1
|
Zhao D, Zhang Y, Wang F, Kaewmanee R, Cui W, Wu T, Du Y. Drug-phospholipid conjugate nano-assembly for drug delivery. SMART MEDICINE 2024; 3:e20240053. [PMID: 39776594 PMCID: PMC11669785 DOI: 10.1002/smmd.20240053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/23/2024] [Indexed: 01/11/2025]
Abstract
Phospholipid-based liposomes are among the most successful nanodrug delivery systems in clinical use. However, these conventional liposomes present significant challenges including low drug-loading capacity and issues with drug leakage. Drug-phospholipid conjugates (DPCs) and their assemblies offer a promising strategy for addressing these limitations. In this review, we summarize recent advances in the design, synthesis, and application of DPCs for drug delivery. We begin by discussing the chemical backbone structures and various design strategies such as phosphate head embedding and mono-/bis-embedding in the sn-1/sn-2 positions. Furthermore, we highlight stimulus-responsive designs of DPCs and their applications in treating diseases such as cancer, inflammation, and malaria. Lastly, we explore future directions for DPCs development and their potential applications in drug delivery.
Collapse
Affiliation(s)
- Ding Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yixiang Zhang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Plastic & Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rames Kaewmanee
- Department of Materials ScienceFaculty of ScienceChulalongkorn UniversityBangkokThailand
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Tianqi Wu
- Department of Radiation OncologyHuashan HospitalFudan UniversityShanghaiChina
| | - Yawei Du
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Taheri Z, Mozafari N, Moradian G, Lovison D, Dehshahri A, De Marco R. Integrin-Specific Stimuli-Responsive Nanomaterials for Cancer Theranostics. Pharmaceutics 2024; 16:1441. [PMID: 39598564 PMCID: PMC11597626 DOI: 10.3390/pharmaceutics16111441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/01/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Cancer is one of the leading causes of death worldwide. The tumor microenvironment makes the tumor difficult to treat, favoring drug resistance and the formation of metastases, resulting in death. Methods: Stimuli-responsive nanoparticles have shown great capacity to be used as a powerful strategy for cancer treatment, diagnostic, as well as theranostic. Nanocarriers are not only able to respond to internal stimuli such as oxidative stress, weakly acidic pH, high temperature, and the high expression of particular enzymes, but also to external stimuli such as light and paramagnetic characteristics to be exploited. Results: In this work, stimulus-responsive nanocarriers functionalized with arginine-glycine-aspartic acid (Arg-Gly-Asp) sequence as well as mimetic sequences with the capability to recognize integrin receptors are analyzed. Conclusions: This review highlights the progress that has been made in the development of new nanocarriers, capable of responding to endogenous and exogenous stimuli essential to combat cancer.
Collapse
Affiliation(s)
- Zahra Taheri
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Negin Mozafari
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran; (Z.T.); (N.M.)
| | - Ghazal Moradian
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran;
| | - Denise Lovison
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71348-17336, Iran
| | - Rossella De Marco
- Department of Agricultural, Food, Environmental and Animal Sciences (Di4A), University of Udine, 33100 Udine, Italy;
| |
Collapse
|
3
|
Subraveti SN, Nader MG, AziziHariri P, John VT, Lamichhane N, Raghavan SR. Vesicle-micelle transitions driven by ROS, light and heat. NANOSCALE 2024; 16:16942-16951. [PMID: 39207219 DOI: 10.1039/d4nr01543f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Vesicles are self-assembled nanocontainers (size ∼100 nm) in which solutes such as drugs can be encapsulated. There is great interest in triggering vesicle-micelle transitions (VMTs) because such transitions will result in the release of encapsulated solute. Here, we focus on reactive oxygen species (ROS) as a trigger for VMTs. ROS arise in our body within cells, and ROS levels are known to be high near a tumor. Thus, ROS-responsive vesicles are of interest. We make such vesicles by combining the cationic amphiphile (4-phenylthiophenyl)diphenyl-sulfonium triflate (PDST), and the anionic surfactant sodium dodecylbenzene sulfonate (SDBS). By simply mixing these two commercially available molecules in water, we prepare 'catanionic' vesicles in an easy, low-cost, and scalable way. When exposed to ROS such as hydrogen peroxide (H2O2), the thioether in the PDST tail gets oxidized to a hydrophilic sulfoxide. As a result, the vesicles are transformed into spherical or short, cylindrical micelles. Evidence for the VMT comes from turbidity, light scattering, and cryo-TEM measurements. The same vesicles are also sensitive to other stimuli, specifically light and temperature: i.e., a VMT can also be induced by irradiation with UV light or heating above a critical temperature. We explain the origin of the VMT in each case based on changes in the driving forces for amphiphile assembly.
Collapse
Affiliation(s)
- Sai Nikhil Subraveti
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Morine G Nader
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| | - Pedram AziziHariri
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Vijay T John
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - Narottam Lamichhane
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | - Srinivasa R Raghavan
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA.
| |
Collapse
|
4
|
Xia Y, Liu Y, Tang Y, Chen Y, Li T, Zhao F, Zeng B. A liposome encapsulated methylene blue-mediated electrochemical and UV-visible dual mode split-type immunoassay for the detection of 17β-estradiol. Talanta 2024; 276:126243. [PMID: 38749160 DOI: 10.1016/j.talanta.2024.126243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024]
Abstract
Herein, we fabricated an electrochemical (EC) and UV-visible absorption (UV-vis) dual mode split-type immunoassay for the detection of 17β-estradiol (E2), which was mediated by liposome encapsulated methylene blue (MB@lip). MB molecule acted as the probe in the EC and UV-vis absorption dual mode detections, and its release was controlled by liposome. The competitive immune recognition was conducted between the E2 in the sample and E2 conjugated bovine serum protein (E2-BSA) adsorbed on the 96-wells plate in combining with E2 antibody labeled with MB@lip (E2-Ab/MB@lip). MB molecule could be released from the resulting immune composite of E2-BSA/E2-Ab/MB@lip in the presence of Triton X-100, and quantified by UV-vis and EC methods. The three-dimensional cross-linked reduced graphene oxide/Ti3C2 (3D-rGO/Ti3C2) aerogel was prepared through hydrothermal method, then complexed with the electroactive anthraquinone (AQ) and used as the electrode modified material. The AQ/3D-rGO/Ti3C2 composite had high surface area and provided abundant adsorption sites for MB, and the displacement/competitive behavior between AQ and MB could dexterously achieve the ratiometric EC detection of E2. In addition, the inherent blue color of MB allowed it to be analyzed by UV-vis absorption method. The proposed dual mode detection method exhibited broad linear ranges of 0.1 pg mL-1 to 50 ng mL-1 (by UV-vis) and 0.03 pg mL-1 to 50 ng mL-1 (by EC) for E2 detection, and the detection limits were 0.023 pg mL-1 (S/N = 3) and 8.0 fg mL-1 (S/N = 3), respectively. Moreover, the proposed immunoassay exhibited good practicability and was applied to monitor E2 in milk and serum successfully.
Collapse
Affiliation(s)
- Yide Xia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Yiwei Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Yun Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Yanran Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Tianning Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Faqiong Zhao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China
| | - Baizhao Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei Province, PR China.
| |
Collapse
|
5
|
Han Z, Zhao Z, Yu H, Wang L, Yue C, Zhu B, Zhu Y, Li Z, Sha Z. Microenvironment-Responsive Hydrogel Reduces Seizures After Traumatic Brain Injury in Juvenile Rats by Reducing Oxidative Stress and Hippocampal Inflammation. Macromol Biosci 2024; 24:e2400050. [PMID: 38810210 DOI: 10.1002/mabi.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Indexed: 05/31/2024]
Abstract
Traumatic brain injury (TBI) is the primary cause of child mortality and disability worldwide. It can result in severe complications that significantly impact children's quality of life, including post-traumatic epilepsy (PTE). An increasing number of studies suggest that TBI-induced oxidative stress and neuroinflammatory sequelae (especially, inflammation in the hippocampus region) may lead to the development of PTE. Due to the blood-brain barrier (BBB), typical systemic pharmacological therapy for TBI cannot deliver berberine (BBR) to the targeted location in the early stages of the injury, although BBR has strong anti-inflammatory properties. To break through this limitation, a microenvironment-responsive gelatin methacrylate (GM) hydrogel to deliver poly(propylene sulfide)60 (PPS60) and BBR (GM/PB) is developed for regulating neuroinflammatory reactions and removing reactive oxygen species (ROS) in the brain trauma microenvironment through PPS60. In situ injection of the GM/PB hydrogel efficiently bypasses the BBB and is administered directly to the surface of brain tissue. In post-traumatic brain injury models, GM/PB has the potential to mitigate oxidative stress and neuroinflammatory responses, facilitate functional recovery, and lessen seizing. These findings can lead to a new treatment for brain injuries, which minimizes complications and improves the quality of life.
Collapse
Affiliation(s)
- Zhengzhong Han
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zeqi Zhao
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
- Department of Otolaryngology, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, 221002, P. R. China
| | - Hao Yu
- Pediatric Epilepsy Center, Peking University First Hospital, No. 5 Leyuan Road, Daxing District, Beijing, 102627, P. R. China
| | - Lansheng Wang
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Chenglong Yue
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Bingxin Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Yongqi Zhu
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zhengwei Li
- Department of Neurosurgery, Xuzhou Children's Hospital, No. 18 Sudi North Road, Quanshan District, Xuzhou, 221002, P. R. China
- Clinical College, Xuzhou Medical University, No. 209 Tongshan Road, Xuzhou, 221002, P. R. China
| | - Zhuang Sha
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, No. 99 Huaihai West Road, Xuzhou, 221002, P. R. China
- Tianjin Neurological Institute, Key Laboratory of Post-Neuroinjury Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Ministry of Education, 154 Anshan Road, Heping District, Tianjin, 300052, China
| |
Collapse
|
6
|
Yang M, He Y, Ni Q, Zhou M, Chen H, Li G, Yu J, Wu X, Zhang X. Polyphenolic Nanomedicine Regulating Mitochondria REDOX for Innovative Cancer Treatment. Pharmaceutics 2024; 16:972. [PMID: 39204317 PMCID: PMC11359087 DOI: 10.3390/pharmaceutics16080972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer remains a highly lethal disease globally. The approach centered on REDOX-targeted mitochondrial therapy for cancer has displayed notable benefits. Plant polyphenols exhibit strong REDOX and anticancer properties, particularly by affecting mitochondrial function, yet their structural instability and low bioavailability hinder their utility. To overcome this challenge, researchers have utilized the inherent physical and chemical characteristics of polyphenols and their derivatives to develop innovative nanomedicines for targeting mitochondria. This review examines the construction strategies and anticancer properties of various types of polyphenol-based biological nanomedicine for regulating mitochondria in recent years, such as polyphenol self-assembly, metal-phenol network, polyphenol-protein, polyphenol-hydrogel, polyphenol-chitosan, and polyphenol-liposome. These polyphenolic nanomedicines incorporate enhanced features such as improved solubility, efficient photothermal conversion capability, regulation of mitochondrial homeostasis, and ion adsorption through diverse construction strategies. The focus is on how these polyphenol nanomedicines promote ROS production and their mechanism of targeting mitochondria to inhibit cancer. Furthermore, it delves into the benefits and applications of polyphenolic nanomedicine in cancer treatments, as well as the challenges for future research.
