1
|
Sung CY, Lin CY, Chueh CC, Lin YC, Chen WC. Investigating the Mobility-Compressibility Properties of Conjugated Polymers by the Contact Film Transfer Method with Prestrain. Macromol Rapid Commun 2024; 45:e2300058. [PMID: 36913597 DOI: 10.1002/marc.202300058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/28/2023] [Indexed: 03/14/2023]
Abstract
Up to now, researches on the mobility-stretchability of semiconducting polymers are extensively investigated, but little attention was paid to their morphology and field-effect transistor characteristics under compressive strains, which is equally crucial in wearable electronic applications. In this work, a contact film transfer method is applied to evaluate the mobility-compressibility properties of conjugated polymers. A series of isoindigo-bithiophene conjugated polymers with symmetric carbosilane side chains (P(SiSi)), siloxane-terminated alkyl side chains (P(SiOSiO)), and combined asymmetric side chains (P(SiOSi)) are investigated. Accordingly, a compressed elastomer slab is used to transfer and compress the polymer films by releasing prestrain, and the morphology and mobility evolutions of these polymers are tracked. It is found that P(SiOSi) outperforms the other symmetric polymers including P(Si─Si) and P(SiO─SiO), having the ability to dissipate strain with its shortened lamellar spacing and orthogonal chain alignment. Notably, the mechanical durability of P(SiOSi) is also enhanced after consecutive compress-release cycles. In addition, the contact film transfer technique is demonstrated to be applicable to investigate the compressibility of different semiconducting polymers. These results demonstrate a comprehensive approach to understand the mobility-compressibility properties of semiconducting polymers under tensile and compressive strains.
Collapse
Affiliation(s)
- Chih-Yuan Sung
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Yu Lin
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
2
|
Yuan Y, Zhu H, Wang X, Zhang G, Qiu L. Enhancing the Elasticity of Conjugated Polymers through Precise Control of the Spacing between the Backbone and Siloxane Side-Chains. ACS APPLIED MATERIALS & INTERFACES 2023; 15:22341-22350. [PMID: 37102202 DOI: 10.1021/acsami.3c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Intrinsically stretchable conjugated polymers (CPs) have extensively been studied for the development of novel flexible electronic devices. In this work, a method to control the elastic properties of CPs has been proposed via regulation of spacer length between the siloxane side-chain and the backbone. The target polymers were CP films with the structure P(mC-Si) for four different numbers of the spacer methylene groups, namely, m = 5, 6, 7, and 8. The effect of spacer length on the aggregation state as well as on electrical and elastic properties of the prepared films was then investigated. An adjustable lamellar spacing (dL-L), in addition to improved elastic properties, was achieved as the spacer length was changed in the prepared polymer films. Moreover, P(7C-Si) has a sufficient dL-L value of 35.77 Å, which provides enough space for inter-chain sliding to dissipate stress. This facilitated the dissipation of stress during the straining process. At a strain value of 100% in the vertical direction, the mobility of the P(7C-Si) film was 0.79 cm2 V-1 s-1 and reduced to 84.0% of the initial value without any applied strain. The study provides clear evidence that tuning the spacer length between the silicone endgroup and backbone is an effective way to improve the intrinsic stretchability of CPs with siloxane side chains.
Collapse
Affiliation(s)
- Ye Yuan
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Haoran Zhu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Xiaohong Wang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Longzhen Qiu
- National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
- Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
3
|
Yang WC, Chen YW, Yu YY, Lin YC, Higashihara T, Chen WC. Enhancing the Performance of Electret-Free Phototransistor Memory by Using All-Conjugated Block Copolymer. Macromol Rapid Commun 2023; 44:e2200756. [PMID: 36281923 DOI: 10.1002/marc.202200756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Indexed: 11/09/2022]
Abstract
Conjugated polymers are of great interest owing to their potential in stretchable electronics to function under complex deformation conditions. To improve the performance of conjugated polymers, various structural designs have been proposed and these conjugated polymers are specially applied in exotic optoelectronics. In this work, a series of all-conjugated block copolymers (PII2T-b-PNDI2T) comprising poly(isoindigo-bithiophene) (PII2T) and poly(naphthalenediimide-bithiophene) (PNDI2T) are developed with varied compositions and applied to electret-free phototransistor memory. Accordingly, these memory devices present p-type transport capability and electrical-ON/photo-OFF memory behavior. The efficacy of the all-conjugated block copolymer design in improving the memory-photoresponse properties in phototransistor memory is revealed. By optimizing the composition of the block copolymer, the corresponding device achieves a wide memory window of 36 V and a high memory ratio of 7 × 104 . Collectively, the results of this study indicate a new concept for designing electret-free phototransistor memory by using all-conjugated block copolymer heterojunctions to mitigate the phase separation of conjugated polymer blends. Meanwhile, the intrinsic optoelectronic properties of the constituent conjugated polymers can be well-maintained by using an all-conjugated block copolymer design.
