C, Guo T, Song Q, Xie L. Facile preparation of durably magnetic superhydrophobic sponge and its application in oil-water separation. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Wang F, Liu M, Ding R, Liang M, Huang L, Yu J, Si Y. Rechargeable Antibacterial Polysulfonamide-Based N-Halamine Nanofibrous Membranes for Bioprotective Applications. ACS APPLIED BIO MATERIALS 2019; 2:3668-3677. [DOI: 10.1021/acsabm.9b00537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mei Liu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruida Ding
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mingguang Liang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|