1
|
Jiang H, Wang J, Liang Y, Qiao C. Construction of Photothermal Intelligent Membranes for Point-of-Use Water Treatment. Molecules 2024; 29:5733. [PMID: 39683891 DOI: 10.3390/molecules29235733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
For the removal of waterborne pathogens in remote areas and disaster emergency situations, point-source water treatment methods are more suitable. Photothermal sterilization is ideal for point-of-use (POU) systems, as it effectively eliminates pathogens without secondary pollution or bacterial resistance issues. By combining photothermal with membrane treatment, these membranes rapidly heat up under near-infrared (NIR) light, enabling both bacterial retention and sterilization. However, the decrease in membrane flux due to pore clogging during water treatment can significantly impact membrane efficiency. And adjusting the membrane pore size can significantly enhance flux recovery during cleaning, thereby restoring membrane efficiency. By synthesis multifunctional membranes that combine bacteria retention, sterilization, and flux recovery, it can meet the requirements of point-source water treatment: compact size, high efficiency, good safety, and easy maintenance. In this study, we developed an intelligent thermally responsive membrane (NIPAN@CNTs/PAN) by incorporating carbon nanotubes (CNTs) and forming a copolymer of N-isopropylacrylamide and polyacrylonitrile (NIPAN) coating into polyacrylonitrile membranes, offering dual functions of photothermal sterilization and self-cleaning. With 3% CNTs, the membrane achieves 100% sterilization within 6 min of NIR exposure, while the NIPAN layer's added roughness boosts photothermal efficiency, achieving 100% sterilization within 4 min. Rinsing at 50 °C improved flux recovery from 50% to 87% and reduced irreversible fouling from 49.7% to 12.9%, demonstrating stable performance over multiple cycles and highlighting its potential for long-term use in practical POU applications.
Collapse
Affiliation(s)
- Hong Jiang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture & Environmental Engineering, Sichuan University, Chengdu 610065, China
| | - Jiarong Wang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture & Environmental Engineering, Sichuan University, Chengdu 610065, China
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture & Environmental Engineering, Sichuan University, Chengdu 610065, China
| | - Chuan Qiao
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture & Environmental Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
He X, Wu Z, Lu J, Liu J, Li B, Liu X, Tao W, Li Z. A Sunlight-Driven Self-Cleaning CuCo-MOF Composite Membrane for Highly Efficient Emulsion Separation and Water Purification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402589. [PMID: 38881318 DOI: 10.1002/smll.202402589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 06/18/2024]
Abstract
The fouling phenomenon of membranes has hindered the rapid development of separation technology in wastewater treatment. The integration of materials into membranes with both excellent separation performance and self-cleaning properties still pose challenges. Here, a self-assembled composite membrane with solar-driven self-cleaning performance is reported for the treatment of complex oil-water emulsions. The mechanical robustness of the composite membrane is enhanced by the electrostatic attraction between chitosan and metal-organic frameworks (MOF) CuCo-HHTP as well as the crosslinking effect of glutaraldehyde. Molecular dynamics (MD) simulations also revealed the hydrogen bonding interaction between chitosan and CuCo-HHTP. The composite membrane of CuCo-HHTP-5@CS/MPVDF exhibits a high flux ranging from 700.6 to 2350.6 L∙m-2∙h-1∙bar-1 and excellent separation efficiency (>99.0%) for various oil-water emulsions, including crude oil, kerosene, and other light oils. The addition of CuCo-HHTP shows remarkable photothermal effects, thus demonstrating excellent solar-driven self-cleaning capability and antibacterial performance (with an efficiency of ≈100%). Furthermore, CuCo-HHTP-5@CS/MPVDF can activate peroxomonosulfate (PMS) under sunlight, quickly removing oil-fouling and dyes. Density functional theory (DFT) calculations indicate that the bimetallic sites of Cu and Co in CuCo-HHTP effectively promoted the activation of PMS. This study provides distinctive insights into the multifaceted applications of MOFs-derived photothermal anti-fouling composite membranes.
Collapse
Affiliation(s)
- Xuanting He
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zixuan Wu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jihan Lu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jiaxiang Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Boyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaohui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Wenquan Tao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Zhuo Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| |
Collapse
|
3
|
Yang X, Tang J, Song Z, Li W, Gong X, Liu W. Enhancing the anti-biofouling property of solar evaporator through the synergistic antibacterial effect of lignin and nano silver. Int J Biol Macromol 2024; 268:131953. [PMID: 38685536 DOI: 10.1016/j.ijbiomac.2024.131953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Solar desalination is an effective solution to address the global water scarcity issue. However, biofouling poses a significant challenge for solar evaporators due to the presence of bacteria in seawater. In this study, an anti-biofouling evaporator was constructed using the synergistic antibacterial effect of lignin and silver nanoparticles (AgNPs). The AgNPs were easily synthesized using lignin as reductant under mild reaction conditions. Subsequently, the Lignin-AgNPs solution was integrated into polyacrylamide hydrogel (PAAm) without any purification steps, resulting in the formation of Lignin/AgNPs-PAAm (LAg-PAAm). Under the combined action of AgNPs and the hydroquinone groups present in oxidized lignin, LAg-PAAm achieved over 99 % disinfection efficiency within 1 h, effectively preventing biofilm formation in pore channels of solar evaporators. The anti-biofouling solar evaporator demonstrated an evaporation rate of 1.85 kg m-2 h-1 under 1 sun irradiation, and maintained stable performance for >30 days due to its high efficient bactericidal effect. Furthermore, it also exhibited exceptional salt-rejection capability attributed to its superior hydrophilicity.
