1
|
Khodadadi Yazdi M, Manohar A, Olejnik A, Smułka A, Kramek A, Pierpaoli M, Saeb MR, Bogdanowicz R, Ryl J. Elucidating charge transfer process and enhancing electrochemical performance of laser-induced graphene via surface engineering with sustainable hydrogel membranes: An electrochemist's perspective. Talanta 2025; 281:126836. [PMID: 39260256 DOI: 10.1016/j.talanta.2024.126836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/21/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Laser-induced graphene (LIG) has emerged as a promising solvent-free strategy for producing highly porous, 3D graphene structures, particularly for electrochemical applications. However, the unique character of LIG and hydrogel membrane (HM) coated LIG requires accounting for the specific conditions of its charge transfer process. This study investigates electron transfer kinetics and the electroactive surface area of LIG electrodes, finding efficient kinetics for the [Fe(CN)6]3-/4- redox process, with a high rate constant of 4.89 x 10-3 cm/s. The impact of polysaccharide HM coatings (cationic chitosan, neutral agarose and anionic sodium alginate) on LIG's charge transfer behavior is elucidated, considering factors like ohmic drop across porous LIG and Coulombic interactions/permeability affecting diffusion coefficient (D), estimated from amperometry.It was found that D of redox species is lower for HM-coated LIGs, and is the lowest for chitosan HM. Chitosan coating results in increased capacitive share in the total current while does not apparently reduce Faradaic current. Experimental findings are supported by ab-initio calculations showing an electrostatic potential map's negative charge distribution upon chitosan chain protonation, having an effect in over a two-fold redox current increase upon switching the pH from 7.48 to 1.73. This feature is absent for other studied HMs. It was also revealed that the chitosan's band gap was reduced to 3.07 eV upon acetylation, due to the introduction of a new LUMO state. This study summarizes the operating conditions enhanced by HM presence, impacting redox process kinetics and presenting unique challenges for prospective LIG/HM systems' electrochemical applications.
Collapse
Affiliation(s)
- Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| | - Aiswarya Manohar
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Adrian Olejnik
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Agata Smułka
- Department of Analytical Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Agnieszka Kramek
- Faculty of Mechanics and Technology, Rzeszów University of Technology, Kwiatkowskiego 4, 37-450, Stalowa Wola, Poland
| | - Mattia Pierpaoli
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Hallera 107, 80-416, Gdańsk, Poland
| | - Robert Bogdanowicz
- Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Department of Metrology and Optoelectronics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, 80-233, Gdańsk, Poland.
| |
Collapse
|
2
|
Zong B, Wu S, Yang Y, Li Q, Tao T, Mao S. Smart Gas Sensors: Recent Developments and Future Prospective. NANO-MICRO LETTERS 2024; 17:54. [PMID: 39489808 PMCID: PMC11532330 DOI: 10.1007/s40820-024-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Gas sensor is an indispensable part of modern society with wide applications in environmental monitoring, healthcare, food industry, public safety, etc. With the development of sensor technology, wireless communication, smart monitoring terminal, cloud storage/computing technology, and artificial intelligence, smart gas sensors represent the future of gas sensing due to their merits of real-time multifunctional monitoring, early warning function, and intelligent and automated feature. Various electronic and optoelectronic gas sensors have been developed for high-performance smart gas analysis. With the development of smart terminals and the maturity of integrated technology, flexible and wearable gas sensors play an increasing role in gas analysis. This review highlights recent advances of smart gas sensors in diverse applications. The structural components and fundamental principles of electronic and optoelectronic gas sensors are described, and flexible and wearable gas sensor devices are highlighted. Moreover, sensor array with artificial intelligence algorithms and smart gas sensors in "Internet of Things" paradigm are introduced. Finally, the challenges and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
Collapse
Affiliation(s)
- Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yuehong Yang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Tao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
3
|
Xu K, Cai Z, Luo H, Lu Y, Ding C, Yang G, Wang L, Kuang C, Liu J, Yang H. Toward Integrated Multifunctional Laser-Induced Graphene-Based Skin-Like Flexible Sensor Systems. ACS NANO 2024; 18:26435-26476. [PMID: 39288275 DOI: 10.1021/acsnano.4c09062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The burgeoning demands for health care and human-machine interfaces call for the next generation of multifunctional integrated sensor systems with facile fabrication processes and reliable performances. Laser-induced graphene (LIG) with highly tunable physical and chemical characteristics plays vital roles in developing versatile skin-like flexible or stretchable sensor systems. This Progress Report presents an in-depth overview of the latest advances in LIG-based techniques in the applications of flexible sensors. First, the merits of the LIG technique are highlighted especially as the building blocks for flexible sensors, followed by the description of various fabrication methods of LIG and its variants. Then, the focus is moved to diverse LIG-based flexible sensors, including physical sensors, chemical sensors, and electrophysiological sensors. Mechanisms and advantages of LIG in these scenarios are described in detail. Furthermore, various representative paradigms of integrated LIG-based sensor systems are presented to show the capabilities of LIG technique for multipurpose applications. The signal cross-talk issues are discussed with possible strategies. The LIG technology with versatile functionalities coupled with other fabrication strategies will enable high-performance integrated sensor systems for next-generation skin electronics.
