1
|
Nasirian V, Niaraki-Asli AE, Aykar SS, Taghavimehr M, Montazami R, Hashemi NN. Capacitance of Flexible Polymer/Graphene Microstructures with High Mechanical Strength. 3D PRINTING AND ADDITIVE MANUFACTURING 2024; 11:242-250. [PMID: 38389687 PMCID: PMC10880642 DOI: 10.1089/3dp.2022.0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Carbon-modified fibrous structures with high biocompatibility have attracted much attention due to their low cost, sustainability, abundance, and excellent electrical properties. However, some carbon-based materials possess low specific capacitance and electrochemical performance, which pose significant challenges in developing electronic microdevices. In this study, we report a microfluidic-based technique of manufacturing alginate hollow microfibers incorporated by water dispersed modified graphene (bovine serum albumin-graphene). These architectures successfully exhibited enhanced conductivity ∼20 times higher than alginate hollow microfibers without any significant change in the inner dimension of the hollow region (220.0 ± 10.0 μm) compared with pure alginate hollow microfibers. In the presence of graphene, higher specific surface permeability, active ion adsorption sites, and shorter pathways were created. These continuous ion transport networks resulted in improved electrochemical performance. The desired electrochemical properties of the microfibers make alginate/graphene hollow fibers an excellent choice for further use in the development of flexible capacitors with the potential to be used in smart health electronics.
Collapse
Affiliation(s)
- Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Saurabh S. Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | | | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA
- Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| |
Collapse
|
2
|
Guo M, Deng Y, Huang J, Huang Y, Deng J, Wu H. Fabrication and Validation of a 3D Portable PEGDA Microfluidic Chip for Visual Colorimetric Detection of Captured Breast Cancer Cells. Polymers (Basel) 2023; 15:3183. [PMID: 37571077 PMCID: PMC10421435 DOI: 10.3390/polym15153183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
To guide therapeutic strategies and to monitor the state changes in the disease, a low-cost, portable, and easily fabricated microfluidic-chip-integrated three-dimensional (3D) microchamber was designed for capturing and analyzing breast cancer cells. Optimally, a colorimetric sensor array was integrated into a microfluidic chip to discriminate the metabolites of the cells. The ultraviolet polymerization characteristic of poly(ethylene glycol) diacrylate (PEGDA) hydrogel was utilized to rapidly fabricate a three-layer hydrogel microfluidic chip with the designed structure under noninvasive 365 nm laser irradiation. 2-Hydroxyethyl methacrylate (HEMA) was added to the prepolymer in order to increase the adhesive capacity of the microchip's surface for capturing cells. 1-Vinyl-2-pyrrolidone (NVP) was designed to improve the toughness and reduce the swelling capacity of the hydrogel composite. A non-toxic 3D hydrogel microarray chip (60 mm × 20 mm × 3 mm) with low immunogenicity and high hydrophilicity was created to simulate the real physiological microenvironment of breast tissue. The crisscross channels were designed to ensure homogeneous seeding density. This hydrogel material displayed excellent biocompatibility and tunable physical properties compared with traditional microfluidic chip materials and can be directly processed to obtain the most desirable microstructure. The feasibility of using a PEGDA hydrogel microfluidic chip for the real-time online detection of breast cancer cells' metabolism was confirmed using a specifically designed colorimetric sensor array with 16 kinds of porphyrin, porphyrin derivatives, and indicator dyes. The results of the principal component analysis (PCA), the hierarchical cluster analysis (HCA), and the linear discriminant analysis (LDA) suggest that the metabolic liquids of different breast cells can be easily distinguished with the developed PEGDA hydrogel microfluidic chip. The PEGDA hydrogel microfluidic chip has potential practicable applicability in distinguishing normal and cancerous breast cells.
