1
|
Chen Y, Clay N, Phan N, Lothrop E, Culkins C, Robinson B, Stubblefield A, Ferguson A, Kimmel BR. Molecular Matchmakers: Bioconjugation Techniques Enhance Prodrug Potency for Immunotherapy. Mol Pharm 2025; 22:58-80. [PMID: 39570179 DOI: 10.1021/acs.molpharmaceut.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Cancer patients suffer greatly from the severe off-target side effects of small molecule drugs, chemotherapy, and radiotherapy─therapies that offer little protection following remission. Engineered immunotherapies─including cytokines, immune checkpoint blockade, monoclonal antibodies, and CAR-T cells─provide better targeting and future tumor growth prevention. Still, issues such as ineffective activation, immunogenicity, and off-target effects remain primary concerns. "Prodrug" therapies─classified as therapies administered as inactive and then selectively activated to control the time and area of release─hold significant promise in overcoming these concerns. Bioconjugation techniques (e.g., natural linker conjugation, bioorthogonal reactions, and noncanonical amino acid incorporation) enable the rapid and homogeneous synthesis of prodrugs and offer selective loading of immunotherapeutic agents to carrier molecules and protecting groups to prevent off-target effects after administration. Several prodrug activation mechanisms have been highlighted for cancer therapeutics, including endogenous activation by hypoxic or acidic conditions common in tumors, exogenous activation by targeted bioorthogonal cleavage, or stimuli-responsive light activation, and dual-stimuli activation, which adds specificity by combining these mechanisms. This review will explore modern prodrug conjugation and activation options, focusing on how these strategies can enhance immunotherapy responses and improve patient outcomes. We will also discuss the implications of computational methodology for therapy design and recommend procedures to determine how and where to conjugate carrier systems and "prodrug" groups onto therapeutic agents to enhance the safety and control of these delivery platforms.
Collapse
Affiliation(s)
- Yinuo Chen
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Natalie Clay
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Nathan Phan
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Elijah Lothrop
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Culkins
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise Robinson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ariana Stubblefield
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alani Ferguson
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blaise R Kimmel
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
- Center for Cancer Engineering, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Pelotonia Institute for Immuno-Oncology, Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Li J, Hao Y, Wang H, Zhang M, He J, Ni P. Advanced Biomaterials Derived from Functional Polyphosphoesters: Synthesis, Properties, and Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51876-51898. [PMID: 39311719 DOI: 10.1021/acsami.4c11899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Polyphosphoesters (PPEs) represent an innovative class of biodegradable polymers, with the phosphate ester serving as the core repeating unit of their polymeric backbone. Recently, biomaterials derived from functionalized PPEs have garnered significant interest in biomedical applications because of their commendable biocompatibility, biodegradability, and the capacity for functional modification. This review commences with a brief overview of synthesis methodologies and the distinctive properties of PPEs, including thermoresponsiveness, degradability, stealth effect, and biocompatibility. Subsequently, the review delves into the latest applications of PPEs-based nanocarriers for drug or gene delivery and PPEs-based polymeric prodrugs and scaffolds in the biomedical field, presenting several illustrative examples for each application. By encapsulating the advancements of recent years, this review aims to offer an enhanced understanding and serve as a reference for the synthesis and biomedical applications of functional PPEs.
Collapse
Affiliation(s)
- Jintao Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ying Hao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
| | - Hairong Wang
- Children's Hospital of Soochow University, Pediatric Research Institute of Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
3
|
Chu B, Deng H, Niu T, Qu Y, Qian Z. Stimulus-Responsive Nano-Prodrug Strategies for Cancer Therapy: A Focus on Camptothecin Delivery. SMALL METHODS 2024; 8:e2301271. [PMID: 38085682 DOI: 10.1002/smtd.202301271] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Indexed: 08/18/2024]
Abstract
Camptothecin (CPT) is a highly cytotoxic molecule with excellent antitumor activity against various cancers. However, its clinical application is severely limited by poor water solubility, easy inactivation, and severe toxicity. Structural modifications and nanoformulations represent two crucial avenues for camptothecin's development. However, the potential for further structural modifications is limited, and camptothecin nanoparticles fabricated via physical loading have the drawbacks of low drug loading and leakage. Prodrug-based CPT nanoformulations have shown unique advantages, including increased drug loading, reduced burst release, improved bioavailability, and minimal toxic side effects. Stimulus-responsive CPT nano-prodrugs that respond to various endogenous or exogenous stimuli by introducing various activatable linkers to achieve spatiotemporally responsive drug release at the tumor site. This review comprehensively summarizes the latest research advances in stimulus-responsive CPT nano-prodrugs, including preparation strategies, responsive release mechanisms, and their applications in cancer therapy. Special focus is placed on the release mechanisms and characteristics of various stimulus-responsive CPT nano-prodrugs and their application in cancer treatment. Furthermore, clinical applications of CPT prodrugs are discussed. Finally, challenges and future research directions for CPT nano-prodrugs are discussed. This review to be valuable to readers engaged in prodrug research is expected.
Collapse
Affiliation(s)
- Bingyang Chu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hanzhi Deng
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Qu
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhiyong Qian
- Department of Hematology and Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
4
|
Wang T, Li M, Wei R, Wang X, Lin Z, Chen J, Wu X. Small Molecule-Drug Conjugates Emerge as a New Promising Approach for Cancer Treatment. Mol Pharm 2024; 21:1038-1055. [PMID: 38344996 DOI: 10.1021/acs.molpharmaceut.3c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Antibody drug conjugates (ADCs) have emerged as a new promising class of anti- cancer agents. However, limitations such as higher costs and unavoidable immunogenicity due to their relatively large structures cannot be ignored. Therefore, the development of lightweight drugs such as small molecule-drug conjugates (SMDCs) based on the ADC design idea has become a new option for targeted therapy. SMDCs are derived from the coupling of small-molecule targeting ligands with cytotoxic drugs. They are composed of three parts: small-molecule targeting ligands, cytotoxic molecules, and linkers. Compared with ADCs, SMDCs can be more rapidly and evenly dispersed into tumor tissues, with low cost and no immunogenicity. In this article, we will give a comprehensive review of different types of SMDCs currently under clinical trials to provide ideas and inspirations for the development of clinically applicable SMDCs.
Collapse
Affiliation(s)
- Tiansi Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Meichai Li
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Ruting Wei
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xinyu Wang
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Zhizhe Lin
- Shanghai Wei Er Lab, Shanghai 201799, China
- Shandong University of Traditional Chinese Medicine, No.4655, University Road, Jinan, Shandong 250355, China
| | - Jianming Chen
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| | - Xin Wu
- Fujian University of Traditional Chinese Medicine, No. 1, Qiuyang Road, Fuzhou, Fujian 350122, China
- Shanghai Wei Er Lab, Shanghai 201799, China
| |
Collapse
|
5
|
Singh D, Sharma Y, Dheer D, Shankar R. Stimuli responsiveness of recent biomacromolecular systems (concept to market): A review. Int J Biol Macromol 2024; 261:129901. [PMID: 38316328 DOI: 10.1016/j.ijbiomac.2024.129901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Stimuli responsive delivery systems, also known as smart/intelligent drug delivery systems, are specialized delivery vehicles designed to provide spatiotemporal control over drug release at target sites in various diseased conditions, including tumor, inflammation and many others. Recent advances in the design and development of a wide variety of stimuli-responsive (pH, redox, enzyme, temperature) materials have resulted in their widespread use in drug delivery and tissue engineering. The aim of this review is to provide an insight of recent nanoparticulate drug delivery systems including polymeric nanoparticles, dendrimers, lipid-based nanoparticles and the design of new polymer-drug conjugates (PDCs), with a major emphasis on natural along with synthetic commercial polymers used in their construction. Special focus has been placed on stimuli-responsive polymeric materials, their preparation methods, and the design of novel single and multiple stimuli-responsive materials that can provide controlled drug release in response a specific stimulus. These stimuli-sensitive drug nanoparticulate systems have exhibited varying degrees of substitution with enhanced in vitro/in vivo release. However, in an attempt to further increase drug release, new dual and multi-stimuli based natural polymeric nanocarriers have been investigated which respond to a mixture of two or more signals and are awaiting clinical trials. The translation of biopolymeric directed stimuli-sensitive drug delivery systems in clinic demands a thorough knowledge of its mechanism and drug release pattern in order to produce affordable and patient friendly products.