Collapse
Affiliation(s)
- Kaichen Xu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zimo Cai
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Huayu Luo
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yuyao Lu
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Chenliang Ding
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Geng Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Lili Wang
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, P. R. China
| | - Cuifang Kuang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Huayong Yang
- State Key Laboratory of Fluid Power & Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
4
|
Selvan T M, Haridas C P A, Karmakar S, Patra TK, Mondal T. Hysteresis-Free Temperature Sensing with Printable Electronic Skins Made of Liquid Polyisoprene/CNTs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48176-48186. [PMID: 39186766 DOI: 10.1021/acsami.4c06263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Developing an electronic skin (e-skin) is becoming popular due to its capability to mimic human skin's ability to detect various stimuli. Mostly, such skins are tactile-based sensors. However, the exploration of nontactile-based sensing capability in the e-skin is still in a nascent stage. Herein, we report an approach toward developing electrical hysteresis- and cross-interference-free nontactile e-skin using liquid polyisoprene with an ultralow concentration of multiwalled carbon nanotubes (ϕ = 0.006 volume fraction) by leveraging the stencil printing technique. The impact of cross-linking the samples was studied. Uncross-linked samples demonstrated higher electrical conductivity than the cross-linked samples. A coarse-grained phenomenological model with molecular dynamics simulation was utilized to investigate filler network formation and percolation that dictate the conductivity of uncross-linked and cross-linked samples. Simulation studies supported the fidelity of the experimental findings. The uncross-linked e-skin demonstrated a higher temperature sensitivity (-1.103%/°C) than the cross-linked e-skin (-0.320%/°C) in the thermal conduction mode. Despite the superior sensitivity of the uncross-linked e-skin, the cross-linked systems demonstrated superior cyclic stability (35 thermal cycles), ensuring reliable sensor readings over extended usage. Judicious choice of encapsulant warranted the cross-linked e-skin sensor to nullify the impact of moisture on signal output, thereby providing cross-interference-free results. The optimized e-skin sample retained a similar thermal sensitivity even when used in the nontactile mode. From the application purview, the utility of the developed sensor was tested successfully for nontactile sensing of human body temperature. Additionally, the sensor was utilized to determine the respiratory profile by integrating the developed sensor into a wearable mask. This study advances nontactile e-skin-based sensing technology and opens new avenues for creating wearable and IoT devices for healthcare and human-machine interactions.
Collapse
Affiliation(s)
- Muthamil Selvan T
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ajay Haridas C P
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sayani Karmakar
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Tarak K Patra
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
6
|
Thakur AK, Sengodu P, Jadhav AH, Malmali M. Manganese Carbonate/Laser-Induced Graphene Composite for Glucose Sensing. ACS OMEGA 2024; 9:7869-7880. [PMID: 38405531 PMCID: PMC10882677 DOI: 10.1021/acsomega.3c07642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 02/27/2024]
Abstract
Laser-induced graphene (LIG) has received great interest as a potential candidate for electronic and sensing applications. In the present study, we report the enhanced performance of a manganese carbonate-decorated LIG (MnCO3/LIG) composite electrode material employed for electrochemical glucose detection. Initially, the porous LIG was fabricated by directly lasing poly(ether sulfone) membrane substrate. Then, the MnCO3/LIG composite was synthesized via a hydrothermal method. Later, MnCO3/LIG was immobilized onto a glassy carbon electrode surface and employed for glucose detection. The structure of the MnCO3/LIG composite was carefully characterized. The influence of the MnCO3/LIG composite on the performance of the electrode was investigated using cyclic voltammetry curves. The MnCO3/LIG composite exhibited an excellent sensitivity of 2731.2 μA mM-1 cm-2, and a limit of detection of 2.2 μM was obtained for the detection of glucose. Overall, the performance of the MnCO3/LIG composite was found to be superior to that of most of the MnCO3-based composites.
Collapse
Affiliation(s)
- Amit K. Thakur
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Prakash Sengodu
- Department
of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Arvind H. Jadhav
- Centre
for Nano and Material Science (CNMS), Jain
University, Bangalore 562112, India
| | - Mahdi Malmali
- Department
of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
7
|
Kwak D, Kim H, Jang S, Kim BG, Cho D, Chang H, Lee JO. Investigation of Laser-Induced Graphene (LIG) on a Flexible Substrate and Its Functionalization by Metal Doping for Gas-Sensing Applications. Int J Mol Sci 2024; 25:1172. [PMID: 38256244 PMCID: PMC10816167 DOI: 10.3390/ijms25021172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Graphene materials synthesized using direct laser writing (laser-induced graphene; LIG) make favorable sensor materials because of their large surface area, ease of fabrication, and cost-effectiveness. In particular, LIG decorated with metal nanoparticles (NPs) has been used in various sensors, including chemical sensors and electronic and electrochemical biosensors. However, the effect of metal decoration on LIG sensors remains controversial; hypotheses based on computational simulations do not always match the experimental results, and even the experimental results reported by different researchers have not been consistent. In the present study, we explored the effects of metal decorations on LIG gas sensors, with NO2 and NH3 gases as the representative oxidizing and reducing agents, respectively. To eliminate the unwanted side effects arising from metal salt residues, metal NPs were directly deposited via vacuum evaporation. Although the gas sensitivities of the sensors deteriorate upon metal decoration irrespective of the metal work function, in the case of NO2 gas, they improve upon metal decoration in the case of NH3 exposure. A careful investigation of the chemical structure and morphology of the metal NPs in the LIG sensors shows that the spontaneous oxidation of metal NPs with a low work function changes the behavior of the LIG gas sensors and that the sensors' behaviors under NO2 and NH3 gases follow different principles.
Collapse
Affiliation(s)
- Dongwook Kwak
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea; (D.K.); (H.K.); (B.G.K.); (D.C.)
| | - Hyojin Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea; (D.K.); (H.K.); (B.G.K.); (D.C.)
| | - Seunghun Jang
- Data Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea; (S.J.); (H.C.)
| | - Byoung Gak Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea; (D.K.); (H.K.); (B.G.K.); (D.C.)
| | - Donghwi Cho
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea; (D.K.); (H.K.); (B.G.K.); (D.C.)
| | - Hyunju Chang
- Data Research Center, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea; (S.J.); (H.C.)
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeongro, Yuseong-gu, Daejeon 34114, Republic of Korea; (D.K.); (H.K.); (B.G.K.); (D.C.)
| |
Collapse
|
8
|
Recum P, Hirsch T. Graphene-based chemiresistive gas sensors. NANOSCALE ADVANCES 2023; 6:11-31. [PMID: 38125587 PMCID: PMC10729924 DOI: 10.1039/d3na00423f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/17/2023] [Indexed: 12/23/2023]
Abstract
Gas sensors allow the monitoring of the chemical environment of humans, which is often crucial for their wellbeing or even survival. Miniaturization, reversibility, and selectivity are some of the key challenges for serial use of chemical sensors. This tutorial review describes critical aspects when using nanomaterials as sensing substrates for the application in chemiresistive gas sensors. Graphene has been shown to be a promising candidate, as it allows gas sensors to be operated at room temperature, possibly saving large amounts of energy. In this review, an overview is given on the general mechanisms for gas-sensitive semiconducting materials and the implications of doping and functionalization on the sensing parameters of chemiresistive devices. It shows in detail how different challenges, like sensitivity, response time, reversibility and selectivity have been approached by material development and operation modes. In addition, perspectives from the area of data analysis and intelligent algorithms are presented, which can further enhance these sensors' usability in the field.
