1
|
Castro R, Adair JH, Mastro AM, Neuberger T, Matters GL. VCAM-1-targeted nanoparticles to diagnose, monitor and treat atherosclerosis. Nanomedicine (Lond) 2024; 19:723-735. [PMID: 38420919 DOI: 10.2217/nnm-2023-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Vascular cell adhesion molecule-1 (VCAM-1) was identified over 2 decades ago as an endothelial adhesion receptor involved in leukocyte recruitment and cell-based immune responses. In atherosclerosis, a chronic inflammatory disease of the blood vessels that is the leading cause of death in the USA, endothelial VCAM-1 is robustly expressed beginning in the early stages of the disease. The interactions of circulating immune cells with VCAM-1 on the activated endothelial cell surface promote the uptake of monocytes and the progression of atherosclerotic lesions in susceptible vessels. Herein, we review the role of VCAM-1 in atherosclerosis and the use of VCAM-1 binding peptides, antibodies and aptamers as targeting agents for nanoplatforms for early detection and treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Rita Castro
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmaceutical Sciences & Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisboa, Portugal
| | - James H Adair
- Department of Materials Science, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Department of Pharmacology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | - Thomas Neuberger
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gail L Matters
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
2
|
Wang J, Lu B, Yin G, Liu L, Yang P, Huang N, Zhao A. Design and Fabrication of Environmentally Responsive Nanoparticles for the Diagnosis and Treatment of Atherosclerosis. ACS Biomater Sci Eng 2024; 10:1190-1206. [PMID: 38343186 DOI: 10.1021/acsbiomaterials.3c01090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Cardiovascular disease poses a significant threat to human health in today's society. A major contributor to cardiovascular disease is atherosclerosis (AS). The development of plaque in the affected areas involves a complex pathological environment, and the disease progresses rapidly. Nanotechnology, combined with emerging diagnostic and treatment methods, offers the potential for the management of this condition. This paper presents the latest advancements in environment-intelligent responsive controlled-release nanoparticles designed specifically for the pathological environment of AS, which includes characteristics such as low pH, high reactive oxygen species levels, high shear stress, and multienzymes. Additionally, the paper summarizes the applications and features of nanotechnology in interventional therapy for AS, including percutaneous transluminal coronary angioplasty and drug-eluting stents. Furthermore, the application of nanotechnology in the diagnosis of AS shows promising real-time, accurate, and continuous effects. Lastly, the paper explores the future prospects of nanotechnology, highlighting the tremendous potential in the diagnosis and treatment of atherosclerotic diseases, especially with the ongoing development in nano gas, quantum dots, and Metal-Organic Frameworks materials.
Collapse
Affiliation(s)
- Jingyue Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Bingyang Lu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ge Yin
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Nan Huang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| |
Collapse
|
3
|
Mao Y, Ren J, Yang L. Advances of nanomedicine in treatment of atherosclerosis and thrombosis. ENVIRONMENTAL RESEARCH 2023; 238:116637. [PMID: 37482129 DOI: 10.1016/j.envres.2023.116637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/17/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
Atherosclerosis (AS) is a chronic inflammatory vascular disease. Myocardial ischemia originated from AS is the main cause of cardiovascular diseases, one of the major factors contributing to the global disease burden. AS is typically quiescent until occurrence of plaque rupture and thrombosis, leading to acute coronary syndrome and sudden death. Currently, clinical diagnostic techniques suffer from major pitfalls including lack of accuracy and specificity, which makes it rather difficult for drugs to directly target plaques to achieve therapeutic effect. Therefore, how to accurately diagnose and effectively intervene vulnerable AS plaques to achieve accurate delivery of drugs has become an urgent and evolving clinical problem. With the rapid development of nanomedicine and nanomaterials, nanotechnology has shown unique advantages in monitoring vulnerable plaques and thrombus and improving drug efficacy. Recent studies have shown that application of nanoparticle drug delivery system can booster the safety and effectiveness of drug therapy, and molecular imaging technology and nanomedicine also exhibit high clinical application potentials in disease diagnosis. Therefore, nanotechnology provides another promising avenue for diagnosis and treatment of AS and thrombosis, and has shown excellent performance in the development of targeted drug therapy and biomaterials. In this review, the research progress, challenges and prospects of nanotechnology in AS and thrombosis are discussed, expecting to provide new ideas for the prevention, diagnosis and treatment of AS and thrombosis.