Collapse
Affiliation(s)
- Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.,Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Wen Chen
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Yang-Yen Yu
- Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Yan-Cheng Lin
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan.,Department of Chemical Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Yamagata, 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.,Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
4
|
Enhanced mobility preservation of polythiophenes in stretched states utilizing thienyl-ester conjugated side chain. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Xu C, Wang Z, Dong W, He C, Shi Y, Bai J, Zhang C, Gao M, Jiang H, Deng Y, Ye L, Han Y, Geng Y. Aggregation Behavior and Electrical Performance Control of Isoindigo-Based Conjugated Polymers via Carbosilane Side Chain Engineering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chenhui Xu
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Zhongli Wang
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Weijia Dong
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Chunyong He
- Spallation Neutron Source Science Centre, China Spallation Neutron Source (CSNS), Dongguan 523803, China
| | - Yibo Shi
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Junhua Bai
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Chan Zhang
- Institute of Molecular Plus, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China
| | - Mengyuan Gao
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Hanqiu Jiang
- Spallation Neutron Source Science Centre, China Spallation Neutron Source (CSNS), Dongguan 523803, China
| | - Yunfeng Deng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Long Ye
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Yang Han
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
| | - Yanhou Geng
- School of Materials Science & Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
6
|
Wu WN, Tu TH, Pai CH, Cheng KH, Tung SH, Chan YT, Liu CL. Metallo-Supramolecular Rod–Coil Block Copolymer Thin Films for Stretchable Organic Field Effect Transistor Application. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Wei-Ni Wu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Tsung-Han Tu
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Chiao-Hsuan Pai
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Kuan-Heng Cheng
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Shih-Huang Tung
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei10617, Taiwan
| | - Cheng-Liang Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei10617, Taiwan
| |
Collapse
|
7
|
Stretchable diketopyrrolopyrrole-based conjugated polymers with asymmetric sidechain designs for field-effect transistor applications. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Hung YT, Chen CK, Lin YC, Yu YY, Chen WC. Dimensionally thermally stable biomass-based polyimides for flexible electronic applications. Polym J 2022. [DOI: 10.1038/s41428-022-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
A thriving decade: rational design, green synthesis, and cutting-edge applications of isoindigo-based conjugated polymers in organic field-effect transistors. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Wu F, Liu Y, Zhang J, Duan S, Ji D, Yang H. Recent Advances in High-Mobility and High-Stretchability Organic Field-Effect Transistors: From Materials, Devices to Applications. SMALL METHODS 2021; 5:e2100676. [PMID: 34928035 DOI: 10.1002/smtd.202100676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Indexed: 06/14/2023]
Abstract
Stretchable organic field-effect transistors (OFETs) are one of the essential building blocks for next-generation wearable electronics due to the high stretchability of OFET well matching with the large deformation of human skin. In recent years, some significant progress of stretchable OFETs have already been made via the strategies of stretchable molecular design and geometry engineering. However, the main opportunity and challenge of stretchable OFETs is still to simultaneously improve their stretchability and mobility. This review covers the recent advances in the research of stretchable OFETs with high mobility. First, the core stretchable materials are summarized, including organic semiconductors, electrodes, dielectrics, and substrates. Second, the materials and healing mechanism of self-healing OFET are summarized in detail. Subsequently, their different configurations and the potential applications are summarized. Finally, an outlook of future research directions and challenges in this area is presented.