Collapse
|
9
|
Lau KY, Qiu J. Broad applications of sensors based on laser-scribed graphene. LIGHT, SCIENCE & APPLICATIONS 2023; 12:168. [PMID: 37407560 DOI: 10.1038/s41377-023-01210-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Sensors based on graphene materials have promising applications in the fields of biology, medicine and environment etc. A laser-scribed graphene provides a versatile, low-cost, and environmental friendly method for stress, bio, gas, temperature, humidity and multifunctional integrated sensors.
Collapse
Affiliation(s)
- Kuen Yao Lau
- Institute of Light+X Science and Technology, Faculty of Electrical Engineering and Computer Science, Ningbo University, 315211, Ningbo, Zhejiang, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
10
|
Zhang J, Cheng L, Huang L, Ng PH, Huang Q, Marques AR, MacKinnon B, Huang L, Yang Y, Ye R, Sophie SH. In situ generation of highly localized chlorine by laser-induced graphene electrodes during electrochemical disinfection. CHEMOSPHERE 2023:139123. [PMID: 37285986 DOI: 10.1016/j.chemosphere.2023.139123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/09/2023]
Abstract
Laser-induced graphene (LIG) has gained popularity for electrochemical water disinfection due to its efficient antimicrobial activity when activated with low voltages. However, the antimicrobial mechanism of LIG electrodes is not yet fully understood. This study demonstrated an array of mechanisms working synergistically to inactivate bacteria during electrochemical treatment using LIG electrodes, including the generation of oxidants, changes in pH-specifically high alkalinity associated with the cathode, and electro-adsorption on the electrodes. All these mechanisms may contribute to the disinfection process when bacteria are close to the surface of the electrodes where inactivation was independent of the reactive chlorine species (RCS); however, RCS was likely responsible for the predominant cause of antibacterial effects in the bulk solution (i.e., ≥100 mL in our study). Furthermore, the concentration and diffusion kinetics of RCS in solution was voltage-dependent. At 6 V, RCS achieved a high concentration in water, while at 3 V, RCS was highly localized on the LIG surface but not measurable in water. Despite this, the LIG electrodes activated by 3 V achieved a 5.5-log reduction in Escherichia coli (E.coli) after 120-min electrolysis without detectable chlorine, chlorate, or perchlorate in the water, suggesting a promising system for efficient, energy-saving, and safe electro-disinfection.
Collapse
Affiliation(s)
- Ju Zhang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Le Cheng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Liqing Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Pok Him Ng
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Qianjun Huang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Ana Rita Marques
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Brett MacKinnon
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Libei Huang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Yefeng Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR PR China, China.
| | - St-Hilaire Sophie
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR PR China, China.
| |
Collapse
|
11
|
Zhu J, Ji S, Ren Z, Wu W, Zhang Z, Ni Z, Liu L, Zhang Z, Song A, Lee C. Triboelectric-induced ion mobility for artificial intelligence-enhanced mid-infrared gas spectroscopy. Nat Commun 2023; 14:2524. [PMID: 37130843 PMCID: PMC10154418 DOI: 10.1038/s41467-023-38200-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Isopropyl alcohol molecules, as a biomarker for anti-virus diagnosis, play a significant role in the area of environmental safety and healthcare relating volatile organic compounds. However, conventional gas molecule detection exhibits dramatic drawbacks, like the strict working conditions of ion mobility methodology and weak light-matter interaction of mid-infrared spectroscopy, yielding limited response of targeted molecules. We propose a synergistic methodology of artificial intelligence-enhanced ion mobility and mid-infrared spectroscopy, leveraging the complementary features from the sensing signal in different dimensions to reach superior accuracy for isopropyl alcohol identification. We pull in "cold" plasma discharge from triboelectric generator which improves the mid-infrared spectroscopic response of isopropyl alcohol with good regression prediction. Moreover, this synergistic methodology achieves ~99.08% accuracy for a precise gas concentration prediction, even with interferences of different carbon-based gases. The synergistic methodology of artificial intelligence-enhanced system creates mechanism of accurate gas sensing for mixture and regression prediction in healthcare.
Collapse
Affiliation(s)
- Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Shanling Ji
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117576, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, 215123, P. R. China
| | - Wenyu Wu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhihao Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhonghua Ni
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Zhisheng Zhang
- School of Mechanical Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 211189, P. R. China.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore.
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117576, Singapore.
- NUS Suzhou Research Institute (NUSRI), Suzhou, 215123, P. R. China.
| |
Collapse
|
12
|
Hawes GF, Verma P, Uceda M, Karimi G, Noremberg BS, Pope MA. Salt-Induced Doping and Templating of Laser-Induced Graphene Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10570-10584. [PMID: 36795101 DOI: 10.1021/acsami.2c17476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The use of inexpensive and widely available CO2 lasers to selectively irradiate polymer films and form a graphene foam, termed laser-induced graphene (LIG), has incited significant research attention. The simple and rapid nature of the approach and the high conductivity and porosity of LIG have motivated its widespread application in electrochemical energy storage devices such as batteries and supercapacitors. However, nearly all high-performance LIG-based supercapacitors reported to date are prepared from costly, petroleum-based polyimide (Kapton, PI). Herein, we demonstrate that incorporating microparticles of inexpensive, non-toxic, and widely abundant sodium salts such as NaCl and Na2SO4 into poly(furfuryl alcohol) (PFA) resins enables the formation of high-performance LIG. The embedded particles aid in carbonization and act as a template for pore formation. While increasing both the carbon yield and surface area of the electrodes, the salt also dopes the LIG formed with S or Cl. The combination of these effects results in a two- to four-order-of-magnitude increase in device areal capacitance, from 8 μF/cm2 for PFA/no salt at 5 mV/s to up to 80 mF/cm2 for some PFA/20% Na2SO4 samples at 0.05 mA/cm2, significantly higher than that of PI-based devices and most other LIG precursors.
