1
|
Wang L, Zhang M, Zhang M, Sun Z, Ni Z, Yin Y, Wu D, Yuan Q. Construction of carbon-doped iron-based nanozyme for efficient adsorption and degradation to synergistic removal of aflatoxin B 1. Colloids Surf B Biointerfaces 2024; 245:114297. [PMID: 39378705 DOI: 10.1016/j.colsurfb.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
The multifunctional composites Fe3O4/GO/NH2-MIL-53(Fe) with excellent adsorption-degradation performance was prepared for the removal of Aflatoxin B1 (AFB1). The adsorption function of Fe3O4/GO/NH2-MIL-53(Fe) was based on the large specific surface area and abundant adsorption sites. The degradation function of Fe3O4/GO/NH2-MIL-53(Fe) was based on the activation of H2O2 by the catalytic active center formed by the coordination of metal ions and oxygen-containing groups in the system, resulting in hydroxyl radicals (·OH), superoxide anion radicals (O2-) and singlet oxygen (1O2). The adsorption of nanozyme accelerated the degradation reaction process, and the adsorption site was further exposed as the degradation process progressed. The synergistic effect realized the efficient removal of AFB1. Construction of Fe3O4/GO/NH2-MIL-53(Fe) as the carbon-doped iron-based nanozyme provided novel approaches of the removal for risks control of AFB1. Accompanied by the AFB1 adsorption, the advanced oxidation of nanozyme to the AFB1 degradation provided a promising way for the synergistic removal of AFB1.
Collapse
Affiliation(s)
- Le Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Mengyue Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Manyu Zhang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhongke Sun
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zifu Ni
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yanli Yin
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang 453001, China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
2
|
Wang L, Liu Z, Yao L, Liu S, Wang Q, Qu H, Wu Y, Mao Y, Zheng L. A Bioinspired Single-Atom Fe Nanozyme with Excellent Laccase-Like Activity for Efficient Aflatoxin B 1 Removal. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400629. [PMID: 38682737 DOI: 10.1002/smll.202400629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
The applications of natural laccases are greatly restricted because of their drawbacks like poor biostability, high costs, and low recovery efficiency. M/NC single atom nanozymes (M/NC SAzymes) are presenting as great substitutes due to their superior enzyme-like activity, excellent selectivity and high stability. In this work, inspired by the catalytic active center of natural enzyme, a biomimetic Fe/NC SAzyme (Fe-SAzyme) with O2-Fe-N4 coordination is successfully developed, exhibiting excellent laccase-like activity. Compared with their natural counterpart, Fe-SAzyme has shown superior catalytic efficiency and excellent stability under a wide range of pH (3.0-9.0), temperature (4-80 °C) and NaCl strength (0-300 mm). Interestingly, density functional theory (DFT) calculations reveal that the high catalytic performance is attributed to the activation of O2 by O2-Fe-N4 sites, which weakened the O─O bonds in the oxygen-to-water oxidation pathway. Furthermore, Fe-SAzyme is successfully applied for efficient aflatoxin B1 removal based on its robust laccase-like catalytic activity. This work provides a strategy for the rational design of laccase-like SAzymes, and the proposed catalytic mechanism will help to understand the coordination environment effect of SAzymes on laccase-like catalytic processes.
Collapse
Affiliation(s)
- Lei Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Zixuan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lili Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Shuai Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Qiuping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Hao Qu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yuen Wu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yu Mao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Lei Zheng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| |
Collapse
|
3
|
Lu N, Liu F. Tempospatially Confined Catalytic Membranes for Advanced Water Remediation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311419. [PMID: 38345861 DOI: 10.1002/adma.202311419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The application of homogeneous catalysts in water remediation is limited by their excessive chemical and energy input, weak regenerability, and potential leaching. Heterogeneous catalytic membranes (CMs) offer a new approach to facilitate efficient, selective, and continuous pollutant degradation. Thus, integrating membranes and continuous filtration with heterogeneous advanced oxidation processes (AOPs) can promote thermodynamic and kinetic mass transfers in spatially confined intrapores and facilitate diffusion-reaction processes. Despite the remarkable advantages of heterogeneous CMs, their engineering application is practically restricted due to the fuzzy design criteria for specific applications. Herein, the recent advances in CMs for advanced water remediation are critically reviewed and the design flow for tempospatially confined CMs is proposed. Further, state-of-the-art CM materials and their catalytic mechanisms are reviewed, after which the tempospatial confinement mechanisms comprising the nanoconfinement effect, interface effect, and kinetic mass transfer are emphasized, thus clarifying their roles in the construction and performance optimization of CMs. Additionally, the fabrication methods for CMs based on their catalysts and pore sizes are summarized and an overview of their application and performance evaluations is presented. Finally, future directions for CMs in materials research and water treatment, are presented.
