1
|
Dash S, Mojumder S, Das T, Saha D, Pal M. Highly sensitive and selective rGO-LaFeO 3 nanocomposite based formaldehyde sensors towards air quality monitoring. CHEMOSPHERE 2024; 367:143499. [PMID: 39395479 DOI: 10.1016/j.chemosphere.2024.143499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Formaldehyde (HCHO), a ubiquitous volatile organic compound and recognized human carcinogen, is extensively used in industrial applications such as resin and adhesive production. Even minimal exposure to HCHO can induce serious health effects, including respiratory distress and dermal irritation. Thus, the advancement of highly sensitive and selective sensors for HCHO detection is imperative for safeguarding environmental and indoor air quality. Herein, we report the development of a very sensitive, highly selective, and stable HCHO sensor based on reduced graphene oxide (rGO) and lanthanum ferrite (LaFeO3). LaFeO3 and rGO-LaFeO3 nanocomposites with different compositions were synthesized through an affordable and straightforward sol-gel process. Among them, the LFGO(50:1) sensor demonstrated the highest response and selectivity towards HCHO, with a detection limit (theoretically) as low as 19 ppb (1.5 fold). Notably, it exhibited approximately 15-fold p-type response to 1 ppm of HCHO, while operating at 260 °C. The sensor also showed quick response and recovery times of around 1.5 s and 36 s, respectively while having negligible response to other VOCs, including ethanol, methanol, and NH3. A synergistic effect of rGO and LaFeO3 is attributed to this improved sensing behavior. rGO offers a large surface area that facilitates the adsorption of HCHO molecules, while LaFeO3 acts as a catalyst for the oxidation of HCHO. The sensor also showed good selectivity, stability, and reproducibility, making the material a promising candidate for practical applications towards environment monitoring, indoor air quality control, and industrial safety.
Collapse
Affiliation(s)
- Sanjib Dash
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Subhajit Mojumder
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India; Jadavpur University, Department of Physics, Kolkata, India
| | - Tanushri Das
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India; Jadavpur University, Department of Physics, Kolkata, India
| | - Debdulal Saha
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India
| | - Mrinal Pal
- Csir-Central Glass and Ceramic Research Institute, Kolkata, India.
| |
Collapse
|
2
|
Li Y, Wei X, Liu Q, Zang D, You R. Visible Light-Activated Room Temperature NO 2 Gas Sensing Based on the In 2O 3@ZnO Heterostructure with a Hollow Microtube Structure. ACS Sens 2024; 9:3741-3753. [PMID: 38996081 DOI: 10.1021/acssensors.4c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
The persistent challenge of poor recovery characteristics of NO2 sensors operated at room temperature remains significant. However, the development of In2O3-based gas sensing materials provides a promising approach to accelerate response and recovery for sub-ppm of NO2 detection at room temperature. Herein, we propose a simple two-step method to synthesize a one-dimensional (1D) In2O3@ZnO heterostructure material with hollow microtubes, by coupling metal-organic frameworks (MOFs) (MIL-68 (In)) and zinc ions. Meanwhile, the In2O3@ZnO composite-based gas sensor exhibits superior sensitivity performance to NO2 under visible light activation. The response value to 5 ppm of NO2 at room temperature is as high as 1800, which is 35 times higher than that of the pure In2O3-based sensor. Additionally, the gas sensor based on the In2O3@ZnO heterostructure demonstrates a significantly reduced response/recovery time of 30 s/67 s compared to the sensor based on pure In2O3 (74 s/235 s). The outstanding gas sensing properties of the In2O3@ZnO heterostructure-based sensors can be attributed to the enhanced photogenerated charge separation efficiency resulting from the heterostructure effect, and the improved receptor function toward NO2, which can increase the reactive sites and gas adsorption capacity. In summary, this work proposes a low-cost and efficient method to synthesize a 1D heterostructure material with microtube structures, which can serve as a fundamental technique for developing high-performance room-temperature gas sensors.
Collapse
Affiliation(s)
- Ying Li
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Xiangyang Wei
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Qingyuan Liu
- Beijing Institute of Control Engineering, Beijing 100090, China
- Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology, Beijing 100090, China
| | - Diming Zang
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Rui You
- Laboratory of the Intelligent Microsystems, Beijing Information Science and Technology University, Beijing 100192, China
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| |
Collapse
|
3
|
Chen H, Chen H, Chen J, Song M. Gas Sensors Based on Semiconductor Metal Oxides Fabricated by Electrospinning: A Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2962. [PMID: 38793817 PMCID: PMC11125222 DOI: 10.3390/s24102962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Electrospinning has revolutionized the field of semiconductor metal oxide (SMO) gas sensors, which are pivotal for gas detection. SMOs are known for their high sensitivity, rapid responsiveness, and exceptional selectivity towards various types of gases. When synthesized via electrospinning, they gain unmatched advantages. These include high porosity, large specific surface areas, adjustable morphologies and compositions, and diverse structural designs, improving gas-sensing performance. This review explores the application of variously structured and composed SMOs prepared by electrospinning in gas sensors. It highlights strategies to augment gas-sensing performance, such as noble metal modification and doping with transition metals, rare earth elements, and metal cations, all contributing to heightened sensitivity and selectivity. We also look at the fabrication of composite SMOs with polymers or carbon nanofibers, which addresses the challenge of high operating temperatures. Furthermore, this review discusses the advantages of hierarchical and core-shell structures. The use of spinel and perovskite structures is also explored for their unique chemical compositions and crystal structure. These structures are useful for high sensitivity and selectivity towards specific gases. These methodologies emphasize the critical role of innovative material integration and structural design in achieving high-performance gas sensors, pointing toward future research directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Hao Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Huayang Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Jiabao Chen
- School of Applied Science and Technology, Hainan University, Danzhou 571799, China; (H.C.); (H.C.); (J.C.)
| | - Mingxin Song
- School of Electronic Science and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Chen Y, Han D, Wang Z, Gu F. Interface Defects and Carrier Regulation in MOF-Derived Co 3O 4/In 2O 3 Composite Materials for Enhanced Selective Detection of HCHO. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38659088 DOI: 10.1021/acsami.4c01077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Gas sensors for real-time monitoring of low HCHO concentrations have promising applications in the field of health protection and air treatment, and this work reports a novel resistive gas sensor with high sensitivity and selectivity to HCHO. The MOF-derived hollow In2O3 was mixed with ZIF-67(Co) and calcined twice to obtain a hollow Co3O4/In2O3 (hereafter collectively termed MZO-6) composite enriched with oxygen vacancies, and tests such as XPS and EPR proved that the strong interfacial electronic coupling increased the oxygen vacancies. The gas-sensitive test results show that the hollow composite MZO-6 with abundant oxygen vacancies has a higher response value (11,003) to 10 ppm of HCHO and achieves a fast response/recovery time (11/181 s) for HCHO at a lower operating temperature (140 °C). The MZO-6 material significantly enhances the selectivity to HCHO and reduces the interference of common pollutant gases such as ethanol, acetone, and xylene. There is no significant fluctuation of resistance and response values in the 30-day long-term stability test, and the material has good stability. The synergistic effect of the heterostructure and oxygen vacancies altered the formaldehyde adsorption intermediate pathway and reduced the reaction activation energy, enhancing the HCHO responsiveness and selectivity of the MZO-6 material.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
5
|
Fu H, Deng Y, Cai Z, Pan Y, Yang L, Fujita T, Wang N, Wang Y, Wang X. Designing Z-scheme In 2O 3 @ZnIn 2S 4 core-shell heterojunctions for enhanced photocatalytic multi-pollutant removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132820. [PMID: 37898084 DOI: 10.1016/j.jhazmat.2023.132820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/30/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
In water bodies, the coexistence of and interaction between multiple pollutants complicate remediation. In this study, the In2O3 @ZnIn2S4 Z-scheme heterojunction with a stratified core-shell structure was constructed and used to remove multiple pollutants (tetracycline hydrochloride and Cr(VI)). The large number of active sites and the mechanism of photogenerated charge separation ensured the substantially enhanced catalytic activity of this photocatalyst, making it superior to In2O3 nanospheres and pure ZnIn2S4. The optimised In2O3 @ZnIn2S4 nano-flowers (In2O3 @ZnIn2S4 NFs) realised 99.8% removal of tetracycline hydrochloride and 100% removal of Cr(VI) within 60 min under visible-light. The material's high stability was demonstrated by five experiment cycles. Effects of organics, inorganics, and pH about the photocatalytic performance of the optimised In2O3 @ZnIn2S4 NFs when tetracycline hydrochloride and Cr(VI) coexist were also explored. Finally, the intermediates and degradation pathways were analysed, and the possible photocatalytic mechanism was also investigated by performing density functional theory calculations.