Collapse
Affiliation(s)
- Mingchuan Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Yufeng He
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Qingqing Ni
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai 200080, China;
| | - Mengxue Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Guangyun Li
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| | - Jizhong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Ximing Wu
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, School of Biological and Food Engineering, Hefei Normal University, Hefei 230601, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; (M.Y.); (Y.H.); (M.Z.); (H.C.); (G.L.); (X.Z.)
| |
Collapse
|
7
|
Xiao W, Geng R, Bi D, Luo Y, Zhang Z, Gan Q, Liu Y, Zhu J. pH/H 2O 2 Cascade-Responsive Nanoparticles of Lipid-Like Prodrugs through Dynamic-Covalent and Coordination Interactions for Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308790. [PMID: 38396276 DOI: 10.1002/smll.202308790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/14/2024] [Indexed: 02/25/2024]
Abstract
Traditional lipid nanoparticles (LNPs) suffer from low drug loading capacity (DLC), weak stability, and lack of responsiveness. Conventional approaches to address these issues involve the synthesis of lipid-prodrug by incorporating responsive covalent linkers. However, such approaches often result in suboptimal sensitivity for drug release and undermine therapeutic effectiveness. Herein, the study reports a fundamentally different concept for designing lipid-like prodrugs through boron-nitrogen (B-N) coordination and dynamic covalent interaction. The 5-fluorouracil-based lipid-like prodrugs, featuring a borate ester consisting of a glycerophosphoryl choline head and a boronic acid-modified 5Fu/dodecanamine complex tail, are used to prepare pH/H2O2 cascade-responsive LNPs (5Fu-LNPs). The 5Fu-LNPs exhibit enhanced DLC and stability in a neutral physiological environment due to the B-N coordination and enhanced hydrophobicity. In tumors, acidic pH triggers the dissociation of B-N coordination to release prodrugs, which further responds to low H2O2 concentrations to release drugs, showcasing a potent pH/H2O2-cascade-responsive property. Importantly, 5Fu-LNPs demonstrate greater antitumor efficiency and lower toxicity compared to the commercial 5Fu. These results highlight 5Fu-LNPs as a safer and more effective alternative to chemotherapy. This work presents a unique LNP fabrication strategy that can overcome the limitations of conventional LNPs and broaden the range of intelligent nanomaterial preparation techniques.
Collapse
Affiliation(s)
- Wanyue Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Geng
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Duohang Bi
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yi Luo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihan Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quan Gan
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yijing Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518000, China
| | - Jintao Zhu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
8
|
Wang H, Zhang Y, Zhang Y, Li C, Zhang M, Wang J, Zhang Y, Du Y, Cui W, Chen W. Activating Macrophage Continual Efferocytosis via Microenvironment Biomimetic Short Fibers for Reversing Inflammation in Bone Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402968. [PMID: 38706203 DOI: 10.1002/adma.202402968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Efferocytosis-mediated inflammatory reversal plays a crucial role in bone repairing process. However, in refractory bone defects, the macrophage continual efferocytosis may be suppressed due to the disrupted microenvironment homeostasis, particularly the loss of apoptotic signals and overactivation of intracellular oxidative stress. In this study, a polydopamine-coated short fiber matrix containing biomimetic "apoptotic signals" to reconstruct the microenvironment and reactivate macrophage continual efferocytosis for inflammatory reversal and bone defect repair is presented. The "apoptotic signals" (AM/CeO2) are prepared using CeO2 nanoenzymes with apoptotic neutrophil membrane coating for macrophage recognition and oxidative stress regulation. Additionally, a short fiber "biomimetic matrix" is utilized for loading AM/CeO2 signals via abundant adhesion sites involving π-π stacking and hydrogen bonding interactions. Ultimately, the implantable apoptosis-mimetic nanoenzyme/short-fiber matrixes (PFS@AM/CeO2), integrating apoptotic signals and biomimetic matrixes, are constructed to facilitate inflammatory reversal and reestablish the pro-efferocytosis microenvironment. In vitro and in vivo data indicate that the microenvironment biomimetic short fibers can activate macrophage continual efferocytosis, leading to the suppression of overactivated inflammation. The enhanced repair of rat femoral defect further demonstrates the osteogenic potential of the pro-efferocytosis strategy. It is believed that the regulation of macrophage efferocytosis through microenvironment biomimetic materials can provide a new perspective for tissue repair.
Collapse
Affiliation(s)
- Haoran Wang
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yipu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, P. R. China
| | - Chao Li
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Mo Zhang
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Hebei Medical University Third Hospital, Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, NHC Key Laboratory of Intelligent Orthopaedic Equipment, No.139 Ziqiang Road, Shijiazhuang, 050051, P. R. China
| |
Collapse
|
9
|
Mirhadi E, Askarizadeh A, Farhoudi L, Mashreghi M, Behboodifar S, Alavizadeh SH, Arabi L, Jaafari MR. The impact of phospholipids with high transition temperature to enhance redox-sensitive liposomal doxorubicin efficacy in colon carcinoma model. Chem Phys Lipids 2024; 261:105396. [PMID: 38621603 DOI: 10.1016/j.chemphyslip.2024.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 04/17/2024]
Abstract
In this study, we have developed a redox-sensitive (RS) liposomal doxorubicin formulation by incorporating 10,10'-diselanediylbis decanoic acid (DDA) organoselenium compound as the RS moiety. Hence, several RS liposomal formulations were prepared by using DOPE, HSPC, DDA, mPEG2000-DSPE, and cholesterol. In situ drug loading using a pH gradient and citrate complex yielded high drug to lipid ratio and encapsulation efficiency (100%) for RS liposomes. Liposomal formulations were characterized in terms of size, surface charge and morphology, drug loading, release properties, cell uptake and cytotoxicity, as well as therapeutic efficacy in BALB/c mice bearing C26 tumor cells. The formulations showed an average particle size of 200 nm with narrow size distributions (PDI < 0.3), and negative surface charges varying from -6 mV to -18.6 mV. Our study confirms that the presence of the DDA compound in liposomes is highly sensitive to hydrogen peroxide at 0.1% w/v, resulting in a significant burst release of up to 40%. The in vivo therapeutic efficacy study in BALB/c mice bearing C26 colon carcinoma confirmed the promising function of RS liposomes in the tumor microenvironment which led to a prolonged median survival time (MST). The addition of hydrogenated soy phosphatidylcholine (HSPC) with a high transition temperature (Tm: 52-53.5°C) extended the MST of our 3-component formulation of F14 (DOPE/HSPC/DDA) to 60 days in comparison to Caelyx (PEGylated liposomal Dox), which is not RS-sensitive (39 days). Overall, HSPC liposomes bearing RS-sensitive moiety enhanced therapeutic efficacy against colon cancer in vitro and in vivo. This achievement unequivocally underscores the criticality of high-TM phospholipids, particularly HSPC, in significantly enhancing liposome stability within the bloodstream. In addition, RS liposomes enable the on-demand release of drugs, leveraging the redox environment of tumor cells, thereby augmenting the efficacy of the formulation.
Collapse
Affiliation(s)
- Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Anis Askarizadeh
- Marine Pharmaceutical Science Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Behboodifar
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Kondengadan SM, Wang B. Quantitative Factors Introduced in the Feasibility Analysis of Reactive Oxygen Species (ROS)-Sensitive Triggers. Angew Chem Int Ed Engl 2024; 63:e202403880. [PMID: 38630918 PMCID: PMC11192588 DOI: 10.1002/anie.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
Reactive oxygen species (ROS) are critical for cellular signaling. Various pathophysiological conditions are also associated with elevated levels of ROS. Hence, ROS-sensitive triggers have been extensively used for selective payload delivery. Such applications are predicated on two key functions: (1) a sufficient magnitude of concentration difference for the interested ROS between normal tissue/cells and intended sites and (2) appropriate reaction kinetics to ensure a sufficient level of selectivity for payload release. Further, ROS refers to a group of species with varying reactivity, which should not be viewed as a uniform group. In this review, we critically analyze data on the concentrations of different ROS species under various pathophysiological conditions and examine how reaction kinetics affect the success of ROS-sensitive linker chemistry. Further, we discuss different ROS linker chemistry in the context of their applications in drug delivery and imaging. This review brings new insights into research in ROS-triggered delivery, highlights factors to consider in maximizing the chance for success and discusses pitfalls to avoid.
Collapse
Affiliation(s)
- Shameer M. Kondengadan
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
11
|
Sato T, Haneishi K, Hisada H, Fujii MY, Koide T, Fukami T. Real-Time Quantitative Evaluation of a Drug during Liposome Preparation Using a Probe-Type Raman Spectrometer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7962-7973. [PMID: 38577710 DOI: 10.1021/acs.langmuir.3c03872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
During the manufacturing process of liposome formulations, it is considered difficult to evaluate their physicochemical properties and biological profiles due to the complexity of their structure and manufacturing process. Conventional quality evaluation is labor-intensive and time-consuming; therefore, there was a need to introduce a method that could perform in-line, real-time evaluation during the manufacturing process. In this study, Raman spectroscopy was used to monitor in real time the encapsulation of drugs into liposomes and the drug release, which are particularly important quality evaluation items. Furthermore, Raman spectroscopy combined with partial least-squares (PLS) analysis was used for quantitative drug evaluation to assess consistency with results from UV-visible spectrophotometry (UV), a common quantification method. The prepared various ciprofloxacin (CPFX) liposomes were placed in cellulose tubes, and a probe-type Raman spectrophotometer was used to monitor drug encapsulation, the removal of unencapsulated drug, and drug release characteristics in real time using a dialysis method. In the Raman spectra of the liposomes prepared by remote loading, the intensities of the CPFX-derived peaks increased upon drug encapsulation and showed a slight decrease upon removal of the unencapsulated drug. Furthermore, the peak intensity decreased more gradually during the drug release. In all Raman monitoring experiments, the discrepancy between quantified values of CPFX concentration in liposomes, as measured by Raman spectroscopy combined with partial least-squares (PLS) analysis, and those obtained through ultraviolet (UV) spectrophotometry was within 6.7%. The results revealed that the quantitative evaluation of drugs using a combination of Raman spectroscopy and PLS analysis was as accurate as the evaluation using UV spectrophotometry, which was used for comparison. These results indicate the promising potential of Raman spectroscopy as an innovative method for the quality evaluation of liposomal formulations.