Collapse
Affiliation(s)
- Na Lu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, No. 1219 Zhongguan West Rd, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, 19 A Yuquan Rd, Shijingshan District, Beijing, 100049, China
| |
Collapse
|
4
|
Kang M, Yao Y, Yuan B, Zhang S, Oderinde O, Zhang Z. A sensitive bimetallic copper/bismuth metal-organic frameworks-based aptasensors for zearalenone detection in foodstuffs. Food Chem 2024; 437:137827. [PMID: 37897827 DOI: 10.1016/j.foodchem.2023.137827] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
Electrochemical aptasensors have emerged as promising platforms for effectivelydetection of various target analytes. Here, we developed a sensitive and selective electrochemical aptasensor for zearalenone (ZEN) determination based on a bimetallic organic framework (CuBi-BPDC). The results of HR-TEM, FE-SEM, XPS, etc. indicate the CuBi-BPDC possessing mixed nodes of Cu(II) and Bi(III) and multilayered nanosheets bearing nanoparticles. Due to its improved electrochemical activity and strong affinity for aptamers, the CuBi-BPDC-based aptasensor obtains a low limit of detection of 0.19 fg mL-1 (IUPAC S/N = 3) in a wide range of 1 fg mL-1-10 ng mL-1 via EIS and 0.73 fg mL-1 from 0 fg mL-1 to 1 × 107 fg mL-1 via DPV for ZEN detection, respectively. Moreover, the excellent selectivity allows this aptasensor to specifically identify ZEN from other interfering substances in raw milk and rice, indicating the potential applicability of the CuBi-BPDC-based aptasensor in sensitive and selective detection of ZEN.
Collapse
Affiliation(s)
- Mengmeng Kang
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China.
| | - Yu Yao
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China
| | - Beibei Yuan
- School of Materials Science and Engineering, Henan Normal University, No. 46, East of Construction Road, Xinxiang, Henan Province 453007, China
| | - Shuai Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China
| | - Olayinka Oderinde
- Department of Chemistry, Faculty of Natural and Applied Sciences, Lead City University, Ibadan, Nigeria
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 166, Science Avenue, Zhengzhou, Henan Province 450002, China.
| |
Collapse
|
5
|
Zabeti N, Keyhanizadeh AK, Faraji AR, Soltani M, Saeedi S, Tehrani E, Hekmatian Z. Activate hydrogen peroxide for facile and efficient removal of aflatoxin B 1 by magnetic Pd-chitosan/rice husk-hercynite biocomposite and its impact on the quality of edible oil. Int J Biol Macromol 2024; 254:127897. [PMID: 37956815 DOI: 10.1016/j.ijbiomac.2023.127897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Due to the high heat and chemical stability of aflatoxin B1 (AFB1) with significant impacts on humans/animals and thus it needs to develop a practical and efficient approach for its removal. Herein, we fabricated a magnetic Pd-chitosan/glutaraldehyde/rice husk/hercynite (Pd@CRH-x) composite for efficient detoxification of AFB1. The Pd@CRH-x was obtained by a simple wet-impregnation procedure of CRH complexes followed by pyrolysis. The results confirmed that the unique structure of Pd@CRH-400 effectively improves dispersity, and mass transfer subsequently enhancing removal efficiency in batch conditions. Results indicate 94.30 % of AFB1 was efficiently degraded by 0.1 mg mL-1 Pd@CRH-400 with 4.0 mM H2O2 at wide pH ranges (3.0-10) at 60 min with a decomposition rate constant of 0.0467 min-1. Besides, by comparing the quality factors of edible oil (i.e., acid value, peroxide value, iodine value, moisture, volatile matters, anisidine value, and fatty acid composition), it was confirmed that there was no obvious influence on the physicochemical indicators of edible oil after removal/storage process. Subsequently, the systematic kinetic study and AFB1 degradation mechanism were presented. This study provides a new strategy for the efficient construction of controllable and dispersed Pd-based catalysts using CRH-x as a spatial support for alleviating the risk of toxic pollutants.
Collapse
Affiliation(s)
- N Zabeti
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A K Keyhanizadeh
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A R Faraji
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - M Soltani
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - S Saeedi
- Department of Food Sciences and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - E Tehrani
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Z Hekmatian
- Department of Chemistry, Payam Noor University, Hamedan, Iran
| |
Collapse
|
6
|
Meng X, Sang M, Guo Q, Li Z, Zhou Q, Sun X, Zhao W. Target-Induced Electrochemical Sensor Based on Foldable Aptamer and MoS 2@MWCNTs-PEI for Enhanced Detection of AFB1 in Peanuts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16422-16431. [PMID: 37934460 DOI: 10.1021/acs.langmuir.3c02216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Herein, a sensitive and selective electrochemical sensor based on aptamer folding was constructed to detect aflatoxin B1 (AFB1) in peanuts. Specifically, polyethylenimine-functionalized multiwalled carbon nanotubes modified with molybdenum disulfide (MoS2@MWCNTs-PEI) were used as the electrode matrix to enable a large specific surface area, which were characterized by the Randles-Sevcik equation. Additionally, AuNPs were used to immobilize the aptamer via the Au-S covalent bond and provide a favorable microenvironment for signal enhancement. Methylene blue (MB) was modified at the proximal 3' termini of the aptamer as the capture probe, while the signal transduction of the sensor was obtained through changes in conformation and position of MB induced by the binding between AFB1 and the probe. Changes in spatial conformation could be recorded by electrochemical methods more readily. This electrochemical aptasensor demonstrated remarkable sensitivity to AFB1 with an extensive detection range (1 pg/mL to 100 ng/mL) and a lower limit detection (1.0 × 10-3 ng/mL). Moreover, using the constructed aptasensor, AFB1 was identified successfully in peanut samples, with recoveries ranging from 95.83 to 107.53%, illustrating its potential use in determining AFB1 in food.