Collapse
Affiliation(s)
- Xiaoqin Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Jiebin Tang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Institute for Advanced Interdisciplinary Research (iAIR), School of Chemitry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Zhaoping Song
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou 350108, China.
| | - Wei Li
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xi Gong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology (Ministry of Education), Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
4
|
Yu N, Hu H, Xia W, Zhao Z, Cheng H. Iron diselenide/carbon black loaded mushroom-shaped evaporator for efficiently continuous solar-driven desalination. J Colloid Interface Sci 2024; 658:238-246. [PMID: 38104406 DOI: 10.1016/j.jcis.2023.12.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Solar-driven desalination is an environmentally sustainable method to alleviate the problems of freshwater scarcity and the energy crisis. However, how to improve the synergy between the photothermal material and the evaporator to achieve high photothermal conversion efficiency simultaneously, excellent thermal management system and good salt resistance remains a challenge. Here, a mushroom-shaped solar evaporation device is designed and fabricated with iron diselenide/carbon black (FeSe2/CB) coated cellulose acetate (CA) film as mushroom surface and cotton swab as mushroom handle, which presented high solar-driven evaporation and excellent salt resistance. Thanks to the unique photothermal effect and the synergistic effect, the FeSe2/CB composites enabled a promising photothermal conversion efficiency of up to 65.8 °C after 180 s. The mushroom-shaped evaporation device effectively overcomes water transport and steam spillage channel blockage caused by salt crystallization through its unique vertical transport water channels and conical air-water interface. When exposed to real sunlight, the solar evaporation rate of the steam generation structure reached as high as 2.03 kg m-2 h-1, which is more than 13 times higher than natural evaporation. This study offered new insights into the higher solar-driven evaporation rate and salt-blocking resistance of the FeSe2/CB mushroom-shaped solar evaporation device for solar-powered water production.
Collapse
Affiliation(s)
- Ningning Yu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Hao Hu
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Wanting Xia
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhipeng Zhao
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Haoyan Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
5
|
Qin Z, Yin S, She P, Kong L, Yang X, Sun H. Cotton Cloth@ Polydimethylsiloxane -Graphene Flakes- Titanium Dioxide Composite Membrane for Wastewater Purification. J Colloid Interface Sci 2024; 654:1251-1259. [PMID: 37907004 DOI: 10.1016/j.jcis.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023]
Abstract
Interfacial solar steam generation (ISSG) has been regarded as a simple and highly-efficient method for wastewater purification. Herein, we prepared a superhydrophobic composite membrane, in which polydimethylsiloxane employed as binders to pack graphite flakes and titanium dioxide tightly onto cotton cloth (defined as cotton cloth@PDMS-C-P25). Benefiting from its powerful photothermal effects, cotton cloth@PDMS-C-P25 exhibited high evaporation flux of 1.86 kg m-2 h-1 and 1.73 kg m-2 h-1 for pure water and seawater, respectively. Meanwhile, the prepared composite membrane fulfilled the targets of sewage purification set by its photocatalytic properties, which demonstrated a degradation rate of 66.1 % for Rhodamine B (RhB), and antibacterial efficiency of over 99.99 % for Escherichia coli (E. coli). Furthermore, cotton cloth@PDMS-C-P25 surface was endowed with superhydrophobic and low-adhesion characteristics mainly owing to the synergy of multiscale structure and low surface energy matter, which contribute to the anti-adhesion effect of 97.9 % for E. coli at a high concentration of 107 colony forming units (CFUs). In this work, the cost-effective, environmentally friendly, long-term stable, and superhydrophobic solar-absorber holds a potential prospect for wastewater treatment and desalination in a typical pollution-induced water shortage area.
Collapse
Affiliation(s)
- Zhen Qin
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, Jilin 130012, China
| | - Ping She
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, PR China
| | - Liang Kong
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Xiangyu Yang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China
| | - Hang Sun
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin 130022, China.
| |
Collapse
|
6
|
Zheng NC, Chien HW. UV-crosslinking of chitosan/spent coffee ground composites for enhanced durability and multifunctionality. Int J Biol Macromol 2024; 255:128215. [PMID: 37992943 DOI: 10.1016/j.ijbiomac.2023.128215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/24/2023]
Abstract
Spent coffee grounds (SCGs) have numerous applications and are often blended with polymers to create composites. However, SCGs are physically trapped within the polymer matrix, lacking strong chemical bonding. Therefore, this study has developed a new method for UV crosslinking composites using phenyl azide to address the issue of SCG leakage and limited durability of the composites. The main approach involves grafting phenyl azide onto chitosan, which is then combined with SCGs. When exposed to UV light, the SCGs become covalently linked to the chitosan chains. This method not only resolves the problem of chitosan's porous material fragility but also prevents SCG detachment, surpassing the performance of glutaraldehyde-crosslinked composites. Regarding applications, CS/SCG composites exhibit rapid heating and photothermal stability, making them suitable for use as thermal pads in evaporative water purification, enabling for the collection of pure water from contaminated sources. Furthermore, SCGs have the ability to adsorb metal ions, significantly enhancing the Cu2+ adsorption capacity of CS/SCG composites compared to pure CS, with an increase of more than twofold. This research not only presents a practical solution for stabilizing fillers within polymer matrices but also demonstrates the reusability of SCGs.
Collapse
Affiliation(s)
- Nai-Ci Zheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan
| | - Hsiu-Wen Chien
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan; Photo-Sensitive Material Advanced Research and Technology Center (Photo-SMART Center), National Kaohsiung University of Science and Technology, Kaohsiung 80778, Taiwan.