Collapse
Affiliation(s)
- Mingyi Guo
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Deng
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Junqiu Huang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong 644005, China
| | - Yanping Huang
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
| | - Jing Deng
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
| | - Huachang Wu
- College of Food Science and Technology, Sichuan Tourism University, Chengdu 610100, China; (M.G.)
| |
Collapse
|
3
|
Abstract
Owing to superior softness, wetness, responsiveness, and biocompatibility, bulk hydrogels are being intensively investigated for versatile functions in devices and machines including sensors, actuators, optics, and coatings. The one-dimensional (1D) hydrogel fibers possess the metrics from both the hydrogel materials and structural topology, endowing them with extraordinary mechanical, sensing, breathable and weavable properties. As no comprehensive review has been reported for this nascent field, this article aims to provide an overview of hydrogel fibers for soft electronics and actuators. We first introduce the basic properties and measurement methods of hydrogel fibers, including mechanical, electrical, adhesive, and biocompatible properties. Then, typical manufacturing methods for 1D hydrogel fibers and fibrous films are discussed. Next, the recent progress of wearable sensors (e.g., strain, temperature, pH, and humidity) and actuators made from hydrogel fibers is discussed. We conclude with future perspectives on next-generation hydrogel fibers and the remaining challenges. The development of hydrogel fibers will not only provide an unparalleled one-dimensional characteristic, but also translate fundamental understanding of hydrogels into new application boundaries.
Collapse
Affiliation(s)
- Jiaxuan Du
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Qing Ma
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Binghao Wang
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Litao Sun
- School of Electronic Science & Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Limei Liu
- College of Mechanical Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| |
Collapse
|
4
|
Babkin IA, Udepurkar AP, Van Avermaet H, de Oliveira-Silva R, Sakellariou D, Hens Z, Van den Mooter G, Kuhn S, Clasen C. Encapsulation of Cadmium-Free InP/ZnSe/ZnS Quantum Dots in Poly(LMA-co-EGDMA) Microparticles via Co-flow Droplet Microfluidics. SMALL METHODS 2023:e2201454. [PMID: 36995027 DOI: 10.1002/smtd.202201454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals that are used in optoelectronic applications. Most modern QDs are based on toxic metals, for example Cd, and do not comply with the European Restriction of Hazardous Substances regulation of the European Union. Latest promising developments focus on safer QD alternatives based on elements from the III-V group. However, the InP-based QDs lack an overall photostability under environmental influences. One design path of achieving stability is through encapsulation in cross-linked polymer matrices with the possibility to covalently link the matrix to surface ligands of modified core-shell QDs. The work focuses on the formation of polymer microbeads suitable for InP-based QD encapsulation, allowing for an individual protection of QDs and an improved processibility via this particle-based approach. For this, a microfluidic based method in the co-flow regime is used that consists of an oil-in-water droplet system in a glass capillary environment. The generated monomer droplets are polymerized in-flow into poly(LMA-co-EGDMA) microparticles with embedded InP/ZnSe/ZnS QDs using a UV initiation. They demonstrate how a successful polymer microparticle formation via droplet microfluidics produces optimized matrix structures leading to a distinct photostability improvement of InP-based QDs compared to nonprotected QDs.