Collapse
Affiliation(s)
- Fuming Wu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Yixuan Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Jun Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Shuming Duan
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| | - Deyang Ji
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| | - Hui Yang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin, 300072, China
| |
Collapse
|
11
|
Yuan Y, Zhao F, Ding Y, Zhang G, Wang X, Qiu L. Asymmetric Hybrid Siloxane Side Chains for Enhanced Mobility and Mechanical Properties of Diketopyrrolopyrrole-Based Polymers. Macromol Rapid Commun 2021; 43:e2100636. [PMID: 34847277 DOI: 10.1002/marc.202100636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Indexed: 01/03/2023]
Abstract
High performance organic field effect transistor devices based on intrinsically scalable materials are of great significance in wearable electronics. In this work, an exclusive approach is reported to rationale the carrier mobility and stretchability of the conjugate polymers (CPs) by modifying the symmetry of the side chains species. Semiconductor CPs with symmetrical alkyl side chains (P(C-C)), symmetrical siloxane side chains (P(Si-Si)), and asymmetrical silicon-carbon side chains (P(C-Si)) are synthesized to investigate the influence of these side chains on the carrier mobility and mechanical behavior. The result shows that silicon-carbon asymmetric side chains can modulate the aggregation degree of polymer chains with a coherence length of 134 Å and maintain the mobility at 0.90 cm2 V-1 s-1 . P(C-Si) exhibits superior tensile properties that even elongation up to 100% the value of mobility retains a majority properties. The main reason is that the lowest coherence length of P(C-Si) polymer leads to an increased proportion of amorphous zones in its polymer film, which efficiently dissipates mechanical stresses. This study provides an efficient strategy for the design and synthesis of the CPs with high carrier transport properties-mechanical stability.
Collapse
Affiliation(s)
- Ye Yuan
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Fengsheng Zhao
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Advanced Functional Materials and Devices, Hefei University of Technology, Hefei, 230009, China
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China.,Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
12
|
Li H, Yang H, Zhang L, Wang S, Chen Y, Zhang Q, Zhang J, Tian H, Han Y. Optimizing the Crystallization Behavior and Film Morphology of Donor–Acceptor Conjugated Semiconducting Polymers by Side-Chain–Solvent Interaction in Nonpolar Solvents. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Hongxiang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hua Yang
- Spallation Neutron Source Science Center, Dongguan 523803, P. R. China
| | - Lu Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Sichun Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongkun Tian
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yanchun Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
13
|
Park KH, Go J, Lim B, Noh Y. Recent progress in lactam‐based polymer semiconductors for organic electronic devices. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kwang Hun Park
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT) Ulsan Republic of Korea
| | - Ji‐Young Go
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Republic of Korea
| | - Bogyu Lim
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT) Ulsan Republic of Korea
| | - Yong‐Young Noh
- Department of Chemical Engineering Pohang University of Science and Technology Pohang Republic of Korea
| |
Collapse
|
14
|
Lin YC, Matsuda M, Chen CK, Yang WC, Chueh CC, Higashihara T, Chen WC. Investigation of the Mobility–Stretchability Properties of Naphthalenediimide-Based Conjugated Random Terpolymers with a Functionalized Conjugation Break Spacer. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00534] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Bogdanov AV, Mironov VF. Recent advances in the application of isoindigo derivatives in materials chemistry. Beilstein J Org Chem 2021; 17:1533-1564. [PMID: 34290836 PMCID: PMC8275870 DOI: 10.3762/bjoc.17.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/23/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, the data on the application of isoindigo derivatives in the chemistry of functional materials are analyzed and summarized. These bisheterocycles can be used in the creation of organic solar cells, sensors, lithium ion batteries as well as in OFET and OLED technologies. The potentials of the use of polymer structures based on isoindigo as photoactive component in the photoelectrochemical reduction of water, as matrix for MALDI spectrometry and in photothermal cancer therapy are also shown. Data published over the past 5 years, including works published at the beginning of 2021, are given.