Collapse
Affiliation(s)
- Gillian F Hawes
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Priyanka Verma
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Marianna Uceda
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Gholamreza Karimi
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada
| | - Bruno S Noremberg
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| | - Michael A Pope
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, N2L 3G1, Waterloo, Ontario, Canada
| |
Collapse
|
13
|
Huang L, Liu Y, Li G, Song Y, Su J, Cheng L, Guo W, Zhao G, Shen H, Yan Z, Tang BZ, Ye R. Ultrasensitive, Fast-Responsive, Directional Airflow Sensing by Bioinspired Suspended Graphene Fibers. NANO LETTERS 2023; 23:597-605. [PMID: 36622320 DOI: 10.1021/acs.nanolett.2c04228] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of high-performance miniaturized and flexible airflow sensors is essential to meet the need of emerging applications. Graphene-based airflow sensors are hampered by the sluggish response and recovery speed and low sensitivity. Here we employ laser-induced graphene (LIG) with poststructural biomimicry for fabricating high-performance, flexible airflow sensors, including cotton-like porous LIG, caterpillar fluff-like vertical LIG fiber, and Lepidoptera scale-like suspended LIG fiber (SLIGF) structures. The structural engineering changes the deformation behavior of LIGs under stress, among which the synchronous propagation of the scale-like structure of SLIGF is the most conducive to airflow sensing. The SLIGF achieves the shortest average response time of 0.5 s, the highest sensitivity of 0.11 s/m, and a record-low detection threshold of 0.0023 m/s, benchmarked against the state-of-the-art airflow sensors. Furthermore, we showcase the SLIGF airflow sensors in weather forecasting, health, and communications applications. Our study will help develop next-generation waterflow, sound, and motion sensors.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yong Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Geng Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yun Song
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jianjun Su
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Le Cheng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Weihua Guo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Zheng Yan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ruquan Ye
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
14
|
Zhao J, Yi N, Ding X, Liu S, Zhu J, Castonguay AC, Gao Y, Zarzar LD, Cheng H. In situ laser-assisted synthesis and patterning of graphene foam composites as a flexible gas sensing platform. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2023; 456:140956. [PMID: 36712894 PMCID: PMC9879320 DOI: 10.1016/j.cej.2022.140956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Gas-sensitive semiconducting nanomaterials (e.g., metal oxides, graphene oxides, and transition metal dichalcogenides) and their heterojunctions hold great promise in chemiresistive gas sensors. However, they often require a separate synthesis method (e.g., hydrothermal, so-gel, and co-precipitation) and their integration on interdigitated electrodes (IDE) via casting is also associated with weak interfacial properties. This work demonstrates in situ laser-assisted synthesis and patterning of various sensing nanomaterials and their heterojunctions on laser-induced graphene (LIG) foam to form LIG composites as a flexible and stretchable gas sensing platform. The porous LIG line or pattern with nanomaterial precursors dispensed on top is scribed by laser to allow for in situ growth of corresponding nanomaterials. The versatility of the proposed method is highlighted through the creation of different types of gas-sensitive materials, including transition metal dichalcogenide (e.g., MoS2), metal oxide (e.g., CuO), noble metal-doped metal oxide (e.g., Ag/ZnO) and composite metal oxides (e.g., In2O3/Cr2O3). By eliminating the IDE and separate heaters, the LIG gas sensing platform with self-heating also decreases the device complexity. The limit of detection (LOD) of the LIG gas sensor with in situ synthesized MoS2, CuO, and Ag/ZnO to NO2, H2S, and trimethylamine (TMA) is 2.7, 9.8, and 5.6 ppb, respectively. Taken together with the high sensitivity, good selectivity, rapid response/recovery, and tunable operating temperature, the integrated LIG gas sensor array can identify multiple gas species in the environment or exhaled breath.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ning Yi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Xiaohong Ding
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Shangbin Liu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jia Zhu
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Alexander C. Castonguay
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Lauren D. Zarzar
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
15
|
He T, Wen F, Yang Y, Le X, Liu W, Lee C. Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Anal Chem 2023; 95:490-514. [PMID: 36625107 DOI: 10.1021/acs.analchem.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Xianhao Le
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| |
Collapse
|
16
|
Thakur AK, Mahbub H, Nowrin FH, Malmali M. Highly Robust Laser-Induced Graphene (LIG) Ultrafiltration Membrane with a Stable Microporous Structure. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46884-46895. [PMID: 36200611 DOI: 10.1021/acsami.2c09563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Laser-induced graphene (LIG) materials have great potential in water treatment applications. Herein, we report the fabrication of a mechanically robust electroconductive LIG membrane with tailored separation properties for ultrafiltration (UF) applications. These LIG membranes are facilely fabricated by directly lasing poly(ether sulfone) (PES) membrane support. Control PES membranes were fabricated through a nonsolvent-induced phase separation (NIPS) technique. A major finding was that when PES UF membranes were treated with glycerol, the membrane porous structure remained almost unchanged upon drying, which also assisted with protecting the membrane's nanoscale features after lasing. Compared to the control PES membrane, the membrane fabricated with 8% laser power on the bottom layer of PES (PES (B)-LIG-HP) demonstrated 4 times higher flux (865 LMH) and 90.9% bovine serum albumin (BSA) rejection. Moreover, LIG membranes were found to be highly hydrophilic and exhibited excellent mechanical and chemical stability. Owing to their excellent permeance and separation efficiency, these highly robust electroconductive LIG membranes have a great potential to be used for designing functional membranes.