Collapse
Affiliation(s)
- Iurii Alekseevich Babkin
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Aniket Pradip Udepurkar
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Hannes Van Avermaet
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Rodrigo de Oliveira-Silva
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Dimitrios Sakellariou
- Membrane Separations, Adsorption, Catalysis, and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures (PCN), University of Ghent, Krijgslaan 281-S3, Gent, 9000, Belgium
| | - Guy Van den Mooter
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, KU Leuven, Campus Gasthuisberg ON2, Herestraat 49 b921, Leuven, 3000, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Christian Clasen
- Department of Chemical Engineering, Soft Matter, Rheology and Technology (SMaRT), KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| |
Collapse
|
5
|
Aykar SS, Alimoradi N, Taghavimehr M, Montazami R, Hashemi NN. Microfluidic Seeding of Cells on the Inner Surface of Alginate Hollow Microfibers. Adv Healthc Mater 2022; 11:e2102701. [PMID: 35142451 PMCID: PMC11468499 DOI: 10.1002/adhm.202102701] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Indexed: 12/15/2022]
Abstract
Mimicking microvascular tissue microenvironment in vitro calls for a cytocompatible technique of manufacturing biocompatible hollow microfibers suitable for cell-encapsulation/seeding in and around them. The techniques reported to date either have a limit on the microfiber dimensions or undergo a complex manufacturing process. Here, a microfluidic-based method for cell seeding inside alginate hollow microfibers is designed whereby mouse astrocytes (C8-D1A) are passively seeded on the inner surface of these hollow microfibers. Collagen I and poly-d-lysine, as cell attachment additives, are tested to assess cell adhesion and viability; the results are compared with nonadditive-based hollow microfibers (BARE). The BARE furnishes better cell attachment and higher cell viability immediately after manufacturing, and an increasing trend in the cell viability is observed between Day 0 and Day 2. Swelling analysis using percentage initial weight and width is performed on BARE microfibers furnishing a maximum of 124.1% and 106.1%, respectively. Degradation analysis using weight observed a 62% loss after 3 days, with 46% occurring in the first 12 h. In the frequency sweep test performed, the storage modulus (G') remains comparatively higher than the loss modulus (G″) in the frequency range 0-20 Hz, indicating high elastic behavior of the hollow microfibers.
Collapse
Affiliation(s)
- Saurabh S. Aykar
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Nima Alimoradi
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | | | - Reza Montazami
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
| | - Nicole N. Hashemi
- Department of Mechanical EngineeringIowa State UniversityAmesIA50011USA
- Department of Mechanical EngineeringStanford UniversityStanfordCA94305USA
| |
Collapse
|
6
|
McNamara MC, Aykar SS, Alimoradi N, Niaraki Asli AE, Pemathilaka RL, Wrede AH, Montazami R, Hashemi NN. Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene-Laden Alginate Microfibers. Adv Biol (Weinh) 2021; 5:e2101026. [PMID: 34626101 DOI: 10.1002/adbi.202101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Magnani JS, Montazami R, Hashemi NN. Recent Advances in Microfluidically Spun Microfibers for Tissue Engineering and Drug Delivery Applications. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:185-205. [PMID: 33940929 DOI: 10.1146/annurev-anchem-090420-101138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In recent years, the unique and tunable properties of microfluidically spun microfibers have led to tremendous advancements for the field of biomedical engineering, which have been applied to areas such as tissue engineering, wound dressing, and drug delivery, as well as cell encapsulation and cell seeding. In this article, we analyze the most recent advances in microfluidics and microfluidically spun microfibers, with an emphasis on biomedical applications. We explore in detail these new and innovative experiments, how microfibers are made, the experimental purpose of making microfibers, and the future work that can be done as a result of these new types of microfibers. We also focus on the applications of various materials used to fabricate microfibers, as well as their many promises and limitations.