Collapse
Affiliation(s)
- Yu Mao
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai, China
| | - Lifang Yang
- Department of Anesthesiology, Xi'an Children Hospital, Xi'an, China.
| |
Collapse
|
4
|
Jamgotchian L, Devel L, Thai R, Poupel L, Huby T, Gautier E, Le Goff W, Lesnik P, Gravel E, Doris E. Targeted delivery of LXR-agonists to atherosclerotic lesions mediated by polydiacetylene micelles. NANOSCALE 2023; 15:18864-18870. [PMID: 37966726 DOI: 10.1039/d3nr04778d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
We report the development of compact and stabilized micelles incorporating a synthetic LXR agonist prodrug for the passive targeting of atherosclerotic lesions and therapeutic intervention. In vivo studies showed that the nanohybrid micelles exhibited favorable pharmacokinetics/biodistribution and were able to upregulate, to some extent, LXR target genes with no alteration of lipid metabolism.
Collapse
Affiliation(s)
- Lucie Jamgotchian
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMOS, 91191 Gif-sur-Yvette, France.
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMOS, 91191 Gif-sur-Yvette, France.
| | - Lucie Poupel
- Inovarion, 251 rue saint Jacques, 75005 Paris, France
| | - Thierry Huby
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Emmanuel Gautier
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Wilfried Le Goff
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Philippe Lesnik
- Sorbonne Université, INSERM UMRS-1166, Institute of Cardiometabolism and Nutrition (ICAN), 75013 Paris, France.
| | - Edmond Gravel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| | - Eric Doris
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SCBM, 91191 Gif-sur-Yvette, France.
| |
Collapse
|
5
|
Perera B, Wu Y, Nguyen NT, Ta HT. Advances in drug delivery to atherosclerosis: Investigating the efficiency of different nanomaterials employed for different type of drugs. Mater Today Bio 2023; 22:100767. [PMID: 37600355 PMCID: PMC10433009 DOI: 10.1016/j.mtbio.2023.100767] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/22/2023] Open
Abstract
Atherosclerosis is the build-up of fatty deposits in the arteries, which is the main underlying cause of cardiovascular diseases and the leading cause of global morbidity and mortality. Current pharmaceutical treatment options are unable to effectively treat the plaque in the later stages of the disease. Instead, they are aimed at resolving the risk factors. Nanomaterials and nanoparticle-mediated therapies have become increasingly popular for the treatment of atherosclerosis due to their targeted and controlled release of therapeutics. In this review, we discuss different types of therapeutics used to treat this disease and focus on the different nanomaterial strategies employed for the delivery of these drugs, enabling the effective and efficient resolution of the atherosclerotic plaque. The ideal nanomaterial strategy for each drug type (e.g. statins, nucleic acids, small molecule drugs, peptides) will be comprehensively discussed.
Collapse
Affiliation(s)
- Binura Perera
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Yuao Wu
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, Queensland, 4111, Australia
- Queensland Micro-Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
6
|
Fang F, Xiao C, Li C, Liu X, Li S. Tuning macrophages for atherosclerosis treatment. Regen Biomater 2022; 10:rbac103. [PMID: 36683743 PMCID: PMC9845526 DOI: 10.1093/rb/rbac103] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory vascular disease and a leading cause of death worldwide. Macrophages play an important role in inflammatory responses, cell-cell communications, plaque growth and plaque rupture in atherosclerotic lesions. Here, we review the sources, functions and complex phenotypes of macrophages in the progression of atherosclerosis, and discuss the recent approaches in modulating macrophage phenotype and autophagy for atherosclerosis treatment. We then focus on the drug delivery strategies that target macrophages or use macrophage membrane-coated particles to deliver therapeutics to the lesion sites. These biomaterial-based approaches that target, modulate or engineer macrophages have broad applications for disease therapies and tissue regeneration.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Crystal Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| | - Chunli Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, USA
- Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
7
|
Waheed S, Li Z, Zhang F, Chiarini A, Armato U, Wu J. Engineering nano-drug biointerface to overcome biological barriers toward precision drug delivery. J Nanobiotechnology 2022; 20:395. [PMID: 36045386 PMCID: PMC9428887 DOI: 10.1186/s12951-022-01605-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/14/2022] [Indexed: 11/24/2022] Open
Abstract
The rapid advancement of nanomedicine and nanoparticle (NP) materials presents novel solutions potentially capable of revolutionizing health care by improving efficacy, bioavailability, drug targeting, and safety. NPs are intriguing when considering medical applications because of their essential and unique qualities, including a significantly higher surface to mass ratio, quantum properties, and the potential to adsorb and transport drugs and other compounds. However, NPs must overcome or navigate several biological barriers of the human body to successfully deliver drugs at precise locations. Engineering the drug carrier biointerface can help overcome the main biological barriers and optimize the drug delivery in a more personalized manner. This review discusses the significant heterogeneous biological delivery barriers and how biointerface engineering can promote drug carriers to prevail over hurdles and navigate in a more personalized manner, thus ushering in the era of Precision Medicine. We also summarize the nanomedicines' current advantages and disadvantages in drug administration, from natural/synthetic sources to clinical applications. Additionally, we explore the innovative NP designs used in both non-personalized and customized applications as well as how they can attain a precise therapeutic strategy.