Collapse
Affiliation(s)
- Hao Fu
- School of Chemistry & Chemical Engineering, Guangxi University, Nanning 530004, PR China; School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Yuxiang Deng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Zhenyu Cai
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Yuehua Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Libo Yang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Nannan Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Youbin Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Xinpeng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China; State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Nanning 530004, PR China.
| |
Collapse
|
6
|
Dai HH, Cai X, Liu ZH, Xia RZ, Zhao YH, Liu YZ, Yang M, Li PH, Huang XJ. Ion-Electron Transduction Layer of the SnS 2-MoS 2 Heterojunction to Elevate Superior Interface Stability for All-Solid Sodium-Ion Selective Electrode. ACS Sens 2024; 9:415-423. [PMID: 38154098 DOI: 10.1021/acssensors.3c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The high selectivity and fast ion response of all-solid sodium ion selective electrodes were widely applied in human sweat analysis. However, the potential drift due to insufficient interfacial capacitance leads to the deterioration of its stability and ultimately affects the potential accuracy of ion analysis. Designing a novel ion-electron transduction layer between the electrode and the ion selective membrane is an effective method to stabilize the interfacial potential. Herein, the SnS2-MoS2 heterojunction material was constructed by doping Sn in MoS2 nanosheets and used as the ion electron transduction layers of an all-solid sodium ion selective electrode for the first time, achieving the stable and efficient detection of Na+ ions. The proposed electrode exhibited a Nernst slope of 57.86 mV/dec for the detection of Na+ ions with a detection limit of 10-5.7 M in the activity range of 10-6-10-1 M. Via the electronic interaction at the heterojunction interfaces between SnS2 and MoS2 materials, the micro-nanostructure of the SnS2-MoS2 heterojunction was changed and SnS2-MoS2 as the ion-electron transduction layer acquired excellent capacitance (699 μF) and hydrophobicity (132°), resulting in a long-term potential stability of 1.37 μV/h. It was further proved that the large capacitance and high hydrophobicity of the ion-electron transduction layer are primary reasons for the excellent stability of the all-solid sodium ion selective electrode toward Na+ ions.
Collapse
Affiliation(s)
- Hai-Hua Dai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xin Cai
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zi-Hao Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Rui-Ze Xia
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yong-Huan Zhao
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yang-Zhi Liu
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Meng Yang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Pei-Hua Li
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xing-Jiu Huang
- Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Bai W, Li C, Zhao Z, Chai H, Gao L. Eu 3+ doped ethylenediamine functionalized UiO-66 probe for fluorescence sensing of formaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123937. [PMID: 38301570 DOI: 10.1016/j.saa.2024.123937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/02/2024] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
The development of probes with selectivity and prompt detection of aldehydes molecules is of great importance for protecting human health and public security. Herein, a system based on ethylenediamine (EDA) functionalized and Eu3+-doped UiO-66, namely EDA-Eu3+@UiO-66, was designed to detect formaldehyde molecules. Based on the "antenna effect" of lanthanide elements, UiO-66 transfers the absorbed energy to Eu3+ ions and emits characteristic fluorescence belonging to Eu3+. By using the fluorescence peaks of UiO-66 and Eu3+ respectively, a ratiometric fluorescence sensing probe can be constructed. Formaldehyde molecules react with the -NH2 on the surface of EDA-Eu3+@UiO-66 through an aldehyde-amine condensation reaction and connect to the functionalized surface of UiO-66. Due to the absorption of excitation light energy by formaldehyde molecules, the energy transfer efficiency from UiO-66 to Eu3+ ions is reduced, resulting in the fluorescence quenching of EDA-Eu3+@UiO-66, thus achieving selective detection of formaldehyde. The fabricated sensing platform successfully detected residual formaldehyde in frozen shrimp tail samples. The system was also used to respond to formaldehyde vapor, and a significant fluorescence quenching effect was observed. This strategy provides a sensitive, selective, and reliable method for the visual sensing of formaldehyde.
Collapse
Affiliation(s)
- Wanqiao Bai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| | - Chunyu Li
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Zhuojun Zhao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Hongmei Chai
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China
| | - Loujun Gao
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, PR China.
| |
Collapse
|
8
|
He ZK, Zhao J, Li K, Zhao J, He H, Gao Z, Song YY. Rational Integration of SnMOF/SnO 2 Hybrid on TiO 2 Nanotube Arrays: An Effective Strategy for Accelerating Formaldehyde Sensing Performance at Room Temperature. ACS Sens 2023; 8:4189-4197. [PMID: 37870917 DOI: 10.1021/acssensors.3c01525] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Formaldehyde is ubiquitously found in the environment, meaning that real-time monitoring of formaldehyde, particularly indoors, can have a significant impact on human health. However, the performance of commercially available interdigital electrode-based sensors is a compromise between active material loading and steric hindrance. In this work, a spaced TiO2 nanotube array (NTA) was exploited as a scaffold and electron collector in a formaldehyde sensor for the first time. A Sn-based metal-organic framework was successfully decorated on the inside and outside of TiO2 nanotube walls by a facile solvothermal decoration strategy. This was followed by regulated calcination, which successfully integrated the preconcentration effect of a porous Sn-based metal-organic framework (SnMOF) structure and highly active SnO2 nanocrystals into the spaced TiO2 NTA to form a Schottky heterojunction-type gas sensor. This SnMOF/SnO2@TiO2 NTA sensor achieved a high room-temperature formaldehyde response (1.7 at 6 ppm) with a fast response (4.0 s) and recovery (2.5 s) times. This work provides a new platform for preparing alternatives to interdigital electrode-based sensors and offers an effective strategy for achieving target preconcentrations for gas sensing processes. The as-prepared SnMOF/SnO2@TiO2 NTA sensor demonstrated excellent sensitivity, stability, reproducibility, flexibility, and convenience, showing excellent potential as a miniaturized device for medical diagnosis, environmental monitoring, and other intelligent sensing systems.