Collapse
Affiliation(s)
- Xiaoya Meng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Maosheng Sang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Qi Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Zhongyu Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Quanlong Zhou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Wenping Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
- Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| |
Collapse
|
7
|
Faraji AR, Khoramdareh NB, Falahati F, Jafari S, Monfared SA, Faghih A. Superparamagnetic MnFe alloy composite derived from cross-bindered of chitosan/rice husk waste/iron aluminate spinel hercynite for rapid catalytic detoxification of aflatoxin B1: Structure, performance and synergistic mechanism. Int J Biol Macromol 2023; 234:123709. [PMID: 36801216 DOI: 10.1016/j.ijbiomac.2023.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
The contamination of foodstuffs with aflatoxins B1 (AFB1) as carcinogen/mutagens toxin produced by Aspergillus fungi that are a major threat to the economy, safe food supply, and human health. To, we present a facile wet-impregnation and co-participation strategies for the construction of a novel superparamagnetic MnFe biocomposite (MF@CRHHT), in which dual metal oxides MnFe were anchored in/on agricultural/forestry residues (chitosan/rice husk waste/hercynite hybrid nanoparticles) and applied for rapid AFB1 detoxification by destroying in a non-thermal/microbial way. Structure, and morphology were comprehensively characterized by various spectroscopic analyses. The AFB1 removal in PMS/MF@CRHHT system followed pseudo-first-order kinetics, and exhibited excellent efficiency (99.3 % in 20 min and 83.1 % in 5.0 min) over a broad pH range (5.0-10.0). Importantly, relationship between high efficiency and physical-chemical properties, and mechanistic insight reveals that the synergistic effect could be related to the formation MnFe bond in MF@CRHHT and then mutual electron transfer between them to enhanced electron density and generate reactive oxygen species. An AFB1 decontamination pathway proposed was based on the free radical quenching experiments and analysis of the degradation intermediates. Thus, the MF@CRHHT can be applied as an efficient, cost-effective, recoverable, environment-friendly and highly efficient biomass-based activator for remediate pollution.
Collapse
Affiliation(s)
- A R Faraji
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - N Bakhshi Khoramdareh
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - F Falahati
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - S Jafari
- Department of Organic Chemistry, Faculty of Pharmaceutical Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - S Arbabi Monfared
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - A Faghih
- Department of Food Science and Technology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
8
|
Lu T, Fu C, Xiong Y, Zeng Z, Fan Y, Dai X, Huang X, Ge J, Li X. Biodegradation of Aflatoxin B 1 in Peanut Oil by an Amphipathic Laccase-Inorganic Hybrid Nanoflower. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3876-3884. [PMID: 36791339 DOI: 10.1021/acs.jafc.2c08148] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) contamination is an important issue for the safety of edible oils. Enzymatic degradation is a promising approach for removing mycotoxins in a specific, efficient, and green manner. However, enzymatic degradation of mycotoxins in edible oil is challenging as a result of the low activity and stability of the enzyme. Herein, a novel strategy was proposed to degrade AFB1 in peanut oil using an amphipathic laccase-inorganic hybrid nanoflower (Lac NF-P) as a biocatalyst. Owing to the improved microenvironment of the enzymatic reaction and the enhanced stability of the enzyme structure, the proposed amphipathic Lac NF-P showed 134- and 3.2-fold increases in the degradation efficiency of AFB1 in comparison to laccase and Lac NF, respectively. AFB1 was removed to less than 0.96 μg/kg within 3 h when using Lac NF-P as a catalyst in the peanut oil, with the AFB1 concentration ranging from 50 to 150 μg/kg. Moreover, the quality of the peanut oil had no obvious change, and no leakage of catalyst was observed after the treatment of Lac NF-P. In other words, our study may open an avenue for the development of a novel biocatalyst for the detoxification of mycotoxins in edible oils.
Collapse
Affiliation(s)
- Tianying Lu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Caicai Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Zheling Zeng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Yunkai Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiao Dai
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| | - Jun Ge
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoyang Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, People's Republic of China
| |
Collapse
|
9
|
Loi M, Logrieco AF, Pusztahelyi T, Leiter É, Hornok L, Pócsi I. Advanced mycotoxin control and decontamination techniques in view of an increased aflatoxin risk in Europe due to climate change. Front Microbiol 2023; 13:1085891. [PMID: 36762096 PMCID: PMC9907446 DOI: 10.3389/fmicb.2022.1085891] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023] Open
Abstract
Aflatoxins are toxic secondary metabolites produced by Aspergillus spp. found in staple food and feed commodities worldwide. Aflatoxins are carcinogenic, teratogenic, and mutagenic, and pose a serious threat to the health of both humans and animals. The global economy and trade are significantly affected as well. Various models and datasets related to aflatoxins in maize have been developed and used but have not yet been linked. The prevention of crop loss due to aflatoxin contamination is complex and challenging. Hence, the set-up of advanced decontamination is crucial to cope with the challenge of climate change, growing population, unstable political scenarios, and food security problems also in European countries. After harvest, decontamination methods can be applied during transport, storage, or processing, but their application for aflatoxin reduction is still limited. Therefore, this review aims to investigate the effects of environmental factors on aflatoxin production because of climate change and to critically discuss the present-day and novel decontamination techniques to unravel gaps and limitations to propose them as a tool to tackle an increased aflatoxin risk in Europe.