| |
Collapse
|
7
|
Guan X, Kumar P, Li Z, Tran TKA, Chahal S, Lei Z, Huang C, Lin C, Huang J, Hu L, Chang Y, Wang L, Britto JSJ, Panneerselvan L, Chu D, Wu T, Karakoti A, Yi J, Vinu A. Borophene Embedded Cellulose Paper for Enhanced Photothermal Water Evaporation and Prompt Bacterial Killing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205809. [PMID: 36698305 PMCID: PMC9982542 DOI: 10.1002/advs.202205809] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/19/2022] [Indexed: 05/10/2023]
Abstract
Solar-driven photothermal water evaporation is considered an elegant and sustainable technology for freshwater production. The existing systems, however, often suffer from poor stability and biofouling issues, which severely hamper their prospects in practical applications. Conventionally, photothermal materials are deposited on the membrane supports via vacuum-assisted filtration or dip-coating methods. Nevertheless, the weak inherent material-membrane interactions frequently lead to poor durability, and the photothermal material layer can be easily peeled off from the hosting substrates or partially dissolved when immersed in water. In the present article, the discovery of the incorporation of borophene into cellulose nanofibers (CNF), enabling excellent environmental stability with a high light-to-heat conversion efficiency of 91.5% and water evaporation rate of 1.45 kg m-2 h-1 under simulated sunlight is reported. It is also demonstrated that borophene papers can be employed as an excellent active photothermal material for eliminating almost 100% of both gram-positive and gram-negative bacteria within 20 min under three sun irradiations. The result opens a new direction for the design of borophene-based papers with unique photothermal properties which can be used for the effective treatment of a wide range of wastewaters.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
- Department of PhysicsIndian Institute of Technology PatnaBihta CampusPatna801106India
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Thi Kim Anh Tran
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Sumit Chahal
- Department of PhysicsIndian Institute of Technology PatnaBihta CampusPatna801106India
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Chien‐Yu Huang
- School of Materials Science and EngineeringUniversity of New South Wales (UNSW)SydneyNSW2052Australia
| | - Chun‐Ho Lin
- School of Materials Science and EngineeringUniversity of New South Wales (UNSW)SydneyNSW2052Australia
| | - Jing‐Kai Huang
- School of Materials Science and EngineeringUniversity of New South Wales (UNSW)SydneyNSW2052Australia
| | - Long Hu
- School of Materials Science and EngineeringUniversity of New South Wales (UNSW)SydneyNSW2052Australia
| | - Yuan‐Chih Chang
- School of Photovoltaic and Renewable Engineeringthe University of New South WalesSydneyNSW2052Australia
| | - Li Wang
- School of Photovoltaic and Renewable Engineeringthe University of New South WalesSydneyNSW2052Australia
| | - Jolitta S. J. Britto
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Logeshwaran Panneerselvan
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Dewei Chu
- School of Materials Science and EngineeringUniversity of New South Wales (UNSW)SydneyNSW2052Australia
| | - Tom Wu
- School of Materials Science and EngineeringUniversity of New South Wales (UNSW)SydneyNSW2052Australia
- Department of Applied PhysicsThe Hong Kong Polytechnic UniversityHung HomHong Kong999077China
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials (GICAN)College of Engineering, Science and Environment (CESE)The University of NewcastleCallaghanNSW2308Australia
| |
Collapse
|
8
|
Liang Y, Zhao Y, Sun H, Dan J, Kang Y, Zhang Q, Su Z, Ni Y, Shi S, Wang J, Zhang W. Natural melanin nanoparticle-based photothermal film for edible antibacterial food packaging. Food Chem 2023; 401:134117. [DOI: 10.1016/j.foodchem.2022.134117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 08/17/2022] [Accepted: 09/01/2022] [Indexed: 10/14/2022]
|
9
|
Wang Y, Jia L, Hu T, Yang Z, Yang C, Lin H, Zhang F, Yu K, Qu F, Guo W. Hollow Nanooxidase Enhanced Phototherapy Against Solid Tumors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56597-56612. [PMID: 36512413 DOI: 10.1021/acsami.2c17862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although phototherapy has attracted extensive attention in antitumor field in recent years, its therapeutic effect is usually unsatisfactory because of the complexity and variability of the tumor microenvironment (TME). Herein, we report novel CoSn(OH)6@CoOOH hollow carriers with oxidase properties that can enhance phototherapy. Hollow CoSn(OH)6@CoOOH nanocubes (NCs) with a particle size of ∼160 nm were synthesized via a two-step process of coprecipitation and etching. These NCs can react with O2 to generate singlet oxygen without hydrogen peroxide and consume glutathione, and their hollow structure can be utilized to carry drug molecules. After loading indocyanine green (ICG) and 1,2-bis(2-(4,5-dihydro-1H-imidazol-2-yl)propan-2-yl) diazene dihydrochloride (AIPH), the resulting nanosystem (HCIA) exhibited enhanced phototherapy effects through the catalytic activity of oxidase, production of alkyl radicals, and consumption of glutathione. Cell and mouse experiments showed that HCIA combined with near-infrared laser irradiation significantly inhibited the growth of 4T1 tumors. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that PI3K-Akt and MAPK signaling pathways were highly relevant to this therapeutic system. Such hollow NCs with oxidase activity have considerable potential for the design of multifunctional drug delivery vehicles for tumor therapy.
Collapse
Affiliation(s)
- Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Lu Jia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Tingting Hu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zhuoran Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| |
Collapse
|
10
|
Wang J, Chen S, Zeng Q, Jiang H, Chang H, Zhang TC, Tian X, Li Y, Liang Y, Wang K. Polydopamine/UiO-66-NH2 Induced Photothermal Antibacterial Electrospun Membrane for Efficient Point-of-Use Drinking Water Treatment. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Xu J, Zhao Y, Chen Y, Chen Y, Xie ZH, Munroe PR. A Superhydrophilic, Light/Microwave-Absorbing Coating with Remarkable Antibacterial Efficacy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42468-42482. [PMID: 36070517 DOI: 10.1021/acsami.2c11642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Driven by the overuse of antibiotics, pathogenic infections, dominated by the rapid emergence of antibiotic resistant bacteria, have become one of the greatest current global health challenges. Thus, there is an urgent need to explore novel strategies that integrate multiple antibacterial modes to deal with bacterial infections. In this work, a Co(Ni,Ag)/Fe(Al,Cr)2O4 composite duplex coating was fabricated using template-free sputtering deposition technology. The phase constitution of the coating was estimated to be 79 wt % Fe(Al,Cr)2O4 phase and 21 wt % of an Ag-containing metallic phase. The composite coating consisted of a ∼10 μm-thick porous outer-layer and a ∼6 μm-thick compact inner-layer, in which the outer-layer is composed of a densely stacked array of microscale cones. After exposure to ambient air for 14 days, the composite coating showed a wettability transition from a superhydrophilic nature to exhibit adhesive superhydrophobic behavior with a water contact angle of 142° ± 2.8°, but it reverted to its initial superhydrophilic state after annealing in air at 200 °C for 5 h. The absorption rate of the as-received composite coating exceeds 99% in a broad band spanning both the visible and NIR regions and showed a high photothermal efficiency to convert photon energy into heat. Similarly, the composite coating showed microwave absorption behavior with a minimum reflection loss value of 38 dB at 4.4 GHz. In vitro antibacterial tests were used to determine the antibacterial behavior of the composite coating against Escherichia coli and Staphylococcus aureus after 60 min of visible light irradiation. After this exposure, the as-prepared composite coating exhibited nearly 100% bactericidal efficiency against these bacteria. The antibacterial behavior of the coating was attributed to the synergistic effects of the superhydrophilic surface, the release of Ag+ ions, and the photothermal effect. Therefore, this composite coating may be a promising candidate to efficiently combat medical device-associated infections.