Collapse
Affiliation(s)
- Amit K Thakur
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Hasib Mahbub
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Fouzia Hasan Nowrin
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| | - Mahdi Malmali
- Department of Chemical Engineering, Texas Tech University, 807 Canton Avenue, Lubbock, Texas79409, United States
| |
Collapse
|
17
|
Zhu J, Wen H, Fan Y, Yang X, Zhang H, Wu W, Zhou Y, Hu H. Recent advances in gas and environmental sensing: From micro/nano to the era of self-powered and artificial intelligent (AI)-enabled device. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
18
|
Porphyrin Functionalized Laser-Induced Graphene and Porous WO3 Assembled Effective Z-Scheme Photocatalyst for Promoted Visible-Light-Driven Degradation of Ciprofloxacin. Catal Letters 2022. [DOI: 10.1007/s10562-021-03786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Zhu J, Huang X, Song W. Physical and Chemical Sensors on the Basis of Laser-Induced Graphene: Mechanisms, Applications, and Perspectives. ACS NANO 2021; 15:18708-18741. [PMID: 34881870 DOI: 10.1021/acsnano.1c05806] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Laser-induced graphene (LIG) is produced rapidly by directly irradiating carbonaceous precursors, and it naturally exhibits as a three-dimensional porous structure. Due to advantages such as simple preparation, time-saving, environmental friendliness, low cost, and expanding categories of raw materials, LIG and its derivatives have achieved broad applications in sensors. This has been witnessed in various fields such as wearable devices, disease diagnosis, intelligent robots, and pollution detection. However, despite LIG sensors having demonstrated an excellent capability to monitor physical and chemical parameters, the systematic review of synthesis, sensing mechanisms, and applications of them combined with comparison against other preparation approaches of graphene is still lacking. Here, graphene-based sensors for physical, biological, and chemical detection are reviewed first, followed by the introduction of general preparation methods for the laser-induced method to yield graphene. The preparation and advantages of LIG, sensing mechanisms, and the properties of different types of emerging LIG-based sensors are comprehensively reviewed. Finally, possible solutions to the problems and challenges of preparing LIG and LIG-based sensors are proposed. This review may serve as a detailed reference to guide the development of LIG-based sensors that possess properties for future smart sensors in health care, environmental protection, and industrial production.
Collapse
Affiliation(s)
- Junbo Zhu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, Tianjin 300072, China
| | - Weixing Song
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Beijing 100048, China
| |
Collapse
|
20
|
A Wearable Electrochemical Gas Sensor for Ammonia Detection. SENSORS 2021; 21:s21237905. [PMID: 34883908 PMCID: PMC8659774 DOI: 10.3390/s21237905] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/04/2023]
Abstract
The next future strategies for improved occupational safety and health management could largely benefit from wearable and Internet of Things technologies, enabling the real-time monitoring of health-related and environmental information to the wearer, to emergency responders, and to inspectors. The aim of this study is the development of a wearable gas sensor for the detection of NH3 at room temperature based on the organic semiconductor poly(3,4-ethylenedioxythiophene) (PEDOT), electrochemically deposited iridium oxide particles, and a hydrogel film. The hydrogel composition was finely optimised to obtain self-healing properties, as well as the desired porosity, adhesion to the substrate, and stability in humidity variations. Its chemical structure and morphology were characterised by infrared spectroscopy and scanning electron microscopy, respectively, and were found to play a key role in the transduction process and in the achievement of a reversible and selective response. The sensing properties rely on a potentiometric-like mechanism that significantly differs from most of the state-of-the-art NH3 gas sensors and provides superior robustness to the final device. Thanks to the reliability of the analytical response, the simple two-terminal configuration and the low power consumption, the PEDOT:PSS/IrOx Ps/hydrogel sensor was realised on a flexible plastic foil and successfully tested in a wearable configuration with wireless connectivity to a smartphone. The wearable sensor showed stability to mechanical deformations and good analytical performances, with a sensitivity of 60 ± 8 μA decade−1 in a wide concentration range (17–7899 ppm), which includes the safety limits set by law for NH3 exposure.
Collapse
|
21
|
Wang B, Sun L, Schneider-Ramelow M, Lang KD, Ngo HD. Recent Advances and Challenges of Nanomaterials-Based Hydrogen Sensors. MICROMACHINES 2021; 12:1429. [PMID: 34832840 PMCID: PMC8626019 DOI: 10.3390/mi12111429] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/25/2022]
Abstract
Safety is a crucial issue in hydrogen energy applications due to the unique properties of hydrogen. Accordingly, a suitable hydrogen sensor for leakage detection must have at least high sensitivity and selectivity, rapid response/recovery, low power consumption and stable functionality, which requires further improvements on the available hydrogen sensors. In recent years, the mature development of nanomaterials engineering technologies, which facilitate the synthesis and modification of various materials, has opened up many possibilities for improving hydrogen sensing performance. Current research of hydrogen detection sensors based on both conservational and innovative materials are introduced in this review. This work mainly focuses on three material categories, i.e., transition metals, metal oxide semiconductors, and graphene and its derivatives. Different hydrogen sensing mechanisms, such as resistive, capacitive, optical and surface acoustic wave-based sensors, are also presented, and their sensing performances and influence based on different nanostructures and material combinations are compared and discussed, respectively. This review is concluded with a brief outlook and future development trends.
Collapse
Affiliation(s)
- Bei Wang
- Department of Microsystem Technology, University of Applied Sciences Berlin, 12459 Berlin, Germany
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
| | - Ling Sun
- Department of Mathematics, Free University Berlin, 14195 Berlin, Germany;
| | - Martin Schneider-Ramelow
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
- Center of Microperipheric Technologies, Technical University Berlin, 13355 Berlin, Germany
| | - Klaus-Dieter Lang
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
- Center of Microperipheric Technologies, Technical University Berlin, 13355 Berlin, Germany
| | - Ha-Duong Ngo
- Department of Microsystem Technology, University of Applied Sciences Berlin, 12459 Berlin, Germany
- Fraunhofer Institute for Reliability and Microintegration IZM, 13355 Berlin, Germany; (M.S.-R.); (K.-D.L.)
| |
Collapse
|
22
|
|
23
|
Kim M, Lee SM, Jeon JW, Movaghgharnezhad S, Jeong H, Moghaddam F, Mitchell D, Kang P, Kim BG. Photothermochemical Nanoassembly of 3D Porous Graphene and Palladium Nanoparticles for High-Performance Hydrogen Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49128-49136. [PMID: 34597029 DOI: 10.1021/acsami.1c11922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hybrid materials comprising graphene and palladium nanoparticles (PdNPs) are desirable for high-performance hydrogen detection because of the high specific surface area, electron mobility, and flexibility of graphene and the high electrochemical responsivity and reversibility of PdNPs. However, obtaining hybrid materials is energy-intensive and time-consuming. Here, a facile and rapid laser photothermochemical single-step processing method to synchronously produce a nanoassembly of three-dimensional porous graphene and PdNPs from polymer films is reported. Polymers with intrinsic microporosity show high solubility in volatile solvents and miscibility with inorganic materials, allowing the fabrication of homogeneous polymer films containing Pd ligands. The films are photothermally processed using a laser to generate a nanohybrid via photoinduced thermal and chemical processes. The nanohybrid exhibits four-times-enhanced electrical conductivity compared to plain porous graphene, high crystallinity, and coherent covalent metal bonds with a homogeneous size and distribution of PdNPs in hierarchical micro/meso/macroporous graphene structures, allowing high-performance hydrogen sensing (1 ppm) with outstanding mechanical reliability, flexibility, and durability upon bending and twisting. The nanoassembly is integrated with a wireless sensing platform, and hydrogen leakage (1 ppm) is detected using a smart phone. This laser-based nanomanufacturing of the nanoassembly can potentially be applied to wearable detector production platforms in the military and industry.
