1
|
Luo L, Qu Y, Liu F, Yang C, Zhao T. Enhanced CO 2 conversion through confinement of cross-linked ionic polymer within the pores of porous carbon materials. J Colloid Interface Sci 2025; 678:1109-1120. [PMID: 39243477 DOI: 10.1016/j.jcis.2024.08.223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
It is crucial to employ an integrated catalyst to avoid the complications of the recovery process. This work reports the fabrication of porous carbon@ionic liquid (PC@IL) composites with readily accessible active ion sites, achieved by confining cross-linked ionic liquid (IL) within the channels of porous carbon (PC). The incorporation of porous carbon not only confines the IL within its framework, creating microsites for CO2 adsorption and conversion, but also simplifies catalyst recovery. The results indicate that PC@IL composites exhibit excellent cycloaddition activity towards CO2 in a co-catalyst- and solvent-free environment. Notably, PC@IL(C)-24 demonstrates remarkable catalytic performance across various epoxides under 1 bar of CO2, with yields above 90 % at 90 °C for 12 h, and achieving a remarkable styrene carbonate yield of up to 92.8 % under a CO2 pressure of 1 bar (at 100 °C for 12 h). Control experiments confirm that the confinement effect exerted by N,S co-doped carbon on cross-linked IL plays a pivotal role in enhancing both stability and activity of PC@IL composites, thereby providing novel insights for designing functionalized porous carbon catalysts for CO2 cycloaddition conversion.
Collapse
Affiliation(s)
- Lan Luo
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Yulu Qu
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Fei Liu
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| | - Chunliang Yang
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| | - Tianxiang Zhao
- Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Natongchai W, Crespy D, D'Elia V. CO 2 fixation: cycloaddition of CO 2 to epoxides using practical metal-free recyclable catalysts. Chem Commun (Camb) 2025; 61:419-440. [PMID: 39635881 DOI: 10.1039/d4cc05291a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The conversion of CO2 into valuable chemicals is a crucial field of research. Cyclic organic carbonates have attracted great interest because they can be prepared under mild conditions and because of their structural versatility which enables a large variety of applications. Therefore, there is a need for potent and yet practical catalysts for the cycloaddition of CO2 to cyclic carbonates that are able to combine availability, low cost and an adequate performance. We review here several recyclable catalytic systems that are readily available, easy to prepare, and inexpensive with an eye to the future development of more efficient practical catalysts through the provided guidelines.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Materials Science and Engineering, VISTEC Advanced Laboratory for Environment-Related Inorganic and Organic Syntheses, Vidyasirimedhi Institute of Science and Technology, (VISTEC), Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
3
|
Chen B, Zeng J, Zhang S, Zhang Y. Non-cationic hyper-crosslinked ionic polymers with hierarchically ordered porous structures: facile synthesis and applications for highly efficient CO 2 capture and conversion. Chem Sci 2024:d4sc03708a. [PMID: 39184292 PMCID: PMC11342155 DOI: 10.1039/d4sc03708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024] Open
Abstract
Hyper-crosslinked porous ionic polymers (HCPIPs) have garnered significant attention due to their unique ionic properties and high specific surface areas. However, the limited variety of monomers, low ionic density, and difficulty in functionalization restrict their development. Herein, a series of functionalized non-cationic HCPIPs with high ionic density are designed and directly synthesized via an innovative and straightforward approach - anion (and cation) hyper-crosslinking of tetraphenylborate-based ionic liquids (ILs). These HCPIPs offer controllable hydroxyl group content (0-2.40 mmol g-1), high IL content (1.20-1.78 mmol g-1), and large specific surface area (636-729 m2 g-1) with hierarchically ordered porous structures. These HCPIPs demonstrate exceptional CO2 adsorption capacities and CO2/N2 adsorption selectivities, reaching up to 2.68-3.01 mmol g-1 and 166-237, respectively, at 273 K and 1 bar. Furthermore, these ionic porous materials serve as highly efficient heterogeneous catalysts for CO2 cycloaddition to epoxides under mild conditions (1 bar CO2, 60-80 °C, 12-24 h). Notably, the CO2 adsorption performances and catalytic activities of these HCPIPs are regulated by the hydroxyl groups within their structures, with enhancements observed as the number of hydroxyl groups increases. This work presents a facile and widely applicable method for constructing high-performance and task-specific HCPIPs.