Collapse
Affiliation(s)
- Jiang Xu
- Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, PR China
| | - Yanjie Zhao
- Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, PR China
| | - Yuhao Chen
- Department of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, 29 Yudao Street, Nanjing 210016, PR China
| | - Yujie Chen
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Zong-Han Xie
- School of Mechanical Engineering, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul R Munroe
- School of Materials Science and Engineering, University of New South Wales, Kensington, New South Wales 2052, Australia
| |
Collapse
|
12
|
Co0.9Co0.1S Nanorods with an Internal Electric Field and Photothermal Effect Synergistically for Boosting Photocatalytic H2 Evolution. Int J Mol Sci 2022; 23:ijms23179756. [PMID: 36077154 PMCID: PMC9456290 DOI: 10.3390/ijms23179756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
The paper reports a strategy to synthesize Cd0.9Co0.1S nanorods (NRs) via a one-pot solvothermal method. Remarkably, the pencil-shaped Cd0.9Co0.1S NRs with a large aspect ratio and good polycrystalline plane structure significantly shorten the photogenerated carrier transfer path and achieve fast separation. An appropriate amount of Co addition enhances visible light-harvesting and generates a photothermal effect to improve the surface reaction kinetics and increases the charge transfer rate. Moreover, the internal electric field facilitates the separation and transfer of carriers and effectively impedes their recombination. As a result, the optimized Cd0.9Co0.1S NRs yield a remarkable H2 evolution rate of 8.009 mmol·g−1·h−1, which is approximately 7.2 times higher than that of pristine CdS. This work improves the photocatalytic hydrogen production rate by tuning and optimizing electronic structures through element addition and using the photothermal synergistic effect.
Collapse
|
13
|
Wang Q, Qiu W, Li M, Li N, Li X, Qin X, Wang X, Yu J, Li F, Huang L, Wu D. Mussel-inspired multifunctional hydrogel dressing with hemostasis, hypoglycemic, photothermal antibacterial properties on diabetic wounds. Biomater Sci 2022; 10:4796-4814. [PMID: 35852356 DOI: 10.1039/d2bm00433j] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To meticulously establish an efficient photothermal multifunctional hydrogel dressing is a prospective strategy for the treatment of diabetic chronic wounds. Herein, glucose oxidase (GOx) was added to polydopamine/acrylamide (PDA/AM) hydrogels to reduce hyperglycemia to a normal level (3.9-6.1 mmol L-1) and enhance compressive properties (55 kPa) and adhesive properties (32.69 kPa), which are capable of hemostasis in the wound. Then, MnO2 nanoparticles were encapsulated into a polydopamine/acrylamide (PDA/AM) hydrogel, endowing it with excellent antibacterial properties (E. coli and S. aureus were 97.87% and 99.99%) under the irradiation of 808 nm NIR; meanwhile, the biofilm was eliminated completely. Besides, O2 was generated (18 mg mL-1) by the decomposition of H2O2 under the catalysis of MnO2, which could accelerate the formation of angiogenesis and promote the crawling and proliferation of cells. Furthermore, the diabetic wound in vivo treated with the PDA/AM/GOx/MnO2 hydrogel had a less inflammatory response and faster healing speed, which was completely healed in 14 days. Therefore, the multifunctional hydrogels with the capability of high compressible, hemostasis, antibacterial, hyperglycemia manipulation, and O2 generation, demonstrate promise in diabetic chronic wound dressing.
Collapse
Affiliation(s)
- Qian Wang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Weiwang Qiu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Mengna Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Na Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Xiaohong Qin
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China.
| | - Xueli Wang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Faxue Li
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Liqian Huang
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Dequn Wu
- Key Laboratory of Textile Science and Technology, Ministry of Education; College of Textiles, Donghua University, Shanghai, 201620, China. .,Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| |
Collapse
|
14
|
Du T, Cao J, Xiao Z, Liu J, Wei L, Li C, Jiao J, Song Z, Liu J, Du X, Wang S. Van-mediated self-aggregating photothermal agents combined with multifunctional magnetic nickel oxide nanoparticles for precise elimination of bacterial infections. J Nanobiotechnology 2022; 20:325. [PMID: 35836225 PMCID: PMC9281033 DOI: 10.1186/s12951-022-01535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 06/24/2022] [Indexed: 11/23/2022] Open
Abstract
Building a novel and efficient photothermal antibacterial nanoplatform is a promising strategy for precise bacterial elimination. Herein, a nanocomposite NiO NPs@AuNPs@Van (NAV) for selective MRSA removal was constructed by electrostatic self-assembly of highly photothermal magnetic NiO NPs and vancomycin (Van)-modified gold nanoparticles (AuNPs). In the presence of MRSA and under NIR irradiation, Van-mediated AuNPs can self-aggregate on MRSA surface, generating photothermal effect in situ and killing 99.6% MRSA in conjunction with magnetic NiO NPs. Additionally, the photothermal efficiency can be improved by magnetic enrichment due to the excellent magnetism of NAV, thereby enhancing the bactericidal effect at a lower experimental dose. In vitro antibacterial experiments and full-thickness skin wound healing test demonstrated that this combination therapy could effectively accelerate wound healing in MRSA-infected mice, increase collagen coverage, reduce IL-6 and TNF-α content, and upregulate VEGF expression. Biological safety experiments confirmed that NAV has good biocompatibility in vivo and in vitro. Overall, this work reveals a new type of nanocomposite with enhanced photothermal antibacterial activity as a potential nano-antibacterial agent for treating bacteria-infected wounds.