Collapse
Affiliation(s)
- Zhen-Kun He
- College of Science, Northeastern University, Shenyang 110819, China
| | - Jiahui Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Keke Li
- College of Science, Northeastern University, Shenyang 110819, China
| | - Junjian Zhao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Haoxuan He
- College of Science, Northeastern University, Shenyang 110819, China
| | - Zhida Gao
- College of Science, Northeastern University, Shenyang 110819, China
| | - Yan-Yan Song
- College of Science, Northeastern University, Shenyang 110819, China
| |
Collapse
|
9
|
Lai CY, Liu CF, Lin TL, Chen MY, Huang YC, Huang HH, Dong CL, Wang DY, Yeh PH, Wu WW. Defect-Rich SnO 2 Nanofiber as an Oxygen-Defect-Driven Photoenergy Shield against UV Light Cell Damage. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42868-42880. [PMID: 37647236 DOI: 10.1021/acsami.3c08926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Usually, most studies focus on toxic gas and photosensors by using electrospinning and metal oxide polycrystalline SnO2 nanofibers (PNFs), while fewer studies discuss cell-material interactions and photoelectric effect. In this work, the controllable surface morphology and oxygen defect (VO) structure properties were provided to show the opportunity of metal oxide PNFs to convert photoenergy into bio-energy for bio-material applications. Using the photobiomodulation effect of defect-rich polycrystalline SnO2 nanofibers (PNFs) is the main idea to modulate the cell-material interactions, such as adhesion, growth direction, and reactive oxygen species (ROS) density. The VO structures, including out-of-plane oxygen defects (op-VO), bridge oxygen defects (b-VO), and in-plane oxygen defects (ip-VO), were studied using synchrotron analysis to investigate the electron transfer between the VO structures and conduction bands. These intragrain VO structures can be treated as generation-recombination centers, which can convert various photoenergies (365-520 nm) into different current levels that form distinct surface potential levels; this is referred to as the photoelectric effect. PNF conductivity was enhanced 53.6-fold by enlarging the grain size (410 nm2) by increasing the annealing temperature, which can improve the photoelectric effect. In vitro removal of reactive oxygen species (ROS) can be achieved by using the photoelectric effect of PNFs. Also, the viability and shape of human bone marrow mesenchymal stem cells (hMSCs-BM) were also influenced significantly by the photobiomodulation effect. The cell damage and survival rate can be prevented and enhanced by using PNFs; metal oxide nanofibers are no longer only environmental sensors but can also be a bio-material to convert the photoenergy into bio-energy for biomedical science applications.
Collapse
Affiliation(s)
- Chun-Yen Lai
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chia-Fei Liu
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Tzu-Ling Lin
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Mei-Yu Chen
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Yu-Cheng Huang
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Her-Hsiung Huang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Chung-Li Dong
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Ding-Yeong Wang
- Department of Electrical Engineering, Feng Chia University, Taichung 407802, Taiwan
| | - Ping-Hung Yeh
- Department of Physics, Tamkang University, New Taipei 25137, Taiwan
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for the Intelligent Semiconductor Nano-system Technology Research, Hsinchu 30078, Taiwan
| |
Collapse
|
10
|
Yang G, Cao C, Zhong H, Cheng Y, Zhang W, Wang D. Construction of SnO2 nanofibers @ MoS2 nanosheets core-shell nanocomposites for high efficiency xylene detection. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Ma X, Zhu H, Yu L, Li X, Ye E, Li Z, Loh XJ, Wang S. Rare-earth-doped indium oxide nanosphere-based gas sensor for highly sensitive formaldehyde detection at a low temperature. NANOSCALE 2023; 15:1609-1618. [PMID: 36602001 DOI: 10.1039/d2nr04972d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Formaldehyde (HCHO) is widely viewed as a carcinogenic volatile organic compound in indoor air pollution that can seriously threaten human health and life. Thus, there is a critical need to develop gas sensors with improved sensing performance, including outstanding selectivity, low operating temperature, high responsiveness, and short recovery time, for HCHO detection. Currently, doping is considered an effective strategy to raise the sensing performance of gas sensors. Herein, various rare earth elements-doped indium oxide (RE-In2O3) nanospheres were fabricated as gas sensors for improved HCHO detection via a facile and environmentally solvothermal method. Such RE-In2O3 nanosphere-based sensors exhibited remarkable gas-sensing performance, including a high selectivity and stability in air. Compared with pure, Yb-, Dy-doped In2O3 and different La ratios doped into In2O3, 6% La-doped In2O3 (La-In2O3) nanosphere-based sensors demonstrated a high response value of 210 to 100 ppm at 170 °C, which was around 16 times higher than that of the pure In2O3 sensor, and also exhibited a detection limit of 10.9 ppb, and a response time of 30 s to 100 ppm HCHO with a recovery time of 160 s. Finally, such superior sensing performance of the 6% La-In2O3 sensors was proposed to be attributed to the synergistic effect of the large specific surface area and enhanced surface oxygen vacancies on the surface of In2O3 nanospheres, which produced chemisorbed oxygen species to release electrons and provided abundant reaction sites for HCHO gas. This study sheds new light on designing nanomaterials to build gas sensors for HCHO detection.
Collapse
Affiliation(s)
- Xiangyun Ma
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634
| | - Long Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xin Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research), Singapore 138634
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research), Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634
| | - Suhua Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| |
Collapse
|
12
|
Zhang S, Sun S, Huang B, Wang N, Li X. UV-Enhanced Formaldehyde Sensor Using Hollow In 2O 3@TiO 2 Double-Layer Nanospheres at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4329-4342. [PMID: 36623169 DOI: 10.1021/acsami.2c19722] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Hollow In2O3@TiO2 double-layer nanospheres were prepared via a facile water bath method using the sacrifice template of carbon nanospheres. It is shown that the size of the In2O3/TiO2 nanocomposites is 150-250 nm, the thickness of the In2O3 shell is about 10 nm, and the thickness of the TiO2 shell is about 15 nm. The sensing performances of the synthesized In2O3/TiO2 nanocomposites-based chemiresistive-type sensor to formaldehyde (HCHO) gas under UV light activation at room temperature have been studied. Compared to the pure In2O3- and pure TiO2-based sensors, the In2O3/TiO2 nanocomposite sensor exhibits much better sensing performances to formaldehyde. The response of the In2O3/TiO2 nanocomposite-based sensor to 1 ppm formaldehyde is about 3.8, and the response time and recovery time are 28 and 50 s, respectively. The detectable formaldehyde concentration can reach as low as 0.06 ppm. The role of the formed In2O3/TiO2 heterojunctions and the involved chemical reactions activated by UV light have been investigated by AC impedance spectroscopy and the in situ diffuse reflectance Fourier transform infrared spectroscopy. The improvement of the sensing properties of In2O3/TiO2 nanocomposites could be attributed to the nanoheterojunctions between the two components and the "combined photocatalytic effects" of UV-light-emitting diode irradiation. Density functional theory calculations demonstrated that introducing heterojunctions could improve the adsorption energy and charge transfer between formaldehyde and sensing materials.