Collapse
Affiliation(s)
- Joseph Scott Magnani
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, USA;
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
8
|
McNamara MC, Aykar SS, Montazami R, Hashemi NN. Targeted Microfluidic Manufacturing to Mimic Biological Microenvironments: Cell-Encapsulated Hollow Fibers. ACS Macro Lett 2021; 10:732-736. [PMID: 35549107 DOI: 10.1021/acsmacrolett.1c00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At present, the blood-brain barrier (BBB) poses a challenge for treating a wide range of central nervous system disorders; reliable BBB models are still needed to understand and manipulate the transfer of molecules into the brain, thereby improving the efficiency of treatments. In this study, hollow, cell-laden microfibers are fabricated and investigated as a starting point for generating BBB models. The genetic effects of the manufacturing process are analyzed to understand the implications of encapsulating cells in this manner. These fibers are created using different manufacturing parameters to understand the effects on wall thickness and overall diameter. Then, dopaminergic rat cells are encapsulated into hollow fibers, which maintained at least 60% live cells throughout the three-day observation period. Lastly, genetic changes tyrosine hydroxylase (TH) and tubulin beta 3 class III (TUBB-3) are investigated to elucidate the effects on cell health and behavior; while the TH levels in encapsulated cells were similar to control cells, showing similar levels of TH synthesis, TUBB-3 was downregulated, indicating lower amounts of cellular neurogenesis.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
9
|
Clarke GA, Hartse BX, Niaraki Asli AE, Taghavimehr M, Hashemi N, Abbasi Shirsavar M, Montazami R, Alimoradi N, Nasirian V, Ouedraogo LJ, Hashemi NN. Advancement of Sensor Integrated Organ-on-Chip Devices. SENSORS (BASEL, SWITZERLAND) 2021; 21:1367. [PMID: 33671996 PMCID: PMC7922590 DOI: 10.3390/s21041367] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 02/06/2023]
Abstract
Organ-on-chip devices have provided the pharmaceutical and tissue engineering worlds much hope since they arrived and began to grow in sophistication. However, limitations for their applicability were soon realized as they lacked real-time monitoring and sensing capabilities. The users of these devices relied solely on endpoint analysis for the results of their tests, which created a chasm in the understanding of life between the lab the natural world. However, this gap is being bridged with sensors that are integrated into organ-on-chip devices. This review goes in-depth on different sensing methods, giving examples for various research on mechanical, electrical resistance, and bead-based sensors, and the prospects of each. Furthermore, the review covers works conducted that use specific sensors for oxygen, and various metabolites to characterize cellular behavior and response in real-time. Together, the outline of these works gives a thorough analysis of the design methodology and sophistication of the current sensor integrated organ-on-chips.
Collapse
Affiliation(s)
- Gabriel A. Clarke
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Brenna X. Hartse
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Amir Ehsan Niaraki Asli
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Mehrnoosh Taghavimehr
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Niloofar Hashemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 11365, Iran;
| | - Mehran Abbasi Shirsavar
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Vahid Nasirian
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Lionel J. Ouedraogo
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (G.A.C.); (B.X.H.); (A.E.N.A.); (M.T.); (M.A.S.); (R.M.); (N.A.); (V.N.); (L.J.O.)
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Guo J, Yu Y, Zhang D, Zhang H, Zhao Y. Morphological Hydrogel Microfibers with MXene Encapsulation for Electronic Skin. RESEARCH (WASHINGTON, D.C.) 2021; 2021:7065907. [PMID: 33763650 PMCID: PMC7953990 DOI: 10.34133/2021/7065907] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 04/13/2023]
Abstract
Electronic skins with distinctive features have attracted remarkable attention from researchers because of their promising applications in flexible electronics. Here, we present novel morphologically conductive hydrogel microfibers with MXene encapsulation by using a multi-injection coflow glass capillary microfluidic chip. The coaxial flows in microchannels together with fast gelation between alginate and calcium ions ensure the formation of hollow straight as well as helical microfibers and guarantee the in situ encapsulation of MXene. The resultant hollow straight and helical MXene hydrogel microfibers were with highly controllable morphologies and package features. Benefiting from the easy manipulation of the microfluidics, the structure compositions and the sizes of MXene hydrogel microfibers could be easily tailored by varying different flow rates. It was demonstrated that these morphologically conductive MXene hydrogel microfibers were with outstanding capabilities of sensitive responses to motion and photothermal stimulations, according to their corresponding resistance changes. Thus, we believe that our morphologically conductive MXene hydrogel microfibers with these excellent features will find important applications in smart flexible electronics especially electronic skins.