Collapse
Affiliation(s)
- Andrei V Bogdanov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., Kazan 420088, Russian Federation
| | - Vladimir F Mironov
- A.E. Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., Kazan 420088, Russian Federation
| |
Collapse
|
16
|
Manzhos S, Chueh CC, Giorgi G, Kubo T, Saianand G, Lüder J, Sonar P, Ihara M. Materials Design and Optimization for Next-Generation Solar Cell and Light-Emitting Technologies. J Phys Chem Lett 2021; 12:4638-4657. [PMID: 33974435 DOI: 10.1021/acs.jpclett.1c00714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We review some of the most potent directions in the design of materials for next-generation solar cell and light-emitting technologies that go beyond traditional solid-state inorganic semiconductor-based devices, from both the experimental and computational standpoints. We focus on selected recent conceptual advances in tackling issues which are expected to significantly impact applied literature in the coming years. Specifically, we consider solution processability, design of dopant-free charge transport materials, two-dimensional conjugated polymeric semiconductors, and colloidal quantum dot assemblies in the fields of experimental synthesis, characterization, and device fabrication. Key modeling issues that we consider are calculations of optical properties and of effects of aggregation, including recent advances in methods beyond linear-response time-dependent density functional theory and recent insights into the effects of correlation when going beyond the single-particle ansatz as well as in the context of modeling of thermally activated fluorescence.
Collapse
Affiliation(s)
- Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Giacomo Giorgi
- Department of Civil & Environmental Engineering (DICA), Università degli Studi di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
- CNR-SCITEC, 06123 Perugia, Italy
| | - Takaya Kubo
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Gopalan Saianand
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4001 Brisbane, Australia
- Global Center for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Johann Lüder
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, 80424, No. 70, Lien-Hai Road, Kaohsiung, Taiwan R.O.C
- Center of Crystal Research, National Sun Yat-sen University, 80424, No. 70, Lien-Hai Road, Kaohsiung, Taiwan R.O.C
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, 4001 Brisbane, Australia
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
17
|
Yen HC, Lin YC, Chen WC. Modulation of the Hydrophilicity on Asymmetric Side Chains of Isoindigo-Based Polymers for Improving Carrier Mobility–Stretchability Properties. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02322] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Hao-Chi Yen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
18
|
Exploring the effect of the spacer structure in the heterocyclic ring-fused isoindigo-based conjugated polymer on the charge-transporting property. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Lin YC, Matsuda M, Sato KI, Chen CK, Yang WC, Chueh CC, Higashihara T, Chen WC. Intrinsically stretchable naphthalenediimide–bithiophene conjugated statistical terpolymers using branched conjugation break spacers for field–effect transistors. Polym Chem 2021. [DOI: 10.1039/d1py01154e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of naphthalene−diimide based conjugated polymers was synthesized through statistical terpolymerization with branched conjugation break spacers to enhance their mobility−stretchability properties in field-effect transistors.
Collapse
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, China
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan, China
| | - Megumi Matsuda
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kei-ichiro Sato
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, China
| | - Wei-Chen Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, China
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, China
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan, China
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, China
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan, China
| |
Collapse
|
20
|
Lin YC, Huang YW, Hung CC, Chiang YC, Chen CK, Hsu LC, Chueh CC, Chen WC. Backbone Engineering of Diketopyrrolopyrrole-Based Conjugated Polymers through Random Terpolymerization for Improved Mobility-Stretchability Property. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50648-50659. [PMID: 33138353 DOI: 10.1021/acsami.0c14592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conjugated polymers synthesized through random terpolymerization have recently attracted great research interest due to the synergetic effect on the polymer's crystallinity and semiconducting properties. Several studies have demonstrated the efficacy of random terpolymerization in fine-tuning the aggregation behavior and optoelectronic property of conjugated polymers to yield enhanced device performance. However, as an influential approach of backbone engineering, its efficacy in modulating the mobility-stretchability property of high-performance conjugated polymers has not been fuller explored to date. Herein, a series of random terpolymers based on the diketopyrrolopyrrole-bithiophene (DPP-2T) backbone incorporating different amounts of isoindigo (IID) unit are synthesized, and their structure-mobility-stretchability correlation is thoroughly investigated. Our results reveal that random terpolymers containing a low IID content (DPP95 and DPP90) show enhanced interchain packing and solid-state aggregation to result in improved charge-transporting performance (can reach 4 order higher) compared to the parent polymer DPP100. In addition, owing to the enriched amorphous feature, DPP95 and DPP90 deliver an improved orthogonal mobility (μh) of >0.01 cm2 V-1 s-1 under a 100% strain, higher than the value (∼0.002 cm2 V-1 s-1) of DPP100. Moreover, DPP95 even yields 20% enhanced orthogonal μh retention after 800 stretching-releasing cycles with 60% strain. As concluded from a series of analyses, the improved mobility-stretchability property exerted by random terpolymerization arises from the enriched amorphous feature and enhanced aggregation behavior imposed by the geometry mismatch between different acceptors (DPP and IID). This study demonstrates that backbone engineering through rational random terpolymerization not only enhances the mobility-stretchability of a conjugated polymer but also realizes a better mechanical endurance, providing a new perspective for the design of high-performance stretchable conjugated polymers.