Collapse
Affiliation(s)
- Minsu Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Seung Min Lee
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030, United States
- Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, United States
| | - Jun Woo Jeon
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Shirin Movaghgharnezhad
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Heeyoung Jeong
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| | - Farbod Moghaddam
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Daniel Mitchell
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Pilgyu Kang
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030, United States
- Department of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030, United States
- Quantum Science and Engineering Center, George Mason University, Fairfax, Virginia 22030, United States
| | - Byoung Gak Kim
- Advanced Materials Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
- Department of Chemical Convergence Materials and Process, University of Science and Technology, 217 Gajeong-ro, Yuseoung-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
24
|
Zhou T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. SMALL METHODS 2021; 5:e2100515. [PMID: 34928067 DOI: 10.1002/smtd.202100515] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Indexed: 05/27/2023]
Abstract
Along with the progress of nanoscience and nanotechnology, nanomaterials with attractive structural and functional properties have gained more attention than ever before, especially in the field of electronic sensors. In recent years, the gas sensing devices have made great achievement and also created wide application prospects, which leads to a new wave of research for designing advanced sensing materials. There is no doubt that the characteristics are highly governed by the sensitive layers. For this reason, important advances for the outstanding, novel sensing materials with different dimensional structures including 0D, 1D, 2D, and 3D are reported and summarized systematically. The sensing materials cover noble metals, metal oxide semiconductors, carbon nanomaterials, metal dichalcogenides, g-C3 N4 , MXenes, and complex composites. Discussion is also extended to the relation between sensing performances and their structure, electronic properties, and surface chemistry. In addition, some gas sensing related applications are also highlighted, including environment monitoring, breath analysis, food quality and safety, and flexible wearable electronics, from current situation and the facing challenges to the future research perspectives.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
25
|
Zhang J, Xu R, Feng J, Xie Y, Zhou T. Laser Direct Writing of Flexible Heaters on Polymer Substrates. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Rui Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Yi Xie
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
26
|
Manzini I, Schild D, Di Natale C. Principles of odor coding in vertebrates and artificial chemosensory systems. Physiol Rev 2021; 102:61-154. [PMID: 34254835 DOI: 10.1152/physrev.00036.2020] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The biological olfactory system is the sensory system responsible for the detection of the chemical composition of the environment. Several attempts to mimic biological olfactory systems have led to various artificial olfactory systems using different technical approaches. Here we provide a parallel description of biological olfactory systems and their technical counterparts. We start with a presentation of the input to the systems, the stimuli, and treat the interface between the external world and the environment where receptor neurons or artificial chemosensors reside. We then delineate the functions of receptor neurons and chemosensors as well as their overall I-O relationships. Up to this point, our account of the systems goes along similar lines. The next processing steps differ considerably: while in biology the processing step following the receptor neurons is the "integration" and "processing" of receptor neuron outputs in the olfactory bulb, this step has various realizations in electronic noses. For a long period of time, the signal processing stages beyond the olfactory bulb, i.e., the higher olfactory centers were little studied. Only recently there has been a marked growth of studies tackling the information processing in these centers. In electronic noses, a third stage of processing has virtually never been considered. In this review, we provide an up-to-date overview of the current knowledge of both fields and, for the first time, attempt to tie them together. We hope it will be a breeding ground for better information, communication, and data exchange between very related but so far little connected fields.
Collapse
Affiliation(s)
- Ivan Manzini
- Animal Physiology and Molecular Biomedicine, Justus-Liebig-University Gießen, Gießen, Germany
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
27
|
Vivaldi F, Dallinger A, Bonini A, Poma N, Sembranti L, Biagini D, Salvo P, Greco F, Di Francesco F. Three-Dimensional (3D) Laser-Induced Graphene: Structure, Properties, and Application to Chemical Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30245-30260. [PMID: 34167302 PMCID: PMC8289247 DOI: 10.1021/acsami.1c05614] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 05/04/2023]
Abstract
Notwithstanding its relatively recent discovery, graphene has gone through many evolution steps and inspired a multitude of applications in many fields, from electronics to life science. The recent advancements in graphene production and patterning, and the inclusion of two-dimensional (2D) graphenic materials in three-dimensional (3D) superstructures, further extended the number of potential applications. In this Review, we focus on laser-induced graphene (LIG), an intriguing 3D porous graphenic material produced by direct laser scribing of carbonaceous precursors, and on its applications in chemical sensors and biosensors. LIG can be shaped in different 3D forms with a high surface-to-volume ratio, which is a valuable characteristic for sensors that typically rely on phenomena occurring at surfaces and interfaces. Herein, an overview of LIG, including synthesis from various precursors, structure, and characteristic properties, is first provided. The discussion focuses especially on transport and surface properties, and on how these can be controlled by tuning the laser processing. Progresses and trends in LIG-based chemical sensors are then reviewed, discussing the various transduction mechanisms and different LIG functionalization procedures for chemical sensing. A comparative evaluation of sensors performance is then provided. Finally, sensors for glucose detection are reviewed in more detail, since they represent the vast majority of LIG-based chemical sensors.