Collapse
Affiliation(s)
- Takumi Sato
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kazuki Haneishi
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Hiroshi Hisada
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Mika Yoshimura Fujii
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Tatsuo Koide
- National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Toshiro Fukami
- Department of Molecular Pharmaceutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
12
|
Lin J, Jia S, Cao F, Huang J, Chen J, Wang J, Liu P, Zeng H, Zhang X, Cui W. Research Progress on Injectable Microspheres as New Strategies for the Treatment of Osteoarthritis Through Promotion of Cartilage Repair. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202400585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 07/07/2024]
Abstract
AbstractOsteoarthritis (OA) is a degenerative disease caused by a variety of factors with joint pain as the main symptom, including fibrosis, chapping, ulcers, and loss of cartilage. Traditional treatment can only delay the progression of OA, and classical delivery system have many side effects. In recent years, microspheres have shown great application prospects in the field of OA treatment. Microspheres can support cells, reproduce the natural tissue microenvironment in vitro and in vivo, and are an efficient delivery system for the release of drugs or biological agents, which can promote cell proliferation, migration, and differentiation. Thus, they have been widely used in cartilage repair and regeneration. In this review, preparation processes, basic materials, and functional characteristics of various microspheres commonly used in OA treatment are systematically reviewed. Then it is introduced surface modification strategies that can improve the biological properties of microspheres and discussed a series of applications of microsphere functionalized scaffolds in OA treatment. Finally, based on bibliometrics research, the research development, future potential, and possible research hotspots of microspheres in the field of OA therapy is systematically and dynamically evaluated. The comprehensive and systematic review will bring new understanding to the field of microsphere treatment of OA.
Collapse
Affiliation(s)
- Jianjing Lin
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Shicheng Jia
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Fuyang Cao
- Department of Orthopedics Second Hospital of Shanxi Medical University Taiyuan Shanxi 030001 P. R. China
| | - Jingtao Huang
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Jiayou Chen
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
- Shantou University Medical College Shantou Guangdong 515041 P. R. China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| | - Peng Liu
- National & Local Joint Engineering Research Center of Orthopaedic Biomaterials Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Hui Zeng
- Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University) Shenzhen Guangdong 518035 China
| | - Xintao Zhang
- Department of Sports Medicine and Rehabilitation Peking University Shenzhen Hospital Shenzhen Guangdong 518036 P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200025 P. R. China
| |
Collapse
|
13
|
Wang Y, Wang L, Chang H, Shen Q, Zhang S, Sun S, Liu Y, Zheng J, Liu H. Enhancing anti-tumor therapy with agmatine-cholesterol conjugate liposomes: in vitro and in vivo evidence. Drug Deliv Transl Res 2024; 14:788-801. [PMID: 37755673 DOI: 10.1007/s13346-023-01433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2023] [Indexed: 09/28/2023]
Abstract
In this study, we synthesized a novel compound, agmatine-cholesterol conjugate (AG-Chol), to enhance the anti-tumor activity of drug-loaded liposomes. We replaced cholesterol with AG-Chol in preparing doxorubicin hydrochloride (DOX) liposomes by using an active loading method for DOX. We assessed the physical and chemical properties of the resulting AG-Liposomes and evaluated their efficacy in vitro and in vivo. The results showed that AG-Liposomes were stable with high encapsulation efficiency. Compared with the control liposomes, AG-Liposomes exhibited a slower drug release rate in the release medium at pH 6.8. The in vitro cell experiments demonstrated that AG-Liposomes had higher tumor cell uptake rate, stronger migration inhibition rate, higher apoptosis rate, better anti-clonogenic ability, and higher lysosome escape ability than the control liposomes. In vivo distribution results demonstrate that liposomes prepared with AG-Chol instead of cholesterol can significantly enhance their tumor targeting abilities and reduce their distribution to non-targeted sites. In vivo tumor suppression experiments showed that AG-Liposomes had a higher tumor suppression rate than the control liposomes without causing apparent toxicity to normal tissues, as evidenced by histological staining. Therefore, substituting cholesterol with AG-Chol in the preparation of liposomes can result in enhanced lysosome escape, improved tumor targeting, and increased efficacy of anti-tumor drugs.
Collapse
Affiliation(s)
- Yanzhi Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China.
| | - Linchao Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
- Jining No. 1 People's Hospital, Jining, China
| | - Hanyue Chang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Qing Shen
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Sai Zhang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Shanshan Sun
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China
| | - Ying Liu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Jiaxin Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China.
| | - Hongmin Liu
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Key Laboratory of Advanced Drug Preparation Technologies, Henan Key Laboratory of Drug Quality Control & Evaluation, School of Pharmaceutical Sciences, Ministry of Education of China, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
14
|
Liu J, Wang T, Lv Q, Meng Y, Gao Z, Hu S, Ren X. Reactive oxygen species-responsive hydrophobic crosslinked chitosan films based on triple-function crosslinkers. Int J Biol Macromol 2024; 257:128606. [PMID: 38061532 DOI: 10.1016/j.ijbiomac.2023.128606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 01/26/2024]
Abstract
Chitosan is widely used in reactive oxygen species (ROS)-responsive films but remains great challenges owing to its weak mechanical strength and strong hydrophilicity. Herein, we synthesized novel hydrophobic crosslinked CS films with ROS-responsive properties and excellent physicochemical properties. A novel crosslinker, 2-((10-carboxydecyl)thio)succinic acid, with long-chain alkanes, three carboxyl groups, and sulfhydryl groups was synthesized and then used to produce thioether-containing crosslinked CS membranes. The results suggested that crosslinking could significantly increase the tensile strength of the film from 15.67 MPa to 24.32 MPa. The compact structure of crosslinked chitosan film improved the hydrophobicity and degradability, reduced the thermal stability and swelling rates, exhibited excellent non- cytotoxicity. The in vitro release studies revealed that crosslinked chitosan films could displayed the highest flux about 1.40 mg/ (cm2 h) and significant NR fluorescence change over 80 %. Collectively, our results demonstrate the applicability of these films as ROS-responsive drug delivery systems.
Collapse
Affiliation(s)
- Jin Liu
- Shaanxi Mineral Resources and Geological Survey, Xi'an 710068, PR China
| | - Tianhao Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Qilin Lv
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Yunshan Meng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Zideng Gao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Shuwen Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, China Agricultural University, Beijing 100193, PR China.
| | - Xueqin Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China; Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
15
|
Chen J, Brea RJ, Fracassi A, Cho CJ, Wong AM, Salvador-Castell M, Sinha SK, Budin I, Devaraj NK. Rapid Formation of Non-canonical Phospholipid Membranes by Chemoselective Amide-Forming Ligations with Hydroxylamines. Angew Chem Int Ed Engl 2024; 63:e202311635. [PMID: 37919232 PMCID: PMC11179435 DOI: 10.1002/anie.202311635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
There has been increasing interest in methods to generate synthetic lipid membranes as key constituents of artificial cells or to develop new tools for remodeling membranes in living cells. However, the biosynthesis of phospholipids involves elaborate enzymatic pathways that are challenging to reconstitute in vitro. An alternative approach is to use chemical reactions to non-enzymatically generate natural or non-canonical phospholipids de novo. Previous reports have shown that synthetic lipid membranes can be formed in situ using various ligation chemistries, but these methods lack biocompatibility and/or suffer from slow kinetics at physiological pH. Thus, it would be valuable to develop chemoselective strategies for synthesizing phospholipids from water-soluble precursors that are compatible with synthetic or living cells Here, we demonstrate that amide-forming ligations between lipid precursors bearing hydroxylamines and α-ketoacids (KAs) or potassium acyltrifluoroborates (KATs) can be used to prepare non-canonical phospholipids at physiological pH conditions. The generated amide-linked phospholipids spontaneously self-assemble into cell-like micron-sized vesicles similar to natural phospholipid membranes. We show that lipid synthesis using KAT ligation proceeds extremely rapidly, and the high selectivity and biocompatibility of the approach facilitates the in situ synthesis of phospholipids and associated membranes in living cells.
Collapse
Affiliation(s)
- Jiyue Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Roberto J Brea
- Biomimetic Membrane Chemistry (BioMemChem) Group, CICA-Centro Interdisciplinar de Química e Bioloxía, Universidade da Coruña, Rúa As Carballeiras, 15701, A Coruña, Spain
| | - Alessandro Fracassi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Christy J Cho
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Adrian M Wong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Marta Salvador-Castell
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Sunil K Sinha
- Department of Physics, University of California, San Diego, 9500 Gilman Drive, Building: Mayer Hall Addition 4561, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, Natural Sciences Building, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Chang CH, Han DE, Ji YY, Wang MY, Li DH, Xu ZL, Li JH, Huang SN, Zhu XL, Jia YY. Folate-chitosan Coated Quercetin Liposomes for Targeted Cancer Therapy. Curr Pharm Biotechnol 2024; 25:924-935. [PMID: 37861012 DOI: 10.2174/0113892010264479231006045014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Although quercetin exhibits promising anti-tumor properties, its clinical application is limited due to inherent defects and a lack of tumor targeting. OBJECTIVES This study aimed to prepare and characterize active targeting folate-chitosan modified quercetin liposomes (FA-CS-QUE-Lip), and its antitumor activity in vitro and in vivo was also studied. MATERIALS AND METHODS Box-Behnken Design (BBD) response surface method was used to select the optimal formulation of quercetin liposomes (QUE-LP). On this basis, FA-CS-QUE-LP was obtained by connecting folic acid chitosan complex (FA-CS) and QUE-LP. The release characteristics in vitro of QUE-LP and FA-CS-QUE-LP were studied. Its inhibitory effects on HepG2 cells were studied by the MTT method. The pharmacokinetics and pharmacodynamics in vivo were studied in healthy Wistar mice and S180 tumor-bearing mice, respectively. RESULTS The average particle size, zeta potential and encapsulation efficiency of FA-CS-QUELP were 261.6 ± 8.5 nm, 22.3 ± 1.7 mV, and 98.63 ± 1.28 %, respectively. FA-CS-QUE-LP had a sustained release effect and conformed to the Maloid-Banakar release model (R2=0.9967). The results showed that FA-CS-QUE-LP had higher inhibition rates on HepG2 cells than QUE-Sol (P < 0.01). There was a significant difference in AUC, t1/2, CL and other pharmacokinetic parameters among QUE-LP, FA-CS-QUE-LP, and QUE-Sol (P < 0.05). In in vivo antitumor activity study, the weight inhibition rate and volume inhibition rate of FA-CS-QUE-LP were 30.26% and 37.35%, respectively. CONCLUSION FA-CS-QUE-LP exhibited a significant inhibitory effect on HepG2 cells, influenced the pharmacokinetics of quercetin in mice, and demonstrated a certain inhibitory effect on S180 tumor-bearing mice, thus offering novel avenues for cancer treatment.