Collapse
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Wen Huang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Chien Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Che Hsu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
21
|
Bogdanov AV, Voloshina AD, Sapunova AS, Kulik NV, Mironov VF. Effect of Structure of 1-Substituted Isatins on Direction of Their Reactions with Some Acetohydrazide Ammonium Derivatives. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220090029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Lin YC, Chen CK, Chiang YC, Hung CC, Fu MC, Inagaki S, Chueh CC, Higashihara T, Chen WC. Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33014-33027. [PMID: 32536156 DOI: 10.1021/acsami.0c07496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of a π-conjugated polymer with hydrogen-bonding moieties has aroused great attention because of the improved molecular stacking and the hydrogen-bonding network. In this study, PDPPTVT (diketopyrrolopyrrole-thiophenevinylenethiophene) and PDPPSe (diketopyrrolopyrrole-selenophene) alkylated with a carbosilane (SiC8) side chain and poly(acryl amide) (PAM)-incorporated alkyl side chain were prepared, and their structure-performance and structure-stretchability correlation were evaluated. By incorporating the DPPTVT backbone and 0, 5, 10, or 20% PAM-incorporated alkyl side chain, the μh value could reach 2.0, 0.97, 0.74, and 0.42 cm2 V-1 s-1, respectively (P1 to P4). The polymer with the PDPPSe backbone and 5% PAM-incorporated alkyl side-chain (P5) exhibited the maximum μh value of 0.96 cm2 V-1 s-1. By extending the PAM moiety from the backbone with alkyl spacers, the solid-state packing and edge-on orientation can be properly maintained. Surprisingly, the PAM-incorporated alkyl side-chain can provide a hydrogen-bonding network serving as sacrificial bonding to mechanical deformation. Therefore, the relevant changes in the crystallographic parameters including the crystalline size and the in-plane π-π stacking distance with a 100% external strain were less than 4 and 0.8%, respectively, from P1 to P3. Therefore, P3 achieved an excellent stretchability while maintaining its molecular orientation and charge-transporting performance. Even with 100% external strain, P3 still provided an orthogonal μh over 0.1 cm2 V-1 s-1. Moreover, by substituting the TVT moiety with the Se moiety, the ductility of the backbone can be further increased when the elastic modulus decreases from 0.80 to 0.36 GPa for P2 to P5. The achieved high μh retention is over 20% after 500 stretching-releasing cycles with a 60% external strain perpendicular to the channel direction for the polymer composed of PDPPSe and 5% PAM content. The results manifest that our newly designed DPP with the PAM-incorporated alkyl side chain provides a promising approach to promote the intrinsic stretchability of the π-conjugated polymers.
Collapse
Affiliation(s)
- Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Chien Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Mao-Chun Fu
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shin Inagaki
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Tomoya Higashihara
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
23
|
Wu YS, Lin YC, Hung SY, Chen CK, Chiang YC, Chueh CC, Chen WC. Investigation of the Mobility–Stretchability Relationship of Ester-Substituted Polythiophene Derivatives. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Ying-Sheng Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yan-Cheng Lin
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Yuan Hung
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Kai Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yun-Chi Chiang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Chu-Chen Chueh
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|