Collapse
Affiliation(s)
- Federico
Maria Vivaldi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
- Institute
of Clinical Physiology, National Research
Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Alexander Dallinger
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Andrea Bonini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Noemi Poma
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Sembranti
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Denise Biagini
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Pietro Salvo
- Institute
of Clinical Physiology, National Research
Council, via Giuseppe Moruzzi 1, 56124 Pisa, Italy
| | - Francesco Greco
- Institute
of Solid State Physics, NAWI Graz, Graz
University of Technology, Petersgasse 16, 8010 Graz, Austria
| | - Fabio Di Francesco
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
28
|
Zhu J, Sun Z, Xu J, Walczak RD, Dziuban JA, Lee C. Volatile organic compounds sensing based on Bennet doubler-inspired triboelectric nanogenerator and machine learning-assisted ion mobility analysis. Sci Bull (Beijing) 2021; 66:1176-1185. [PMID: 36654355 DOI: 10.1016/j.scib.2021.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/04/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Ion mobility analysis is a well-known analytical technique for identifying gas-phase compounds in fast-response gas-monitoring systems. However, the conventional plasma discharge system is bulky, operates at a high temperature, and inappropriate for volatile organic compounds (VOCs) concentration detection. Therefore, we report a machine learning (ML)-enhanced ion mobility analyzer with a triboelectric-based ionizer, which offers good ion mobility selectivity and VOC recognition ability with a small-sized device and non-strict operating environment. Based on the charge accumulation mechanism, a multi-switched manipulation triboelectric nanogenerator (SM-TENG) can provide a direct current (DC) bias at the order of a few hundred, which can be further leveraged as the power source to obtain a unique and repeatable discharge characteristic of different VOCs, and their mixtures, with a special tip-plate electrode configuration. Aiming to tackle the grand challenge in the detection of multiple VOCs, the ML-enhanced ion mobility analysis method was successfully demonstrated by extracting specific features automatically from ion mobility spectrometry data with ML algorithms, which significantly enhance the detection ability of the SM-TENG based VOC analyzer, showing a portable real-time VOC monitoring solution with rapid response and low power consumption for future internet of things based environmental monitoring applications.
Collapse
Affiliation(s)
- Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, China; Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore; NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| | - Zhongda Sun
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore; NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| | - Jikai Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore; NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China
| | - Rafal D Walczak
- Department of Mircroengineering and Photovoltaics, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Jan A Dziuban
- Department of Mircroengineering and Photovoltaics, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576, Singapore; Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117576, Singapore; NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
29
|
Zhu J, Ren Z, Lee C. Toward Healthcare Diagnoses by Machine-Learning-Enabled Volatile Organic Compound Identification. ACS NANO 2021; 15:894-903. [PMID: 33307692 DOI: 10.1021/acsnano.0c07464] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a natural monitor of health conditions for human beings, volatile organic compounds (VOCs) act as significant biomarkers for healthcare monitoring and early stage diagnosis of diseases. Most existing VOC sensors use semiconductors, optics, and electrochemistry, which are only capable of measuring the total concentration of VOCs with slow response, resulting in the lack of selectivity and low efficiency for VOC detection. Infrared (IR) spectroscopy technology provides an effective solution to detect chemical structures of VOC molecules by absorption fingerprints induced by the signature vibration of chemical stretches. However, traditional IR spectroscopy for VOC detection is limited by the weak light-matter interaction, resulting in large optical paths. Leveraging the ultrahigh electric field induced by plasma, the vibration of the molecules is enhanced to improve the light-matter interaction. Herein, we report a plasma-enhanced IR absorption spectroscopy with advantages of fast response, accurate quantization, and good selectivity. An order of ∼kV voltage was achieved from the multiswitched manipulation of the triboelectric nanogenerator by repeated sliding. The VOC species and their concentrations were well-quantified from the wavelength and intensity of spectra signals with the enhancement from plasma. Furthermore, machine learning has visualized the relationship of different VOCs in the mixture, which demonstrated the feasibility of the VOC identification to mimic patients.
Collapse
Affiliation(s)
- Jianxiong Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117576, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, 215123, People's Republic of China
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117576, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, 215123, People's Republic of China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore, 117576, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou, 215123, People's Republic of China
- NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
30
|
Xu Y, Fei Q, Page M, Zhao G, Ling Y, Chen D, Yan Z. Laser-induced graphene for bioelectronics and soft actuators. NANO RESEARCH 2021; 14:3033-3050. [PMID: 33841746 PMCID: PMC8023525 DOI: 10.1007/s12274-021-3441-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 05/18/2023]
Abstract
Laser-assisted process can enable facile, mask-free, large-area, inexpensive, customizable, and miniaturized patterning of laser-induced porous graphene (LIG) on versatile carbonaceous substrates (e.g., polymers, wood, food, textiles) in a programmed manner at ambient conditions. Together with high tailorability of its porosity, morphology, composition, and electrical conductivity, LIG can find wide applications in emerging bioelectronics (e.g., biophysical and biochemical sensing) and soft robots (e.g., soft actuators). In this review paper, we first introduce the methods to make LIG on various carbonaceous substrates and then discuss its electrical, mechanical, and antibacterial properties and biocompatibility that are critical for applications in bioelectronics and soft robots. Next, we overview the recent studies of LIG-based biophysical (e.g., strain, pressure, temperature, hydration, humidity, electrophysiological) sensors and biochemical (e.g., gases, electrolytes, metabolites, pathogens, nucleic acids, immunology) sensors. The applications of LIG in flexible energy generators and photodetectors are also introduced. In addition, LIG-enabled soft actuators that can respond to chemicals, electricity, and light stimulus are overviewed. Finally, we briefly discuss the future challenges and opportunities of LIG fabrications and applications.
Collapse
Affiliation(s)
- Yadong Xu
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Qihui Fei
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Margaret Page
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Ganggang Zhao
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Yun Ling
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| | - Dick Chen
- Rock Bridge High School, Columbia, Missouri 65203 USA
| | - Zheng Yan
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211 USA
- Department of Mechanical & Aerospace Engineering, University of Missouri, Columbia, Missouri 65211 USA
| |
Collapse
|
31
|
Mohammadi MM, Kumar A, Liu J, Liu Y, Thundat T, Swihart MT. Hydrogen Sensing at Room Temperature Using Flame-Synthesized Palladium-Decorated Crumpled Reduced Graphene Oxide Nanocomposites. ACS Sens 2020; 5:2344-2350. [PMID: 32786377 DOI: 10.1021/acssensors.0c01040] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present a unique three-dimensional palladium (Pd)-decorated crumpled reduced graphene oxide ball (Pd-CGB) nanocomposite for hydrogen (H2) detection in air at room temperature. Pd-CGB nanocomposites were synthesized using a rapid continuous flame aerosol technique. Graphene oxide reduction and metal decoration occurred simultaneously in a high-temperature reducing jet (HTRJ) process to produce Pd nanoparticles that were below 5 nm in average size and uniformly dispersed in the crumpled graphene structure. The sensors made from these nanocomposites were sensitive over a wide range of H2 concentrations (0.0025-2%) with response value, response time, and recovery time of 14.8%, 73 s, and 126 s, respectively, at 2% H2. Moreover, they were sensitive to H2 in both dry and humid conditions. The sensors were stable and recoverable after 20 cycles at 2% H2 with no degradation associated with volume expansion of Pd. Unlike two-step methods for fabricating Pd-decorated graphene sensors, the HTRJ process enables single-step formation of Pd- and other metal-decorated graphene nanocomposites with great potential for creating various gas sensors by simple drop-casting onto low-cost electrodes.