Collapse
Affiliation(s)
- Chun-Hui Chang
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - De-En Han
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yu-Ying Ji
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Meng-Yan Wang
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Dong-Hong Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Zhi-Ling Xu
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Jia-Hao Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Sheng-Nan Huang
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Xia-Li Zhu
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yong-Yan Jia
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, 450046, P.R. China
| |
Collapse
|
17
|
Liu L, Xian Y, Wang W, Huang L, Fan J, Ma W, Li Y, Liu H, Yu JK, Wu D. Meniscus-Inspired Self-Lubricating and Friction-Responsive Hydrogels for Protecting Articular Cartilage and Improving Exercise. ACS NANO 2023; 17:24308-24319. [PMID: 37975685 DOI: 10.1021/acsnano.3c10139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Meniscus injuries are associated with the degeneration of cartilage and development of osteoarthritis (OA). It is challenging to protect articular cartilage and improve exercise when a meniscus injury occurs. Herein, inspired by the components and functions of the meniscus, we developed a self-lubricating and friction-responsive hydrogel that contains nanoliposomes loaded with diclofenac sodium (DS) and Kartogenin (KGN) for anti-inflammation and cartilage regeneration. When the hydrogel was injected into the meniscus injury site, the drug-loaded nanoliposomes were released from the hydrogel in a friction-responsive manner and reassembled to form hydration layers that lubricate joints during movement. Meanwhile, DS and KNG were constantly released from the nanoliposomes to mitigate inflammation and promote cartilage regeneration. Additionally, this hydrogel exhibited favorable injectability, mechanical properties, fatigue resistance, and prolonged degradation. In vivo experiments demonstrated that injection of the hydrogel effectively improved exercise performance and protected the articular cartilage of rats, suggesting it as a potential therapeutic approach for meniscal injuries.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wantao Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jinghao Fan
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenzheng Ma
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Spine Surgery, The First Affiliated Hospital, Pain Research Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hongmei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Kuo Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing 100191, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
18
|
Chen Q, Han X, Liu L, Duan Y, Chen Y, Shi L, Lin Q, Shen L. Multifunctional Polymer Vesicles for Synergistic Antibiotic-Antioxidant Treatment of Bacterial Keratitis. Biomacromolecules 2023; 24:5230-5244. [PMID: 37733485 DOI: 10.1021/acs.biomac.3c00754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
As an acute ophthalmic infection, bacterial keratitis (BK) can lead to severe visual morbidity, such as corneal perforation, intraocular infection, and permanent corneal opacity, if rapid and effective treatments are not available. In addition to eradicating pathogenic bacteria, protecting corneal tissue from oxidative damage and promoting wound healing by relieving inflammation are equally critical for the efficient treatment of BK. Besides, it is very necessary to improve the bioavailability of drugs by enhancing the ocular surface adhesion and corneal permeability. In this investigation, therefore, a synergistic antibiotic-antioxidant treatment of BK was achieved based on multifunctional block copolymer vesicles, within which ciprofloxacin (CIP) was simultaneously encapsulated during the self-assembly. Due to the phenylboronic acid residues in the corona layer, these vesicles exhibited enhanced muco-adhesion, deep corneal epithelial penetration, and bacteria-targeting, which facilitated the drug delivery to corneal bacterial infection sites. Additionally, the abundant thioether moieties in the hydrophobic membrane enabled the vesicles to both have ROS-scavenging capacity and accelerated CIP release at the inflammatory corneal tissue. In vivo experiments on a mice model demonstrated that the multifunctional polymer vesicles achieved efficient treatment of BK, owing to the enhanced corneal adhesion and penetration, bacteria targeting, ROS-triggered CIP release, and the combined antioxidant-antibiotic therapy. This synergistic strategy holds great potential in the treatment of BK and other diseases associated with bacterial infections.
Collapse
Affiliation(s)
- Qiumeng Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaopeng Han
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Lu Liu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yong Duan
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Yifei Chen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Linqi Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Quankui Lin
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| | - Liangliang Shen
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
19
|
Li J, Zhang R, Du Y, Liu G, Dong Y, Zheng M, Cui W, Jia P, Xu Y. Osteophilic and Dual-Regulated Alendronate-Gene Lipoplexes for Reversing Bone Loss. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303456. [PMID: 37438648 DOI: 10.1002/smll.202303456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/27/2023] [Indexed: 07/14/2023]
Abstract
The pathogenesis of postmenopausal osteoporosis (PMOP) is mainly determined by the adhesion of osteoclasts to the bone matrix and the involvement of various molecules in bone resorption. The dual regulation strategy of the physical barriers of bone matrix and intracellular gene regulation generated by advanced biomaterials is a decent alternative for the treatment of PMOP. Herein, for the first time, it is identified that hsa-miR-378i/mmu-miR-378a-3p are closely associated with PMOP. Then, an osteophilic and dual-regulated alendronate-gene lipoplex (antagomir@Aln-Lipo), composed of medicative alendronate-functionalized liposomal vehicle and encapsulated specific microRNAs is engineered, for bone-targeting delivery of genes to achieve combined mitigation of bone loss. Alendronate targets hydroxyapatite in the bone matrix and occupies the adhesion site of osteoclasts, thus providing the "physical barriers". Antagomir is coupled precisely to specific endogenous microRNAs, thus providing the "genetic signals". These functionalized lipoplexes exhibited long-term stability and good transfection efficiency. It is proven that antagomir@Aln-Lipo could synergistically regulate osteoclastogenesis and bone resorption in vitro and in vivo. Furthermore, intravenous injection of antagomir@Aln-Lipo efficiently reverses bone loss through a dual mechanism driven by alendronate and antagomir-378a-3p. In conclusion, the osteophilic and dual-regulated antagomir@Aln-Lipo offers a brand-new bifunctional strategy for the precise treatment of PMOP.
Collapse
Affiliation(s)
- Junjie Li
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, 72nd Group Army Hospital of PLA, No.9 Chezhan Road, Huzhou, 313000, P. R. China
| | - Ruizhi Zhang
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.18 Yangsu Road, Suzhou, 215000, P. R. China
| | - Yu Dong
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Miao Zheng
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Peng Jia
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Youjia Xu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| |
Collapse
|
20
|
Li Y, Shao R, Ostertag-Hill CA, Torre M, Yan R, Kohane DS. Methyl-Branched Liposomes as a Depot for Sustained Drug Delivery. NANO LETTERS 2023; 23:9250-9256. [PMID: 37787444 PMCID: PMC11375454 DOI: 10.1021/acs.nanolett.3c02137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Inadequate drug loading and control of payload leakage limit the duration of the effect of liposomal drug carriers and may cause toxicity. Here, we report a liposome system as a depot for sustained drug delivery whose design is inspired by the low permeability of Archaeal membranes to protons and solutes. Incorporating methyl-branched phospholipids into lipid bilayers decreased payload diffusion across liposomal membranes, thereby enhancing the drug load capacity by 10-16% and reducing the release of small molecules in the first 24 h by 40-48%. The in vivo impact of this approach was demonstrated by injection at the sciatic nerve. Methyl-branched liposomes encapsulating the anesthetic tetrodotoxin (TTX) achieved markedly prolonged local anesthesia lasting up to 70 h, in comparison to the 16 h achieved with liposomes containing conventional lipids. The present work demonstrates the usefulness of methyl-branched liposomes to enhance liposomal depot systems for sustained drug delivery.
Collapse
Affiliation(s)
- Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Rachelle Shao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Claire A Ostertag-Hill
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Matthew Torre
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, United States
| | - Ran Yan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
21
|
Meng S, Song Z, Tang Z, Yang X, Xiao Y, Guo H, Zhou K, Du M, Zhu YZ, Wang X. Surface-decorated nanoliposomal leonurine targets activated fibroblast-like synoviocytes for efficient rheumatoid arthritis therapy. Biomater Sci 2023; 11:7099-7113. [PMID: 37668226 DOI: 10.1039/d3bm00911d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes progressive joint destruction, leading to impaired life quality, disability, and even premature mortality. However, current medications suffer from limited clinical outcomes and severe side effects due to low bioavailability and non-specific distribution after administration. Herein, a targeting nanosystem (HAP-Lipo@Leo) was constructed for efficient RA treatment, which can precisely deliver a natural anti-arthritic drug leonurine (Leo) to the inflamed joint by HAP-1 peptide-mediated recognition of activated fibroblast-like synoviocytes (FLS). More specifically, HAP-Lipo@Leo was prepared by a combination of thin film hydration and high-pressure microfluidization and surface-decorated with HAP-1 peptide and PEG before encapsulating Leo by the ammonium sulfate gradient method. The as-obtained HAP-Lipo@Leo can be selectively internalized by activated FLS and impairs the lamellipodia formation and overexpression of inflammatory cytokines, both of which play detrimental roles in joint damage. Furthermore, HAP-Lipo@Leo demonstrated arthritic joint-specific distribution, significant inhibition of synovial inflammation, and reversal of cartilage and bone destruction in adjuvant-induced arthritis rats as evidenced by comprehensive investigations including ELISA tests, histopathology examinations, and micro-CT analysis. In addition, HAP-Lipo@Leo exhibited good biocompatibility and safety both in vitro and in vivo. Taken together, HAP-Lipo@Leo holds great potential for clinical RA management by integrating activated FLS targeting, long circulation, multifaceted therapeutic effects, and excellent biocompatibility.