Collapse
Affiliation(s)
- Bihua Chen
- College of Materials Science and Engineering, Hunan University Changsha 410082 Hunan China
| | - Junfeng Zeng
- College of Materials Science and Engineering, Hunan University Changsha 410082 Hunan China
| | - Shiguo Zhang
- College of Materials Science and Engineering, Hunan University Changsha 410082 Hunan China
| | - Yan Zhang
- College of Materials Science and Engineering, Hunan University Changsha 410082 Hunan China
| |
Collapse
|
4
|
Liu Y, Li S, Chen Y, Hu T, Pudukudy M, Shi L, Shan S, Zhi Y. Modified melamine-based porous organic polymers with imidazolium ionic liquids as efficient heterogeneous catalysts for CO 2 cycloaddition. J Colloid Interface Sci 2023; 652:737-748. [PMID: 37500314 DOI: 10.1016/j.jcis.2023.07.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
The chemical conversion of carbon dioxide (CO2) into highly value-added products not only alleviates the environmental issues caused by global warming but also makes an impact on economic benefits in the world. The synthesis of cyclic carbonates by the cycloaddition of CO2 with epoxides is one of the most attractive methods for CO2 conversion. However, the development of green and highly efficient heterogeneous catalysts is considered to be a great challenge in catalysis. In this work, alkenyl-modified melamine-based porous organic polymer (MPOP-4A) was firstly synthesized by a one-pot polycondensation method, and it was again modified with imidazolium-based ionic liquids to obtain final modified catalyst (MPOP-4A-IL). Various analytical techniques were used to confirm structure and chemical composition of the prepared materials. The MPOP-4A-IL catalyst synthesized by the post-modification strategy with imidazolium-based ionic liquids exhibited enhanced catalytic activity for CO2 cycloaddition reaction. The enhanced catalytic performance could be attributed to the presence of abundant active sites in their structure such as hydrogen bond donors (HBD), nitrogen (N) sites, and nucleophilic groups for an effective chemical reaction. The MPOP-4A-IL catalyst was found to be metal-free, easy to recycle and reuse, and has good versatility for a series of different epoxides. The interaction of MPOP-4A-IL catalyst with epoxide and CO2 was further verified by density functional theory (DFT) calculations, and the possible mechanism of the CO2 cycloaddition reaction was proposed.
Collapse
Affiliation(s)
- Yi Liu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shuangjiang Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Ying Chen
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China; Sichuan Vocational College of Chemical Technology, Luzhou, Sichuan 646300, PR China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Manoj Pudukudy
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India
| | - Lan Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| | - Yunfei Zhi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
5
|
Xu Z, Wang W, Chen B, Zhou H, Yao Q, Shen X, Pan Y, Wu D, Cao Y, Shen Z, Liu Y, Xia Q, Li X, Zou X, Wang Y, Jiang L. In situ rapid synthesis of ionic liquid/ionic covalent organic framework composites for CO 2 fixation. Chem Commun (Camb) 2023; 59:14435-14438. [PMID: 37982192 DOI: 10.1039/d3cc04763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
IL/ICOF composites were in situ synthesized via a one-pot route in half an hour under ambient conditions for catalytic cycloaddition of CO2 with epoxides into cyclic carbonates. The prepared composites feature a decent CO2 adsorption capacity of 1.63 mmol g-1 at 273 K and 1 bar and exhibit excellent catalytic performance in terms of yield and durability. This work may pave a new way to design and construct functionalized porous organic frameworks as heterogeneous catalysts for CO2 capture and conversion.
Collapse
Affiliation(s)
- Zhifeng Xu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Wenting Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Bowei Chen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Haitao Zhou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Qiufang Yao
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 Yuexiu Road, Jiaxing 314001, China
| | - Xianjie Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Yuchen Pan
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Dongxian Wu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Yongyong Cao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Yanan Liu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, No. 5268, Renmin Street, Nanguan District, Changchun, Jilin 130024, China.
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| | - Lingchang Jiang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China.
| |
Collapse
|
6
|
Pang Y, Wang B, Gu X, Shen H, Yan X, Li Y, Chen L. Hydroxy-Rich Covalent Organic Framework for the Efficient Catalysis of the Cycloaddition of CO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16721-16730. [PMID: 37967303 DOI: 10.1021/acs.langmuir.3c01719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The cycloaddition of CO2 with epoxides to cyclic carbonates is one of the most promising and green pathways for CO2 utilization, and the development of highly efficient catalysts remains a challenge. In this work, a novel hydroxy-rich covalent organic framework (TFPB-DHBD-COF) was synthesized, and it served as an efficient heterogeneous catalyst for the reaction of CO2 with 1,2-epoxybutane under mild conditions, providing the desired products in 90% conversion. The abundant hydroxy groups in the pore channels of TFPB-DHBD-COF could not only activate epoxides and CO2 via hydrogen bonding but also obviously enhance its stability through intramolecular five-membered ring hydrogen bonding. Thus, this COF also exhibited outstanding stability and tolerance for diverse substrates. Undoubtedly, this work has enriched the application of tailored COFs in the activation and utilization of CO2.