Collapse
Affiliation(s)
- Su Zhang
- School of Microelectronics, Center for Semiconductor Sensors and Integrated Microsystem, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Shupeng Sun
- School of Microelectronics, Center for Semiconductor Sensors and Integrated Microsystem, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Baoyu Huang
- School of Microelectronics, Center for Semiconductor Sensors and Integrated Microsystem, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Nan Wang
- School of Microelectronics, Center for Semiconductor Sensors and Integrated Microsystem, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
| | - Xiaogan Li
- School of Microelectronics, Center for Semiconductor Sensors and Integrated Microsystem, Dalian University of Technology, Dalian, Liaoning116024, P. R. China
- Key Laboratory of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian, Liaoning116023, P. R. China
| |
Collapse
|
13
|
Zhang R, Liu C, Wang P, Li Y, Su Y, Dai J. A room-temperature formaldehyde sensor based on hematite for breast cancer diagnosis. Analyst 2023; 148:248-254. [PMID: 36477164 DOI: 10.1039/d2an01796b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Formaldehyde (HCHO) is regarded as one kind of indoor pollutant. Additionally, HCHO serves as a biomarker in the exhaled breath of breast cancer patients. Early warning and management are crucial for the environment and human health. Thus, we have elaborately synthesized hematite (α-Fe2O3) employing a facet-engineering hydrothermal strategy using the fine-tuned solvent composition, with special attention to the effect of different exposed surfaces on HCHO detection. The spindle-like α-Fe2O3 nanocrystals with the (012) facet exposed exhibited impressively higher response towards HCHO at room temperature than that of the disk-like α-Fe2O3 with mainly the (001) facet exposed, partly due to the abundant vacancy oxygen and adsorbed oxygen of high-index facets of α-Fe2O3. More importantly, our experimental results coincide with theoretical calculations. Overall, the surface engineering strategy could be extended to a versatile approach for HCHO detection.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Chuanqun Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Pu Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- Department of Electronic Systems, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Yue Su
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100864, China
| | - Jianxun Dai
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
14
|
Lu Z, Sima Z, Song P. MOF-derived nest-like hierarchical In2O3 structures with enhanced gas sensing performance for formaldehyde detection at low temperature. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Chen X, Cao H, He Y, Zhou Q, Li Z, Wang W, He Y, Tao G, Hou C. Advanced functional nanofibers: strategies to improve performance and expand functions. FRONTIERS OF OPTOELECTRONICS 2022; 15:50. [PMID: 36567731 PMCID: PMC9761053 DOI: 10.1007/s12200-022-00051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 05/07/2023]
Abstract
Nanofibers have a wide range of applications in many fields such as energy generation and storage, environmental sensing and treatment, biomedical and health, thanks to their large specific surface area, excellent flexibility, and superior mechanical properties. With the expansion of application fields and the upgrade of application requirements, there is an inevitable trend of improving the performance and functions of nanofibers. Over the past few decades, numerous studies have demonstrated how nanofibers can be adapted to more complex needs through modifications of their structures, materials, and assembly. Thus, it is necessary to systematically review the field of nanofibers in which new ideas and technologies are emerging. Here we summarize the recent advanced strategies to improve the performances and expand the functions of nanofibers. We first introduce the common methods of preparing nanofibers, then summarize the advances in the field of nanofibers, especially up-to-date strategies for further enhancing their functionalities. We classify these strategies into three categories: design of nanofiber structures, tuning of nanofiber materials, and improvement of nanofibers assemblies. Finally, the optimization methods, materials, application areas, and fabrication methods are summarized, and existing challenges and future research directions are discussed. We hope this review can provide useful guidance for subsequent related work. Graphical abstract
Collapse
Affiliation(s)
- Xinyu Chen
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Honghao Cao
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, 02139 USA
| | - Yue He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Qili Zhou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Zhangcheng Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Wen Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Yu He
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Guangming Tao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Chong Hou
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen, 518063 China
| |
Collapse
|
16
|
ALD-fabricated two-dimensional SnO2-In2O3 n-n nanohybrid electrode for electrochemical supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Zhao C, Shen J, Xu S, Wei J, Liu H, Xie S, Pan Y, Zhao Y, Zhu Y. Ultra-efficient trimethylamine gas sensor based on Au nanoparticles sensitized WO3 nanosheets for rapid assessment of seafood freshness. Food Chem 2022; 392:133318. [DOI: 10.1016/j.foodchem.2022.133318] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/29/2022] [Accepted: 05/24/2022] [Indexed: 11/04/2022]
|
18
|
Han W, Yang J, Jiang B, Wang X, Wang C, Guo L, Sun Y, Liu F, Sun P, Lu G. Conductometric ppb-Level CO Sensors Based on In 2O 3 Nanofibers Co-Modified with Au and Pd Species. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3267. [PMID: 36234395 PMCID: PMC9565841 DOI: 10.3390/nano12193267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Carbon monoxide (CO) is one of the most toxic gases to human life. Therefore, the effective monitoring of it down to ppb level is of great significance. Herein, a series of In2O3 nanofibers modified with Au or Pd species or simultaneous Au and Pd species have been prepared by electrospinning combined with a calcination process. The as-obtained samples are applied for the detection of CO. Gas-sensing investigations indicate that 2 at% Au and 2 at% Pd-co-modified In2O3 nanofibers exhibit the highest response (21.7) to 100 ppm CO at 180 °C, and the response value is ~8.5 times higher than that of pure In2O3 nanofibers. More importantly, the detection limit to CO is about 200 ppb with a response value of 1.23, and is obviously lower than that (6 ppm) of pure In2O3 nanofibers. In addition, the sensor also shows good stability within 19 days. These demonstrate that co-modifying In2O3 nanofibers with suitable amounts of Pd and Au species might be a meaningful strategy for the development of high-performance carbon monoxide gas sensors.
Collapse
Affiliation(s)
- Wenjiang Han
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Jiaqi Yang
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Bin Jiang
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xi Wang
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Chong Wang
- College of Communication Engineering, Jilin University, Changchun 130022, China
| | - Lanlan Guo
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
| | - Yanfeng Sun
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Fangmeng Liu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Peng Sun
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Jilin Key Laboratory of Gas Sensors, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
19
|
Cao J, Zhang N, Yang S, Xu W, Zhang X, Zhang H, Wang S. Study on the selectivity difference of formaldehyde and ethanol induced by variation of energy gap in In2O3 hierarchical materials. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
He H, Liu J, Liu H, Pan Q, Zhang G. The development of high-performance room temperature NOX one-dimensional Na0.23TiO2/TiO2 compound gas sensor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
One-Step Hydrothermal Synthesis of 3D Interconnected rGO/In2O3 Heterojunction Structures for Enhanced Acetone Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Acetone detection is of great significance for environmental monitoring or diagnosis of diabetes. Nevertheless, fast and sensitive detection of acetone at low temperatures remains challenging. Herein, a series of rGO-functionalized three-dimensional (3D) In2O3 flower-like structures were designed and synthesized via a facile hydrothermal method, and their acetone-sensing properties were systematically investigated. Compared to the pure 3D In2O3 flower-like structures, the rGO-functionalized 3D In2O3 flower-like structures demonstrated greatly improved acetone-sensing performance at relatively low temperatures. In particular, the 5-rGO/In2O3 sensor with an optimized decoration exhibited the highest response value (5.6) to 10 ppm acetone at 150 °C, which was about 2.3 times higher than that of the In2O3 sensor (2.4 at 200 °C). Furthermore, the 5-rGO/In2O3 sensor also showed good reproducibility, a sub-ppm-level detection limit (1.3 to 0.5 ppm), fast response and recovery rates (3 s and 18 s, respectively), and good long-term stability. The extraordinary acetone-sensing performance of rGO/In2O3 composites can be attributed to the synergistic effect of the formation of p-n heterojunctions between rGO and In2O3, the large specific surface area, the unique flower-like structures, and the high conductivity of rGO. This work provides a novel sensing material design strategy for effective detection of acetone.
Collapse
|
22
|
Yu J, Wang C, Yuan Q, Yu X, Wang D, Chen Y. Ag-Modified Porous Perovskite-Type LaFeO3 for Efficient Ethanol Detection. NANOMATERIALS 2022; 12:nano12101768. [PMID: 35630990 PMCID: PMC9143232 DOI: 10.3390/nano12101768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 01/16/2023]
Abstract
Perovskite (ABO3) nanosheets with a high carrier mobility have been regarded as the best candidates for gas-sensitive materials arising from their exceptional crystal structure and physical–chemical properties that often exhibit good gas reactivity and stability. Herein, Ag in situ modified porous LaFeO3 nanosheets were synthesized by the simple and efficient graphene oxide (GO)-assisted co-precipitation method which was used for sensitive and selective ethanol detection. The Ag modification ratio was studied, and the best performance was obtained with 5% Ag modification. The Ag/LaFeO3 nanomaterials with high surface areas achieved a sensing response value (Rg/Ra) of 20.9 to 20 ppm ethanol at 180 °C with relatively fast response/recovery times (26/27 s). In addition, they showed significantly high selectivity for ethanol but only a slight response to other interfering gases. The enhanced gas-sensing performance was attributed to the combination of well-designed porous nanomaterials with noble metal sensitization. The new approach is provided for this strategy for the potential application of more P-type ABO3 perovskite-based gas-sensitive devices.