Collapse
Affiliation(s)
- Ting Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiangli Cao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zehui Xiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jiaqi Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Lifei Wei
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Chunqiao Li
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Jingbo Jiao
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Zhiyong Song
- College of Sicence, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Xinjun Du
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and EngineeringCollege of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin, 300071, People's Republic of China.
| |
Collapse
|
15
|
Wu Y, Huang H, Zhou W, You C, Ye H, Chen J, Zang S, Yun J, Chen X, Wang L, Yuan Z. High-Porosity Lamellar Films Prepared by a Multistage Assembly Strategy for Efficient Photothermal Water Evaporation and Power Generation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29099-29110. [PMID: 35713882 DOI: 10.1021/acsami.2c05125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The frame structure combined with water- and heat-transfer capabilities fully satisfies the requirements of photothermal conversion materials in seawater evaporation applications. Meanwhile, it must integrate the characteristics of a high photothermal conversion rate, thermal management, and water transportation. Herein, lamellar porous films were successfully designed and synthesized by a simple ultrasonic-assisted vacuum filtration method. In this process, polystyrene sulfonate@carbon nanotubes/reduced graphene oxide (PSS@CNT/rGO) lamellar films were constructed by the one-dimensional synthesis of PSS@CNT self-assembled at the molecular scale and the two-dimensional matrix material rGO. It is worth noting that the lamellar film exhibits a high specific surface area (285.5 m2·g-1), which is reflected in its abundant nanopores. Among them, the porous network system composed of nanochannels can provide efficient water supply and steam-transfer ability and strengthen the heat insulation performance of thermal localization, which is beneficial to photothermal evaporation. The obtained PSS@CNT/rGO lamellar films achieved a condensed water yield of 1.825 kg·m-2·h-1 under 1 sun illumination (1 kW·m-2), and their solar-vapor conversion efficiency was 97.1%. Simultaneously, the interaction between the water flow and the carbon material interface was also used to generate additional electric energy output. The maximum open-circuit voltage of 0.46 V was generated at both termini of the PSS@CNT/rGO lamellar film, which successfully realized the multieffect utilization of energy. These results show that the multistage assembly strategy is a facile and effective means for the development of an efficient evaporation photothermal film, which offers significant value in the field of photothermal seawater evaporation and power generation.
Collapse
Affiliation(s)
- Yiting Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hongqiang Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Weiming Zhou
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chuanting You
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huilan Ye
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jia Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuo Zang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juhua Yun
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinqi Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liwei Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Zhanhui Yuan
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Liao Y, Li Y, Zhao R, Zhang J, Zhao L, Ji L, Zhang Z, Liu X, Qin G, Zhang X. High-entropy-alloy nanoparticles with 21 ultra-mixed elements for efficient photothermal conversion. Natl Sci Rev 2022; 9:nwac041. [PMID: 35677225 PMCID: PMC9170356 DOI: 10.1093/nsr/nwac041] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Multi-metallic nanoparticles have been proven to be an efficient photothermal conversion material, for which the optical absorption can be broadened through the interband transitions (IBTs), but it remains a challenge due to the strong immiscibility among the repelling combinations. Here, assisted by an extremely high evaporation temperature, ultra-fast cooling and vapor-pressure strategy, the arc-discharged plasma method was employed to synthesize ultra-mixed multi-metallic nanoparticles composed of 21 elements (FeCoNiCrYTiVCuAlNbMoTaWZnCdPbBiAgInMnSn), in which the strongly repelling combinations were uniformly distributed. Due to the reinforced lattice distortion effect and excellent IBTs, the nanoparticles can realize an average absorption of >92% in the entire solar spectrum (250 to 2500 nm). In particular, the 21-element nanoparticles achieve a considerably high solar steam efficiency of nearly 99% under one solar irradiation, with a water evaporation rate of 2.42 kg m-2 h-1, demonstrating a highly efficient photothermal conversion performance. The present approach creates a new strategy for uniformly mixing multi-metallic elements for exploring their unknown properties and various applications.
Collapse
Affiliation(s)
- Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Jian Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Lizhong Zhao
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xiaolian Liu
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310012, China
| |
Collapse
|
17
|
Li Q, Ji L, Jiang B, Li X, Lv Z, Xie J, Chen S, Xu K, Yang Y, Zhao S. Pillararene-functionalized rhodium nanoparticles for efficient catalytic reduction and photothermal sterilization. Chem Commun (Camb) 2022; 58:13079-13082. [DOI: 10.1039/d2cc05642a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pillar[5]arene-functionalized rhodium nanoparticles are prepared for catalytic reduction of toxic nitrophenols and azo dyes and efficient photothermal sterilization.
Collapse
Affiliation(s)
- Qinglan Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Li Ji
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Beibei Jiang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xiangguang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Zhaoji Lv
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jinpo Xie
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Siping Chen
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Kailin Xu
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yingwei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
18
|
Wang X, Yang D, An X, Qian X. Phytic Acid Doped Polypyrrole as a Mediating Layer Promoting Growth of Prussian Blue on Cotton Fibers for Solar-Driven Interfacial Water Evaporation. Polymers (Basel) 2021; 14:6. [PMID: 35012029 PMCID: PMC8747231 DOI: 10.3390/polym14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Phytic acid doped polypyrrole (PPy) as a mediating layer was in-situ coated on cotton fibers (CFs) to promote the growth of Prussian blue (PB) and construct the PB/PPy@CFs composite. The results showed that the proper amounts of PA doped PPy in-situ generated significantly promoted the growth of PB on CFs, the PB deposition ratio increased from 12.29% (PB@CFs) to 32.4% (PB/PPy@CFs), and the growth of PB on PPy@CFs could be completed in 4 h. Scanning electron microscopy (SEM) showed that the PB particles with perfect nano cubic structure were formed in the composite. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) showed that both PB and PPy were successfully deposited on CFs. The PB/PPy@CFs composite had excellent light absorption, hydrophilicity, wettability, and photothermal property, and the surface could be heated up to 81.5 °C under one sun illumination. The PB/PPy@CFs composite as a photothermal conversion material was used for solar-driven interfacial water evaporation, the water evaporation rate was 1.36 kg·m-2·h-1 at the optical concentration of 1 kW·m2, and the corresponding photothermal conversion efficiency increased from 81.69% (PB@CFs) to 90.96% (PB/PPy@CFs).