Collapse
Affiliation(s)
- Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Abhishek Kumar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Renew Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Jun Liu
- Renew Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Department of Mechanical and Aerospace EngineeringUniversity at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Yang Liu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thomas Thundat
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Renew Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
- Renew Institute, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
32
|
Li Q, Chen D, Miao J, Lin S, Yu Z, Han Y, Yang Z, Zhi X, Cui D, An Z. Ag-Modified 3D Reduced Graphene Oxide Aerogel-Based Sensor with an Embedded Microheater for a Fast Response and High-Sensitive Detection of NO 2. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25243-25252. [PMID: 32391684 DOI: 10.1021/acsami.9b22098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A chemiresistive gas sensor based on a three-dimensional Ag-modified reduced graphene oxide (3D Ag-rGO) aerogel is reported. We improve the graphene-based sensor performance by optimization of operating temperature, chemical modification, and new design of the material geometrical structure. The self-assembly and Ag nanoparticle (NP) decoration of the Ag-rGO aerogel are realized by a facile, one-step hydrothermal method. An integrated low-power microheater fabricated on a micromachined SiO2 membrane is employed to enhance the performance of the sensor with a fast response to NO2 and a shortened recovery time. The 3D Ag-rGO-based sensor at a temperature of 133 °C exhibits the highest response. At the same time, the response to other gases is suppressed while the response of the Ag-rGO sensor toward ammonia at 133 °C is reduced to half of the value at room temperature, demonstrating a greatly improved selectivity toward NO2. Additionally, the sensor exhibits a remarkably fast response to 50 ppb NO2 and a low limit of detection of 6.9 ppb.
Collapse
Affiliation(s)
- Qichao Li
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Di Chen
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jianmin Miao
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shujing Lin
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zixian Yu
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yutong Han
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiao Zhi
- School of Biomedical Engineering, Institute for Personalized Medicine, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Daxiang Cui
- Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
- Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Zhenghua An
- Department of Physics, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
33
|
Huang L, Su J, Song Y, Ye R. Laser-Induced Graphene: En Route to Smart Sensing. NANO-MICRO LETTERS 2020; 12:157. [PMID: 32835028 PMCID: PMC7396264 DOI: 10.1007/s40820-020-00496-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
The discovery of laser-induced graphene (LIG) from polymers in 2014 has aroused much attention in recent years. A broad range of applications, including batteries, catalysis, sterilization, and separation, have been explored. The advantages of LIG technology over conventional graphene synthesis methods are conspicuous, which include designable patterning, environmental friendliness, tunable compositions, and controllable morphologies. In addition, LIG possesses high porosity, great flexibility, and mechanical robustness, and excellent electric and thermal conductivity. The patternable and printable manufacturing process and the advantageous properties of LIG illuminate a new pathway for developing miniaturized graphene devices. Its use in sensing applications has grown swiftly from a single detection component to an integrated smart detection system. In this minireview, we start with the introduction of synthetic efforts related to the fabrication of LIG sensors. Then, we highlight the achievement of LIG sensors for the detection of a diversity of stimuli with a focus on the design principle and working mechanism. Future development of the techniques toward in situ and smart detection of multiple stimuli in widespread applications will be discussed.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Jianjun Su
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Yun Song
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
- State Key Lab of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
34
|
Zhu J, Liu X, Shi Q, He T, Sun Z, Guo X, Liu W, Sulaiman OB, Dong B, Lee C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. MICROMACHINES 2019; 11:E7. [PMID: 31861476 PMCID: PMC7019281 DOI: 10.3390/mi11010007] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 01/24/2023]
Abstract
With the fast development of the fifth-generation cellular network technology (5G), the future sensors and microelectromechanical systems (MEMS)/nanoelectromechanical systems (NEMS) are presenting a more and more critical role to provide information in our daily life. This review paper introduces the development trends and perspectives of the future sensors and MEMS/NEMS. Starting from the issues of the MEMS fabrication, we introduced typical MEMS sensors for their applications in the Internet of Things (IoTs), such as MEMS physical sensor, MEMS acoustic sensor, and MEMS gas sensor. Toward the trends in intelligence and less power consumption, MEMS components including MEMS/NEMS switch, piezoelectric micromachined ultrasonic transducer (PMUT), and MEMS energy harvesting were investigated to assist the future sensors, such as event-based or almost zero-power. Furthermore, MEMS rigid substrate toward NEMS flexible-based for flexibility and interface was discussed as another important development trend for next-generation wearable or multi-functional sensors. Around the issues about the big data and human-machine realization for human beings' manipulation, artificial intelligence (AI) and virtual reality (VR) technologies were finally realized using sensor nodes and its wave identification as future trends for various scenarios.
Collapse
Affiliation(s)
- Jianxiong Zhu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Xinmiao Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
| | - Zhongda Sun
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
| | - Xinge Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
| | - Othman Bin Sulaiman
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
| | - Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; (J.Z.); (X.L.); (Q.S.); (T.H.); (Z.S.); (X.G.); (W.L.); (O.B.S.); (B.D.)
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, Singapore 117608, Singapore
- Hybrid-Integrated Flexible (Stretchable) Electronic Systems Program, National University of Singapore, Singapore 117608, Singapore
- NUS Suzhou Research Institute (NUSRI), Suzhou Industrial Park, Suzhou 215123, China
- NUS Graduate School for Integrative Science and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| |
Collapse
|