Collapse
Affiliation(s)
- Jiahui Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yunru Yu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Dagan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Han Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Department of Rheumatology Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
11
|
Jiang J, Shea G, Rastogi P, Kamperman T, Venner CH, Visser CW. Continuous High-Throughput Fabrication of Architected Micromaterials via In-Air Photopolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006336. [PMID: 33274554 PMCID: PMC11468713 DOI: 10.1002/adma.202006336] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Recent advances in optical coding, drug delivery, diagnostics, tissue engineering, shear-induced gelation, and functionally engineered rheology crucially depend on microparticles and microfibers with tunable shape, size, and composition. However, scalable manufacturing of the required complex micromaterials remains a long-standing challenge. Here in-air polymerization of liquid jets is demonstrated as a novel platform to produce microparticles and microfibers with tunable size, shape, and composition at high throughput (>100 mL h-1 per nozzle). The polymerization kinetics is quantitatively investigated and modeled as a function of the ink composition, the UV light intensity, and the velocity of the liquid jet, enabling engineering of complex micromaterials in jetting regimes. The size, morphology, and local chemistry of micromaterials are independently controlled, as highlighted by producing micromaterials using 5 different photopolymers as well as multi-material composites. Simultaneous optimization of these control parameters yields rapid fabrication of stimuli-responsive Janus fibers that function as soft actuators. Finally, in-air photopolymerization enables control over the curvature of printed droplets, as highlighted by high-throughput printing of microlenses with tunable focal distance. The combination of rapid processing and tunability in composition and architecture opens a new route toward applications of tailored micromaterials in soft matter, medicine, pharmacy, and optics.
Collapse
Affiliation(s)
- Jieke Jiang
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| | - Gary Shea
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteEnschede7500AEThe Netherlands
| | - Prasansha Rastogi
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| | - Tom Kamperman
- Department of Developmental BioEngineeringFaculty of Science and TechnologyTechnical Medical CentreUniversity of TwenteEnschede7500AEThe Netherlands
- Division of Engineering in MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMA02139USA
| | - Cornelis H. Venner
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| | - Claas Willem Visser
- Engineering Fluid Dynamics groupDepartment of Thermal and Fluid EngineeringFaculty of Engineering TechnologyUniversity of TwenteEnschede7500AEThe Netherlands
| |
Collapse
|
12
|
Duan X, Yu J, Zhu Y, Zheng Z, Liao Q, Xiao Y, Li Y, He Z, Zhao Y, Wang H, Qu L. Large-Scale Spinning Approach to Engineering Knittable Hydrogel Fiber for Soft Robots. ACS NANO 2020; 14:14929-14938. [PMID: 33073577 DOI: 10.1021/acsnano.0c04382] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Efforts to impart responsiveness to environmental stimuli in artificial hydrogel fibers are crucial to intelligent, shape-memory electronics and weavable soft robots. However, owing to the vulnerable mechanical property, poor processability, and the dearth of scalable assembly protocols, such functional hydrogel fibers are still far from practical usage. Herein, we demonstrate an approach toward the continuous fabrication of an electro-responsive hydrogel fiber by using the self-lubricated spinning (SLS) strategy. The polyelectrolyte inside the hydrogel fiber endows it with a fast electro-response property. After solvent exchange with triethylene glycol (TEG), the maximum tensile strength of the hydrogel fiber increases from 114 kPa to 5.6 MPa, far superior to those hydrogel fiber-based actuators reported previously. Consequently, the flexible and mechanical stable hydrogel fiber is knitted into various complex geometries on demand such as a crochet flower, triple knot, thread tube, pentagram, and hollow cage. Additionally, the electrochemical-responsive ionic hydrogel fiber is capable of acting as soft robots underwater to mimic biological motions, such as Mobula-like flapping, jellyfish-mimicking grabbing, sea worm-mimicking multi-degree of freedom movements, and human finger-like smart gesturing. This work not only demonstrates an example for the large-scale production of previous infeasible hydrogel fibers, but also provides a solution for the rational design and fabrication of hydrogel woven intelligent devices.