Collapse
Affiliation(s)
- Shiyu Meng
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Zhiling Song
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Zhuang Tang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Xiaoxue Yang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Yi Xiao
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Hui Guo
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Kaixiang Zhou
- Center for Advanced Materials Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai 519087, P.R. China
| | - Meirong Du
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
- Lab of Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200032, China
| | - Yi Zhun Zhu
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| | - Xiaolin Wang
- School of Pharmacy and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macao 999078, China.
| |
Collapse
|
22
|
Li Y, Ji T, Torre M, Shao R, Zheng Y, Wang D, Li X, Liu A, Zhang W, Deng X, Yan R, Kohane DS. Aromatized liposomes for sustained drug delivery. Nat Commun 2023; 14:6659. [PMID: 37863880 PMCID: PMC10589217 DOI: 10.1038/s41467-023-41946-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 09/25/2023] [Indexed: 10/22/2023] Open
Abstract
Insufficient drug loading and leakage of payload remain major challenges in designing liposome-based drug delivery systems. These phenomena can limit duration of effect and cause toxicity. Targeting the rate-limiting step in drug release from liposomes, we modify (aromatized) them to have aromatic groups within their lipid bilayers. Aromatized liposomes are designed with synthetic phospholipids with aromatic groups covalently conjugated onto acyl chains. The optimized aromatized liposome increases drug loading and significantly decreases the burst release of a broad range of payloads (small molecules and macromolecules, different degrees of hydrophilicity) and extends their duration of release. Aromatized liposomes encapsulating the anesthetic tetrodotoxin (TTX) achieve markedly prolonged effect and decreased toxicity in an application where liposomes are used clinically: local anesthesia, even though TTX is a hydrophilic small molecule which is typically difficult to encapsulate. Aromatization of lipid bilayers can improve the performance of liposomal drug delivery systems.
Collapse
Affiliation(s)
- Yang Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Matthew Torre
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, US
| | - Rachelle Shao
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Yueqin Zheng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Dali Wang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Xiyu Li
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Andong Liu
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Xiaoran Deng
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Ran Yan
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Division of Critical Care Medicine, Children's Hospital Boston, Harvard Medical School, Boston, MA, 02115, US.
| |
Collapse
|
23
|
Zhuang F, Xiang H, Huang B, Chen Y. Ultrasound-Triggered Cascade Amplification of Nanotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303158. [PMID: 37222084 DOI: 10.1002/adma.202303158] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Indexed: 05/25/2023]
Abstract
Ultrasound (US)-triggered cascade amplification of nanotherapies has attracted considerable attention as an effective strategy for cancer treatment. With the remarkable advances in materials chemistry and nanotechnology, a large number of well-designed nanosystems have emerged that incorporate presupposed cascade amplification processes and can be activated to trigger therapies such as chemotherapy, immunotherapy, and ferroptosis, under exogenous US stimulation or specific substances generated by US actuation, to maximize antitumor efficacy and minimize detrimental effects. Therefore, summarizing the corresponding nanotherapies and applications based on US-triggered cascade amplification is essential. This review comprehensively summarizes and highlights the recent advances in the design of intelligent modalities, consisting of unique components, distinctive properties, and specific cascade processes. These ingenious strategies confer unparalleled potential to nanotherapies based on ultrasound-triggered cascade amplification and provide superior controllability, thus overcoming the unmet requirements of precision medicine and personalized treatment. Finally, the challenges and prospects of this emerging strategy are discussed and it is expected to encourage more innovative ideas and promote their further development.
Collapse
Affiliation(s)
- Fan Zhuang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, and Shanghai Institute of Medical Imaging, Shanghai, 200032, P. R. China
- Institute of Medical Ultrasound and Engineering, Fudan University, Shanghai, 200032, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
24
|
Raju R, Abuwatfa WH, Pitt WG, Husseini GA. Liposomes for the Treatment of Brain Cancer-A Review. Pharmaceuticals (Basel) 2023; 16:1056. [PMID: 37630971 PMCID: PMC10458450 DOI: 10.3390/ph16081056] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/09/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
Due to their biocompatibility, non-toxicity, and surface-conjugation capabilities, liposomes are effective nanocarriers that can encapsulate chemotherapeutic drugs and facilitate targeted delivery across the blood-brain barrier (BBB). Additionally, strategies have been explored to synthesize liposomes that respond to internal and/or external stimuli to release their payload controllably. Although research into liposomes for brain cancer treatment is still in its infancy, these systems have great potential to fundamentally change the drug delivery landscape. This review paper attempts to consolidate relevant literature regarding the delivery to the brain using nanocarriers, particularly liposomes. The paper first briefly explains conventional treatment modalities for cancer, followed by describing the blood-brain barrier and ways, challenges, and techniques involved in transporting drugs across the BBB. Various nanocarrier systems are introduced, with attention to liposomes, due to their ability to circumvent the challenges imposed by the BBB. Relevant studies involving liposomal systems researched to treat brain tumors are reviewed in vitro, in vivo, and clinical studies. Finally, the challenges associated with the use of liposomes to treat brain tumors and how they can be addressed are presented.
Collapse
Affiliation(s)
- Richu Raju
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad H. Abuwatfa
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - William G. Pitt
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA;
| | - Ghaleb A. Husseini
- Biomedical Engineering Program, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Ph.D. Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box. 26666, United Arab Emirates
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| |
Collapse
|
25
|
Jiang Q, Zhang S. Stimulus-Responsive Drug Delivery Nanoplatforms for Osteoarthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206929. [PMID: 36905239 DOI: 10.1002/smll.202206929] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related degenerative diseases. With an increasingly aging global population, greater numbers of OA patients are providing clear economic and societal burdens. Surgical and pharmacological treatments are the most common and conventional therapeutic strategies for OA, but often fall considerably short of desired or optimal outcomes. With the development of stimulus-responsive nanoplatforms has come the potential for improved therapeutic strategies for OA. Enhanced control, longer retention time, higher loading rates, and increased sensitivity are among the potential benefits. This review summarizes the advanced application of stimulus-responsive drug delivery nanoplatforms for OA, categorized by either those that depend on endogenous stimulus (reactive oxygen species, pH, enzyme, and temperature), or those that depend on exogenous stimulus (near-infrared ray, ultrasound, magnetic fields). The opportunities, restrictions, and limitations related to these various drug delivery systems, or their combinations, are discussed in areas such as multi-functionality, image guidance, and multi-stimulus response. The remaining constraints and potential solutions that are represented by the clinical application of stimulus-responsive drug delivery nanoplatforms are finally summarized.
Collapse
Affiliation(s)
- Qi Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
26
|
Kansız S, Elçin YM. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Adv Colloid Interface Sci 2023; 317:102930. [PMID: 37290380 DOI: 10.1016/j.cis.2023.102930] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Liposomes and polymersomes are colloidal vesicles that are self-assembled from lipids and amphiphilic polymers, respectively. Because of their ability to encapsulate both hydrophilic and hydrophobic therapeutics, they are of great interest in drug delivery research. Today, the applications of liposomes and polymersomes have expanded to a wide variety of complex therapeutic molecules, including nucleic acids, proteins and enzymes. Thanks to their chemical versatility, they can be tailored to different drug delivery applications to achieve maximum therapeutic index. This review article evaluates liposomes and polymersomes from a perspective that takes into account the physical and biological barriers that reduce the efficiency of the drug delivery process. In this context, the design approaches of liposomes and polymersomes are discussed with representative examples in terms of their physicochemical properties (size, shape, charge, mechanical), targeting strategies (passive and active) and response to different stimuli (pH, redox, enzyme, temperature, light, magnetic field, ultrasound). Finally, the challenges limiting the transition from laboratory to practice, recent clinical developments, and future perspectives are addressed.
Collapse
Affiliation(s)
- Seyithan Kansız
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Yaşar Murat Elçin
- Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Department of Chemistry, Ankara, Turkey; Biovalda Health Technologies, Inc., Ankara, Turkey.
| |
Collapse
|
27
|
Zhao L, Ling L, Lu J, Jiang F, Sun J, Zhang Z, Huang Y, Liu X, Zhu Y, Fu X, Peng S, Yuan W, Zhao R, Zhang Z. Reactive oxygen species-responsive mitochondria-targeted liposomal quercetin attenuates retinal ischemia-reperfusion injury via regulating SIRT1/FOXO3A and p38 MAPK signaling pathways. Bioeng Transl Med 2023; 8:e10460. [PMID: 37206232 PMCID: PMC10189480 DOI: 10.1002/btm2.10460] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury is involved in the pathogenesis of various vision-threatening diseases. The overproduction of reactive oxygen species (ROS) is thought to be the main cause of RIR injury. A variety of natural products, including quercetin (Que), exhibit potent antioxidant activity. However, the lack of an efficient delivery system for hydrophobic Que and the presence of various intraocular barriers limit the effective retinal delivery of Que in clinical settings. In this study, we encapsulated Que into ROS-responsive mitochondria-targeted liposomes (abbreviated to Que@TPP-ROS-Lips) to achieve the sustained delivery of Que to the retina. The intracellular uptake, lysosome escape ability, and mitochondria targeting ability of Que@TPP-ROS-Lips were evaluated in R28 retinal cells. Treating R28 cells with Que@TPP-ROS-Lips significantly ameliorated the decrease in ATP content, ROS generation, and increase in the release of lactate dehydrogenase in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. In a rat model, the intravitreal injection of Que@TPP-ROS-Lips 24 h after inducing retinal ischemia significantly enhanced retinal electrophysiological recovery and reduced neuroinflammation, oxidative stress, and apoptosis. Que@TPP-ROS-Lips were taken up by retina for at least 14 days after intravitreal administration. Molecular docking and functional biological experiments revealed that Que targets FOXO3A to inhibit oxidative stress and inflammation. Que@TPP-ROS-Lips also partially inhibited the p38 MAPK signaling pathway, which contributes to oxidative stress and inflammation. In conclusion, our new platform for ROS-responsive and mitochondria-targeted drug release shows promise for the treatment of RIR injury and promotes the clinical application of hydrophobic natural products.