Collapse
Affiliation(s)
- Jiejie Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Cong Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Quan Yuan
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Xin Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
| | - Ding Wang
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai 200093, China; (J.Y.); (C.W.); (Q.Y.); (X.Y.)
- Correspondence: (D.W.); (Y.C.)
| | - Yang Chen
- NEST Lab, Department of Physics, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Shanghai Yaolu Instrument & Equipment Co., Ltd., Shanghai 200444, China
- Correspondence: (D.W.); (Y.C.)
| |
Collapse
|
23
|
Yoon Y, Truong PL, Lee D, Ko SH. Metal-Oxide Nanomaterials Synthesis and Applications in Flexible and Wearable Sensors. ACS NANOSCIENCE AU 2022; 2:64-92. [PMID: 37101661 PMCID: PMC10114907 DOI: 10.1021/acsnanoscienceau.1c00029] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Metal-oxide nanomaterials (MONs) have gained considerable interest in the construction of flexible/wearable sensors due to their tunable band gap, low cost, large specific area, and ease of manufacturing. Furthermore, MONs are in high demand for applications, such as gas leakage alarms, environmental protection, health tracking, and smart devices integrated with another system. In this Review, we introduce a comprehensive investigation of factors to boost the sensitivity of MON-based sensors in environmental indicators and health monitoring. Finally, the challenges and perspectives of MON-based flexible/wearable sensors are considered.
Collapse
Affiliation(s)
- Yeosang Yoon
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Korea
| | - Phuoc Loc Truong
- Laser
and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Daeho Lee
- Laser
and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, Seongnam 13120, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 08826, Korea
- Institute
of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul 08826, Korea
- Institute
of Engineering Research, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Wang F, Zhong H, Chen Z, Wang D, Lai Z, Deng Y, Wang X. Porous 2D CuO nanosheets for efficient triethylamine detection at low temperature. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Hu H, Liang H, Fan J, Guo L, Li H, de Rooij NF, Umar A, Algarni H, Wang Y, Zhou G. Assembling Hollow Cactus-Like ZnO Nanorods with Dipole-Modified Graphene Nanosheets for Practical Room-Temperature Formaldehyde Sensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13186-13195. [PMID: 35275633 DOI: 10.1021/acsami.1c20680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Formaldehyde (HCHO) sensing plays a critical role for indoor environment monitoring in smart home systems. Inspired by the unique hierarchical structure of cactus, we have prepared a ZnO/ANS-rGO composite for room-temperature (RT) HCHO sensing, through assembling hollow cactus-like ZnO nanorods with 5-aminonaphthalene-1-sulfonic acid (ANS)-modified graphene nanosheets in a facile and template-free manner. Interestingly, it was found that the ZnO morphology could be simply tuned from flower clusters to hollow cactus-like nanostructures, along with the increase of the reaction time during the assembly process. The ZnO/ANS-rGO-based sensors exhibited superior RT HCHO-sensing performance with an ultrahigh response (68%, 5 ppm), good repeatability, long-term stability, and an outstanding practical limit of detection (LOD: 0.25 ppm) toward HCHO, which is the lowest practical LOD reported so far. Furthermore, for the first time, a 30 m3 simulation test cabinet was adapted to evaluate the practical gas-sensing performance in an indoor environment. As a result, an instantaneous response of 5% to 0.4 ppm HCHO was successfully achieved in the simulation test. The corresponding sensing mechanism was interpreted from two aspects including high charge transport capability of ANS-rGO and the distinct gas adsorbability derived from nanostructures, respectively. The combination of a biomimetic hierarchical structure and supramolecular assembly provides a promising strategy to design HCHO-sensing materials with high practicability.
Collapse
Affiliation(s)
- Huiyun Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Hongping Liang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Jincheng Fan
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Lanpeng Guo
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Hao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Nicolaas Frans de Rooij
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Ahmad Umar
- Promising Centre for Sensors and Electronic Devices, Department of Chemistry, Faculty of Science and Arts, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Hamed Algarni
- Department of Physics, King Khalid University, Abha 61421, Kingdom of Saudi Arabia
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
- National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China
| |
Collapse
|
26
|
Design and optimization strategies of metal oxide semiconductor nanostructures for advanced formaldehyde sensors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214280] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
|
28
|
Wan H, Xiao X, Ma W, Zhang Y, Liu X, Liu Y, Chen G, Zhang N, Cao Y, Ma R. Electronic configuration modulation of tin dioxide by phosphorus dopant for pathway change in electrocatalytic water oxidation. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01169c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic configuration modulation of SnO2 nanoparticles was realized using a phosphorus dopant, contributing to the reaction pathway change of water oxidation.
Collapse
Affiliation(s)
- Hao Wan
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xue Xiao
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Wei Ma
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ying Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaohe Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Yanyu Liu
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, PR China
| | - Gen Chen
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Ning Zhang
- State Key Laboratory of Powder Metallurgy and School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, P.R. China
| | - Yijun Cao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Renzhi Ma
- World Premier International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
29
|
Li S, Xie L, Luo G, Han Y, Zhou M, Jaisutti R, Zhu Z. Indium-organic framework CPP-3(In) derived Ag/In2O3 porous hexagonal tubes for H2S detection at low temperature. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Han C, Li X, Liu Y, Tang Y, Liu M, Li X, Shao C, Ma J, Liu Y. Flexible All-Inorganic Room-Temperature Chemiresistors Based on Fibrous Ceramic Substrate and Visible-Light-Powered Semiconductor Sensing Layer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102471. [PMID: 34672107 PMCID: PMC8655210 DOI: 10.1002/advs.202102471] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Indexed: 05/07/2023]
Abstract
As the most extensively used gas-sensing devices, inorganic semiconductor chemiresistors are facing great challenges in realizing mechanical flexibility and room-temperature gas detection for developing next-generation wearable sensing devices. Herein, for the first time, flexible all-inorganic yttria-stabilized zirconia (YSZ)/In2 O3 /graphitic carbon nitride (g-C3 N4 ) (ZIC) gas sensor is designed by employing YSZ nanofibers as substrate, and ultrathin In2 O3 /g-C3 N4 heterostructures as active sensing layer. The YSZ substrate possesses small nanofiber diameter (310 nm), ultrafine grain size (23.9 nm), and abundant dangling bonds, endowing it with striking mechanical flexibility and strong adhesion with In2 O3 /g-C3 N4 sensing layer. Meanwhile, the ultrathin thickness (≈7 nm) of In2 O3 /g-C3 N4 ensures that the inorganic sensing layer has tiny linear strain along with the deformation of flexible YSZ substrate, thereby enabling unusual bending capacity. To address the operating temperature issue, the gas sensor is operated by using a visible-light-powered strategy. Under visible-light illumination, the flexible ZIC sensor exhibits a perfectly reversible response/recovery dynamic process and ultralow detection limit of 50 ppb to toxic nitrogen dioxide at room temperature. This work not only provides an insight into the mechanical flexibility of inorganic materials, but also offers a valuable reference for developing other flexible inorganic-semiconductor-based room-temperature gas sensors.