Collapse
Affiliation(s)
- Davinder Singh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| | - Yashika Sharma
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Divya Dheer
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India; Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Ravi Shankar
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Zhang R, Yu J, Guo Z, Jiang H, Wang C. Camptothecin-based prodrug nanomedicines for cancer therapy. NANOSCALE 2023; 15:17658-17697. [PMID: 37909755 DOI: 10.1039/d3nr04147f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Camptothecin (CPT) is a cytotoxic alkaloid that attenuates the replication of cancer cells via blocking DNA topoisomerase 1. Despite its encouraging and wide-spectrum antitumour activity, its application is significantly restricted owing to its instability, low solubility, significant toxicity, and acquired tumour cell resistance. This has resulted in the development of many CPT-based therapeutic agents, especially CPT-based nanomedicines, with improved pharmacokinetic and pharmacodynamic profiles. Specifically, smart CPT-based prodrug nanomedicines with stimuli-responsive release capacity have been extensively explored owing to the advantages such as high drug loading, improved stability, and decreased potential toxicity caused by the carrier materials in comparison with normal nanodrugs and traditional delivery systems. In this review, the potential strategies and applications of CPT-based nanoprodrugs for enhanced CPT delivery toward cancer cells are summarized. We appraise in detail the chemical structures and release mechanisms of these nanoprodrugs and guide materials chemists to develop more powerful nanomedicines that have real clinical therapeutic capacities.
Collapse
Affiliation(s)
- Renshuai Zhang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Jing Yu
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao Municipal Hospital, Qingdao, 266071, China
| | - Zhu Guo
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
- The Affiliated Hospital of Qingdao University, Qingdao 266061, China
| | - Hongfei Jiang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| | - Chao Wang
- Cancer Institute of The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266061, China.
| |
Collapse
|
7
|
Haudum S, Strasser P, Teasdale I. Phosphorus and Silicon-Based Macromolecules as Degradable Biomedical Polymers. Macromol Biosci 2023; 23:e2300127. [PMID: 37326117 DOI: 10.1002/mabi.202300127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Synthetic polymers are indispensable in biomedical applications because they can be fabricated with consistent and reproducible properties, facile scalability, and customizable functionality to perform diverse tasks. However, currently available synthetic polymers have limitations, most notably when timely biodegradation is required. Despite there being, in principle, an entire periodic table to choose from, with the obvious exception of silicones, nearly all known synthetic polymers are combinations of carbon, nitrogen, and oxygen in the main chain. Expanding this to main-group heteroatoms can open the way to novel material properties. Herein the authors report on research to incorporate the chemically versatile and abundant silicon and phosphorus into polymers to induce cleavability into the polymer main chain. Less stable polymers, which degrade in a timely manner in mild biological environments, have considerable potential in biomedical applications. Herein the basic chemistry behind these materials is described and some recent studies into their medical applications are highlighted.
Collapse
Affiliation(s)
- Stephan Haudum
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Paul Strasser
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| | - Ian Teasdale
- Johannes Kepler University Linz, Altenbergerstrasse 69, Linz, 4040, Austria
| |
Collapse
|
8
|
Aliabadi A, Hasannia M, Vakili-Azghandi M, Araste F, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. Synthesis approaches of amphiphilic copolymers for spherical micelle preparation: application in drug delivery. J Mater Chem B 2023; 11:9325-9368. [PMID: 37706425 DOI: 10.1039/d3tb01371e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The formation of polymeric micelles in aqueous environments through the self-assembly of amphiphilic polymers can provide a versatile platform to increase the solubility and permeability of hydrophobic drugs and pave the way for their administration. In comparison to various self-assembly-based vehicles, polymeric micelles commonly have a smaller size, spherical morphology, and simpler scale up process. The use of polymer-based micelles for the encapsulation and carrying of therapeutics to the site of action triggered a line of research on the synthesis of various amphiphilic polymers in the past few decades. The extended knowledge on polymers includes biocompatible smart amphiphilic copolymers for the formation of micelles, therapeutics loading and response to external stimuli, micelles with a tunable drug release pattern, etc. Different strategies such as ring-opening polymerization, atom transfer radical polymerization, reversible addition-fragmentation chain-transfer, nitroxide mediated polymerization, and a combination of these methods were employed to synthesize copolymers with diverse compositions and topologies with the proficiency of self-assembly into well-defined micellar structures. The current review provides a summary of the important polymerization techniques and recent achievements in the field of drug delivery using micellar systems. This review proposes new visions for the design and synthesis of innovative potent amphiphilic polymers in order to benefit from their application in drug delivery fields.
Collapse
Affiliation(s)
- Ali Aliabadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Medicinal Chemistry Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maliheh Hasannia
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Masoume Vakili-Azghandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Fatemeh Araste
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Biotechnology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Tan X, Wang C, Zhou H, Zhang S, Liu X, Yang X, Liu W. Bioactive fatty acid analog-derived hybrid nanoparticles confer antibody-independent chemo-immunotherapy against carcinoma. J Nanobiotechnology 2023; 21:183. [PMID: 37291573 DOI: 10.1186/s12951-023-01950-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023] Open
Abstract
Typical chemo-immunotherapy against malignant carcinoma, is characterized by the combined application of chemotherapeutic agents and monoclonal antibodies for immune checkpoint blockade (ICB). Temporary ICB with antibodies would not depress tumor intrinsic PD-L1 expression and potential PD-L1 adaptive upregulation during chemotherapy, thus exerting limited immunotherapy efficacy. Herein, we developed novel polymer-lipid hybrid nanoparticles (2-BP/CPT-PLNs) for inducing PD-L1 degradation by inhibiting palmitoylation with bioactive palmitic acid analog 2-bromopalmitate (2-BP) to replace PD-L1 antibody (αPD-L1) for ICB therapy, thus achieving highly efficient antitumor immune via immunogenic cell death (ICD) induced by potentiated chemotherapy. GSH-responsive and biodegradable polymer-prodrug CPT-ss-PAEEP10 assisted as a cationic helper polymer could help to stabilize 2-BP/CPT-PLNs co-assembled with 2-BP, and facilitate the tumor site-specific delivery and intracellular release of water-insoluble camptothecin (CPT) in vivo. 2-BP/CPT-PLNs would reinforce cytotoxic CD8+ T cell-mediated antitumor immune response via promoting intratumoral lymphocytes cells infiltration and activation. 2-BP/CPT-PLNs significantly prevented melanoma progression and prolonged life survival of mice beyond the conventional combination of irinotecan hydrochloride (CPT-11) and αPD-L1. Our work first provided valuable instructions for developing bioactive lipid analogs-derived nanoparticles via lipid metabolism intervention for oncotherapy.