Collapse
Affiliation(s)
| | | | | | - Xueren Qian
- Key Laboratory of Bio-Based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; (X.W.); (D.Y.); (X.A.)
| |
Collapse
|
19
|
Li Y, Liao Y, Zhang J, Huang E, Ji L, Zhang Z, Zhao R, Zhang Z, Yang B, Zhang Y, Xu B, Qin G, Zhang X. High‐Entropy‐Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Jian Zhang
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Enhui Huang
- School of Science China Pharmaceutical University Nanjing 211198 P. R. China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| | - Zhimin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Yanhui Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Bo Xu
- School of Science China Pharmaceutical University Nanjing 211198 P. R. China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE) School of Materials Science and Engineering Northeastern University Shenyang 110819 P. R. China
- Institute of Advanced Magnetic Materials College of Materials and Environmental Engineering Hangzhou Dianzi University Hangzhou 310012 P. R. China
| |
Collapse
|
20
|
Li Y, Liao Y, Zhang J, Huang E, Ji L, Zhang Z, Zhao R, Zhang Z, Yang B, Zhang Y, Xu B, Qin G, Zhang X. High-Entropy-Alloy Nanoparticles with Enhanced Interband Transitions for Efficient Photothermal Conversion. Angew Chem Int Ed Engl 2021; 60:27113-27118. [PMID: 34605601 DOI: 10.1002/anie.202112520] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/08/2022]
Abstract
Photothermal materials with broadband optical absorption and high conversion efficiency are intensively pursued to date. Here, proposing by the d-d interband transitions, we report an unprecedented high-entropy alloy FeCoNiTiVCrCu nanoparticles that the energy regions below and above the Fermi level (±4 eV) have been fully filled by the 3d transition metals, which realizes an average absorbance greater than 96 % in the entire solar spectrum (wavelength of 250 to 2500 nm). Furthermore, we also calculated the photothermal conversion efficiency and the evaporation rate towards the steam generation. Due to its pronounced full light capture and ultrafast local heating, our high-entropy-alloy nanoparticle-based solar steam generator has over 98 % efficiency under one sun irradiation, meanwhile enabling a high evaporation rate of 2.26 kg m-2 h-1 .
Collapse
Affiliation(s)
- Yixing Li
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yijun Liao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Jian Zhang
- Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Enhui Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lianze Ji
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhengyu Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Rongzhi Zhao
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| | - Zhimin Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Yanhui Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Bo Xu
- School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Gaowu Qin
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China
| | - Xuefeng Zhang
- Key Laboratory for Anisotropy and Texture of Materials (MOE), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, P. R. China.,Institute of Advanced Magnetic Materials, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, 310012, P. R. China
| |
Collapse
|
21
|
Yolk-like non-stoichiometric nickel sulfide-based Janus hydrogel photothermal film for enhanced solar-driven water evaporation and multi-media purification. J Colloid Interface Sci 2021; 607:1446-1456. [PMID: 34583047 DOI: 10.1016/j.jcis.2021.09.074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
Solar-driven interface water evaporation is a promising strategy for desalination and wastewater treatment. However, it remains a huge challenge to simultaneously achieve a high light-to-heat conversion efficiency (η) and multi-media evaporation applications. In this study, a highly efficient Janus hydrogel photothermal film was developed using yolk-like non-stoichiometric nickel sulfide (NiS2-x) microspheres and agar hydrogel. The NiS2-x immobilized in the agar hydrogel has full-spectrum absorption characteristics at 200-2500 nm, which can perform efficient light-to-heat conversion and regulate water transport channels. Additionally, the pure agar in the bottom can transport water effectively and avoid heat loss. By the pouring method, the Janus hydrogel film can be easily prepared into various shapes; hence, it can be adjusted depending on the environment in which it is used. The optimized Janus hydrogel film (Janus hydrogel-1) possessed good hydrophilicity and showed an excellent solar evaporation rate of 1.45 kg m-2h-1, and a high η of 97% under one-sun irradiation. Theoretical simulation results showed that the outstanding water evaporation performance of Janus hydrogel-1 was mainly due to its relatively free water transport channels. Janus hydrogel-1 can be used for water evaporation applications in various media, including seawater, heavy metal ion/organic wastewater, and domestic sewage. Our work highlights the great potential of Janus hydrogel-1 for realizing a highly effective solar energy-driven interface water evaporation and multi-media purification.
Collapse
|
22
|
Wu Q, Su W, Li Q, Tao Y, Li H. Enabling Continuous and Improved Solar-Driven Atmospheric Water Harvesting with Ti 3C 2-Incorporated Metal-Organic Framework Monoliths. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38906-38915. [PMID: 34351132 DOI: 10.1021/acsami.1c10536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solar-powered atmospheric water harvest (SAWH) with metal-organic frameworks (MOFs) represents one of the most sustainable, energy-efficient, and low-cost ways to alleviate water shortage stress in arid regions. However, the daily water productivity of previously developed SAWH devices remains low as they are merely allowed to be operated in batch mode and complete one water harvest cycle every day. This inevitably makes it rather challenging to deploy MOF-based SAWH for water production at scales. To overcome this challenge, MXene Ti3C2-incorporated UiO-66-NH2 (TUN) cylindrical monoliths (13 mm diameter, 4 mm thickness) with vertically aligned porous networks have been prepared and exhibited greatly enhanced solar heating capacity and atmospheric water adsorption/desorption kinetics. Using TUN monoliths as atmospheric water adsorbents, a novel SAWH device containing a flippable adsorbent stage with dual TUN monolith layers attached on both sides has been fabricated. Such a novel design enables the prototype to produce water in a continuous mode under sunlight irradiation, delivering 57.8 mLH2O kgMOF-1 h-1 of water productivity in a simulated indoor arid environment (20% relative humidity, 298 K). This is the first exploration in continuous water production with MOF-based SAWH, demonstrating a promising way to achieve scalable and low-cost SAWH in arid areas.
Collapse
Affiliation(s)
- Qiannan Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Wen Su
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Qiangqiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yingle Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haiqing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
23
|
Wang Y, Zhao L, Zhang F, Yu K, Yang C, Jia J, Guo W, Zhao J, Qu F. Synthesis of a Co-Sn Alloy-Deposited PTFE Film for Enhanced Solar-Driven Water Evaporation via a Super-Absorbent Polymer-Based "Water Pump" Design. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26879-26890. [PMID: 34075755 DOI: 10.1021/acsami.1c02586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-driven water evaporation is a promising solution to water pollution, the energy crisis, and water shortages. However, the approach in which the photothermal film is in direct contact with bulk water for water evaporation may lead to a large amount of heat loss, thereby reducing the light-to-heat conversion efficiency (η) of the photothermal film. Here, a highly efficient solar-driven water evaporation system was developed using a Co-Sn alloy-deposited Teflon (PTFE) film (Co-Sn alloy@PTFE) and super-absorbent polymers (SAPs) supported with a floating foam substrate. The Co-Sn alloy with full-spectrum (200-2500 nm) absorption characteristics is devoted to high light-to-heat conversion, while the porous PTFE with high mechanical performance can support the Co-Sn alloy. We used density functional theory to prove that the Co-Sn alloy had a strong adhesive force with PTFE without surfactants due to the high adsorption energy between the (101) crystal plane of the Co-Sn alloy and the hydroxyl group on the PTFE film. Importantly, via the SAP-based "water pump" design, we improved the η of the Co-Sn alloy@PTFE film to 89%, mainly because the SAP not only effectively performed water transportation but also markedly reduced the heat loss of the Co-Sn alloy@PTFE film. Our work highlights the strong potential of Co-Sn alloy@PTFE-based light-to-heat conversion systems for realizing highly effective solar energy-driven water evaporation.