Collapse
Affiliation(s)
- Martina Loi
- Institute of Sciences of Food Production, National Research Council, Bari, Italy,*Correspondence: Martina Loi, ✉
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Tünde Pusztahelyi
- Central Laboratory of Agricultural and Food Products, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary,ELRN-UD Fungal Stress Biology Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
10
|
Dong K, Xu C, Ren J, Qu. X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed Engl 2022; 61:e202208757. [DOI: 10.1002/anie.202208757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Kai Dong
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Chen Xu
- College of Chinese Medicinal Materials Jilin Agricultural University Changchun Jilin 130118 China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| | - Xiaogang Qu.
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230029 P. R. China
| |
Collapse
|
11
|
Dong K, Xu C, Ren J, Qu X. Chiral Nanozymes for Enantioselective Biological Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kai Dong
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| | - Chen Xu
- Jilin Agricultural University College of Chinese Medicinal Materials, CHINA
| | - Jinsong Ren
- Changchun Institute of Applied Chemistry Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization renmin street, #5625 130022 Changchun CHINA
| | - Xiaogang Qu
- Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences State Key Laboratory of Rare Earth Resource Utilization CHINA
| |
Collapse
|
12
|
Wei J, Wu X, Wu C, Hou F, Wu L, Huang H. Metal-organic frameworks with peroxidase-like activity for efficient removal of aflatoxin B 1. Food Chem 2022; 378:132037. [PMID: 35045371 DOI: 10.1016/j.foodchem.2021.132037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/24/2021] [Accepted: 12/31/2021] [Indexed: 12/30/2022]
Abstract
Aflatoxin B1 (AFB1), a naturally produced toxin existing in major food crops, is highly toxic and carcinogenic to human and animals. In this study, a reusable material, Pd@PCN-222 with great adsorption performance and peroxidase-like activity was synthesized for the removal of AFB1. Pd@PCN-222 exhibited great adsorption performance owing to hierarchical porous structure. Pd@PCN-222 also could catalyze the AFB1 in the presence of H2O2 due to the Fe-tetrakis (4-carboxyphenyl) porphyrin and Pd as effective peroxidase active site, which improved the removal efficiency of AFB1. Pd@PCN-222 was applied for the removal of AFB1 with a removal rate of 96.52% in 2 h. Owing to the advantages of high removal efficiency and reusability, Pd@PCN-222 had great application potential in AFB1 removal.
Collapse
Affiliation(s)
- Jinhui Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Xiangchuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Fan Hou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; College of Pharmaceutical Science, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
13
|
Cevallos-Mendoza J, Amorim CG, Rodríguez-Díaz JM, Montenegro MDCBSM. Removal of Contaminants from Water by Membrane Filtration: A Review. MEMBRANES 2022; 12:membranes12060570. [PMID: 35736277 PMCID: PMC9229562 DOI: 10.3390/membranes12060570] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 12/07/2022]
Abstract
Drinking water sources are increasingly subject to various types of contamination due to anthropogenic factors and require proper treatment to remove disease-causing agents. Public drinking water systems use different treatment methods to provide safe and quality drinking water to populations. However, they are ineffective in removing contaminants that are considered a danger to the environment and therefore to humans. Several alternative treatment processes have been proposed, such as membrane filtration, as final purification methods. This paper aims to summarize the type of pollutant compounds, filtration processes, and membranes that have been most studied in this area with particular emphasis on how the modification of membranes, either the manufacturing process or the incorporation of nanomaterials, influences their performance.
Collapse
Affiliation(s)
- Jaime Cevallos-Mendoza
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Instituto de Admisión y Nivelación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
| | - Célia G. Amorim
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: (C.G.A.); (J.M.R.-D.); (M.d.C.B.S.M.M.)
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Departamento de Procesos Químicos, Facultad de Ciencias Matemáticas, Físicas y Químicas, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador
- Correspondence: (C.G.A.); (J.M.R.-D.); (M.d.C.B.S.M.M.)
| | - Maria da Conceição B. S. M. Montenegro
- LAQV-REQUIMTE/Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Correspondence: (C.G.A.); (J.M.R.-D.); (M.d.C.B.S.M.M.)
| |
Collapse
|
14
|
Abedanzadeh S, Moosavi-Movahedi Z, Sheibani N, Moosavi-Movahedi AA. Nanozymes: Supramolecular perspective. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Ling P, Gao X, Sun X, Yang P, Gao F. Versatile metal-organic frameworks as a catalyst and an indicator of nitric oxide. J Mater Chem B 2022; 10:3817-3823. [PMID: 35481965 DOI: 10.1039/d2tb00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The imaging of nitric oxide (NO) and its donors is crucial to explore NO-related physiological and pathological processes. In this work, we demonstrate the use of Cu-based metal-organic frameworks (Cu-MOFs) as nanoprobes for NO detection and as a catalyst for the generation of NO from the biologically occurring substrate, S-nitrosothiols (RSNOs). The paramagnetic Cu2+ in the MOFs could quench the luminescence of triphenylamine; Cu-MOFs only exhibited weak emission at 450 nm. Upon the addition of NO, the paramagnetic Cu2+ was reduced to diamagnetic Cu+, and thus the luminescence was recovered directly. Cu-MOFs exhibited high selectivity for other species in the reaction system, including NO2-, H2O2, AA, NO3- and 1O2. More significantly, the Cu+ can react with s-nitrosoglutathione (GSNO), s-nitrosocysteine (CysNO), and s-nitrosocysteamine (CysamNO) to generate NO and then oxidize to Cu2+-MOFs with quenched luminescence, respectively, and thus the catalysis is inhibited, noted as a self-controlled process. The Cu-MOFs catalyst was confirmed by powder X-ray diffraction to remain structurally intact in aqueous environments. The Cu-MOFs have been successfully employed in the biological imaging of NO in living cells. The bifunctional MOFs could offer a novel platform for the real-time monitoring of NO species, provide potential for exploiting NO in cancer therapy and improve the methodologies to elucidate the NO-related biological processes.