Collapse
Affiliation(s)
- Chaohan Han
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xiaowei Li
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yu Liu
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yujing Tang
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Mingzhuang Liu
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Xinghua Li
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Changlu Shao
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Jiangang Ma
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| | - Yichun Liu
- Key Laboratory of UV‐Emitting Materials and Technology of Ministry of EducationNortheast Normal University5268 Renmin StreetChangchun130024China
| |
Collapse
|
31
|
John RAB, Ruban Kumar A. A review on resistive-based gas sensors for the detection of volatile organic compounds using metal-oxide nanostructures. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108893] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Li W, Yan C, Zhu Y, Tian H, Hu J, Iqbal A, E P, Zai J, Qian X. Morphology genetic 3D hierarchical SnO 2microstructures constructed by Sub 5 nm nanocrystals for highly sensitive ethanol-sensor. NANOTECHNOLOGY 2021; 32:485503. [PMID: 34425561 DOI: 10.1088/1361-6528/ac2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
SnO2is widely used for ethanol-sensing applications due to its excellent physicochemical properties, low toxicity and high sensitivity. However it is a challenge to construct 3D-hierarchical structures with sub 5 nm primary grain particle, which is the optimized size for ethanol sensor. Herein, genetic tri-level hierarchical SnO2microstructures are synthesised by the genetic conversion of 3D hierarchical SnS2flowers assembled by ultrathin nanosheets. The SnS2nanosheets are morphology genetic converted to porous nanosheets with sub 5 nm SnO2nanoparticles during the calcination process. When used for the detection of ethanol, the sensor exhibits a high sensitivity of 0.5 ppm (Ra/Rg = 6.8) and excellent gas-sensing response (Ra/Rg= 183 to 100 ppm) with short response/recovery time (12 s/11 s). The excellent gas sensing performance is much better than that of the previous reported SnO2-based sensors. The highly sensitivity is attributed to the large surface area derived from the recrystallization and volume changes, which offers more active sites during the morphology genetic conversion from SnS2to SnO2. Furthermore, the flower-like 3D structure enhances the stability of the materials and is beneficial for the mass diffusion dynamics of ethanol.
Collapse
Affiliation(s)
- Wenqian Li
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Changyu Yan
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yuedan Zhu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Heng Tian
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jinhai Hu
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Asma Iqbal
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Peisan E
- School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, TS1 3BA, United Kingdom
| | - Jiantao Zai
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xuefeng Qian
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
33
|
Ma Z, Yang K, Xiao C, Jia L. Electrospun Bi-doped SnO 2 porous nanosheets for highly sensitive nitric oxide detection. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126118. [PMID: 34492913 DOI: 10.1016/j.jhazmat.2021.126118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The real-time monitoring of NO in the low-concentration range from the ppb- to ppm-level is of great importance in the field of healthcare; however, accomplishing this is still challenging owing to the technical issues regarding highly efficient and selective sensing materials. In this study, we demonstrate the highly sensitive and selective detection of NO by Bi-doped SnO2 two-dimensional ultrathin nanosheets with porous structures, fabricated using a facile one-step electrospinning method. It was found that the SnO2 with 0.75 mol% Bi exhibits the highest sensitivity of 217-10 ppm of NO at a relatively low temperature of 75 °C. Further, a low detection limit of 50 ppb; high selectivity; and good stability have also been achieved. Further detailed analysis indicates that the promising sensing properties can be attributed to the ultrathin nanosheet structure, which has a high surface area and abundant pores. These results indicate that 2D metal-oxide ultrathin nanosheets achieve superior gas-sensing performance, and Bi-doped SnO2 is a potential material for use in the real-time and low-power detection of NO.
Collapse
Affiliation(s)
- Zhuangzhuang Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Kai Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Changlin Xiao
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China
| | - Lichao Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, 620 West Chang'an Street, Xi'an, Shaanxi 710119, China.
| |
Collapse
|
34
|
Improving Gas-Sensing Performance Based on MOS Nanomaterials: A Review. MATERIALS 2021; 14:ma14154263. [PMID: 34361460 PMCID: PMC8347970 DOI: 10.3390/ma14154263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
In order to solve issues of air pollution, to monitor human health, and to promote agricultural production, gas sensors have been used widely. Metal oxide semiconductor (MOS) gas sensors have become an important area of research in the field of gas sensing due to their high sensitivity, quick response time, and short recovery time for NO2, CO2, acetone, etc. In our article, we mainly focus on the gas-sensing properties of MOS gas sensors and summarize the methods that are based on the interface effect of MOS materials and micro–nanostructures to improve their performance. These methods include noble metal modification, doping, and core-shell (C-S) nanostructure. Moreover, we also describe the mechanism of these methods to analyze the advantages and disadvantages of energy barrier modulation and electron transfer for gas adsorption. Finally, we put forward a variety of research ideas based on the above methods to improve the gas-sensing properties. Some perspectives for the development of MOS gas sensors are also discussed.
Collapse
|
35
|
Strategies for Improving the Sensing Performance of Semiconductor Gas Sensors for High-Performance Formaldehyde Detection: A Review. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070179] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Formaldehyde is a poisonous and harmful gas, which is ubiquitous in our daily life. Long-term exposure to formaldehyde harms human body functions; therefore, it is urgent to fabricate sensors for the real-time monitoring of formaldehyde concentrations. Metal oxide semiconductor (MOS) gas sensors is favored by researchers as a result of their low cost, simple operation and portability. In this paper, the mechanism of formaldehyde detection by gas sensors is introduced, and then the ways of ameliorating the response of gas sensors for formaldehyde detection in recent years are summarized. These methods include the control of the microstructure and morphology of sensing materials, the doping modification of matrix materials, the development of new semiconductor sensing materials, the outfield control strategy and the construction of the filter membrane. These five methods will provide a good prerequisite for the preparation of better performing formaldehyde gas sensors.
Collapse
|
36
|
Zhao Q, Shen T, Liu Y, Hu X, Zhao W, Ma Z, Li P, Zhu X, Zhang Y, Liu M, Yao S. Universal Nanoplatform for Formaldehyde Detection Based on the Oxidase-Mimicking Activity of MnO 2 Nanosheets and the In Situ Catalysis-Produced Fluorescence Species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7303-7312. [PMID: 34160203 DOI: 10.1021/acs.jafc.1c01174] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Formaldehyde (HCHO) pollution is a scientific problem of general concern and has aroused wide attention. In this work, a fluorometric method for sensitive detection of formaldehyde was developed based on the oxidase-mimicking activity of MnO2 nanosheets in the presence of o-phenylenediamine (OPD). The MnO2 nanosheets were prepared by the bottom-up approach using manganese salt as the precursor, followed by the exfoliation with bovine serum albumin. The as-prepared MnO2 nanosheets displayed excellent oxidase-mimicking activity, and can be used as the nanoplatform for sensing in fluorometric analysis. OPD was used as a typical substrate because MnO2 nanosheets can catalyze the oxidation of OPD to generate yellow 2,3-diaminophenazine (DAP), which can emit bright yellow fluorescence at the wavelength of 560 nm. While in the presence of formaldehyde, the fluorescence was greatly quenched because formaldehyde can react with OPD to form Schiff bases that decreased the oxidation reaction of OPD to DAP. The main mechanism and the selectivity of the platform were studied. As a result, formaldehyde can be sensitively detected in a wide linear range of 0.8-100 μM with the detection limit as low as 6.2 × 10-8 M. The platform can be used for the detection of formaldehyde in air, beer, and various food samples with good performance. This work not only expands the application of MnO2 nanosheets in fluorescence sensing, but also provides a sensitive and selective method for the detection of formaldehyde in various samples via a new mechanism.