Collapse
Affiliation(s)
- Yiying Pang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Bowei Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Xiaoyi Gu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Huawei Shen
- Shaoxing Xingxin New Materials Co., Ltd., Shaoxing 312300, Zhejiang, P. R. China
| | - Xilong Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| | - Ligong Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
- Institute of Shaoxing, Tianjin University, Zhejiang 312300, P. R. China
- Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin 300350, P. R. China
| |
Collapse
|
7
|
Deori N, Borah R, Lahkar S, Brahma S. Title: Cr(III) Incorporated Melamine‐Terephthalaldehyde Porous Organic Framework Nanosheet Catalyst for Carbon Dioxide Fixation Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Naranarayan Deori
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Rakhimoni Borah
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Surabhi Lahkar
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| | - Sanfaori Brahma
- Department of Chemistry Gauhati University Guwahati 781014 Assam India
| |
Collapse
|
8
|
Sheng T, Ou J, Zhao T, Yang X, Peng YX. Efficient fixation of CO2 into cyclic carbonate catalyzed by choline bromide/imidazole derivatives-based deep eutectic solvents. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Kessaratikoon T, Theerathanagorn T, Crespy D, D'Elia V. Organocatalytic Polymers from Affordable and Readily Available Building Blocks for the Cycloaddition of CO 2 to Epoxides. J Org Chem 2023; 88:4894-4924. [PMID: 36692489 DOI: 10.1021/acs.joc.2c02447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic cycloaddition of CO2 to epoxides to afford cyclic carbonates as useful monomers, intermediates, solvents, and additives is a continuously growing field of investigation as a way to carry out the atom-economic conversion of CO2 to value-added products. Metal-free organocatalytic compounds are attractive systems among various catalysts for such transformations because they are inexpensive, nontoxic, and readily available. Herein, we highlight and discuss key advances in the development of polymer-based organocatalytic materials that match these requirements of affordability and availability by considering their synthetic routes, the monomers, and the supports employed. The discussion is organized according to the number (monofunctional versus bifunctional materials) and type of catalytically active moieties, including both halide-based and halide-free systems. Two general synthetic approaches are identified based on the postsynthetic functionalization of polymeric supports or the copolymerization of monomers bearing catalytically active moieties. After a review of the material syntheses and catalytic activities, the chemical and structural features affecting catalytic performance are discussed. Based on such analysis, some strategies for the future design of affordable and readily available polymer-based organocatalysts with enhanced catalytic activity under mild conditions are considered.
Collapse
Affiliation(s)
- Tanika Kessaratikoon
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Tharinee Theerathanagorn
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Daniel Crespy
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| | - Valerio D'Elia
- Department of Material Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Payupnai, WangChan, Rayong 21210, Thailand
| |
Collapse
|
10
|
Huhe FNU, King J, Chuang SSC. Amine-based sorbents for CO2 capture from air and flue gas—a short review and perspective. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-022-04902-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Zheng S, Xu Q, Zeng S, Li G, Jiang H, Sun X, Zhang X. Porous Multi-site Ionic liquid Composites for Superior Selective and Reversible Adsorption of Ammonia. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
12
|
Yin M, Wang L, Tang S. Amino-Functionalized Ionic-Liquid-Grafted Covalent Organic Frameworks for High-Efficiency CO 2 Capture and Conversion. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55674-55685. [PMID: 36495275 DOI: 10.1021/acsami.2c18226] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rationally integrating desired functional components into a composite material can endow the tailored function to achieve the corresponding purpose. This is the first case where a series of [AeImBr]X%-TAPT-COFs (X = 0, 17, 33, 50, 67, 83, 100) were fabricated by chemically integrating the amino-functionalized imidazole ionic liquid (NH2-IL) onto channel walls of mesoporous covalent organic framework materials ([HO]X%-TAPT-COFs). By virtue of the polar groups (amino groups) and abundant imidazole cations of NH2-IL and its microporous nature, the obtained [AeImBr]X%-TAPT-COFs exhibit higher CO2 capture activity than [HO]X%-TAPT-COFs. Correspondingly, the CO2 equilibrium capture capacity increases from 62.6 to 117.4 mg/g, which is crucial to the storage of enough CO2 around the catalytic active sites. Additionally, the synergistic effect of -NH2 and Br- in NH2-IL can also improve the cycloaddition reaction rate. The characteristics of [AeImBr]X%-TAPT-COFs contribute to the efficient generation of cyclic carbonate through heterogeneously catalyzing CO2-epoxide cycloaddition without any solvents and cocatalysts. Specifically, [AeImBr]83%-TAPT-COF has a CO2 equilibrium capture capacity of 117.4 mg/g and cyclochloroallyl carbonate yield of 99.1%. As a result of the use of the chemical grafting method, [AeImBr]X%-TAPT-COFs possess excellent stability and cycle life. The equilibrium capture capacity and cyclochloroallyl carbonate yield reach 112.7 mg CO2/g adsorbent and 95.0% at the eighth cycle.
Collapse
Affiliation(s)
- Meilin Yin
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin300354, China
| | - Lipeng Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin300354, China
| | - Shaokun Tang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering & Technology, Tianjin University, Tianjin300354, China
| |
Collapse
|
13
|
Francis Kurisingal J, Kim H, Hyeak Choe J, Seop Hong C. Covalent organic framework-based catalysts for efficient CO2 utilization reactions. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Xiao L, Lai Y, Zhao R, Song Q, Cai J, Yin X, Zhao Y, Hou L. Ionic Conjugated Polymers as Heterogeneous Catalysts for the Cycloaddition of Carbon Dioxide to Epoxides to Form Carbonates under Solvent- and Cocatalyst-Free Conditions. Chempluschem 2022; 87:e202200324. [PMID: 36420867 DOI: 10.1002/cplu.202200324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Indexed: 01/31/2023]
Abstract
The generation of cyclic carbonates by the cycloaddition of CO2 with epoxides is attractive in the industry, by which CO2 is efficiently used as C1 source. Herein, a series of catalysts were developed to efficient mediate the cycloaddition of CO2 with epoxides to generate carbonates. The catalysts were easily synthesized via the amine-formaldehyde condensation of ethidium bromide with a variety of linkers. The newly prepared heterogeneous catalysts have high thermal stability and degradation temperatures. The surface of the catalysts is smooth and spherical in shape. The effect of temperature, pressure, reaction time and catalyst dosage on the cycloaddition of CO2 with epoxide were investigated. The results show that the catalyst with 1,3,5-tris(4-formylphenyl)benzene as the linker can achieve 97.4 % conversion efficiency at the conditions of 100 °C, reaction time of 12 h, and the reaction pressure of 1.2 MPa in a solvent-free environment. Notably, the polymers serve as homogeneous catalysts during the reaction (reaction temperature above Tg ) and can be separated and recovered easily as homogeneous catalysts at room temperature. In addition, the catalyst is not only suitable for a wide range of epoxide substrates, but also can be recycled many times. Furthermore, DFT calculations show that the coordination between the electrophilic center of the catalyst and the epoxide reduces the energy barrier, and the reaction mechanism is proposed based on the reaction kinetic studies and DFT calculations.