Collapse
Affiliation(s)
- Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xianping Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Xinyu Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Pei Yang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China.
| |
Collapse
|
16
|
Ma L, Han X, Zhang S, Zeng Z, Song R, Chen X, Hou D, Wang L. Artificial Monovalent Metal Ion-Selective Fluidic Devices Based on Crown Ether@Metal-Organic Frameworks with Subnanochannels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13611-13621. [PMID: 35259870 DOI: 10.1021/acsami.1c24573] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Precise regulation of ion transport through nanoscale pores will profoundly impact diverse fields from separation to energy conversion but is still challenging to achieve in artificial ion channels. Herein, inspired by the exquisite ion selectivity of biological Na+ channels, we have successfully fabricated hierarchically grown metal-organic frameworks (MOFs) on an asymmetrical substrate assisted by atomically thin nanoporous graphene. Efficient separation of monovalent metal ions is realized by encapsulating 18-crown-6 into MOF crystals. The resulting 18-crown-6@ZIF-67/ZIF-8 device, with subnanochannels and specific K+ binding sites, shows an ultrahigh Li+ conductivity of 1.46 × 10-2 S cm-1 and selectivities of 9.56 and 6.43 for Li+/K+ and Na+/K+, respectively. The Li+ conductivity is around 1-2 orders of magnitude higher than reported values for the other MOF materials. It is the first time that MOFs with subnanochannels realize selective transport of Na+ (ionic diameter of 1.9 Å) over K+ (2.6 Å) based on subangstrom differences in their ionic diameter. Our work opens new avenues to develop crown ether@MOF platforms toward efficient ion transistors, fluidic logic devices, and biosensors.
Collapse
Affiliation(s)
- Liang Ma
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Xiao Han
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Shengping Zhang
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| | - Zhiyang Zeng
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Ruiyang Song
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Xiaobo Chen
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Dandan Hou
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
| | - Luda Wang
- Institute of microelectronics, School of Electronics Engineering and Computer Science, Peking University, Beijing 100871, PR China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, PR China
| |
Collapse
|
17
|
Pérez-Gómez EO, García-Rosales G, Longoria-Gándara LC, Gómez-Vilchis JC. Obtention of biochar-Ca nanoparticles using Citrus tangerina׃ A morphological, surface and study remotion of Aflatoxin AFB1. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127339. [PMID: 34879555 DOI: 10.1016/j.jhazmat.2021.127339] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
This work presents the formation of biochar with calcium nanoparticles (NPsCa) in function of pyrolysis time (C10, C30, C60, C120 and C180 min) using the Citrus tangerina peel and their evaluation in the remotion of Aflatoxin B1 (AFB1) in aqueous phase. Firstly, the Citrus tangerina was studied by Thermogravimetric analysis to determine the optimal temperature (TGA), obtaining a result of 600 °C. The biochar (NPsCa) were characterized by Scanning Electronic Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS), as well as surface properties including the identification of functional groups by Fourier Transform Infrared Spectrometry (FTIR), and energetic states through the X-Ray Photoelectron Spectroscopy (XPS). The adsorption studies were carried out on the different materials and later, the experimental data was adjusted to different mathematical models, obtaining the best fit of the kinetic data to the Ho-McKay model, whilst the adsorption isotherms were adjusted to the model of Langmuir, which indicates that the Aflatoxin B1 adsorption process is carried out through a monolayer chemisorption process with maximum sorption capacities (qm) ranging between 15.72 and 63.22 μg g-1 with the 180th minute being the adequate time to obtain the carbon with the best surface properties and the best adsorption capacity. Additionally, it was observed that each material can be reused up to five times in accordance with the results from the reuse cycles.
Collapse
Affiliation(s)
- E O Pérez-Gómez
- TECNM/Instituto Tecnológico de Toluca/Departamento de posgrado, Avenida Tecnológico 100 s/n. Colonia Agrícola, Bellavista, La Virgen, 52149 Metepec, Mexico
| | - G García-Rosales
- TECNM/Instituto Tecnológico de Toluca/Departamento de posgrado, Avenida Tecnológico 100 s/n. Colonia Agrícola, Bellavista, La Virgen, 52149 Metepec, Mexico.