Collapse
Affiliation(s)
- Qixia Zhao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Tong Shen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Yujiao Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaojun Hu
- Hunan Institute of Food Quality Supervision Inspection and Research, Changsha 410111, PR China
| | - Wenying Zhao
- Hunan Kaimei New Material Technology Co., Ltd, Yueyang 414600, PR China
| | - Zhangyan Ma
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
37
|
Liu J, Zhang L, Cheng B, Fan J, Yu J. A high-response formaldehyde sensor based on fibrous Ag-ZnO/In 2O 3 with multi-level heterojunctions. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125352. [PMID: 33930945 DOI: 10.1016/j.jhazmat.2021.125352] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/19/2021] [Accepted: 02/05/2021] [Indexed: 05/14/2023]
Abstract
Timely detection of formaldehyde is pivotal because formaldehyde is slowly released from the indoor decorative materials, jeopardizing our healthy. Herein, a high-response formaldehyde gas sensor based on Ag-ZnO/In2O3 nanofibers was successfully fabricated. Compared with all the control samples, the hybrid exhibits superior sensitivity (0.65 ppm-1), excellent selectivity (≥ 12.5) and durable stability (the deviation value ≤ 3%). Particularly, an ultra-high response value of about 186 towards 100 ppm of formaldehyde at 260 °C was achieved, heading the list of outstanding candidates. Additionally, the limit of detection is as low as 9 ppb. The enhanced gas sensing properties can be mainly attributed to multi-level heterojunctions (n-n heterojunction and Ohmic junction) and the "spill-over" effect of Ag, ultimately increasing the adsorption of gas molecules on the surface of sensing material. This work verifies that proper design of multi-level heterojunctions significantly upgrade the sensing performance.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
38
|
Tang Y, Zhang M, Nawaz SA, Tian X, Wang H, Wang J. TiO 2hierarchical nano blooming-flower decorated by Pt for formaldehyde detection. NANOTECHNOLOGY 2021; 32:365601. [PMID: 34038880 DOI: 10.1088/1361-6528/ac056c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
To achieve an ultra-low concentration formaldehyde detection at low temperature, a platinum (Pt) assisted TiO2hierarchical nano blooming-flower sphere material is synthesized through hydrothermal method. SEM and transmission electron microscope characterizations show that the diameter of the nano sphere was around 2μm with dissilient rods of 60 nm in diameter and 1μm in length on the surface. The response (Ra/Rg) achieved form this nanomaterial to HCHO is 1.08 (100 ppb) and 5.82 (5 ppm) at 130 °C without an involvement of any light source or solution. The relationship curve between the responses and concentrations shows regular exponential trend. The verification of sensor stability done by a 3 month reliability test shows no response-degradation. The optimal response and stability is attributed to the massive dissilient rods on the surface of TiO2spheres and the assistance of Pt as a catalyzer disperses to intensify the formation of depletion area on the surface of TiO2. This study provide an attractive and cost effective solution for the detection of HCHO in air at a relatively low temperature.
Collapse
Affiliation(s)
- Yankun Tang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Ming Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Sher Ali Nawaz
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Xianqing Tian
- China Academy of Engineering Physics, Institute of Chemical Materials, 64 Mianshan Road, Mianyang, Sichuan, 621900, People's Republic of China
| | - Hairong Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| | - Jiuhong Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, People's Republic of China
| |
Collapse
|
39
|
Kim JH, Mirzaei A, Bang JH, Kim HW, Kim SS. Achievement of self-heated sensing of hazardous gases by WS 2 (core)-SnO 2 (shell) nanosheets. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125196. [PMID: 33517060 DOI: 10.1016/j.jhazmat.2021.125196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 01/01/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
With the recent rapid development of portable smart electronic devices, there is a great demand for gas sensors having high performance, high flexibility, and low energy consumption. We explored the effects of SnO2 shell thickness and operating voltage on the sensing behavior of WS2 nanosheets (NSs) deposited over a flexible substrate in self-heating mode. Commercial WS2 nanowires (NWs) were used as the core and SnO2 shells with various thicknesses were deposited on the core by an advanced physical technique, namely atomic layer deposition (ALD). With regard to CO sensing, a shell thickness of 15 nm operating at 3.4 V, was optimal. Alternatively, for NO2 sensing, the optimal shell thickness was 30 nm. Therefore, using engineering design principles to determine the shell material and shell thickness, it is possible to selectively detect reducing gases such as CO, while the response to oxidizing gases is weak. We have also discussed the details of this sensing mechanism. We believe that our results can lead to further study of C-S NSs for sensing studies from different points of views.
Collapse
Affiliation(s)
- Jae-Hun Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, South Korea
| | - Ali Mirzaei
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, South Korea; Department of Materials Science and Engineering, Shiraz University of Technology, Shiraz 715557-13876, Iran
| | - Jae Hoon Bang
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea
| | - Hyoun Woo Kim
- The Research Institute of Industrial Science, Hanyang University, Seoul 04763, South Korea; Division of Materials Science and Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, South Korea.
| |
Collapse
|
40
|
Wang Y, Wang X, Qi B, Cheng J, Wang X, Shang Y, Jia J. Design of SnO
2
/ZnO@ZIF‐8 Hydrophobic Nanofibers for Improved H
2
S Gas Sensing. ChemistrySelect 2021. [DOI: 10.1002/slct.202100795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yumeng Wang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Xinchang Wang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Beiying Qi
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Jipeng Cheng
- State Key Laboratory of Silicon Materials School of Materials Science and Engineering Zhejiang University Hangzhou 310027 China
| | - Xinyue Wang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| | - Jianfeng Jia
- Key Laboratory of Material Physics of Ministry of Education School of Physics and Microelectronics Zhengzhou China
| |
Collapse
|
41
|
Korotcenkov G. Electrospun Metal Oxide Nanofibers and Their Conductometric Gas Sensor Application. Part 2: Gas Sensors and Their Advantages and Limitations. NANOMATERIALS 2021; 11:nano11061555. [PMID: 34204655 PMCID: PMC8231294 DOI: 10.3390/nano11061555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
Electrospun metal oxide nanofibers, due to their unique structural and electrical properties, are now being considered as materials with great potential for gas sensor applications. This critical review attempts to assess the feasibility of these perspectives. This article discusses approaches to the manufacture of nanofiber-based gas sensors, as well as the results of analysis of the performances of these sensors. A detailed analysis of the disadvantages that can limit the use of electrospinning technology in the development of gas sensors is also presented in this article. It also proposes some approaches to solving problems that limit the use of nanofiber-based gas sensors. Finally, the summary provides an insight into the future prospects of electrospinning technology for the development of gas sensors aimed for the gas sensor market.
Collapse
Affiliation(s)
- Ghenadii Korotcenkov
- Department of Theoretical Physics, Moldova State University, 2009 Chisinau, Moldova
| |
Collapse
|
42
|
Liu J, Zhu B, Zhang L, Fan J, Yu J. 0D/2D CdS/ZnO composite with n-n heterojunction for efficient detection of triethylamine. J Colloid Interface Sci 2021; 600:898-909. [PMID: 34058608 DOI: 10.1016/j.jcis.2021.05.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 01/04/2023]
Abstract
It is imperative to seek for novel materials with pronounced gas sensing performance towards triethylamine for the sake of human health. Herein, we successfully fabricate an outstanding triethylamine sensor based on CdS/ZnO composite with 0D/2D structure, which are prepared by in-situ growth of CdS quantum dots on ultra-thin ZnO nanosheets. The ratios between the two ingredients are adjusted and their effect is evaluated. The optimal sample exhibits the lowest operating temperature of 200 °C, the highest response value of ~20 and the fastest response time of 2 s. Besides, it also has the virtues of durable stability, excellent selectivity and superior anti-interference ability. The mechanism behind the aforementioned intriguing performance is investigated by X-ray photoelectron spectroscopy, Kelvin probe and density function theory (DFT) simulation. All the results verify that the enhanced gas sensing properties are derived from splendid 0D/2D structure, n-n heterojunction and large specific surface area. Additionally, this study opens an avenue for designing sensors with 0D/2D structure.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, PR China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, PR China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, PR China.
| |
Collapse
|
43
|
Wang D, Yang J, Bao L, Cheng Y, Tian L, Ma Q, Xu J, Li HJ, Wang X. Pd nanocrystal sensitization two-dimension porous TiO 2 for instantaneous and high efficient H 2 detection. J Colloid Interface Sci 2021; 597:29-38. [PMID: 33862445 DOI: 10.1016/j.jcis.2021.03.107] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/14/2021] [Accepted: 03/18/2021] [Indexed: 11/19/2022]
Abstract
Hydrogen (H2) molecules are easy to leak during production, storage, transportation and usage. Because of their flammability and explosive nature, quick and reliable dectection of H2 molecule is of great significance. Herein, an excellent H2 gas sensor has been realized based on Pd nanocrystal sensitized two-dimensional (2D) porous TiO2 (Pd/TiO2). The formation of 2D porous TiO2 with the removal of graphene oxide template has been monitored by an in-situ transmission electron microscope. It is found that the size of the GO template can be almost completely replicated by 2D TiO2. The Pd/TiO2 sensor exhibited an instantaneous response and a satisfactory low detection limit for H2 detection. These excellent gas-sensing performances (good selectivity, unique linearity response and high stability) can be attributed to the unique 2D porous structure and the synergistic effect between oxidized Pd and TiO2, including the unique adsorption properties of O2 or/and H2 on Pd/TiO2, the reaction between PdO and H2 gas, and the regulated depletion layer arising from p-type PdO to n-type TiO2. This work demonstrates a rational design and synthesis of highly efficient H2 sensitive materials for energy and manufacturing security.