Collapse
Affiliation(s)
- Xi Tan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Chenhui Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Shuting Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xuhan Liu
- Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, 518060, P.R. China
| | - Xiangliang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China.
| |
Collapse
|
10
|
Zhang Y, Li J, Pu K. Recent advances in dual- and multi-responsive nanomedicines for precision cancer therapy. Biomaterials 2022; 291:121906. [DOI: 10.1016/j.biomaterials.2022.121906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
11
|
Motohashi Y, Nishihara T, Tanabe K. Preparation of a multifunctional photoactivated prodrug on a streptavidin scaffold bearing a DNA aptamer. Bioorg Med Chem Lett 2022; 71:128819. [PMID: 35643261 DOI: 10.1016/j.bmcl.2022.128819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/20/2022] [Accepted: 05/22/2022] [Indexed: 11/19/2022]
Abstract
Prodrugs that present strong cytotoxicity toward specific cells have been utilized for cell-type selection and purification. In this study, we designed and prepared a multifunctional, photoactivated prodrug based on a streptavidin scaffold. Biotin-labeled DNA aptamer that recognizes the membrane antigen EpCAM, and biotin-labeled photoactivated prodrug bearing the antitumor camptothecin, were prepared. Both molecules were linked to the streptavidin scaffold by simple mixing. The resulting prodrug bound to the EpCAM-overexpressing SK-BR-3 target cells and showed cytotoxic effects upon photoirradiation, corresponding to cytotoxic drug release.
Collapse
Affiliation(s)
- Yuto Motohashi
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan
| | - Tatsuya Nishihara
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| | - Kazuhito Tanabe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan.
| |
Collapse
|
12
|
Gebrie HT, Addisu KD, Darge HF, Birhan YS, Thankachan D, Tsai HC, Wu SY. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy. BIOMATERIALS ADVANCES 2022; 139:213015. [PMID: 35882161 DOI: 10.1016/j.bioadv.2022.213015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/22/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Core-crosslinking of micelles (CCMs) appears to be a favorable strategy to enhance micellar stability and sustained release of the loaded drug. In this study, the DOX-conjugated pH-sensitive polymeric prodrug Methoxy Poly (ethylene oxide)-b-Poly (Aspartate-Hydrazide) (mPEG-P [Asp-(Hyd-DOX)] was created using ring-opening polymerization. To further enhance the micellar system, 3,3'-diselanediyldipropanoic acid (DSeDPA) was applied to link the hydrophobic segment via click reaction to form pH/redox-responsive CCMs. Dual anti-cancer drugs, DOX as a pro-drug and SN-38 as a targeting drug, were used to enhance inhibition. DLS confirmed that the non-cross-linked micelle (NCMs) showed a higher (96.43 nm) particle size compared to the CCMs (72.63 nm). Due to micellar shrinkage after crosslinking, CCMs displayed SN-38 drug loading (7.32 %) and encapsulation efficiency (86.23 %). The mPEG-P(Asp-Hyd) copolymer's in vitro cytotoxicity on HeLa and HaCaT cell lines found that 84.52 % of the cells are alive, and zebrafish (Danio rerio) embryos and larvae are highly biocompatible. The DOX/SN-38@CCMs had a sustained discharge profile in vitro, unlike the DOX/SN-38@NCMs. In DOX/SN-38@CCMs, HeLa cells were inhibited 50.90 % more than HaCaT (14.25 %) at the maximum drug dose (10 μg/mL). The CCMs successfully targeted and supplied DOX/SN-38 in HeLa cells rather than HaCaT cells, based on cellular uptake of 2D cell culture. CCMs, unlike NCMs, inhibit the growth of spheroids for extended periods of time due to the prolonged release of the loaded drug. Overall, CCMs are good-looking for use as regulated delivery of DOX/SN-38 in cancer cells because of all of these appealing characteristics.
Collapse
Affiliation(s)
- Hailemichael Tegenu Gebrie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Kefyalew Dagnew Addisu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science And Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Material Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&d Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Szu-Yuan Wu
- Department of Food Nutrition and Health Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan; Division of Radiation Oncology, Department of Medicine, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Big Data Center, Lo-Hsu Medical Foundation, Lotung Poh-Ai Hospital, Yilan, Taiwan; Department of Healthcare Administration, College of Medical and Health Science, Asia University, Taichung, Taiwan; Artificial Intelligence Development Center, Fu Jen Catholic University, Taipei, Taiwan.; Graduate Institute of Business Administration, College of Management, Fu Jen Catholic University, Taipei, Taiwan; Center for Regional Anesthesia and Pain Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
13
|
Cheng Q, Dang H, Tian Y, Teng C, Yin D, Yan L. Macromolecular conjugated cyanine fluorophore nanoparticles for tumor-responsive photo nanotheranostics. J Colloid Interface Sci 2022; 626:453-465. [PMID: 35809437 DOI: 10.1016/j.jcis.2022.06.134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 11/30/2022]
Abstract
For photothermal therapy (PTT), the improved targeting can decrease the dosage and promote the therapeutic function of photothermal agents, which would effectively improve the antitumor effect. The tumor microenvironment (TME) and cells are targets in designing intelligent and responsive theranostics. However, most of these schemes have been limited to the traditional visible and first near-infrared (NIR-I) regions, eager to expand to the second near-infrared (NIR-II) window. We designed and synthesized a polyethylene glycol conjugated and disulfide-modified macromolecule fluorophore (MPSS). MPSS could self-assemble into core-shell micelles in an aqueous solution (MPSS-NPS), while the small molecule probes were in a high aggregation arrangement inside the nanoparticle. The pronounced aggregation quenching (ACQ) effect caused them to the "sleeping" state. After entering the tumor cells, the disulfide bonds in MPSS-NPS broke in response to a high concentration of glutathione (GSH) in TME, and the molecule probes were released. The highly aggregated state was effectively alleviated, resulting in distinct absorption enhancement in the near-infrared region. Therefore, the fluorescence signal was recovered, and the photothermal performance was triggered. In vitro and in vivo studies reveal that the Nano-system is efficient for the smart NIR-II fluorescence imaging-guided PTT, even at a low dosage and density of irradiation.
Collapse
Affiliation(s)
- Quan Cheng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Huiping Dang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Youliang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Changchang Teng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Division of Life Sciences and Medicine, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
14
|
Zhou R, Zhang M, He J, Liu J, Sun X, Ni P. Functional cRGD-Conjugated Polymer Prodrug for Targeted Drug Delivery to Liver Cancer Cells. ACS OMEGA 2022; 7:21325-21336. [PMID: 35755339 PMCID: PMC9219052 DOI: 10.1021/acsomega.2c02683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 05/07/2023]
Abstract
To overcome the limitation of conventional nanodrugs in tumor targeting efficiency, coupling targeting ligands to polymeric nanoparticles can enhance the specific binding of nanodrugs to tumors. Cyclo(Arg-Gly-Asp-d-Phe-Lys) (abbreviated as c(RGDfK)) peptide has been widely adopted due to its high affinity to the tumor marker αvβ3 integrin receptor. In this study, we develop a cRGD peptide-conjugated camptothecin (CPT) prodrug, which enables self-assembly of nanoparticles for precise targeting and enrichment in tumor tissue. We first synthesized a camptothecin derivative (CPT-ss-N3) with a reduction-sensitive bond and simultaneously modified PEG to obtain cRGD-PEG-N3. After ring-opening polymerization of the 2-(but-3-yn-1-yolxy)-2-oxo-1,3,2-dioxaphospholane (BYP), an amphiphilic polymeric prodrug, referred to as cRGD-PEG-g-(PBYP-ss-CPT), was obtained via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. The self-assembly in buffer solution of the cRGD-functional prodrug was studied through DLS and TEM. The in vitro drug release behavior of cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles was investigated. The results show that the nanoparticles are reduction-responsive and the bonded CPT can be released. Endocytosis and MTT assays demonstrate that the cRGD-conjugated prodrug has better affinity for tumor cells, accumulates more intracellularly, and is therefore, more effective. The in vivo drug metabolism studies show that nanoparticles greatly prolong the retention time in circulation. By monitoring drug distribution in tumor and in various tissues, we find that free CPT can be rapidly metabolized, resulting in low accumulation in all tissues. However, cRGD-PEG-g-(PBYP-ss-CPT) nanoparticles accumulate in tumor tissues in higher amounts than PEG-g-(PBYP-ss-CPT) nanoparticles, except for the inevitable capture by the liver. This indicates that the nanomedicine with cRGD has a certain targeting property, which can improve drug delivery efficiency.