Collapse
Affiliation(s)
- Xiangyu Duan
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jingyi Yu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yaxun Zhu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zhiqiang Zheng
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Qihua Liao
- Department of Chemistry and Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yukun Xiao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yuanyuan Li
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zipan He
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yang Zhao
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Huaping Wang
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Liangti Qu
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
- Department of Chemistry and Department of Chemistry & Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
13
|
Effect of altering photocrosslinking conditions on the physical properties of alginate gels and the survival of photoencapsulated cells. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Sun T, Yao Y, Shi Q, Wang H, Dario P, Sun J, Huang Q, Fukuda T. Template-based fabrication of spatially organized 3D bioactive constructs using magnetic low-concentration gelation methacrylate (GelMA) microfibers. SOFT MATTER 2020; 16:3902-3913. [PMID: 32207757 DOI: 10.1039/c9sm01945f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Low concentrations of gelatin methacrylate (GelMA) microfibers are more favorable for cellular activity compared with high concentrations. However, applying low-concentration GelMA microfibers as building blocks for higher-order cellular assembly remains challenging owing to their poor mechanical properties. Herein, we report a new template-based method to solve this problem. GelMA microfibers (5%, w/v) containing magnetic nanoparticles were synthesized by a microfluidic spinning method. A 9 × 9 micropillar array surrounded by a magnetic substrate was constructed to form 8 × 8 microgaps arranged in a crisscross pattern as a magnetic template. In DMEM solution, magnetic attraction facilitated efficient arrangement of the microfibers according to the template with micron assembly accuracy, with a microgrid-like construct (microGC) generated after removing all micropillars. MicroGCs were shown to effectively support the activities of surface seeded or encapsulated cells and be flexibly constructed with various organized spatial patterns. Owing to the low mechanical property requirements of assembled microfibers and the easy-to-implement operation, the proposed method provides a versatile pathway for the assembly of various microfluidic spun microfibers. Furthermore, the resulting 3D microgrid-like cellular constructs with organized spatiotemporal composition offer a convenient platform for the study of tissue engineering.
Collapse
Affiliation(s)
- Tao Sun
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China.
| | - Yibing Yao
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China. and Department of Geriatric Oncology, Fourth Medical Center of PLA General Hospital, 100048, People's Republic of China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China. and Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China
| | - Paolo Dario
- BioRobotics Institute, Scuola Superiore Sant'Anna, 56026, Italy
| | - Junzhong Sun
- Department of Geriatric Oncology, Fourth Medical Center of PLA General Hospital, 100048, People's Republic of China
| | - Qiang Huang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, 100081, People's Republic of China
| | - Toshio Fukuda
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, 100081, People's Republic of China.
| |
Collapse
|
15
|
Mirani B, Pagan E, Shojaei S, Dabiri SMH, Savoji H, Mehrali M, Sam M, Alsaif J, Bhiladvala RB, Dolatshahi-Pirouz A, Radisic M, Akbari M. Facile Method for Fabrication of Meter-Long Multifunctional Hydrogel Fibers with Controllable Biophysical and Biochemical Features. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9080-9089. [PMID: 32053340 DOI: 10.1021/acsami.9b23063] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogel structures with microscale morphological features have extensive application in tissue engineering owing to their capacity to induce desired cellular behavior. Herein, we describe a novel biofabrication method for fabrication of grooved solid and hollow hydrogel fibers with control over their cross-sectional shape, surface morphology, porosity, and material composition. These fibers were further configured into three-dimensional structures using textile technologies such as weaving, braiding, and embroidering methods. Additionally, the capacity of these fibers to integrate various biochemical and biophysical cues was shown via incorporating drug-loaded microspheres, conductive materials, and magnetic particles, extending their application to smart drug delivery, wearable or implantable medical devices, and soft robotics. The efficacy of the grooved fibers to induce cellular alignment was evaluated on various cell types including myoblasts, cardiomyocytes, cardiac fibroblasts, and glioma cells. In particular, these fibers were shown to induce controlled myogenic differentiation and morphological changes, depending on their groove size, in C2C12 myoblasts.