Collapse
Affiliation(s)
- Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Longbing Ling
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Feng Jiang
- Department of OphthalmologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Jianchao Sun
- School of Environment and Material EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoqian Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Yanjuan Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Wenze Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| |
Collapse
|
28
|
Nirmala MJ, Kizhuveetil U, Johnson A, G B, Nagarajan R, Muthuvijayan V. Cancer nanomedicine: a review of nano-therapeutics and challenges ahead. RSC Adv 2023; 13:8606-8629. [PMID: 36926304 PMCID: PMC10013677 DOI: 10.1039/d2ra07863e] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer is known as the most dangerous disease in the world in terms of mortality and lack of effective treatment. Research on cancer treatment is still active and of great social importance. Since 1930, chemotherapeutics have been used to treat cancer. However, such conventional treatments are associated with pain, side effects, and a lack of targeting. Nanomedicines are an emerging alternative due to their targeting, bioavailability, and low toxicity. Nanoparticles target cancer cells via active and passive mechanisms. Since FDA approval for Doxil®, several nano-therapeutics have been developed, and a few have received approval for use in cancer treatment. Along with liposomes, solid lipid nanoparticles, polymeric nanoparticles, and nanoemulsions, even newer techniques involving extracellular vesicles (EVs) and thermal nanomaterials are now being researched and implemented in practice. This review highlights the evolution and current status of cancer therapy, with a focus on clinical/pre-clinical nanomedicine cancer studies. Insight is also provided into the prospects in this regard.
Collapse
Affiliation(s)
- M Joyce Nirmala
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Uma Kizhuveetil
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Athira Johnson
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Balaji G
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Ramamurthy Nagarajan
- Department of Chemical Engineering, Indian Institute of Technology Madras Chennai 600 036 India
| | - Vignesh Muthuvijayan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras Chennai 600 036 India
| |
Collapse
|
29
|
Jeon C, Jun H, Kim S, Song N, Yang M, Lim C, Lee D. Clot-Targeted Antithrombotic Liposomal Nanomedicine Containing High Content of H 2O 2-Activatable Hybrid Prodrugs. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8999-9009. [PMID: 36749947 DOI: 10.1021/acsami.2c20750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Liposomes have been extensively explored as drug carriers, but their clinical translation has been hampered by their low drug-loading content and premature leakage of drug payloads. It was reasoned that vesicle-forming prodrugs could be incorporated into the lipid bilayer at a high molar fraction and therefore serve as a therapeutic agent as well as a structural component in liposomal nanomedicine. Boronated retinoic acid (BORA) was developed as a prodrug, which can self-assemble with common lipids to form liposomes at a high molar fraction (40%) and release all-trans retinoic acid (atRA) and hydroxybenzyl alcohol (HBA) simultaneously, in response to hydrogen peroxide (H2O2). Here, we report fucoidan-coated BORA-incorporated liposomes (f-BORALP) as clot-targeted antithrombotic liposomal nanomedicine with H2O2-triggered multiple therapeutic actions. In the mouse model of carotid arterial thrombosis, f-BORALP preferentially accumulated in the injured blood vessel and significantly suppressed thrombus formation, demonstrating their potential as targeted antithrombotic nanomedicine. This study also provides valuable insight into the development of vesicle-forming and self-immolative prodrugs to exploit the benefits of liposomal drug delivery.
Collapse
Affiliation(s)
- Chanhee Jeon
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Hayoung Jun
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Sooyeon Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Nanhee Song
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Manseok Yang
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Changjin Lim
- Department of Pharmacy, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| | - Dongwon Lee
- Department of Bionanotechnology and Bioconvergence Engineering, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
- Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Chonbuk 54896, Republic of Korea
| |
Collapse
|
30
|
Lou J, Qualls ML, Best MD. Sticking the Landing: Enhancing Liposomal Cell Delivery using Reversible Covalent Chemistry and Caged Targeting Groups. Chembiochem 2023; 24:e202200436. [PMID: 36164720 PMCID: PMC9985139 DOI: 10.1002/cbic.202200436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/23/2022] [Indexed: 01/20/2023]
Abstract
Liposomes are highly effective nanocarriers for encapsulating and delivering a wide range of therapeutic cargo. While advancements in liposome design have improved several pharmacological characteristics, an important area that would benefit from further progress involves cellular targeting and entry. In this concept article, we will focus on recent progress utilizing strategies including reversible covalent bonding and caging groups to activate liposomal cell entry. These approaches take advantage of advancements that have been made in complementary fields including molecular sensing and chemical biology and direct this technology toward controlling liposome cell delivery properties. The decoration of liposomes with groups including boronic acids and cyclic disulfides is presented as a means for driving delivery through reaction with functional groups on cell surfaces. Additionally, caging groups can be exploited to activate cell delivery only upon encountering a target stimulus. These approaches provide promising new avenues for controlling cell delivery in the development of next-generation liposomal therapeutic nanocarriers.
Collapse
Affiliation(s)
- Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, 37996, Knoxville, TN, USA
| | - Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, 37996, Knoxville, TN, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, 37996, Knoxville, TN, USA
| |
Collapse
|
31
|
Du Y, Li C, Zhang Y, Xiong W, Wang F, Wang J, Zhang Y, Deng L, Li X, Chen W, Cui W. In Situ-Activated Phospholipid-Mimic Artemisinin Prodrug via Injectable Hydrogel Nano/Microsphere for Rheumatoid Arthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0003. [PMID: 39290968 PMCID: PMC11407526 DOI: 10.34133/research.0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2024]
Abstract
In situ-activated therapy is a decent option for localized diseases with improved efficacies and reduced side effects, which is heavily dependent on the local conversion or activation of bioinert components. In this work, we applied a phospholipid-mimic artemisinin prodrug (ARP) for preparing an injectable nano/microsphere to first realize an in situ-activated therapy of the typical systemically administrated artemisinin-based medicines for a localized rheumatoid arthritis (RA) lesion. ARP is simultaneously an alternative of phospholipids and an enzyme-independent activable prodrug, which can formulate "drug-in-drug" co-delivery liposomes with cargo of partner drugs (e.g., methotrexate). To further stabilize ARP/methotrexate "drug-in-drug" liposomes (MTX/ARPL) for a long-term intra-articular retention, a liposome-embedded hydrogel nano/microsphere (MTX/ARPL@MS) was prepared. After the local injection, the MTX/ARPL could be slowly released because of imine hydrolysis and targeted to RA synovial macrophages and fibroblasts simultaneously. ARP assembly is relatively stable before cellular internalization but disassembled ARP after lysosomal escape and converted into dihydroartemisinin rapidly to realize the effective in situ activation. Taken together, phospholipid-mimic ARP was applied for the firstly localized in situ-activated RA therapy of artemisinin-based drugs, which also provided a brand-new phospholipid-mimic strategy for other systemically administrated prodrugs to realize a remodeling therapeutic schedule for localized diseases.
Collapse
Affiliation(s)
- Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
32
|
Zhou W, Jia Y, Liu Y, Chen Y, Zhao P. Tumor Microenvironment-Based Stimuli-Responsive Nanoparticles for Controlled Release of Drugs in Cancer Therapy. Pharmaceutics 2022; 14:2346. [PMID: 36365164 PMCID: PMC9694300 DOI: 10.3390/pharmaceutics14112346] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 07/22/2023] Open
Abstract
With the development of nanomedicine technology, stimuli-responsive nanocarriers play an increasingly important role in antitumor therapy. Compared with the normal physiological environment, the tumor microenvironment (TME) possesses several unique properties, including acidity, high glutathione (GSH) concentration, hypoxia, over-expressed enzymes and excessive reactive oxygen species (ROS), which are closely related to the occurrence and development of tumors. However, on the other hand, these properties could also be harnessed for smart drug delivery systems to release drugs specifically in tumor tissues. Stimuli-responsive nanoparticles (srNPs) can maintain stability at physiological conditions, while they could be triggered rapidly to release drugs by specific stimuli to prolong blood circulation and enhance cancer cellular uptake, thus achieving excellent therapeutic performance and improved biosafety. This review focuses on the design of srNPs based on several stimuli in the TME for the delivery of antitumor drugs. In addition, the challenges and prospects for the development of srNPs are discussed, which can possibly inspire researchers to develop srNPs for clinical applications in the future.
Collapse
Affiliation(s)
- Weixin Zhou
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Jia
- Institute of Biomedical Engineering and Technology, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200065, China
| | - Yani Liu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Chen
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Pengxuan Zhao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
33
|
Zhang F, Xia B, Sun J, Wang Y, Wang J, Xu F, Chen J, Lu M, Yao X, Timashev P, Zhang Y, Chen M, Che J, Li F, Liang XJ. Lipid-Based Intelligent Vehicle Capabilitized with Physical and Physiological Activation. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9808429. [PMID: 36452433 PMCID: PMC9680525 DOI: 10.34133/2022/9808429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/10/2022] [Indexed: 09/20/2024]
Abstract
Intelligent drug delivery system based on "stimulus-response" mode emerging a promising perspective in next generation lipid-based nanoparticle. Here, we classify signal sources into physical and physiological stimulation according to their origin. The physical signals include temperature, ultrasound, and electromagnetic wave, while physiological signals involve pH, redox condition, and associated proteins. We first summarize external physical response from three main points about efficiency, particle state, and on-demand release. Afterwards, we describe how to design drug delivery using the physiological environment in vivo and present different current application methods. Lastly, we draw a vision of possible future development.