Collapse
Affiliation(s)
- Ru Zhou
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute
of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Xingwei Sun
- Intervention
Department, The Second Affiliated Hospital
of Soochow University, Suzhou 215004, P. R. China
| | - Peihong Ni
- College
of Chemistry, Chemical Engineering and Materials Science, State and
Local Joint Engineering Laboratory for Novel Functional Polymeric
Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design
and Application, Suzhou Key Laboratory of Macromolecular Design and
Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
- . Tel: +86
512 65882047
| |
Collapse
|
15
|
Sun G, Zuo M, Xu Z, Wang K, Wang L, Hu XY. Orthogonal Design of Supramolecular Prodrug Vesicles via Water-Soluble Pillar[5]arene and Betulinic Acid Derivative for Dual Chemotherapy. ACS APPLIED BIO MATERIALS 2022; 5:3320-3328. [PMID: 35486958 DOI: 10.1021/acsabm.2c00318] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular prodrug vesicles with efficient property for dual chemotherapy have been successfully constructed based on the orthogonal self-assembly between a water-soluble pillar[5]arene host (WP5) and a betulinic acid guest (BA-D) as well as doxorubicin (DOX). Under the acidic microenvironment of cancer cells, both the encapsulated anticancer drug DOX and prodrug BA-D can be effectively released from DOX-loaded WP5⊃BA-D prodrug vesicles for combinational chemotherapy. Furthermore, bioexperiments indicate that DOX-loaded prodrug vesicles can obviously enhance the anticancer efficiency based on the cooperative effect of DOX and BA-D, while remarkably reducing the systematic toxicity in tumor-mice, displaying great potential applications in combinational chemotherapy for cancer treatments.
Collapse
Affiliation(s)
- Guangping Sun
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Minzan Zuo
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Zuqiang Xu
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Kaiya Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiao-Yu Hu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
16
|
Dong X, Brahma RK, Fang C, Yao SQ. Stimulus-responsive self-assembled prodrugs in cancer therapy. Chem Sci 2022; 13:4239-4269. [PMID: 35509461 PMCID: PMC9006903 DOI: 10.1039/d2sc01003h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
Small-molecule prodrugs have become the main toolbox to improve the unfavorable physicochemical properties of potential therapeutic compounds in contemporary anti-cancer drug development. Many approved small-molecule prodrugs, however, still face key challenges in their pharmacokinetic (PK) and pharmacodynamic (PD) properties, thus severely restricting their further clinical applications. Self-assembled prodrugs thus emerged as they could take advantage of key benefits in both prodrug design and nanomedicine, so as to maximize drug loading, reduce premature leakage, and improve PK/PD parameters and targeting ability. Notably, temporally and spatially controlled release of drugs at cancerous sites could be achieved by encoding various activable linkers that are sensitive to chemical or biological stimuli in the tumor microenvironment (TME). In this review, we have comprehensively summarized the recent progress made in the development of single/multiple-stimulus-responsive self-assembled prodrugs for mono- and combinatorial therapy. A special focus was placed on various prodrug conjugation strategies (polymer-drug conjugates, drug-drug conjugates, etc.) that facilitated the engineering of self-assembled prodrugs, and various linker chemistries that enabled selective controlled release of active drugs at tumor sites. Furthermore, some polymeric nano-prodrugs that entered clinical trials have also been elaborated here. Finally, we have discussed the bottlenecks in the field of prodrug nanoassembly and offered potential solutions to overcome them. We believe that this review will provide a comprehensive reference for the rational design of effective prodrug nanoassemblies that have clinic translation potential.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Pharmacy, School of Medicine, Shanghai University Shanghai 200444 China
| | - Rajeev K Brahma
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| | - Chao Fang
- State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine Shanghai 200025 China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore Singapore 117543 Singapore
| |
Collapse
|
17
|
Guo Z, Bai G, Zhan X, Zhuo K, Wang J, Wang Y. Supramolecular Vector/Drug Coassemblies of Polyglycerol Dendrons and Rutin Enhance the pH Response. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3392-3402. [PMID: 35266719 DOI: 10.1021/acs.langmuir.1c03131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A coassembly strategy for a supramolecular vector/drug was proposed with a biocompatible ternary dodecyl-bi(third-generation polyglycerol (PG) dendrons) (C12-(G3)2) amphiphile, dodecyl sulfobetaine (SB3-12) surfactant, and poorly water-soluble drug rutin. C12-(G3)2 and rutin will mutually enhance their pH response by protonation and deprotonation of dendritic PG and rutin's ionization as the pH changes from the acidic gastric lumen to the weakly alkaline intestine. SB3-12 may increase the payload and bring about sustained release for rutin by intermolecular interactions. Self-assembling behaviors of C12-(G3)2, SB3-12, sodium dodecyl sulfate (SDS), and dodecyl trimethylammonium bromide (DTAB) and their hybrids with rutin were characterized by UV-vis spectroscopy, a fluorescence probe, and 1H NMR. UV-vis and 1H NMR were used to identify the position and orientation of rutin in the vectors. The functions of the vector/drug were confirmed by measuring the solubility and in vitro release of rutin. The ternary coassembling vector/drug easily imparted functions of pH-responsive and sustained release without complex synthetic processes. The nanocaves framed by PG dendrons in the micelles provide pH-responsive compartments for rutin and SB3-12 in the supramolecular vector/drug anchors that accommodate rutin by weak interactions. The finely matched supramolecular vector/drug coassemblies exhibit the pH-responsive function for a potential application in the treatment of inflammatory bowel disease.
Collapse
Affiliation(s)
- Zhijun Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Guangyue Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Xize Zhan
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Kelei Zhuo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yujie Wang
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, P. R. China
| |
Collapse
|
18
|
Wang C, Wu Y, Zhu Y, Ma H, Zhang M, Liu G, He J, Ni P. Investigation of eight-arm tapered star copolymers prepared by anionic copolymerization and coupling reaction. Polym Chem 2022. [DOI: 10.1039/d2py00567k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of eight-arm tapered star copolymers 8[P(I-co-S)x]-POSS were synthesized by the coupling reaction between octavinyl POSS and the tapered living copolymer chains obtained from statistical anionic copolymerization.