Collapse
Affiliation(s)
- Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Jingjing Jia
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Jingxiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| |
Collapse
|
24
|
Zhao L, Yang Q, Guo W, Zhang F, Yu K, Yang C, Qu F. Non-stoichiometric cobalt sulfide nanodots enhance photothermal and chemodynamic therapies against solid tumor. J Colloid Interface Sci 2021; 600:390-402. [PMID: 34023700 DOI: 10.1016/j.jcis.2021.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/18/2021] [Accepted: 05/10/2021] [Indexed: 01/15/2023]
Abstract
Photodynamic therapy (PDT) mainly relies on reactive oxygen species generated by light- activated photosensitizers and oxygen to kill tumor cells. However, a critical limitation of the current PDT is that it is less effective in solid tumors where the microenvironment is hypoxic, and, therefore, repeated treatment is required. Here, non-stoichiometric Co2.19S4 nanodots (NDs), which can be rapidly degraded to cobalt (Co2+) and sulfur (S2-) ions, were developed to enhance tumor photothermal therapy (PTT) and chemodynamic therapy (CDT) via the capture of copper (Cu2+) ions (starvation therapy) in the hypoxic tumor microenvironment under near-infrared irradiation. Co2.19S4 NDs with excellent photothermal conversion efficiency (ɳ = 52%) can be used for PTT, and the Co2+ ions produced by their degradation can catalyze the endogenous hydrogen peroxide of tumor cells to produce highly toxic hydroxyl radicals to achieve tumor CDT. The mechanism of starvation therapy was explored using western blotting, and the results indicated that blocking the uptake of Cu2+ ions could restrain the growth and proliferation of tumors by inhibiting the BRAF/mitogen-activated extracellular signal regulated kinase (MEK)/extracellular regulated protein kinases (ERK) signaling pathway. Our work highlights the great potential of Co2.19S4 NDs as a theranostic agent for implementing photoacoustic/photothermal imaging and starvation therapy-enhanced PTT/CDT.
Collapse
Affiliation(s)
- Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Qingzhu Yang
- College of Life Science and Agriculture Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China; Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Kai Yu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Chunyu Yang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, China.
| |
Collapse
|
25
|
Tang Y, Qin Z, Yin S, Sun H. Transition metal oxide and chalcogenide-based nanomaterials for antibacterial activities: an overview. NANOSCALE 2021; 13:6373-6388. [PMID: 33885521 DOI: 10.1039/d1nr00664a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new battle line is drawn where antibiotic misuse and mismanagement have made treatment of bacterial infection a thorny issue. It is highly desirable to develop active antibacterial materials for bacterial control and destruction without drug resistance. A large amount of effort has been devoted to transition metal oxide and chalcogenide (TMO&C) nanomaterials as possible candidates owing to their unconventional physiochemical, electronic and optical properties and feasibility of functional architecture assembly. This review expounds multiple TMO&C-based strategies to combat pathogens, opening up new possibilities for the design of simple, yet highly effective systems that are crucial for antimicrobial treatment. A special emphasis is placed on the multiple mechanisms of these nanoagents, including mechanical rupture, photocatalytic/photothermal activity, Fenton-type reaction, nanozyme-assisted effect, released metal ions and the synergistic action of TMO&C in combination with other antibacterial agents. The applications of TMO&C nanomaterials mostly in air/water purification and wound healing along with their bactericidal activities and mechanisms are also described. Finally, the contemporary challenges and trends in the development of TMO&C-based antibacterial strategies are proposed.
Collapse
Affiliation(s)
- Yanan Tang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin Province 130022, PR China.
| | | | | | | |
Collapse
|
26
|
Liu H, Yang C, Guo W, Zhang F, Lin H, Zhao L, Ma T, Lu X, Qu F. CoWO 4-x -Based Photothermal Membranes for Solar-Driven Water Evaporation and Eutrophic Lake Water Purification. ACS OMEGA 2020; 5:31598-31607. [PMID: 33344812 PMCID: PMC7745215 DOI: 10.1021/acsomega.0c03887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Solar-driven water evaporation has been proven to be a promising and efficient method for the energy crisis and clean water shortage issues. Herein, we strategically design and fabricate a novel nonstoichiometric CoWO4-x -deposited foam nickel (NF) membrane (CoWO4-x @NF) that possesses all the desirable optical, thermal, and wetting properties for efficient water evaporation and purification. The broadband absorption of CoWO4-x nanoparticles (NPs) obtained by hydrogen reduction contributes to light-to-heat conversion, while NF with a three-dimensional porous structure can support CoWO4-x NPs and ensure the rapid flow of water molecules during the water evaporation process. We systematically explore and compare the outdoor water evaporation performance of the pure water group, NF group, and CoWO4-x @NF group, and the results show that CoWO4-x @NF performs well under natural sunlight irradiation (water evaporation: 2.91 kg m-2). Significantly, under solar irradiation, the remarkable reduction of Cyanophyta and Euglenophyta in lake water is achieved in the CoWO4-x @NF membrane-administered group, and these two algae are the main factors for eutrophication of the lake water. Our work highlights the great potentials of the CoWO4-x @NF membrane as a device for realizing outdoor solar energy-driven water evaporation and proposes a new strategy for purifying the eutrophication of the lake water.