Collapse
Affiliation(s)
- Ding Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jialin Yang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Bao
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yu Cheng
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liang Tian
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingxiang Ma
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jingcheng Xu
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui-Jun Li
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xianying Wang
- School of Material Science & Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
44
|
Zhao Y, Wang S, Zhai X, Shao L, Bai X, Liu Y, Wang T, Li Y, Zhang L, Fan F, Meng F, Zhang X, Fu Y. Construction of Zn/Ni Bimetallic Organic Framework Derived ZnO/NiO Heterostructure with Superior N-Propanol Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9206-9215. [PMID: 33557516 DOI: 10.1021/acsami.0c21583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bimetallic organic frameworks (Bi-MOFs) have been recognized as one of the most ideal precursors to construct metal oxide semiconductor (MOS) composites, owing to their high surface area, various chemical structures, and easy removal of the sacrificial MOF scaffolds through calcination. Herein, we synthesized Zn/Ni Bi-MOF for the first time via a facile ion exchange postsynthetic strategy, formed a three-dimensional framework consisting of infinite one-dimensional chains that is unattainable through the direct solvothermal approach, and then transformed the Zn/Ni Bi-MOF into a unique ZnO/NiO heterostructure through calcination. Notably, the obtained sensor based on a ZnO/NiO heterostructure exhibits an ultrahigh response of 280.2 toward 500 ppm n-propanol at 275 °C (17.2-fold enhancement compared with that of ZnO), remarkable selectivity, and a limit of detection of 200 ppb with a notable response (2.51), which outperforms state-of-the-art n-propanol sensors. The enhanced n-propanol sensing properties may be attributed to the synergistic effects of several points including the heterojunction at the interface between the NiO and ZnO nanoparticles, especially a one-dimensional chain MOF template structure as well as the chemical sensitization effect of NiO. This work provides a promising strategy for the development of a novel Bi-MOF-derived MOS heterostructure or homostructure with well-defined morphology and composition that can be applied to the fields of gas sensing, energy storage, and catalysis.
Collapse
Affiliation(s)
- Yuming Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Sha Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xu Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Lei Shao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaojue Bai
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Tieqiang Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yunong Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Liying Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fuqiang Fan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Fanbao Meng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xuemin Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yu Fu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
45
|
Shellaiah M, Sun KW. Inorganic-Diverse Nanostructured Materials for Volatile Organic Compound Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:633. [PMID: 33477501 PMCID: PMC7831086 DOI: 10.3390/s21020633] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
Abstract
Environmental pollution related to volatile organic compounds (VOCs) has become a global issue which attracts intensive work towards their controlling and monitoring. To this direction various regulations and research towards VOCs detection have been laid down and conducted by many countries. Distinct devices are proposed to monitor the VOCs pollution. Among them, chemiresistor devices comprised of inorganic-semiconducting materials with diverse nanostructures are most attractive because they are cost-effective and eco-friendly. These diverse nanostructured materials-based devices are usually made up of nanoparticles, nanowires/rods, nanocrystals, nanotubes, nanocages, nanocubes, nanocomposites, etc. They can be employed in monitoring the VOCs present in the reliable sources. This review outlines the device-based VOC detection using diverse semiconducting-nanostructured materials and covers more than 340 references that have been published since 2016.
Collapse
Affiliation(s)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan;
| |
Collapse
|
46
|
Xu D, Ge K, Qi S, Chen Y, Qiu J, Liu Q. Hydrangea-like mesoporous WO 3 nanoflowers with crystalline framework for 3-hydroxy-2-butanone sensing. Anal Bioanal Chem 2020; 412:8371-8378. [PMID: 33009597 DOI: 10.1007/s00216-020-02973-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/01/2020] [Accepted: 09/24/2020] [Indexed: 11/28/2022]
Abstract
In this study, a simple and efficient strategy for the construction of hydrangea-like mesoporous WO3 nanoflowers templated using diblock copolymer PS119-PtBA129 was developed. The nanoflower shows good gas sensing properties, especially for 3-hydroxy-2-butanone (3H-2B), which is the signature metabolite of Listeria monocytogenes (L. monocytogenes). Therefore, the gas sensing of 3H-2B by hydrangea-like mesoporous WO3 nanoflowers can be used to detect L. monocytogenes. In the case of 25 ppm 3H-2B as target gas, the response (Ra/Rg) of the hydrangea-like mesoporous WO3 nanoflowers at 205 °C is 152, where Ra and Rg are the resistances of the sensing device in air and target gas, respectively, and the response and recovery times at 25 ppm are 25 s and 146 s, respectively. Schematic illustration of the formation of hydrangea-like mesoporous WO3 nanoflowers and its gas sensing implication.
Collapse
Affiliation(s)
- Dongpo Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Kangjie Ge
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuyan Qi
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yan Chen
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
47
|
Zhang G, Sun J, Chen D, Li N, Xu Q, Li H, He J, Lu J. Hierarchical core-shell heterostructures of ZnIn 2S 4 nanosheets on electrospun In 2O 3 nanofibers with highly enhanced photocatalytic activity. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122889. [PMID: 32512446 DOI: 10.1016/j.jhazmat.2020.122889] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Well-designed heterostructure semiconductor photocatalysts can improve the activity of photocatalytic reactions. In this work, we constructed a series of hierarchical ZnIn2S4/In2O3 heterostructures by growing ultrathin two-dimensional ZnIn2S4 nanosheets onto one-dimensional In2O3 electrospun nanofibers and used them as photocatalysts for the efficient photoreduction of toxic Cr(VI). This structural design increased the specific surface area, promoted the separation of photogenerated electrons and holes, and provided more active sites for the catalytic reactions. Under visible light irradiation, the optimized ZnIn2S4/In2O3 photocatalyst showed the highest photocatalytic performance with 100% reduction efficiency for Cr(VI) (50 mg/L) within 90 min, which is much higher than pure In2O3 and ZnIn2S4. Additionally, the recycling tests and X-ray diffraction (XRD) characterization indicated the stability of the ZnIn2S4/In2O3 photocatalyst, making it a promising candidate for environmental remediation applications. Finally, the two active species (e- and ·O2-) participating in the photoreduction process were determined via trapping experiments and electron spin resonance (ESR) spectroscopy. Finally, a possible mechanism for the ZnIn2S4/In2O3 heterojunction photocatalytic system was carefully determined.
Collapse
Affiliation(s)
- Guping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jingyi Sun
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Dongyun Chen
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Najun Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Hua Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
48
|
Yang C, Xu Y, Zheng L, Zhao Y, Zheng W, Liu X, Zhang J. Hierarchical NiCo2O4 microspheres assembled by nanorods with p-type response for detection of triethylamine. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
|
50
|
Deng L, Bao L, Xu J, Wang D, Wang X. Highly sensitive acetone gas sensor based on ultra-low content bimetallic PtCu modified WO3·H2O hollow sphere. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|