| | - L C Longoria-Gándara
- Division for Latin America/Department of Technical Cooperation International Atomic Energy Agency, Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, Austria
| | - J C Gómez-Vilchis
- TECNM/Instituto Tecnológico de Toluca/Departamento de posgrado, Avenida Tecnológico 100 s/n. Colonia Agrícola, Bellavista, La Virgen, 52149 Metepec, Mexico
| |
Collapse
|
18
|
Li M, Qian ZJ, Peng CF, Wei XL, Wang ZP. Ultrafast Ratiometric Detection of Aflatoxin B1 Based on Fluorescent β-CD@Cu Nanoparticles and Pt 2+ Ions. ACS APPLIED BIO MATERIALS 2022; 5:285-294. [PMID: 35014825 DOI: 10.1021/acsabm.1c01079] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rapid detection of aflatoxin B1 (AFB1) is a very important task in food safety monitoring. However, it is still challenging to achieve highly sensitive detection without antibody or aptamer biomolecules. In this work, a rapid detection of aflatoxin B1 was achieved using a ratiometric fluorescence probe without antibody or aptamer for the first time. In the ratiometric fluorescence system, the fluorescence emission of AFB1 at 433 nm was significantly enhanced due to the β-cyclodextrin-AFB1 host-guest interaction and the complexation of AFB1 and Pt2+. Meanwhile, the inclusion of aflatoxin B1 also quenched the fluorescence emission of β-CD@Cu nanoparticles (NPs) at 650 nm based on inner filter effect mechanism. On the basis of the above effects, the ratiometric detection of aflatoxin B1 was achieved in the range of 0.03-10 ng/mL with a low detection limit of 0.012 ng/mL (3σ/s). In addition, the β-CD@Cu NPs based nanoprobe could achieve stable response within 1 min to AFB1. The above ratiometric detection also demonstrated excellent application potential in the rapid on-site detection of AFB1 in food due to the advantages of convenience, rapidness, and high accuracy.
Collapse
Affiliation(s)
- Min Li
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhi-Juan Qian
- Nanjing Customs District Light Industry Products and Children's Products Inspection Center, Yangzhou 225009, P. R. China
| | - Chi-Fang Peng
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| | - Xin-Lin Wei
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, 200240, P. R. China
| | - Zhou-Ping Wang
- State Key Lab of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
19
|
Lu Q, Liu Y, Liu Q, Liu J, Yang Q, Tang J, Meng Z, Su Q, Li S, Luo Y. Visual detection of aflatoxin B1 and zearalenone via activating a new catalytic reaction of “naked” DNAzyme. RSC Adv 2022; 12:32102-32109. [DOI: 10.1039/d2ra05683f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
Abstract
It was found for the first time that the catalytic activity of “naked” DNAzyme can be modulated by aflatoxins and zearalenone to generate different color changes, which could be applied to the visual detection for the above two analytes.
Collapse
Affiliation(s)
- Qinrui Lu
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Yue Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Qiao Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Jun Liu
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Qin Yang
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Jiancai Tang
- Department of Basic Medical Sciences, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Zhijun Meng
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Qiang Su
- Department of Pharmacy, The Second Clinical Medical College of North Sichuan Medical College, Nanchong Central Hospital, Nanchong 637000, P. R. China
- Nanchong Key Laboratory of Individualized Drug Therapy, Nanchong 637000, P. R. China
| | - Shengmao Li
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| | - Yingping Luo
- Medical Imaging Key Laboratory of Sichuan Province, North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Pharmacology, North Sichuan Medical College, Nanchong 637100, P. R. China
| |
Collapse
|
20
|
Kumar V, Bahuguna A, Ramalingam S, Dhakal G, Shim JJ, Kim M. Recent technological advances in mechanism, toxicity, and food perspectives of enzyme-mediated aflatoxin degradation. Crit Rev Food Sci Nutr 2021; 62:5395-5412. [PMID: 34955062 DOI: 10.1080/10408398.2021.2010647] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Aflatoxins are carcinogenic secondary metabolites produced by Aspergillus section Flavi that contaminates a wide variety of food and feed products and is responsible for serious health and economic consequences. Fermented foods are prepared with a wide variety of substrates over a long fermentation time and are thus vulnerable to contamination by aflatoxin-producing fungi, leading to the production of aflatoxin B1. The mitigation and control of aflatoxin is currently a prime focus for developing safe aflatoxin-free food. This review summarizes the role of major aflatoxin-degrading enzymes such as laccase, peroxidase, and lactonase, and microorganisms in the context of their application in food. A putative mechanism of enzyme-mediated aflatoxin degradation and toxicity evaluation of the degraded products are also extensively discussed to evaluate the safety of degradation processes for food applications. The review also describes aflatoxin-degrading microorganisms isolated from fermented products and investigates their applicability in food as aflatoxin preventing agents. Furthermore, a summary of recent technological advancements in protein engineering, nanozymes, in silico and statistical optimization approaches are explored to improve the industrial applicability of aflatoxin-degrading enzymes.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Ganesh Dhakal
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
21
|
Ali SS, Al-Tohamy R, Koutra E, Moawad MS, Kornaros M, Mustafa AM, Mahmoud YAG, Badr A, Osman MEH, Elsamahy T, Jiao H, Sun J. Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148359. [PMID: 34147795 DOI: 10.1016/j.scitotenv.2021.148359] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 05/12/2023]
Abstract