Collapse
Affiliation(s)
- Chengmeng Wang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yibo Wu
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Yihui Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hongbing Ma
- Testing and Analysis Center, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - GengXin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Beijing Key Lab of Special Elastomeric Composite Materials, Beijing, 102617, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
19
|
Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021; 9:8718-8738. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the therapeutic performance of traditional mono-chemotherapy on cancers remains unsatisfactory because of the tumor heterogeneity and multidrug resistance. In light of intricate tumor structures and distinct tumor microenvironments (TMEs), combinational therapeutic strategies with multiple anticancer drugs from different mechanisms can synergistically optimize the outcomes and concomitantly minimize the adverse effects during the therapy process. Extensive research on polymeric micelles (PMs) for biomedical applications has revealed the growing importance of nanomedicines for cancer therapy in the recent decade. Starting from traditional simple delivery systems, PMs have been extended to multi-faceted therapeutic strategies. Here we review and summarize the most recent advances in combinational therapy based on multifunctional PMs including a combination of multiple anticancer drugs, chemo-gene therapy, chemo-phototherapy and chemo-immunotherapy. The design approaches, action mechanisms and therapeutic applications of these nanodrugs are summarized. In addition, we highlight the opportunities and potential challenges associated with this promising field, which will provide new guidelines for advanced combinational cancer chemotherapy.
Collapse
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
20
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Wang W, Zhang X, Huang R, Hirschbiegel CM, Wang H, Ding Y, Rotello VM. In situ activation of therapeutics through bioorthogonal catalysis. Adv Drug Deliv Rev 2021; 176:113893. [PMID: 34333074 PMCID: PMC8440397 DOI: 10.1016/j.addr.2021.113893] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/01/2021] [Accepted: 07/20/2021] [Indexed: 12/29/2022]
Abstract
Bioorthogonal chemistry refers to any chemical reactions that can occur inside of living systems without interfering with native biochemical processes, which has become a promising strategy for modulating biological processes. The development of synthetic metal-based catalysts to perform bioorthogonal reactions has significantly expanded the toolkit of bioorthogonal chemistry for medicinal chemistry and synthetic biology. A wide range of homogeneous and heterogeneous transition metal catalysts (TMCs) have been reported, mediating different transformations such as cycloaddition reactions, as well as bond forming and cleaving reactions. However, the direct application of 'naked' TMCs in complex biological media poses numerous challenges, including poor water solubility, toxicity and catalyst deactivation. Incorporating TMCs into nanomaterials to create bioorthogonal nanocatalysts can solubilize and stabilize catalyst molecules, with the decoration of the nanocatalysts used to provide spatiotemporal control of catalysis. This review presents an overview of the advances in the creation of bioorthogonal nanocatalysts, highlighting different choice of nano-scaffolds, and the therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xianzhi Zhang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA
| | | | - Huaisong Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St., Amherst, MA 01003, USA.
| |
Collapse
|
22
|
Psarrou M, Kothri MG, Vamvakaki M. Photo- and Acid-Degradable Polyacylhydrazone-Doxorubicin Conjugates. Polymers (Basel) 2021; 13:polym13152461. [PMID: 34372064 PMCID: PMC8348397 DOI: 10.3390/polym13152461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
Light-mediated polymer degradation has attracted considerable attention in various applications, including photo-patterning, tissue engineering and photo-triggered drug delivery. In this study, we report the synthesis and characterization of a new, linear, main-chain photo- and acid-degradable copolymer based on acylhydrazone linkages. The polymer was synthesized via a step-growth copolymerization of adipic acid dihydrazide with a bifunctional poly(ethylene glycol) bearing benzaldehyde end-groups, under mild acidic conditions, to afford a hydrophilic PEG-alt-adipic acid (PEG-alt-AA) alternating copolymer. The synthesized polymer was characterized by size exclusion chromatography, proton nuclear magnetic resonance and attenuated total reflection-Fourier transform infrared spectroscopies. The main-chain photo- and acid-induced degradation of the copolymer in dimethylsulfoxide and water, respectively, was verified by UV-vis spectroscopy at light intensities as low as 0.1 mW cm−2 at λ = 254 nm. Next, a model anticancer drug, doxorubicin (DOX), was chemically linked to the polymer chain end(s) via acylhydrazone bond(s), resulting in amphiphilic PEG-alt-adipic acid-DOX (PEG-alt-AA-DOX) polymer–drug conjugates. The conjugates were self-assembled in water to form spherical nanoparticles, as evidenced by scanning and transmission electron microscopies. The irradiation of the self-assembled PEG-alt-AA-DOX conjugates with UV light and the decrease of the solution pH resulted in the disruption of the assemblies due to the photolysis and acidolysis of the acylhydrazone bonds, and the release of the therapeutic cargo.
Collapse
Affiliation(s)
- Maria Psarrou
- Department of Materials Science and Technology, University of Crete, Vasilika Vouton, 700 13 Heraklion, Crete, Greece;
| | - Martha Georgia Kothri
- School of Medicine, University of Crete, Vasilika Vouton, 700 13 Heraklion, Crete, Greece;
| | - Maria Vamvakaki
- Department of Materials Science and Technology, University of Crete, Vasilika Vouton, 700 13 Heraklion, Crete, Greece;
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, Vasilika Vouton, 700 13 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-545019
| |
Collapse
|
23
|
Huang YK, Tian HR, Zhang MZ, He JL, Liu J, Ni PH. Monoclonal Antibody-conjugated Polyphosphoester-hyd-DOX Prodrug Nanoparticles for Targeted Chemotherapy of Liver Cancer Cells. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2582-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Liu G, Jiang Z, Lovell JF, Zhang L, Zhang Y. Design of a Thiol-Responsive, Traceless Prodrug with Rapid Self-Immolation for Cancer Chemotherapy. ACS APPLIED BIO MATERIALS 2021; 4:4982-4989. [PMID: 35007046 DOI: 10.1021/acsabm.1c00247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prodrugs can be formed by chemical modification of the existing active pharmaceutical ingredients (APIs); however, this often sacrifices their functional efficacy. Self-immolative linkers have recently attracted attention, as they can be designed to release pristine APIs. Herein, we report a strategy to generate a self-immolative prodrug (SIP) that can release pristine doxorubicin (DOX). Compared to conventional linkers, the key SIP DOX (KSIP-DOX) developed here can rapidly and quantitatively release the API due to its strong leaving group after reduction by thiol groups, which are present in tumors. KSIP-DOX has enhanced cellular uptake and improved anticancer efficacy, demonstrating its utility for cancer treatment.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
25
|
Wang N, Liu C, Yao W, Zhou H, Yu S, Chen H, Qiao W. A traceable, GSH/pH dual-responsive nanoparticles with spatiotemporally controlled multiple drugs release ability to enhance antitumor efficacy. Colloids Surf B Biointerfaces 2021; 205:111866. [PMID: 34044333 DOI: 10.1016/j.colsurfb.2021.111866] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Constructing highly efficient and multifunctional nanoparticles to overcome the multiple challenges of targeted drug delivery is a new strategy urgently needed in tumor therapy. Here, we synthesized pH-responsive prodrug (PEG2K-NH-N-DOX), GSH-responsive prodrug (PEG2K-S-S-CPT), folate-receptor targeting polymers (FA-PEG2K-L8, FA-PEG2K-TOS) and T1-enhanced magnetic resonance imaging contrast agents (Gd-DTPA-N16-16), used to encapsulate combrestatinA4 (CA4) to prepare multifunctional nanoparticles (FTDCAG NPs). Unlike other nanoparticles, FTDCAG NPs contains three drugs with the ability to control the release in time and space, which can maximize the effectiveness of precise cancer chemotherapy. We first confirmed that specific binding between FTDCAG NPs and overexpressed folate-receptor cells by flow cytometry and confocal laser scanning microscopy. We then investigated the spatiotemporally controlled release ability of FTDCAG NPs loaded with doxorubicin (DOX), CA4 and camptothecin (CPT). Relative to pH = 7.4, the release efficiency of CA4 in the pH = 6.5 increased by 63.4 %. The first released CA4 is able to destroy the angiogenesis and help tumor cells to be exposed to the remaining FTDCG NPs. After being internalized into the tumor cells, FTDCG NPs is disassembled and the CPT and DOX were released due to the increase of intracellular GSH concentration and the decrease of pH value. Besides, the relaxation time of FTDCAG NPs is 3.86 times that of clinical Gd-DTPA, and the in vitro and vivo T1-weighted imaging is brighter, which can be used to trace the nanoparticles by MRI. Therefore, FTDCAG NPs provide an efficient strategy for the design of multifunctional drug delivery systems for enhancing antitumor efficacy.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hengjun Zhou