Collapse
Affiliation(s)
- Haixia Liu
- Key
Laboratory of Photochemical Biomaterials and Energy Storage Materials,
Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Chunyu Yang
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150025, China
| | - Wei Guo
- Key
Laboratory of Photochemical Biomaterials and Energy Storage Materials,
Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Zhang
- Key
Laboratory of Photochemical Biomaterials and Energy Storage Materials,
Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key
Laboratory of Photochemical Biomaterials and Energy Storage Materials,
Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Le Zhao
- Key
Laboratory of Photochemical Biomaterials and Energy Storage Materials,
Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Tianyue Ma
- Key
Laboratory of Photochemical Biomaterials and Energy Storage Materials,
Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Xinxin Lu
- College
of Life Science and Technology, Harbin Normal
University, Harbin, Heilongjiang Province 150025, China
| | - Fengyu Qu
- Key
Laboratory of Photochemical Biomaterials and Energy Storage Materials,
Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
27
|
Li Z, Wang C. Novel advances in metal-based solar absorber for photothermal vapor generation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.09.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Xiong ZC, Zhu YJ, Qin DD, Yang RL. Flexible Salt-Rejecting Photothermal Paper Based on Reduced Graphene Oxide and Hydroxyapatite Nanowires for High-Efficiency Solar Energy-Driven Vapor Generation and Stable Desalination. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32556-32565. [PMID: 32648729 DOI: 10.1021/acsami.0c05986] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vapor generation using solar energy is emerging as an efficient technology for wastewater purification and seawater desalination to relieve global water crisis. However, salt deposition on the evaporation surface seriously impairs the long-term steady water evaporation performance. Herein, the flexible salt-rejecting photothermal paper comprising reduced graphene oxide (rGO) and ultralong hydroxyapatite nanowires (HNs) has been developed for high-performance solar energy-driven water evaporation and stable desalination of seawater. The rGO/HN photothermal paper has advantages such as the hierarchical porous structure, interconnected channels, high mechanical strength, high efficiencies of solar light absorption and photothermal conversion, fast water transportation, and good heat insulation and salt-rejecting properties. Furthermore, the hydrophilicity and hydrophobicity of the rGO/HN photothermal paper can be adjusted by regulating the thermal treatment time. The water evaporation rate and energy efficiency of the hydrophilic rGO/HN photothermal paper are 1.48 kg m-2 h-1 and 89.2%, respectively, under 1 sun illumination (1 kW m-2). The hydrophobic rGO/HN photothermal paper shows a long-time stable water evaporation and salt-rejecting performance in the process of seawater desalination. The flexible salt-rejecting rGO/HN photothermal paper can produce clean water from wastewater and seawater with high rejection rates of organic dyes, metal ions, and salt ions, and it is promising for applications in water purification and seawater desalination.
Collapse
Affiliation(s)
- Zhi-Chao Xiong
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ying-Jie Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dong-Dong Qin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ri-Long Yang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
29
|
Ma T, Yang C, Guo W, Lin H, Zhang F, Liu H, Zhao L, Zhang Y, Wang Y, Cui Y, Zhao J, Qu F. Flexible Pt 3Ni-S-Deposited Teflon Membrane with High Surface Mechanical Properties for Efficient Solar-Driven Strong Acidic/Alkaline Water Evaporation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:27140-27149. [PMID: 32452665 DOI: 10.1021/acsami.0c04682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Solar-driven water evaporation provides a promising solution to the energy crisis and environmental issues. Capitalizing on the high photothermal conversion efficiency and excellent resistance to strong acids or strong alkalis of Pt3Ni-S nanowires, we strategically design and prepare a flexible Pt3Ni-S-deposited Teflon (PTFE) membrane for achieving efficient strong acid/alkaline water evaporation under simulated sunlight irradiation (1 sun). By comparing the surface morphology, mechanical properties, and water evaporation performance of the as-prepared three different membranes, we have screened out a high-performance photothermal membrane that has good hydrophobicity (water contact angle = 106°), strong mechanical properties, high light-to-heat conversion efficiency (η = 80%), and excellent durability (10 cycles in a range of pH = 1.2-12). In particular, we explore the mechanism of high surface mechanical properties of the as-prepared membrane using density functional theory. The results demonstrate that the related mechanism can be ascribed to two main reasons: (1) hydrogen bonds can be formed between the 2-pyrrolidone ring and PTFE-3 and (2) the O atom in PTFE-3 carries more negative charge (-0.19 |e|) than PTFE-1 (-0.16 |e|) and PTFE-2 (-0.15 |e|). Our work highlights the great potentials of a Pt3Ni-S-deposited PTFE membrane as a device for implementing solar energy-driven evaporation of industrial wastewater with strong acidity or alkalinity and provides a new strategy for improving the surface mechanical properties of a photothermal membrane.
Collapse
Affiliation(s)
- Tianyue Ma
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Chunyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wei Guo
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Huiming Lin
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Haixia Liu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Le Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ye Zhang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yuzhu Wang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Yitong Cui
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Jingxiang Zhao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Fengyu Qu
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province and College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
30
|
Yu K, Shao P, Meng P, Chen T, Lei J, Yu X, He R, Yang F, Zhu W, Duan T. Superhydrophilic and highly elastic monolithic sponge for efficient solar-driven radioactive wastewater treatment under one sun. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122350. [PMID: 32109799 DOI: 10.1016/j.jhazmat.2020.122350] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
As an effective way to obtain solar energy and separate the soluble contaminants from water, solar-driven interfacial evaporation is used in desalination, wastewater treatment, electricity generation, and domestic water heating system. Herein, we demonstrate a monolithic sponge with three-dimensional porous structure as the solar-energy evaporator, which is composed of hydrophilic polymer (Konjac Glucomannan, KGM) and solar absorbent (reduced graphene oxide, rGO). Under one sun irradiation, the sponge achieves a rapid evaporation rate (1.60 kg m-2 h-1) and high interfacial water evaporation efficiency (92 %) due to its good absorption, photothermal, thermal insulation, and fast water transport properties. Meanwhile, the concentrations of radioactive elements (strontium, cesium, and uranium) in wastewater dropped from grams to micrograms after purification, even under radiation and acidic conditions. Additionally, the durability and repeatability of the sponge also have been verified. The results showed that solar-driven interfacial evaporation can effectively treat radioactive wastewater and enrich various radionuclides in a more energy-saving manner.
Collapse
Affiliation(s)
- Kaifu Yu
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Pengfei Shao
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Pengwei Meng
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Chen
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jia Lei
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Xiaofang Yu
- Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621900, China
| | - Rong He
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Fan Yang
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenkun Zhu
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Tao Duan
- Nuclear Waste and Environmental Safety Key Laboratory of Defense, State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Sichuan Civil-military Integration Institute, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China.
| |
Collapse
|