The high demand for sufficient and safe food, and continuous damage of environment by conventional agriculture are major challenges facing the globe. The necessity of smart alternatives and more sustainable practices in food production is crucial to confront the steady increase in human population and careless depletion of global resources. Nanotechnology implementation in agriculture offers smart delivery systems of nutrients, pesticides, and genetic materials for enhanced soil fertility and protection, along with improved traits for better stress tolerance. Additionally, nano-based sensors are the ideal approach towards precision farming for monitoring all factors that impact on agricultural productivity. Furthermore, nanotechnology can play a significant role in post-harvest food processing and packaging to reduce food contamination and wastage. In this review, nanotechnology applications in the agriculture and food sector are reviewed. Implementations of nanotechnology in agriculture have included nano- remediation of wastewater for land irrigation, nanofertilizers, nanopesticides, and nanosensors, while the beneficial effects of nanomaterials (NMs) in promoting genetic traits, germination, and stress tolerance of plants are discussed. Furthermore, the article highlights the efficiency of nanoparticles (NPs) and nanozymes in food processing and packaging. To this end, the potential risks and impacts of NMs on soil, plants, and human tissues and organs are emphasized in order to unravel the complex bio-nano interactions. Finally, the strengths, weaknesses, opportunities, and threats of nanotechnology are evaluated and discussed to provide a broad and clear view of the nanotechnology potentials, as well as future directions for nano-based agri-food applications towards sustainability.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Mohamed S Moawad
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Nanoscience Program, Zewail City of Science and Technology, 6th of October, Giza 12588, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504 Patras, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504 Patras, Greece
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, Egypt
| | - Mohamed E H Osman
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
22
|
|
23
|
Ma F, Cai X, Mao J, Yu L, Li P. Adsorptive removal of aflatoxin B 1 from vegetable oils via novel adsorbents derived from a metal-organic framework. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125170. [PMID: 33951856 DOI: 10.1016/j.jhazmat.2021.125170] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/09/2021] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
Vegetable oils are essential daily diet, but they are simply contaminated with aflatoxin B1 (AFB1), a serious toxic compound to human health. Adsorption method due to the easy operation, high efficiency and low costing is set to become a main detoxification technique for AFB1. Unfortunately, previous reported adsorbents were rarely used for detoxification in food industry since they cannot meet the criteria of large-scale production of edible oils. Metal-organic frameworks (MOFs) with unique textural properties could be favorable precursors for synthesis of advanced materials. In this research, three kinds of Cu-BTC MOF-derived porous materials were prepared by different carbonization temperature and characterized by XRD, SEM, FT-IR, and nitrogen adsorption-desorption techniques. Isotherm and kinetic studies on the adsorption behaviour of AFB1 onto the three porous carbonaceous materials have been systematically conducted. The results revealed that the porous carbonaceous materials could act as the excellent adsorbents that were of enough adsorption sites for AFB1, mainly due to the hierarchical porous structure and large surface areas for the enhancement of adsorption capacity. Notably, the porous carbonaceous materials could not only remove more than 90% of AFB1 from real vegetable oils within 30 min, but also remain the treated oils at low cytotoxicity. Meanwhile, the detoxification process could little affect the quality of oils. Thus, the Cu-BTC MOF-derived porous carbonaceous materials with high efficiency, safe, practical and economic characteristics could be novel potential adsorbents used in the application of AFB1 removal from contaminated vegetable oils.
Collapse
Affiliation(s)
- Fei Ma
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Xinfa Cai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Jin Mao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| | - Li Yu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China.
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Laboratory of Quality and Safety Risk Assessment for Oilseeds Products (Wuhan), Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China; Quality Inspection and Test Center for Oilseeds Products, Ministry of Agriculture and Rural Affairs, Wuhan 430062, PR China
| |
Collapse
|
24
|
Xiao Z, Li Y, Fan L, Wang Y, Li L. Degradation of organic dyes by peroxymonosulfate activated with water-stable iron-based metal organic frameworks. J Colloid Interface Sci 2021; 589:298-307. [DOI: 10.1016/j.jcis.2020.12.123] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022]
|
25
|
Xie J, Liao Z, Zhang M, Ni L, Qi J, Wang C, Sun X, Wang L, Wang S, Li J. Sequential Ultrafiltration-Catalysis Membrane for Excellent Removal of Multiple Pollutants in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2652-2661. [PMID: 33337860 DOI: 10.1021/acs.est.0c07418] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Clean water production calls for highly efficient and less energy-intensive technologies. Herein, a novel concept of a sequential ultrafiltration-catalysis membrane is developed by loading Co3O4/C@SiO2 yolk-shell nanoreactors into the fingerlike channels of a polymeric ultrafiltration membrane. Such a sequenced structure design successfully integrates selective separation with peroxymonosulfate-based catalysis to prepare a functionalized molecular sieve membrane, which exhibits excellent decontamination performance toward multipollutants by filtering the water matrices containing humic acid (HA) and bisphenol A (BPA). In this study, 100% rejection of HA and 95% catalytic degradation of BPA were achieved under a low pressure of 0.14 MPa and an ultrahigh flux of 229 L m-2 h-1, corresponding to a retention time of 3.1 s. Notably, the removal performance of multiple pollutants essentially depends on the ordered arrangement of ultrafiltration and catalysis. Moreover, the flow-through process demonstrated significant enhancement of BPA degradation kinetics, which is 21.9 times higher than that of a conventional batch reactor. This study provides a novel strategy for excellent removal of multiple pollutants in water.