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Simiao Yu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Hailiang Chen
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| |
Collapse
|
26
|
Tian H, Huang Y, He J, Zhang M, Ni P. CD147 Monoclonal Antibody Targeted Reduction-Responsive Camptothecin Polyphosphoester Nanomedicine for Drug Delivery in Hepatocellular Carcinoma Cells. ACS APPLIED BIO MATERIALS 2021; 4:4422-4431. [PMID: 35006854 DOI: 10.1021/acsabm.1c00177] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the treatment of tumor-targeted small-molecule anti-cancer drugs, antibody-mediated therapies, especially for antibody-drug conjugates (ADCs), have revealed great latent force. However, the therapeutic drugs provided by ADCs possess limitation. Considering that the combination of antibodies and nano-drugs can broaden their applicability in the field of tumor treatment, herein, we developed an antibody conjugated polymeric prodrug nanoparticles SAE-PEG-b-PBYP-ss-CPT for targeted camptothecin (CPT) delivery to liver tumor cells. The diblock copolymer was composed of PEG and biodegradable polyphosphoester (PBYP) containing alkynyl groups in the side chain. A derivative of CPT (CPT-ss-N3) was bonded to the PBYP via "click" reaction. The diethyl squarate (SAE) in the terminal of PEG chain was used as a functional group to bond with CD147 monoclonal antibody (CD147 mAb). The particle size and size distribution of the both nanoparticles, with antibody binding (namely CD147-CPT NPs) and without antibody (abbreviated as CPT-loaded NPs), were measured by dynamic light scattering (DLS). The morphologies of both two kinds of nanoparticles were observed by transmission electron microscope (TEM). The results of X-ray photoelectron spectroscopy (XPS) showed that CD147 mAb had been coupled to the surface of CPT-loaded NPs. Endocytosis test indicated that CD147-CPT NPs had higher uptake rate and accumulation in HepG2 cells than those of CPT-loaded NPs without antibodies, due to CD147 mAb can specifically bind to CD147 protein overexpressed in HepG2 cells. We establish a method to bond monoclonal antibodies to anti-cancer polymeric prodrugs, and endow biodegradable polymeric prodrugs with precise targeting functions to liver cancer cells.
Collapse
Affiliation(s)
- Hongrui Tian
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Yakui Huang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China
| |
Collapse
|
27
|
Tao Y, Zheng D, Zhao J, Liu K, Liu J, Lei J, Wang L. Self-Assembling pH-Responsive Nanoparticle Platform Based on Pectin-Doxorubicin Conjugates for Codelivery of Anticancer Drugs. ACS OMEGA 2021; 6:9998-10004. [PMID: 34056155 PMCID: PMC8153661 DOI: 10.1021/acsomega.0c06131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 01/25/2021] [Indexed: 06/12/2023]
Abstract
Pharmaceutical science based on biological nanotechnology is developing rapidly in parallel with the development of nanomaterials and nanotechnology in general. Pectin is a natural polysaccharide obtainable from a wide range of sources. Here, we show that doxorubicin (DOX)-conjugated hydrophilic pectin (PET) comprising an amphiphilic polymer loaded with hydrophobic dihydroartemisinin (DHA) self-assemble into nanoparticles. Importantly, conjugated DOX and DHA could be released quickly in a weakly acidic environment by cleavage of the acid-sensitive acyl hydrazone bond. Confocal microscopy and flow cytometry confirmed that these PET-DOX/DHA nanoparticles efficiently delivered DOX into the nuclei of MCF-7 cells. Significant tumor growth reduction was monitored in a female C57BL/6 mouse model, showing that the PET-DOX/DHA nanoparticle-mediated drug delivery system inhibited tumor growth and may improve therapy. Thus, we have demonstrated that pectin may be useful in the design of materials for biomedical applications.
Collapse
Affiliation(s)
- Yinghua Tao
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- Westlake
University, Hangzhou 310024, P. R. China
| | - Dan Zheng
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jingyang Zhao
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Kefeng Liu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of
Sciences), Jinan 250353, Shandong, P. R. China
| | - Jing Liu
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiandu Lei
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Luying Wang
- Beijing
Key Laboratory of Lignocellulosic Chemistry, College of Material Science
and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| |
Collapse
|
28
|
Xu ZY, Liu HK, Wu Y, Zhang YC, Zhou W, Wang H, Zhang DW, Ma D, Li ZT. Flexible Organic Framework-Based Anthracycline Prodrugs for Enhanced Tumor Growth Inhibition. ACS APPLIED BIO MATERIALS 2021; 4:4591-4597. [DOI: 10.1021/acsabm.1c00316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zi-Yue Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hong-Kun Liu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yan Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Yun-Chang Zhang
- Department of Inorganic Chemistry, School of Pharmacy, Second Military Medical University, 325 Guohe Road, Shanghai 200433, China
| | - Wei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Da Ma
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhan-Ting Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
29
|
Gao F, Zhou J, Sun Y, Yang C, Zhang S, Wang R, Tan W. Programmable Repurposing of Existing Drugs as Pharmaceutical Elements for the Construction of Aptamer-Drug Conjugates. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9457-9463. [PMID: 33356116 DOI: 10.1021/acsami.0c18846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Converting marketed drug molecules into phosphoramidites may present a potential strategy to facilitate the development of aptamer-drug conjugates (ApDCs) by a DNA synthesizer in a programmable way; however, quite limited methods were reported. Herein, we demonstrated a general approach by repurposing camptothecin (CPT) species. Commonly used inactive ingredients in pharmaceuticals are investigated and selected as a bonding moiety, from which 2-mercaptoethoxy ethanol and thioglycerol were efficiently incorporated with CPT to give the precursors. Cell viability and molecular docking results of the precursors supported that incorporation of the bonding moiety would not interrupt the inhibitory activity. Therefore, corresponding phosphoramidites were prepared as pharmaceutical elements, and a series of ApDCs were constructed automatically by solid-phase synthesis. Biological studies revealed that CPT elements could be specifically delivered to HCT116 cells by an aptamer and released inside cells. This kind of programmable repurposing may take advantage of established safety data and efficacy of existing drugs resulting in a faster development of ApDCs.
Collapse
Affiliation(s)
- Fei Gao
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Translation Medicine, Shanghai University, Shanghai 200444, China
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yang Sun
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cai Yang
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiyan Zhang
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruowen Wang
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
30
|
Nifant'ev IE, Shlyakhtin AV, Bagrov VV, Tavtorkin AN, Ilyin SO, Gavrilov DE, Ivchenko PV. Cyclic ethylene phosphates with (CH 2) nCOOR and CH 2CONMe 2 substituents: synthesis and mechanistic insights of diverse reactivity in aryloxy-Mg complex-catalyzed (co)polymerization. Polym Chem 2021. [DOI: 10.1039/d1py01277k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein we present a comparative study of the reactivity of ethylene phosphates with –O(CH2)nCOOMe (n = 1–3, 5), –CH2COOtBu, –OCHMeCOOMe, and –OCH2CONMe2 substituents in BHT-Mg catalyzed ROP.