Collapse
Affiliation(s)
- Longqiang Xiao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Yiming Lai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Rui Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Qianyu Song
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingyu Cai
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China
| | - Xiangyu Yin
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yulai Zhao
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Linxi Hou
- Department of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China.,Qingyuan Innovation Laboratory, Quanzhou, 362801(P. R., China.,Fujian Key Laboratory of Advanced Manufacturing Technology of Specialty Chemicals, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
15
|
Yan Q, Liang H, Wang S, Hu H, Su X, Xiao S, Xu H, Jing X, Lu F, Gao Y. Immobilization of Ionic Liquid on a Covalent Organic Framework for Effectively Catalyzing Cycloaddition of CO 2 to Epoxides. Molecules 2022; 27:6204. [PMID: 36234750 PMCID: PMC9570866 DOI: 10.3390/molecules27196204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Transforming CO2 into value-added chemicals has been an important subject in recent years. The development of a novel heterogeneous catalyst for highly effective CO2 conversion still remains a great challenge. As an emerging class of porous organic polymers, covalent organic frameworks (COFs) have exhibited superior potential as catalysts for various chemical reactions, due to their unique structure and properties. In this study, a layered two-dimensional (2D) COF, IM4F-Py-COF, was prepared through a three-component condensation reaction. Benzimidazole moiety, as an ionic liquid precursor, was integrated onto the skeleton of the COF using a benzimidazole-containing building unit. Ionization of the benzimidazole framework was then achieved through quaternization with 1-bromobutane to produce an ionic liquid-immobilized COF, i.e., BMIM4F-Py-COF. The resulting ionic COF shows excellent catalytic activity in promoting the chemical fixation of CO2 via reaction with epoxides under solvent-free and co-catalyst-free conditions. High porosity, the one-dimensional (1D) open-channel structure of the COF and the high catalytic activity of ionic liquid may contribute to the excellent catalytic performance. Moreover, the COF catalyst could be reused at least five times without significant loss of its catalytic activity.
Collapse
Affiliation(s)
- Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hao Liang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Songtao Xiao
- China Institute of Atomic Energy, Beijing 102413, China
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China
| | - Xuechao Jing
- Liaocheng Luxi Polycarbonate Co., Ltd., Liaocheng 252000, China
| | - Fei Lu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
16
|
Dai Z, Chen W, Kan X, Li F, Bao Y, Zhang F, Xiong Y, Meng X, Zheng A, Xiao FS, Liu F. Stable Porous Organic Polymers Used for Reversible Adsorption and Efficient Separation of Trace SO 2. ACS Macro Lett 2022; 11:999-1007. [PMID: 35862865 DOI: 10.1021/acsmacrolett.2c00320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of porous solid adsorbents for selective adsorption and separation of SO2 has attracted much attention recently. Herein, we design porous organic polymers (POPs) decorated with pyridine ligands as building units (POP-Py) through a radical polymerization of the 2,5-divinylpyridine (v-Py) monomer. Due to its high BET surface area, nanoporosity, and excellent stability, the prepared POP-Py can be used for reversible adsorption and efficient separation of SO2. The POP-Py possesses a SO2 capacity of 10.8 mmol g-1 at 298 K and 1.0 bar, which can be well retained after 6 recycles, showing an excellent reversible adsorption capacity. The POP-Py also shows superior separation performance for SO2 from a ternary SO2/CO2/N2 mixture (0.17/15/84.83v%), giving a breakthrough time and a saturated SO2 capacity at 178 min g-1 and 0.4 mmol g-1. The retention time was well maintained even under high moisture conditions, confirming its superior water resistance. Furthermore, when other vinyl-functionalized organic ligand monomers (bipyridine, pyrimidine, and pyrazine) were employed for radical polymerization, all of the resultant porous organic ligand polymers (POP-BPy, POP-PyI, and POP-PyA) exhibited superior performance for reversible adsorption and efficient separation of SO2. The combined features of reversible adsorption, efficient separation, and water resistance are important for the industrial applications of these materials as SO2 adsorbents.