Collapse
Affiliation(s)
- Fuxue Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Sino-Danish Center for Education and Research, Sino-Danish College of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bozhang Xia
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiabei Sun
- China National Institutes for Food and Drug Control, Beijing 102629, China
| | - Yufei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinjin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengfei Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junge Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing 100083, China
| | - Mei Lu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- Advanced Research Institute of Multidisciplinary Science, School of Life Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xin Yao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peter Timashev
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Yuanyuan Zhang
- Laboratory of Clinical Smart Nanotechnologies, Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau SAR, China
| | - Jing Che
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangzhou Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
34
|
Patel HS, Shaikh SJ, Ray D, Aswal VK, Vaidya F, Pathak C, Varade D, Rahdar A, Sharma RK. Structural transitions in mixed Phosphatidylcholine/Pluronic micellar systems and their in vitro therapeutic evaluation for poorly water-soluble drug. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
35
|
Sultana A, Zare M, Thomas V, Kumar TS, Ramakrishna S. Nano-based drug delivery systems: Conventional drug delivery routes, recent developments and future prospects. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Dludla SBK, Mashabela LT, Ng’andwe B, Makoni PA, Witika BA. Current Advances in Nano-Based and Polymeric Stimuli-Responsive Drug Delivery Targeting the Ocular Microenvironment: A Review and Envisaged Future Perspectives. Polymers (Basel) 2022; 14:polym14173580. [PMID: 36080651 PMCID: PMC9460529 DOI: 10.3390/polym14173580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Optimal vision remains one of the most essential elements of the sensory system continuously threatened by many ocular pathologies. Various pharmacological agents possess the potential to effectively treat these ophthalmic conditions; however, the use and efficacy of conventional ophthalmic formulations is hindered by ocular anatomical barriers. Recent novel designs of ophthalmic drug delivery systems (DDS) using nanotechnology show promising prospects, and ophthalmic formulations based on nanotechnology are currently being investigated due to their potential to bypass these barriers to ensure successful ocular drug delivery. More recently, stimuli-responsive nano drug carriers have gained more attention based on their great potential to effectively treat and alleviate many ocular diseases. The attraction is based on their biocompatibility and biodegradability, unique secondary conformations, varying functionalities, and, especially, the stimuli-enhanced therapeutic efficacy and reduced side effects. This review introduces the design and fabrication of stimuli-responsive nano drug carriers, including those that are responsive to endogenous stimuli, viz., pH, reduction, reactive oxygen species, adenosine triphosphate, and enzymes or exogenous stimuli such as light, magnetic field or temperature, which are biologically related or applicable in clinical settings. Furthermore, the paper discusses the applications and prospects of these stimuli-responsive nano drug carriers that are capable of overcoming the biological barriers of ocular disease alleviation and/or treatment for in vivo administration. There remains a great need to accelerate the development of stimuli-responsive nano drug carriers for clinical transition and applications in the treatment of ocular diseases and possible extrapolation to other topical applications such as ungual or otic drug delivery.
Collapse
Affiliation(s)
- Siphokazi B. K. Dludla
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
| | - Leshasha T. Mashabela
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Brian Ng’andwe
- University Teaching Hospitals-Eye Hospital, Private Bag RW 1 X Ridgeway, Lusaka 10101, Zambia
| | - Pedzisai A. Makoni
- Division of Pharmacology, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa
- Correspondence: (P.A.M.); (B.A.W.)
| | - Bwalya A. Witika
- Department of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Correspondence: (P.A.M.); (B.A.W.)
| |
Collapse
|
37
|
Cong X, Chen J, Xu R. Recent Progress in Bio-Responsive Drug Delivery Systems for Tumor Therapy. Front Bioeng Biotechnol 2022; 10:916952. [PMID: 35845404 PMCID: PMC9277442 DOI: 10.3389/fbioe.2022.916952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/09/2022] [Indexed: 12/24/2022] Open
Abstract
Spatially- and/or temporally-controlled drug release has always been the pursuit of drug delivery systems (DDSs) to achieve the ideal therapeutic effect. The abnormal pathophysiological characteristics of the tumor microenvironment, including acidosis, overexpression of special enzymes, hypoxia, and high levels of ROS, GSH, and ATP, offer the possibility for the design of stimulus-responsive DDSs for controlled drug release to realize more efficient drug delivery and anti-tumor activity. With the help of these stimulus signals, responsive DDSs can realize controlled drug release more precisely within the local tumor site and decrease the injected dose and systemic toxicity. This review first describes the major pathophysiological characteristics of the tumor microenvironment, and highlights the recent cutting-edge advances in DDSs responding to the tumor pathophysiological environment for cancer therapy. Finally, the challenges and future directions of bio-responsive DDSs are discussed.
Collapse
Affiliation(s)
- Xiufeng Cong
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jun Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ran Xu
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Ran Xu,
| |
Collapse
|
38
|
Han Z, Han Y, Huang X, Ma H, Zhang X, Song J, Dong J, Li S, Yu R, Liu H. A Novel Targeted Nanoparticle for Traumatic Brain Injury Treatment: Combined Effect of ROS Depletion and Calcium Overload Inhibition. Adv Healthc Mater 2022; 11:e2102256. [PMID: 35118827 DOI: 10.1002/adhm.202102256] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/25/2021] [Indexed: 12/11/2022]
Abstract
Survival after severe traumatic brain injury (TBI) depends on minimizing or avoiding secondary insults to the brain. Overproduction of reactive oxygen species (ROS) and Ca2+ influx at the damaged site are the key factors that cause secondary injury upon TBI. Herein, a TBI-targeted lipid covered radical scavenger nanoparticle is developed to deliver nimodipine (Np) (CL-PPS/Np), in order to inhibit Ca2+ influx in neurons by Np and to scavenge ROS in the brain trauma microenvironment by poly(propylene sulfide)60 (PPS60 ) and thus prevent TBI-associated secondary injury. In post-TBI models, CL-PPS/Np effectively accumulates into the wound cavity and prolongs the time of systemic circulation of Np. CL-PPS/Np can markedly protect the integrity of blood-brain barrier, prevent brain edema, reduce cell death and inflammatory responses, and promote functional recovery after TBI. These findings may provide a new therapy for TBI to prevent the spread of the secondary injury.
Collapse
Affiliation(s)
- Zhengzhong Han
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Yuhan Han
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Xuyang Huang
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Neurosurgery Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Hongwei Ma
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Xuefeng Zhang
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Jingyuan Song
- School of Nursing Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Jun Dong
- Department of Neurosurgery the Second Affiliated Hospital of Suzhou University Suzhou 215000 China
| | - Shanshan Li
- Jiangsu Medical Engineering Research Center of Gene Detection and Department of Forensic Medicine Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Rutong Yu
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Neurosurgery Affiliated Hospital of Xuzhou Medical University Xuzhou 221002 P. R. China
| | - Hongmei Liu
- Institute of Nervous System Diseases Xuzhou Medical University Xuzhou 221002 P. R. China
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
39
|
Criado-Gonzalez M, Mecerreyes D. Thioether-based ROS responsive polymers for biomedical applications. J Mater Chem B 2022; 10:7206-7221. [PMID: 35611805 DOI: 10.1039/d2tb00615d] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) play a key role in several biological functions of living organisms such as regulation of cell signalling, production of some hormones, modulation of protein function or mediation of inflammation. In this regard, ROS responsive polymers are ideal candidates for the development of stimuli-responsive biomaterials for target therapies. Among different ROS-responsive polymers, those containing thioether groups are widely investigated in the biomedical field due to their hydrophobic to hydrophilic phase transition under oxidative conditions. This feature makes them able to self-assemble in aqueous solutions forming micellar-type nanoparticles or hydrogels to be mainly used as drug carriers for local therapies in damaged body areas characterized by high ROS production. This review article collects the main findings about the synthesis of thioether-based ROS responsive polymers and polypeptides, their self-assembly properties and ROS responsive behaviour for use as injectable nanoparticles or hydrogels. Afterward, the foremost applications of the thioether-based ROS responsive nanoparticles and hydrogels in the biomedical field, where cancer therapies are a key objective, will be discussed.
Collapse
Affiliation(s)
- Miryam Criado-Gonzalez
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain.
| | - David Mecerreyes
- POLYMAT, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, 20018 Donostia-San Sebastián, Spain. .,Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
40
|
Irinotecan-loaded ROS-responsive liposomes containing thioether phosphatidylcholine for improving anticancer activity. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Tan B, Qi Z, Yang G, Zhong H. Poly (Thioether-Polyesters) Micelles Encapsulation Induces ROS-Triggered Targeted Release of Tangeretin. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221080335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tangeretin (Tan) possesses great anti-oxidation and anti-inflammation bioactivities; however, it is accompanied by poor water solubility, which leads to inefficient cellular internalization. To address this issue, a reactive oxygen species (ROS)-triggered poly (thioether-polyesters) micelle (PDHP, PEG-DTT) was designed and prepared via self-assembly, which consisted of poly (thioether-polyesters) as the hydrophilic shell, and the drug Tan as the hydrophobic inner core. The micelles (Tan@ PDHP), with a 63.15% loading efficiency of Tan, showed negligible cytotoxicity, high stability in phosphate-buffered saline buffer (pH = 7.4), and continuous release of Tan with the stimulation of H2O2. In addition, this Tan loading micelle was more efficient in responding to the formation of ROS in the lipopolysaccharide-stimulated RAW264.7 cells compared to that of the free Tan. In short, the strategy of encapsulating the low solubility Tan in ROS-triggered poly (thioether-polyesters) micelles provides an effective assay of enhancing Tan's antioxidative activity.
Collapse
Affiliation(s)
- Bozhan Tan
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
- Hunan Changkang Industrial Co., LTD., Yueyang, Hunan, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing, Jiangsu, China
| | - Guliang Yang
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Haiyan Zhong
- National Engineering Laboratory for Rice and By-products Processing, Food Science and Engineering College, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
42
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
43
|
Song Y, Ismail M, Shan Q, Zhao J, Zhu Y, Zhang L, Du Y, Ling L. ROS-mediated liposomal dexamethasone: a new FA-targeted nanoformulation to combat rheumatoid arthritis via inhibiting iRhom2/TNF-α/BAFF pathways. NANOSCALE 2021; 13:20170-20185. [PMID: 34846489 DOI: 10.1039/d1nr05518f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disorder that has seriously affected human health worldwide and its current management requires more successful therapeutic approaches. The combination of nanomedicines and pathophysiology into one system may provide an alternative strategy for precise RA treatment. In this work, a practical ROS-mediated liposome, abbreviated as Dex@FA-ROS-Lips that comprised synthetic dimeric thioether lipids (di-S-PC) and a surface functionalized with folic acid (FA), was proposed for dexamethasone (Dex) delivery. Incorporation with thioether lipids and a FA segment significantly improved the triggered release and improved the triggered release of cytotoxic Dex as well as the active targeting of RA, altering its overall pharmacokinetics and safety profiles in vivo. As proof, the designed Dex@FA-ROS-Lips demonstrated effective internalization by LPS-activated Raw264.7 macrophages with FA receptor overexpression and released Dex at the inflammatory site due to the ROS-triggered disassembly. Intravenous injection of this Dex@FA-ROS-Lips into adjuvant-induced arthritis (AIA) mice led to its incremental accumulation in inflamed joint tissues and significantly alleviated the cartilage destruction and joint swelling via suppression of proinflammatory cytokines (iRhom2, TNF-α and BAFF), as compared to the effect of commercial free Dex. Importantly, the Dex@FA-ROS-Lips nanoformulation showed better hemocompatibility with less adverse effects on the body weight and immune organ index of AIA mice. The anti-inflammatory mechanism of Dex@FA-ROS-Lips was further studied and it was found that it is possibly associated with the down-regulation of iRhom2 and the activation of the TNF-α/BAFF signaling pathway. Therefore, the integration of nanomedicines and the RA microenvironment using multifunctional Dex@FA-ROS-Lips shall be a novel RA treatment modality with full clinical potential, and based on the enhanced therapeutic effect, the signaling pathway of iRhom2/TNF-α/BAFF reasonably explained the mechanism of Dex@FA-ROS-Lips in anti-RA, which suggested a molecular target for RA therapy and other inflammatory diseases.