Collapse
Affiliation(s)
- Ilya E. Nifant'ev
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation
| | - Andrey V. Shlyakhtin
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation
| | - Vladimir V. Bagrov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation
| | - Alexander N. Tavtorkin
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation
| | - Sergey O. Ilyin
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry E. Gavrilov
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation
| | - Pavel V. Ivchenko
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
- M. V. Lomonosov Moscow State University, Department of Chemistry, Moscow, Russian Federation
| |
Collapse
|
31
|
Xu L, Wang H, Tian H, Zhang M, He J, Ni P. Facile construction of noncovalent graft copolymers with triple stimuli-responsiveness for triggered drug delivery. Polym Chem 2021. [DOI: 10.1039/d1py00135c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A triple stimuli-responsive noncovalent graft copolymer was designed and synthesized by the host–guest interactions between β-CD grafted dextran and ferrocene-terminated poly(lactide).
Collapse
Affiliation(s)
- Lei Xu
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Hairong Wang
- Children's Hospital of Soochow University
- Pediatric Research Institute of Soochow University
- Suzhou
- China
| | - Hongrui Tian
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Mingzu Zhang
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Jinlin He
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| | - Peihong Ni
- College of Chemistry
- Chemical Engineering and Materials Science
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
| |
Collapse
|
32
|
Dual pH-responsive-charge-reversal micelle platform for enhanced anticancer therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111527. [DOI: 10.1016/j.msec.2020.111527] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/22/2020] [Accepted: 09/11/2020] [Indexed: 12/14/2022]
|
33
|
Pelosi C, Tinè MR, Wurm FR. Main-chain water-soluble polyphosphoesters: Multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110079] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Wang YS, Li GL, Zhu SB, Jing FC, Liu RD, Li SS, He J, Lei JD. A Self-assembled Nanoparticle Platform Based on Amphiphilic Oleanolic Acid Polyprodrug for Cancer Therapy. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
35
|
Wang L, Li SY, Jiang W, Liu H, Dou JX, Li XQ, Wang YC. Polyphosphoestered Nanomedicines with Tunable Surface Hydrophilicity for Cancer Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32312-32320. [PMID: 32578972 DOI: 10.1021/acsami.0c07016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The surface hydrophilicity of nanoparticles has a major impact on their biological fates. Ascertaining the correlation between nanoparticle surface hydrophilicity and their biological behaviors is particularly instructive for future nanomedicine design and their antitumor efficacy optimization. Herein, we designed a series of polymeric nanoparticles based on polyphosphoesters with well-controlled surface hydrophilicity in the molecular level and systemically evaluated their biological behaviors. The results demonstrated that high surface hydrophilicity preferred lower protein absorption, better stability, longer blood circulation, and higher tumor accumulation but lower cellular uptake. Upon encapsulation of drugs, nanoparticles with high hydrophilicity showed an excellent antitumor therapeutic efficacy in both primary and metastatic tumors as compared to the relatively hydrophobic ones. Further analyses revealed that the superior antitumor outcome was attributed to the balance of tumor accumulation and cellular uptake, demonstrating the particular importance of nanoparticle surface hydrophilicity regulation on the antitumor efficacy. Our work provides a potent guideline for a rational designation on the surface hydrophilicity of nanoparticles for cancer treatment optimization.
Collapse
Affiliation(s)
- Li Wang
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shu-Ya Li
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Wei Jiang
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Liu
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Jia-Xiang Dou
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xiao-Qiu Li
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| | - Yu-Cai Wang
- Intelligent Nanomedicine Institute, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Division of Molecular Medicine, Hefei National Laboratory for Physical Sciences at Microscale, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
36
|
Wan J, Li Y, Jin K, Guo J, Xu J, Wang C. Robust Strategy for Antibody-Polymer-Drug Conjugation: Significance of Conjugating Orientation and Linker Charge on Targeting Ability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:23717-23725. [PMID: 32368886 DOI: 10.1021/acsami.0c04471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibody-drug conjugates have shown great promise in active targeting for cancer therapy. The existing chemical techniques for antibody conjugation generally lack efficiency or universality. In this article, a site-specific antibody conjugation was developed by using a mild reaction between a benzoboroxole (BB) functionality and cis-diol moiety of sugar units in the antibody fragment crystallizable region under neutral pH conditions. A BB/PEG/ICG-grafted poly(aspartic acid) comb-like functional polymer was first synthesized and conjugated with transferrin (Tf) to form a transferrin-polymer-drug conjugate [Tf-P(BB)], which showed 120% increase in HepG2 hepatoma (Tf receptor overexpression) cell uptake compared to a nontargeting protein-polymer-drug conjugate [HRP-P(BB)]. The universality of this method was further demonstrated by the enhanced uptake of trastuzumab (anti-Her2 antibody)-polymer-drug conjugates in MCF-7 (295%) and MDA-MB-435S (66.4%) (Her2 positive) cells. The positive charge of the linker had great influence on the targeting ability of the antibody-polymer-drug conjugates. The in vivo studies demonstrated the distinct targeting ability of Tf-P(BB) in the HepG2 xenograft tumor, and the tumor accumulation of the Tf-P(BB) testing group increased by 92% with respect to the control group [HRP-P(BB)]. More significantly, the HepG2 cell uptake amount of the antibody-oriented conjugate [Tf-P'(BB)] was 2.4-fold higher than that of the controlled group [Tf-P'(Hex)]. On the basis of this facile site-specific conjugation method, the conjugates are able to change the antibody species easily against various cancers, while maintaining the antibody integrity and targeting ability.
Collapse
Affiliation(s)
- Jiaxun Wan
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yongjing Li
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Ke Jin
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
37
|
Li H, He J, Zhang M, Liu J, Ni P. Glucose-Sensitive Polyphosphoester Diblock Copolymer for an Insulin Delivery System. ACS Biomater Sci Eng 2020; 6:1553-1564. [DOI: 10.1021/acsbiomaterials.9b01817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hongping Li
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, P. R. China
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
38
|
Srivastava P, Hira SK, Paladhi A, Singh R, Gupta U, Srivastava DN, Singh RA, Manna PP. Studies on interaction potency model based on drug synergy and therapeutic potential of triple stimuli-responsive delivery of doxorubicin and 5-fluoro-2-deoxyuridine against lymphoma using disulfide-bridged cysteine over mesoporous silica nanoparticles. J Mater Chem B 2020; 8:1411-1421. [PMID: 31974541 DOI: 10.1039/c9tb02628b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A triple stimuli-responsive drug delivery platform involving doxorubicin, 5-fluoro-2-deoxy uridine and folic acid was fabricated on mesoporous silica nanoparticles for targeting delivery against a highly aggressive murine lymphoma called Dalton's lymphoma. Fabrication of the unique construct by amalgamating active and passive targeting mechanisms offers a novel hyper-chimeric platform for a stimuli-responsive drug delivery system. The novel construct enables efficient and precise delivery of the precious cargo to the tumor sites. Active targeting by folic acid directs the doxorubicin and 5-fluoro-2-deoxy uridine in the close proximities of the tumor cells, causing efficient killing and significant growth inhibition. Isobologram models, zero interaction potency dose-response surface plots and matrices were generated to evaluate the combination synergism of the two drugs. Therapy with the dual drug-bearing construct in mice with established tumors significantly reduced the tumor load and enhanced the survival of the animals compared with the untreated control. Therapy with the dual delivery system also augmented the innate and adaptive immune defense mechanisms of the treated animals. CD8+ T cells, natural killer cells and the dendritic cells from the treated group following successful therapy with the novel construct showed enhanced cytotoxicity and growth inhibitory capacities against DL tumor cells.