Collapse
Affiliation(s)
- Zhifeng Dai
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Longgang Institute, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Wei Chen
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, West 30 Xiaohongshan, Wuhan, Hubei 430071, People's Republic of China
| | - Xun Kan
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Fangyao Li
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, 350002, People's Republic of China
| | - Yuanfei Bao
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Longgang Institute, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Fei Zhang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Yubing Xiong
- Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Longgang Institute, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Xiangju Meng
- Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Anmin Zheng
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, APM, Chinese Academy of Sciences, West 30 Xiaohongshan, Wuhan, Hubei 430071, People's Republic of China
| | - Feng-Shou Xiao
- Key Lab of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Fujian Liu
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC-CFC), School of Chemical Engineering, Fuzhou University, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
17
|
Jiang Y, Li D, Zhao Y, Sun J. Hydrogen bond donor functionalized poly(ionic liquids)@MIL-101 for the CO2 capture and improving the catalytic CO2 conversion with epoxide. J Colloid Interface Sci 2022; 618:22-33. [DOI: 10.1016/j.jcis.2022.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022]
|
18
|
Dai Z, Long Y, Liu J, Bao Y, Zheng L, Ma J, Liu J, Zhang F, Xiong Y, Lu JQ. Functional Porous Ionic Polymers as Efficient Heterogeneous Catalysts for the Chemical Fixation of CO 2 under Mild Conditions. Polymers (Basel) 2022; 14:2658. [PMID: 35808703 PMCID: PMC9269538 DOI: 10.3390/polym14132658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 01/23/2023] Open
Abstract
The development of efficient and metal-free heterogeneous catalysts for the chemical fixation of CO2 into value-added products is still a challenge. Herein, we reported two kinds of polar group (-COOH, -OH)-functionalized porous ionic polymers (PIPs) that were constructed from the corresponding phosphonium salt monomers (v-PBC and v-PBH) using a solvothermal radical polymerization method. The resulting PIPs (POP-PBC and POP-PBH) can be used as efficient bifunctional heterogeneous catalysts in the cycloaddition reaction of CO2 with epoxides under relatively low temperature, ambient pressure, and metal-free conditions without any additives. It was found that the catalytic activities of the POP-PBC and POP-PBH were comparable with the homogeneous catalysts of Me-PBC and PBH and were higher than that of the POP-PPh3-COOH that was synthesized through a post-modification method, indicating the importance of the high concentration catalytic active sites in the heterogeneous catalysts. Reaction under low CO2 concentration conditions showed that the activity of the POP-PBC (with a conversion of 53.8% and a selectivity of 99.0%) was higher than that of the POP-PBH (with a conversion of 32.3% and a selectivity of 99.0%), verifying the promoting effect of the polar group (-COOH group) in the porous framework. The POP-PBC can also be recycled at least five times without a significant loss of catalytic activity, indicating the high stability and robustness of the PIPs-based heterogeneous catalysts.
Collapse
Affiliation(s)
- Zhifeng Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Yang Long
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jianliang Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Yuanfei Bao
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Liping Zheng
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jiacong Ma
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Jiayi Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
| | - Fei Zhang
- Institute of Advanced Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Yubing Xiong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, College of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.L.); (J.L.); (Y.B.); (L.Z.); (J.M.); (J.L.)
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Ji-Qing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
19
|
Chang T, Yan X, Li Y, Hao Y, Fu X, Liu X, Panchal B, Qin S, Zhu Z. Quaternary ammonium immobilized PAMAM as efficient catalysts for conversion of carbon dioxide. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Yang C, Chen Y, Wang X, Sun J. Polymeric ionic liquid with carboxyl anchored on mesoporous silica for efficient fixation of carbon dioxide. J Colloid Interface Sci 2022; 618:44-55. [PMID: 35325699 DOI: 10.1016/j.jcis.2022.03.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 01/19/2023]
Abstract
The utilization of carbon dioxide (CO2) has drawn much attention because of the increasing serious environmental problems. In order to promote the cycloaddition reaction of CO2 to epoxides, a new synthesis strategy for friendly nonmetal catalyst to combine polymeric ionic liquid (PIL) with mesoporous silica (mSiO2) was proposed. By thorough characterizations, those catalysts (mSiO2-PIL-n, n = 1, 2, 3, 4) were verified that PIL with multiply catalytic active sites such as carboxyl group, imidazole ring and Br-, was mainly anchored in mesoporous SiO2 structures. Therefore, mSiO2-PIL-n exhibited excellent catalytic activity for CO2 cycloaddition reaction to epoxides under solventless and cocatalyst-free conditions. Typically, the appropriate PIL loading and specific surface area guaranteed mSiO2-PIL-2 could efficiently catalyze the cycloaddition reaction with 96% yield and 99% selectivity to the target product of propylene carbonate under the conditions of 120 °C, 2 MPa and 6 h. Additionally, the mSiO2-PIL-2 catalyst showed superior recyclability and there was no catalytic activity decrease for 10 runs of recycling due to the tightly anchored PIL on mesoporous SiO2 by copolymerization. And the catalytic activity to other substituted epoxides over mSiO2-PIL-2 was also expanded. Therefore, PIL anchored on mesoporous SiO2 by copolymerization could be a promising synthetic strategy for the efficient catalyst to combine multiple active components in a single catalyst, meanwhile, mSiO2-PIL-n exhibited an appealing catalyst candidate for the effective fixation and utilization of CO2.