Collapse
Affiliation(s)
- Yanqin Song
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
- Yantai Center for Food and Drug Control, Yantai 264005, China
| | - Muhammad Ismail
- Henan-Macquarie University Joint Center for Biomedical Innovation, School of Life Science, Henan University, Kaifeng, Henan 475004, China
| | - Qi Shan
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Jianing Zhao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yanping Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| | - Longbing Ling
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Ministry of Education of China), School of Pharmacy, Yantai University, Yantai 264005, China.
| |
Collapse
|
44
|
Qualls ML, Sagar R, Lou J, Best MD. Demolish and Rebuild: Controlling Lipid Self-Assembly toward Triggered Release and Artificial Cells. J Phys Chem B 2021; 125:12918-12933. [PMID: 34792362 DOI: 10.1021/acs.jpcb.1c07406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The ability to modulate the structures of lipid membranes, predicated on our nuanced understanding of the properties that drive and alter lipid self-assembly, has opened up many exciting biological applications. In this Perspective, we focus on two endeavors in which the same principles are invoked to achieve completely opposite results. On one hand, controlled liposome decomposition enables triggered release of encapsulated cargo through the development of synthetic lipid switches that perturb lipid packing in the presence of disease-associated stimuli. In particular, recent approaches have utilized artificial lipid switches designed to undergo major conformational changes in response to a range of target conditions. On the other end of the spectrum, the ability to drive the in situ formation of lipid bilayer membranes from soluble precursors is an important component in the establishment of artificial cells. This work has culminated in chemoenzymatic strategies that enable lipid manufacturing from simple components. Herein, we describe recent advancements in these two unique undertakings that are linked by their reliance on common principles of lipid self-assembly.
Collapse
Affiliation(s)
- Megan L Qualls
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, Tennessee 37996, United States
| |
Collapse
|
45
|
Yao L, Tang Y, Cao W, Cui Y, Qian G. Highly Efficient Encapsulation of Doxorubicin Hydrochloride in Metal-Organic Frameworks for Synergistic Chemotherapy and Chemodynamic Therapy. ACS Biomater Sci Eng 2021; 7:4999-5006. [PMID: 34550683 DOI: 10.1021/acsbiomaterials.1c00874] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Iron-based metal-organic frameworks (MOFs) have been reported to have great potential for encapsulating doxorubicin hydrochloride (DOX), which is a frequently used anthracycline anticancer drug. However, developing a facile approach to realize high loading capacity and efficiency as well as controlled release of DOX in MOFs remains a huge challenge. Herein, we synthesized water-stable MIL-101(Fe)-C4H4 through a microwave-assisted method. It was found the nano-MOFs acted as nanosponges when soaked in a DOX alkaline aqueous solution with a loading capacity experimentally up to 24.5 wt %, while maintaininga loading efficiency as high as 98%. The mechanism of the interaction between DOX and nanoMOFs was investigated by absorption spectra and density functional theory (DFT) calculations, which revealed that the deprotonated DOX was electrostatically adsorbed to the unsaturated Fe3OCl(COO)6·H2O (named Fe3 trimers). In addition, the as-designed poly(ethylene glycol-co-propylene glycol) (F127) modified nanoparticles (F127-DOX-MIL) could be decomposed under the stimulation of glutathione (GSH) and ATP. As a result, DOX and Fe(III) ions were released, and they could undergo a Fenton-like reaction with the endogenous H2O2 to generate the highly toxic hydroxyl radical (·OH). The in vitro experiments indicated that F127-DOX-MIL could cause remarkable Hela cells inhibition through chemotherapy and chemodynamic therapy. Our study provides a new strategy to design a GSH/ATP-responsive drug-delivery nanosystem for chemo/chemodynamic therapy.
Collapse
Affiliation(s)
- Lijia Yao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ying Tang
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Wenqian Cao
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yuanjing Cui
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, Cyrus Tang Center for Sensor Materials and Applications, and School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
46
|
Ding W, Kameta N, Oyane A. Reactive Oxygen Species (ROS)-responsive Organic Nanotubes. CHEM LETT 2021. [DOI: 10.1246/cl.210413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Ayako Oyane
- Nanomaterials Research Institute, Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
47
|
He W, Du Y, Wang T, Wang J, Cheng L, Li X. Dimeric Artesunate-Phosphatidylcholine-Based Liposomes for Irinotecan Delivery as a Combination Therapy Approach. Mol Pharm 2021; 18:3862-3870. [PMID: 34470216 DOI: 10.1021/acs.molpharmaceut.1c00500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, dimeric artesunate-phosphatidylcholine conjugate (dARTPC)-based liposomes encapsulated with irinotecan (Ir) were developed for anticancer combination therapy. First, dARTPC featured with unique amphipathic properties formed liposomes by classical thin-film methods. After that, Ir was encapsulated into dARTPC-based liposomes (Ir/dARTPC-LP) by the triethylammonium sucrose octasulfate gradient method. Physicochemical characterization indicated that Ir/dARTPC-LP had a mean size of around 140 nm and a negative ζ potential of approximately -30 mV. Most noticeably, liposomes displayed an encapsulation efficiency of greater than 98% with a controllable drug loading of 4-22%. The in vitro release of dihydroartemisinin (DHA) and Ir from Ir/dARTPC-LP was investigated by dialysis in different media. It was found that effective release of both DHA (65.42%) and Ir (77.28%) in a weakly acidic medium (pH 5.0) after 48 h was achieved in comparison to very slow release under a neutral environment (DHA 9.90% and Ir 8.72%), indicating the controllable release of both drugs. Confocal laser scanning microscopy confirmed the improved cellular internalization of Ir/dARTPC-LP. The cytotoxicity of Ir/dARTPC-LP was evaluated in the MCF-7, A549, and HepG2 cell lines. The results showed that Ir/dARTPC-LP had significant synergistic efficacy in the loss of cell growth. In vivo anticancer evaluation was performed using a 4T1 xenograft tumor model. Ir/dARTPC-LP had a high tumor inhibition rate of 62.7% without significant toxicity in comparison with the injection of Ir solution. Taken together, dARTPC encapsulated with Ir has great potential for anticancer combination therapy.
Collapse
Affiliation(s)
- Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lei Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
48
|
Hu X, Li F, Xia F, Wang Q, Lin P, Wei M, Gong L, Low LE, Lee JY, Ling D. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Adv Drug Deliv Rev 2021; 175:113830. [PMID: 34139254 DOI: 10.1016/j.addr.2021.113830] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/19/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Dynamic nanoassembly-based drug delivery system (DNDDS) has evolved from being a mere curiosity to emerging as a promising strategy for high-performance diagnosis and/or therapy of various diseases. However, dynamic nano-bio interaction between DNDDS and biological systems remains poorly understood, which can be critical for precise spatiotemporal and functional control of DNDDS in vivo. To deepen the understanding for fine control over DNDDS, we aim to explore natural systems as the root of inspiration for researchers from various fields. This review highlights ingenious designs, nano-bio interactions, and controllable functionalities of state-of-the-art DNDDS under endogenous or exogenous stimuli, by learning from nature at the molecular, subcellular, and cellular levels. Furthermore, the assembly strategies and response mechanisms of tailor-made DNDDS based on the characteristics of various diseased microenvironments are intensively discussed. Finally, the current challenges and future perspectives of DNDDS are briefly commented.
Collapse
|
49
|
ROS responsive mesoporous silica nanoparticles for smart drug delivery: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102599] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Wang T, He W, Du Y, Wang J, Li X. Redox-sensitive irinotecan liposomes with active ultra-high loading and enhanced intracellular drug release. Colloids Surf B Biointerfaces 2021; 206:111967. [PMID: 34256270 DOI: 10.1016/j.colsurfb.2021.111967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 01/21/2023]
Abstract
In this report, a novel irinotecan (IR) encapsulated redox-responsive liposome was developed. The redox-responsive liposomes were prepared based on disulfide phosphatidylcholine (SS-PC), DSPC, DSPE-PEG2000 and cholesterol by ethanol injection method. IR was actively loaded by triethylammonium sucrose octasulfate (TEA8-SOS) gradient method to generate IR/SS-PC liposomes (IR/SS-LP). The particle size of IR/SS-PC was characterized by using dynamic light scattering (DLS) and transmission electron microscopy (TEM). It was found that IR/SS-LP with 30 % content of SS-PC (IR/SS30-LP) had an average size of 125.5 ± 5.8 nm with a negative zeta potential of -19.5 ± 0.1. The encapsulation efficiency (EE) was further determined to be 98.1 ± 0.8 % and drug loading (DL) was 31.8 ± 0.1 %. The redox-responsiveness of IR/SS-LP was investigated by observing the change of particle size and morphology as well as the release behavior of IR triggered by glutathione (GSH). The data indicated GSH breaks the disulfide bonds in SS-PC and leads to the controlled release of IR. At 1 mM GSH, 60.2 % irinotecan was released from IR/SS30-LP within 24 h. Finally, the effects of IR/SS-LP in cell and animal experiments were evaluated in detail. The results showed that IR/SS30-LP had superior pharmacokinetic and antitumor efficacy compared to free irinotecan and traditional irinotecan liposome (ONIVYDE®-like). Taken together, IR/SS30-LP displayed redox-responsive release of IR, ultra-high loading and enhanced anti-tumor activity, which has great potential for clinical application as a new generation of IR liposomal formulation.
Collapse
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Wei He
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Yawei Du
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Ji Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, PR China.
| |
Collapse
|