Collapse
Affiliation(s)
- Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Centre of Advanced Study, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Mo S, Zhang X, Hameed S, Zhou Y, Dai Z. Glutathione-responsive disassembly of disulfide dicyanine for tumor imaging with reduction in background signal intensity. Theranostics 2020; 10:2130-2140. [PMID: 32104501 PMCID: PMC7019170 DOI: 10.7150/thno.39673] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Near-infrared (NIR) fluorescence imaging has been proved as an effective modality in identifying the tumor border and distinguishing the tumor cells from healthy tissue during the oncological surgery. Developing NIR fluorescent probes with high tumor to background (T/B) signal is essential for the complete debulking of the tumor, which will prolong the survival rate of tumor patients. However, the nonspecific binding and "always-on" properties of the conventional fluorescent probes leads to high background signals and poor specificity. Method: To address this problem, glutathione (GSH)-responsive, two disulfide-bonded dicyanine dyes (ss-diCy5 and ss-diNH800CW) were synthesized. As synthesized dyes are quenched under normal physiological conditions, however, once reached to the tumor site, these dyes are capable of emitting strong fluorescence signals primarily because of the cleavage of the disulfide bond in the tumor microenvironment with high GSH concentration. Besides, the GSH-responsive behavior of these dyes was monitored using the UV-vis and fluorescence spectroscopy. The diagnostic accuracy of the aforementioned dyes was also tested both in tumor cells and 4T1-bearing mice. Results: The fluorescence signal intensity of disulfide dicyanine dyes was quenched up to 89% compared to the mono cyanine dyes, thus providing a very low fluorescence background. However, when the disulfide dicyanine dye reaches the tumor site, the dicyanine is cleaved by GSH into two mono-dyes with high fluorescence strength, thus producing strong fluorescent signals upon excitation. The fluorescent signal of the dicyanine was enhanced by up to 27-fold after interacting with the GSH solution. In vivo xenografts tumor studies further revealed that the fluorescence signals of aforementioned dyes can be quickly recovered in the solid tumor. Conclusion: In summary, the disulfide dicyanines dyes can provide a promising platform for specific tumor-activatable fluorescence imaging with improved T/B value.
Collapse
Affiliation(s)
- Shanyan Mo
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoting Zhang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Sadaf Hameed
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yiming Zhou
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Wang M, Yan J, Li C, Wang X, Xiong J, Pan D, Wang L, Xu Y, Li X, Yang M. Cationic poly(amide-imide)-conjugated camptothecin prodrug with variable nanomorphology for efficient reductive-responsive drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
41
|
Liu T, Wu X, Chen S, Wu P, Han H, Zhang H, Li J, Li G, Zhang S. A cationic polymeric prodrug with chemotherapeutic self-sensibilization co-delivering MMP-9 shRNA plasmid for a combined therapy to nasopharyngeal carcinoma. Drug Deliv 2019; 26:1280-1291. [PMID: 31793355 PMCID: PMC6896581 DOI: 10.1080/10717544.2019.1698674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 10/31/2022] Open
Abstract
To obtain a high-efficiency drug and gene co-delivery system to HNE-1 tumor therapy, a polymeric prodrug (PAAs-MTX) with chemotherapeutic sensibilization was synthesized consisting of a GSH-response hyperbranched poly(amido amine) (PAAs) and an antitumor drug of methotrexate (MTX). Then, the targeting molecule to HNE-1 cells, transferrin (Tf), was conjugated to form the Tf-PAAs-MTX. This polymeric prodrug could deliver MMP-9 shRNA plasmid (pMMP-9) again to form the drug and gene co-delivery system of Tf-PAAs-MTX/pMMP-9. The co-delivery system showed the effective drug and gene delivery ability with high cytotoxicity and gene transfection efficiency to HNE-1 cells. Besides that, Tf-PAAs-MTX also showed the chemotherapeutic sensibilization effect, the formulation containing PAAs segments showed much higher cytotoxicity than that of free MTX. Benefiting from the sensibilization effect and MTX/pMMP-9 co-delivery strategy, this Tf-PAAs-MTX/pMMP-9 co-delivery system exhibited the significantly improved therapeutic efficacy to HNE-1 tumor in a combined manner which was confirmed by in vitro and in vivo assays. Moreover, its biocompatibility, especially the blood compatibility was analyzed. This polymeric prodrug provided an easily delivery system combining the drug/gene co-delivery, chemotherapeutic sensibilization and targeting into one single platform, which showed a promising application in nasopharyngeal carcinoma therapy.
Collapse
Affiliation(s)
- Tao Liu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Device, Nanchang, China
| | - Shaohua Chen
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Peina Wu
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hong Han
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongbin Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Junzheng Li
- Department of Otolaryngology-Head and Neck Surgery, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Guanxue Li
- Department of Pediatric Center, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Siyi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
42
|
Ma X, Bai S, Zhang X, Ma X, Jia D, Shi X, Shao J, Xue P, Kang Y, Xu Z. Enhanced Tumor Penetration and Chemotherapy Efficiency by Covalent Self-Assembled Nanomicelle Responsive to Tumor Microenvironment. Biomacromolecules 2019; 20:2637-2648. [PMID: 31141665 DOI: 10.1021/acs.biomac.9b00424] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The physicochemical properties of nanomedicine can be altered with a tumor microenvironment, which influence the precise delivery of drug molecules to the lesion. Thus, the therapeutic efficiency is restrained. Here, a covalent self-assembled nanomicelle (CSNM) based starburst polyprodrug was constructed with the unimolecular micelle-templated self-assembly method and was expected to overcome biological barriers. It aimed to enhance the tumor penetration and chemotherapy efficiency of drugs. In CSNM, a hydrophilic copolymer was glued around a camptothecin (CPT) linked starburst polymeric prodrug [β-CD-P (CPT- co-NH2)] for protecting the positive charge of the prodrug with a reduction-triggered reversibility in conjugation and activity. Then, the complex was tracelessly delivered into a negatively charged cell membrane, leading to enhanced cellular uptake. Finally, the disulfide bond in the CPT prodrug can be broken under the reductive microenvironment within tumor cells and liberated the CPT molecules. Both in vitro and in vivo results demonstrated the benefits of our CSNM system, including high drug loading, controllable drug release, excellent uptake by tumor cells and remarkable antitumor efficiency. In essence, our findings suggested CSNM as an innovative strategy for drug delivery in chemotherapy, producing a competitive versatility in the development of biomedicine.
Collapse
Affiliation(s)
- Xiaoqian Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Shuang Bai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Xiaoli Zhang
- Department of Hematology and Oncology , Shenzhen Children's Hospital , Shenzhen , Guangdong 518038 , People's Republic of China
| | - Xianbin Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Die Jia
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Xiaoxiao Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech) , Nanjing 211816 , People's Republic of China
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy , Southwest University , Chongqing 400715 , People's Republic of China.,Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices , Chongqing 400715 , People's Republic of China
| |
Collapse
|
43
|
Abstract
Smart GSH-responsive camptothecin delivery systems for treatment of tumors and real-time monitoring in vivo and in vitro were described.
Collapse
Affiliation(s)
- Dan Zhang
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation
- School of Mechanical Engineering
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Xiaohui Ji
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Yanhong Gao
- Shaanxi Province Key Laboratory of Catalytic Foundation and Application
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| |
Collapse
|