Collapse
Affiliation(s)
- Chaokun Yang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Yanglin Chen
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Xin Wang
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China
| | - Jianmin Sun
- State Key Laboratory of Urban Water Resource and Environment, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
21
|
Immobilization poly(ionic liquid)s into hierarchical porous covalent organic frameworks as heterogeneous catalyst for cycloaddition of CO2 with epoxides. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Zou Y, Ge Y, Zhang Q, Liu W, Li X, Cheng G, Ke H. Polyamine-functionalized imidazolyl poly(ionic liquid)s for the efficient conversion of CO2 into cyclic carbonates. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01765a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The synergistic effect of polyamine groups and nucleophile (Br−) significantly improved the catalytic performance of N4-PIL-2, which can convert epoxides into cyclic carbonates with excellent yields and selectivity under ambient pressure.
Collapse
Affiliation(s)
- Yizhen Zou
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Yuansheng Ge
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Qiang Zhang
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Wei Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Xiaoguang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), 388 Lumo Road, Wuhan 430074, China
| |
Collapse
|
23
|
Zhou T, Huang X, Ding N, Lin Z, Yao Y, Guo J. Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications. Chem Soc Rev 2021; 51:237-267. [PMID: 34877581 DOI: 10.1039/d1cs00889g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Porous organic polymers (POPs), which feature high surface areas, robust skeletons, tunable pores, adjustable functionality and versatile applicability, have constituted a designable platform to develop advanced organic materials. Endowing polyelectrolytes with the distinct characteristics of POPs will attract mounting interest as the structural diversity of polyelectrolytes will bring the new hope of intriguing applications and potential benefits. In this review, the striking progress in ionized POPs (i-POPs) has been systematically summarized with regard to their synthetic strategies and applications. In the synthesis of i-POPs, we illustrate the representative ionic building blocks and charged functional groups capable of constructing the polyelectrolyte frameworks. The synthetic methods, including direct synthesis and post-modification, are detailed for the i-POPs with amorphous or crystalline structures, respectively. Subsequently, we outline the distinctive performances of i-POPs in adsorption, separation, catalysis, sensing, ion conduction and biomedical applications. The survey concerns the interplay between the surface chemistry, ionic interaction and pore confinement that cooperatively promote the performance of i-POPs. Finally, we conclude with the remaining challenges and promising opportunities for the on-going development of i-POPs.
Collapse
Affiliation(s)
- Ting Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Xingye Huang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ning Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Zheng Lin
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Ying Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.
| |
Collapse
|
24
|
Gou H, Ma X, Su Q, Liu L, Ying T, Qian W, Dong L, Cheng W. Hydrogen bond donor functionalized poly(ionic liquid)s for efficient synergistic conversion of CO 2 to cyclic carbonates. Phys Chem Chem Phys 2021; 23:2005-2014. [PMID: 33443524 DOI: 10.1039/d0cp06041k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of metal-free, high effective and recyclable catalysts plays a pivotal role in transforming CO2 into high value-added products such as cyclic carbonates. In this paper, we introduced the hydrogen bond donor (HBD) groups into poly(ionic liquid)s via free radical polymerization, which successfully combined the HBD and ionic liquids (ILs) into one heterogeneous catalyst. The HBD could synergistically activate epoxides with hydroxyl functionalized ionic liquids and efficiently catalyze the cycloaddition of CO2 into cyclic carbonates. The yield of propylene carbonate (PC) reached 94% (at 105 °C, 2 MPa CO2, 3 h), which far exceeded poly(ionic liquid)s without HBDs functionalization (PC yield 72%), and even approached bulk ionic liquids (PC yield 95%). Moreover, HBD-functionalized poly(ionic liquid)s (HPILs) exhibited excellent recyclability after five runs and afforded wide substrate scope. According to the experimental results, 1H NMR spectra and density functional theory (DFT) calculations showed 2-hydroxyethyl methacrylate (HEMA) and the hydroxyl of ILs would form strong H-bonds with epoxides contributing to the ring-opening process of epoxides, and a possible HBD and nucleophilic anion synergistically catalytic mechanism was proposed. The method herein paved a brand new way for green technology and utilization of poly(ionic liquid)s.
Collapse
Affiliation(s)
- Haibin Gou
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Liu R, Tan KT, Gong Y, Chen Y, Li Z, Xie S, He T, Lu Z, Yang H, Jiang D. Covalent organic frameworks: an ideal platform for designing ordered materials and advanced applications. Chem Soc Rev 2021; 50:120-242. [DOI: 10.1039/d0cs00620c] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covalent organic frameworks offer a molecular platform for integrating organic units into periodically ordered yet extended 2D and 3D polymers to create topologically well-defined polygonal lattices and built-in discrete micropores and/or mesopores.
Collapse
|
26
|
Jamil R, Tomé LC, Mecerreyes D, Silvester DS. Emerging Ionic Polymers for CO2 Conversion to Cyclic Carbonates: An Overview of Recent Developments. Aust J Chem 2021. [DOI: 10.1071/ch21182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this mini review, we highlight some key work from the last 2 years where ionic polymers have been used as a catalyst to convert CO2 into cyclic carbonates. Emerging ionic polymers reported for this catalytic application include materials such as poly(ionic liquid)s (PILs), ionic porous organic polymers (iPOPs) or ionic covalent organic frameworks (iCOFs) among others. All these organic materials share in common the ionic moiety cations such as imidazolium, pyridinium, viologen, ammonium, phosphonium, and guanidinium, and anions such as halides, [BF4]–, [PF6]–, and [Tf2N]–. The mechanistic aspects and efficiency of the CO2 conversion reaction and the polymer design including functional groups and porosity are discussed in detail. This review should provide valuable information for researchers to design new polymers for important catalysis applications.