Collapse
Affiliation(s)
- Bahram Mirani
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Erik Pagan
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Shahla Shojaei
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Seyed Mohammad Hossein Dabiri
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Ontario M5S 3G9 , Canada
- Toronto General Research Institute , University Health Network , Toronto , Ontario M5G 2M9 , Canada
| | - Mehdi Mehrali
- Department of Health Technology, Institute of Biotherapeutic Engineering and Drug Targeting, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , Kongens Lyngby 2800 , Denmark
| | - Mahshid Sam
- Nanoscale Transport, Mechanics & Materials Laboratory, Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Jehad Alsaif
- Nanoscale Transport, Mechanics & Materials Laboratory, Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Rustom B Bhiladvala
- Centre for Advanced Materials and Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
- Nanoscale Transport, Mechanics & Materials Laboratory, Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Institute of Biotherapeutic Engineering and Drug Targeting, Center for Intestinal Absorption and Transport of Biopharmaceuticals , Technical University of Denmark , Kongens Lyngby 2800 , Denmark
| | - Milica Radisic
- Institute of Biomaterials and Biomedical Engineering , University of Toronto , Toronto , Ontario M5S 3G9 , Canada
- Toronto General Research Institute , University Health Network , Toronto , Ontario M5G 2M9 , Canada
- Department of Chemical Engineering and Applied Chemistry , University of Toronto , Toronto , Ontario M5S 3E5 , Canada
| | - Mohsen Akbari
- Laboratory for Innovations in Microengineering (LiME), Department of Mechanical Engineering , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC) , University of Victoria , Victoria , British Columbia V8P 5C2 , Canada
| |
Collapse
|
16
|
Niaraki Asli AE, Guo J, Lai PL, Montazami R, Hashemi NN. High-Yield Production of Aqueous Graphene for Electrohydrodynamic Drop-on-Demand Printing of Biocompatible Conductive Patterns. BIOSENSORS-BASEL 2020; 10:bios10010006. [PMID: 31963492 PMCID: PMC7167870 DOI: 10.3390/bios10010006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/08/2020] [Accepted: 01/15/2020] [Indexed: 11/16/2022]
Abstract
Presented here is a scalable and aqueous phase exfoliation of graphite to high yield and quality of few layer graphene (FLG) using Bovine Serum Albomine (BSA) and wet ball milling. The produced graphene ink is tailored for printable and flexible electronics, having shown promising results in terms of electrical conductivity and temporal stability. Shear force generated by steel balls which resulted in 2–3 layer defect-free graphene platelets with an average size of hundreds of nm, and with a concentration of about 5.1 mg/mL characterized by Raman spectroscopy, atomic force microscopy (AFM), transmittance electron microscopy (TEM) and UV-vis spectroscopy. Further, a conductive ink was prepared and printed on flexible substrate (Polyimide) with controlled resolution. Scanning electron microscopy (SEM) and Profilometry revealed the effect of thermal annealing on the prints to concede consistent morphological characteristics. The resulted sheet resistance was measured to be Rs = 36.75 Ω/sqr for prints as long as 100 mm. Printable inks were produced in volumes ranging from 20 mL to 1 L, with potential to facilitate large scale production of graphene for applications in biosensors, as well as flexible and printable electronics.
Collapse
Affiliation(s)
- Amir Ehsan Niaraki Asli
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (A.E.N.A.); (J.G.); (P.L.L.); (R.M.)
| | - Jingshuai Guo
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (A.E.N.A.); (J.G.); (P.L.L.); (R.M.)
| | - Pei Lun Lai
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (A.E.N.A.); (J.G.); (P.L.L.); (R.M.)
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (A.E.N.A.); (J.G.); (P.L.L.); (R.M.)
| | - Nicole N. Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, USA; (A.E.N.A.); (J.G.); (P.L.L.); (R.M.)
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, USA
- Correspondence:
| |
Collapse
|