Collapse
Affiliation(s)
- Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhipeng Liao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ming Zhang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chaohai Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiuyun Sun
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lianjun Wang
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
26
|
Sun DW, Huang L, Pu H, Ma J. Introducing reticular chemistry into agrochemistry. Chem Soc Rev 2020; 50:1070-1110. [PMID: 33236735 DOI: 10.1039/c9cs00829b] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For survival and quality of life, human society has sought more productive, precise, and sustainable agriculture. Agrochemistry, which solves farming issues in a chemical manner, is the core engine that drives the evolution of modern agriculture. To date, agrochemistry has utilized chemical technologies in the form of pesticides, fertilizers, veterinary drugs and various functional materials to meet fundamental demands from human society, while increasing the socio-ecological consequences due to inefficient use. Thus, more useful, precise, and designable scaffolding materials are required to support sustainable agrochemistry. Reticular chemistry, which weaves molecular units into frameworks, has been applied in many fields based on two cutting-edge porous framework materials, namely metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). With flexibility in composition, structure, and pore chemistry, MOFs and COFs have shown increasing functionalities associated with agrochemistry in the last decade, potentially introducing reticular chemistry as a highly accessible chemical toolbox into agrochemical technologies. In this critical review, we will demonstrate how reticular chemistry shapes the future of agrochemistry in the fields of farm sensing, agro-ecological preservation and reutilization, agrochemical formulations, smart indoor farming, agrobiotechnology, and beyond.
Collapse
Affiliation(s)
- Da-Wen Sun
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China.
| | | | | | | |
Collapse
|
27
|
Guo Y, Zhao L, Ma Q, Ji C. Novel strategies for degradation of aflatoxins in food and feed: A review. Food Res Int 2020; 140:109878. [PMID: 33648196 DOI: 10.1016/j.foodres.2020.109878] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/31/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
Aflatoxins are toxic secondary metabolites mainly produced by Aspergillus fungi, posing high carcinogenic potency in humans and animals. Dietary exposure to aflatoxins is a global problem in both developed and developing countries especially where there is poor regulation of their levels in food and feed. Thus, academics have been striving over the decades to develop effective strategies for degrading aflatoxins in food and feed. These strategies are technologically diverse and based on physical, chemical, or biological principles. This review summarizes the recent progress on novel aflatoxin degradation strategies including irradiation, cold plasma, ozone, electrolyzed oxidizing water, organic acids, natural plant extracts, microorganisms and enzymes. A clear understanding of the detoxification efficiency, mechanism of action, degradation products, application potential and current limitations of these methods is presented. In addition, the development and future perspective of nanozymes in aflatoxins degradation are introduced.
Collapse
Affiliation(s)
- Yongpeng Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
28
|
Luo J, Song S, Zhang H, Zhang H, Zhang J, Wan Y. Biocatalytic membrane: Go far beyond enzyme immobilization. Eng Life Sci 2020; 20:441-450. [PMID: 33204231 PMCID: PMC7645639 DOI: 10.1002/elsc.202000018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 01/02/2023] Open
Abstract
Biocatalytic membrane takes advantages of reaction-separation integration as well as enzyme immobilization, which has attracted increasing attentions in online detection and biomanufacturing. However, the high preparation cost, inferior comprehensive performance, and low stability limit its applications. Thus, besides enzyme immobilization, more efforts should be made in biocatalytic membrane configuration design for a specific application to enhance the synergistic effect of reaction and separation and improve its operating stability. This review summarized the recent progress on biocatalytic membrane preparation, discussed different membrane configurations for various applications, finally proposed several challenges and possible solutions, which provided directions and guides for the development and industrialization of biocatalytic membrane.
Collapse
Affiliation(s)
- Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Siqing Song
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Hao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Huiru Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Jinxuan Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process EngineeringChinese Academy of SciencesBeijingP.R. China
- School of Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingP.R. China
| |
Collapse
|
29
|
Wu Q, Fan J, Chen X, Zhu Z, Luo J, Wan Y. Sandwich structured membrane adsorber with metal organic frameworks for aflatoxin B1 removal. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
30
|
Wang J, Hu Y, Zhou Q, Hu L, Fu W, Wang Y. Peroxidase-like Activity of Metal-Organic Framework [Cu(PDA)(DMF)] and Its Application for Colorimetric Detection of Dopamine. ACS APPLIED MATERIALS & INTERFACES 2019; 11:44466-44473. [PMID: 31691561 DOI: 10.1021/acsami.9b17488] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A metal-organic framework (MOF) [Cu(PDA)(DMF)] was synthesized under mild mixed solvothermal conditions. It is constructed by 1,10-phenanthroline-2,9-dicarboxylic acid (H2PDA) and Cu2+ ions. The complex exhibits high peroxidase-like activity and can catalytically oxidize the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product in the presence of H2O2. However, the peroxidase-like activity of [Cu(PDA)(DMF)] can be potently inhibited in the presence of dopamine. Based on this phenomenon, the colorimetric detection of dopamine was demonstrated with good selectivity and high sensitivity. [Cu(PDA)(DMF)] showed good stability and robust catalytic activity, which has been employed in the detection of dopamine in human urine and pharmaceutical samples.
Collapse
Affiliation(s)
- Jun Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Yuyan Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Qi Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry , Chongqing Normal University , Chongqing 401331 , China
| |
Collapse
|