Collapse
|
27
|
Morozova SM, Lozinskaya EI, Sardon H, Suárez-García F, Vlasov PS, Vaudemont R, Vygodskii YS, Shaplov AS. Ionic Polyureas-A Novel Subclass of Poly(Ionic Liquid)s for CO 2 Capture. MEMBRANES 2020; 10:E240. [PMID: 32961905 PMCID: PMC7558175 DOI: 10.3390/membranes10090240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 01/31/2023]
Abstract
The growing concern for climate change and global warming has given rise to investigations in various research fields, including one particular area dedicated to the creation of solid sorbents for efficient CO2 capture. In this work, a new family of poly(ionic liquid)s (PILs) comprising cationic polyureas (PURs) with tetrafluoroborate (BF4) anions has been synthesized. Condensation of various diisocyanates with novel ionic diamines and subsequent ion metathesis reaction resulted in high molar mass ionic PURs (Mw = 12 ÷ 173 × 103 g/mol) with high thermal stability (up to 260 °C), glass transition temperatures in the range of 153-286 °C and remarkable CO2 capture (10.5-24.8 mg/g at 0 °C and 1 bar). The CO2 sorption was found to be dependent on the nature of the cation and structure of the diisocyanate. The highest sorption was demonstrated by tetrafluoroborate PUR based on 4,4'-methylene-bis(cyclohexyl isocyanate) diisocyanate and aromatic diamine bearing quinuclidinium cation (24.8 mg/g at 0 °C and 1 bar). It is hoped that the present study will inspire novel design strategies for improving the sorption properties of PILs and the creation of novel effective CO2 sorbents.
Collapse
Affiliation(s)
- Sofia M. Morozova
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russia; (S.M.M.); (E.I.L.); (Y.S.V.)
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova str. 9, 191002 St. Petersburg, Russia
| | - Elena I. Lozinskaya
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russia; (S.M.M.); (E.I.L.); (Y.S.V.)
| | - Haritz Sardon
- POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Fabian Suárez-García
- Instituto de Ciencia y Tecnología del Carbono, INCAR-CSIC, Francisco Pintado Fe 26, 33011 Oviedo, Spain;
| | - Petr S. Vlasov
- Department of Macromolecular Chemistry, Saint-Petersburg State University, Universitetsky pr. 26, 198504 Saint-Petersburg, Russia;
| | - Régis Vaudemont
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Yakov S. Vygodskii
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov Str. 28, 119991 Moscow, Russia; (S.M.M.); (E.I.L.); (Y.S.V.)
| | - Alexander S. Shaplov
- Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| |
Collapse
|
28
|
He H, Zhu Q, Zhang W, Zhang H, Chen J, Li C, Du M. Metal and Co‐Catalyst Free CO
2
Conversion with a Bifunctional Covalent Organic Framework (COF). ChemCatChem 2020. [DOI: 10.1002/cctc.202000949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hongming He
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Qian‐Qian Zhu
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Wen‐Wen Zhang
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Han‐Wen Zhang
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Jing Chen
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Cheng‐Peng Li
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
| | - Miao Du
- College of Chemistry Tianjin Key Laboratory of Structure and Performance for Functional Molecules Tianjin Normal University Tianjin 300387 P. R. China
- College of Material and Chemical Engineering Zhengzhou University of Light Industry Zhengzhou 450001 P. R. China
| |
Collapse
|
29
|
|
30
|
Influence of ionic liquids microenvironment on the coupling reaction of epoxide and carbon dioxide: DFT and MD. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Lai S, Gao J, Zhang H, Cheng L, Xiong X. Luffa sponge supported dendritic imidazolium ILs with high-density active sites as highly efficient and environmentally friendly catalysts for CO2 chemical fixation. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Xiong X, Zhang H, Lai SL, Gao J, Gao L. Lignin modified by deep eutectic solvents as green, reusable, and bio-based catalysts for efficient chemical fixation of CO2. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
33
|
Ball B, Chakravarty C, Sarkar P. Silicon and Phosphorus Co-doped Bipyridine-Linked Covalent Triazine Framework as a Promising Metal-Free Catalyst for Hydrogen Evolution Reaction: A Theoretical Investigation. J Phys Chem Lett 2020; 11:1542-1549. [PMID: 32020806 DOI: 10.1021/acs.jpclett.9b03876] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrocatalytic water spliting is the most attractive route for hydrogen production, but the development of nonprecious, stable, and high-performance catalysts for hydrogen evolution reaction (HER) to replace the scarce platinum group metal-based electrocatalysts is still a challenging task for the scientific community. In this work, within the framework of density functional theory computations, we have predicted that a silicon and phosphorus co-doped bipyridine-linked covalent triazine framework, followed by substitution of bipyridine hydrogens at the P-site with fluorine atoms, may be a potential catalyst for HER. Our predicted model system (SiPF-Bpy-CTF) exhibits a very low band gap (7 meV), which may exhibit facile charge transfer kinetics during HER. Using the Gibbs free energy for the adsorption of atomic hydrogen ([Formula: see text]) as the key descriptor, we have found that our proposed model system (SiPF-Bpy-CTF) exhibits superior HER catalytic activity, with its [Formula: see text] being close to the ideal value (0 eV).
Collapse
Affiliation(s)
- Biswajit Ball
- Department of Chemistry , Visva-Bharati University , Santiniketan 731 235 , India
| | | | - Pranab Sarkar
- Department of Chemistry , Visva-Bharati University , Santiniketan 731 235 , India
| |
Collapse
|
34
|
Zhang W, Ma F, Ma L, Zhou Y, Wang J. Imidazolium-Functionalized Ionic Hypercrosslinked Porous Polymers for Efficient Synthesis of Cyclic Carbonates from Simulated Flue Gas. CHEMSUSCHEM 2020; 13:341-350. [PMID: 31709710 DOI: 10.1002/cssc.201902952] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Indexed: 06/10/2023]
Abstract
The rapid growth of CO2 emissions, especially from power plants, has led to the urgent need to directly capture and fix CO2 in the flue gas after simple purification rather than energy-intensive gas separation. Herein, imidazolium-functionalized ionic hypercrosslinked porous polymers (HCPs) bearing adjustable surface groups were straightforwardly synthesized through co-hypercrosslinking of benzylimidazole salts and crosslinker through Friedel-Crafts alkylation. Abundant microporosity and relatively high ionic moieties were obtainable in the ethyl-group-tethered ionic HCP, giving a remarkably selective CO2 capture performance with a CO2 uptake of 3.05 mmol g-1 and an ideal adsorbed solution theory (IAST) CO2 /N2 selectivity as high as 363 (273 K, 1 bar). This ionic polymer demonstrated high efficiency in the synthesis of cyclic carbonates from the coupling of various epoxides with the simulated flue gas (15 % CO2 and 85 % N2 ), giving high yields, large turnover numbers (up to 4800), and stable reusability under additive- and solvent-free conditions.
Collapse
Affiliation(s)
- Wenli Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Fangpei Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Long Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, P. R. China
| |
Collapse
|
35
|
Li J, Han Y, Lin H, Wu N, Li Q, Jiang J, Zhu J. Cobalt-Salen-Based Porous Ionic Polymer: The Role of Valence on Cooperative Conversion of CO 2 to Cyclic Carbonate. ACS APPLIED MATERIALS & INTERFACES 2020; 12:609-618. [PMID: 31799826 DOI: 10.1021/acsami.9b16913] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cobalt-salen-based porous ionic polymers, which are composed of cobalt and halogen anions decorated on the framework, effectively catalyze the CO2 cycloaddition reaction of epoxides to cyclic carbonates under ambient conditions. The cooperative effect of bifunctional active sites of cobalt as the Lewis acidic site and the halogen anion as the nucleophile responds to the high catalytic performance. Moreover, density functional theory results indicate that the cobalt valence state and the corresponding coordination group influence the rate-determining step of the CO2 cycloaddition reaction and the nucleophilicity of halogen anions.
Collapse
Affiliation(s)
- Jing Li
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yulan Han
- School of Chemistry and Materials Science , University of Science and Technology of China , Hefei 230026 , China
| | - Han Lin
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Nanhua Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), College of Chemical Engineering , Nanjing Tech University , Nanjing 211816 , China
- Energy Engineering, Division of Energy Science , Luleå University of Technology , Luleå 97187 , Sweden
| | - Qinkun Li
- School of Chemistry and Materials Science , University of Science and Technology of China , Hefei 230026 , China
| | - Jun Jiang
- School of Chemistry and Materials Science , University of Science and Technology of China , Hefei 230026 , China
| | - Jiahua Zhu
- Intelligent Composites Laboratory, Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
36
|
A Stable Zn-Based Metal–Organic Framework as an Efficient Catalyst for Carbon Dioxide Cycloaddition and Alcoholysis at Mild Conditions. Catal Letters 2019. [DOI: 10.1007/s10562-019-03053-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
37
|
Zhang L, Li K, Gu Z, Zhu X, Wei Y, Li L, Tian M, Wang H. Iron-rich copper ore as a promising oxygen carrier for chemical looping combustion of methane. J Taiwan Inst Chem Eng 2019. [DOI: 10.1016/j.jtice.2019.04.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
38
|
Ge Y, Cheng G, Xu N, Wang W, Ke H. Zinc 2-N-methyl N-confused porphyrin: an efficient catalyst for the conversion of CO2 into cyclic carbonates. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00739c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A zinc 2-N-methyl N-confused porphyrin (Zn(NCP)Cl) catalyst was developed for the solvent-free synthesis of cyclic carbonates from epoxides and CO2.
Collapse
Affiliation(s)
- Yuansheng Ge
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| | - Guoe Cheng
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| | - Nanfeng Xu
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| | - Weizhou Wang
- College of Chemistry and Chemical Engineering
- and Henan Key Laboratory of Function-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471934
- People's Republic of China
| | - Hanzhong Ke
- Faculty of Materials Science and Chemistry
- China University of Geosciences (Wuhan)
- Wuhan 430074
- People's Republic of China
| |
Collapse
|