Collapse
Affiliation(s)
- Saquib Waheed
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, 518060, China
| | - Zhibin Li
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Fangyingnan Zhang
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Anna Chiarini
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Ubaldo Armato
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy
| | - Jun Wu
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China.
- Human Histology & Embryology Section, Department of Surgery, Dentistry, Paediatrics & Gynaecology, University of Verona Medical School, 37134, Verona, Venetia, Italy.
| |
Collapse
|
8
|
Chen L, Yang J, Fu X, Huang W, Yu X, Leng F, Yu C, Yang Z. A targeting mesoporous dopamine nanodrug platform with NIR responsiveness for atherosclerosis improvement. BIOMATERIALS ADVANCES 2022; 136:212775. [PMID: 35929293 DOI: 10.1016/j.bioadv.2022.212775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 05/27/2023]
Abstract
Atherosclerosis (AS), the formation of plaque lesions in the walls of arteries, causes many mortalities and morbidities worldwide. Currently, achieving site-specific delivery and controlled release at plaques is difficult. Herein, we implemented the strategy of constructing a bionic multifunctional nanoplatform (BM-NP) for targeting and improving plaques. BM-NPs were prepared based on probucol-loaded mesoporous polydopamine (MPDA) carriers and were coated with platelet membranes to impart bionic properties. In vitro experiments confirmed that BM-NPs, which respond to near-infrared (NIR) for drug release, remove reactive oxygen species (ROS), thereby reducing the level of oxidized low-density lipoprotein (ox-LDL) and ultimately helping to inhibit macrophage foaming. In vivo experiments proved that BM-NPs actively accumulated in plaques in the mouse right carotid artery (RCA) ligation model. During treatment, BM-NPs with NIR laser irradiation more effectively reduced the area of plaque deposition and slowed the thickening of the arterial wall intima. More importantly, BM-NPs showed the advantage of inhibiting the increase in triglyceride (TG) content in the body, and good biocompatibility. Hence, our research results indicate that intelligent BM-NPs can be used as a potential nanotherapy to precisely and synergistically improve AS.
Collapse
Affiliation(s)
- Lu Chen
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Jiaxin Yang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Xiaoxue Fu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Wenyan Huang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Xiaojuan Yu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Feng Leng
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China
| | - Chao Yu
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China.
| | - Zhangyou Yang
- College of Pharmacy, Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing pharmacodynamic evaluation engineering technology research center, Chongqing 400016, China.
| |
Collapse
|
9
|
Hu J, Liu M, Yang R, Wang L, Liang L, Yang Y, Jia S, Chen R, Liu Q, Ren Y, Zhu L, Cai M. Effects of high-intensity interval training on improving arterial stiffness in Chinese female university students with normal weight obese: a pilot randomized controlled trial. J Transl Med 2022; 20:60. [PMID: 35109880 PMCID: PMC8809004 DOI: 10.1186/s12967-022-03250-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/14/2022] [Indexed: 12/24/2022] Open
Abstract
Background High intensity interval training (HIIT) has been reported to exert better effects on cardiovascular fitness in obesity, but little known about the arterial stiffness (AS) in female university students with normal weight obesity (NWO). Thus, this study aimed to investigate the effects of HIIT on the body composition, heart rate (HR), blood pressure (BP), blood lipids metabolism as well as the novel parameters of propensity for AS (arterial velocity pulse index [AVI], arterial pressure volume index [API]) for female university students with NWO. Methods Forty female university students with NWO were randomly assigned to control group (n = 20) and HIIT group (3 bouts of 9‑min intervals at 90% of the maximal heart rate [HRmax], interspersed by 1 min rest, 5 days a week, n = 20). Tests were performed before and after 4 weeks of training. Repeated measures ANOVA and simple effect test analysis were used to analyze dependent variable changes. Results After 4 weeks HIIT statistically significantly improved the body composition by decreasing the body mass index, body fat percent, total body fat mass (BFM), BFM of left arm, measured circumference of left arm, and obesity degree, and increasing the total body skeletal muscle mass, protein content, total body water, fat free mass, body cell mas, and InBody score. HIIT also statistically significantly decreased the HR and BP. As for the lipid profile, HIIT obviously ameliorated the blood lipids metabolism by decreasing the levels of total cholesterol (TC), triglyceride, low-density lipoprotein, and TC/HDL, and increasing the levels of high-density lipoprotein (HDL). In addition, the AVI and API were markedly decreased via HIIT intervention. Conclusions HIIT produced significant and meaningful benefits for body composition, HR, BP, and blood lipids metabolism, and could decrease AS in female university students with NWO. This suggests that HIIT may effectively reduce the risk of arteriosclerosis and protect the cardiovascular function for female university students with NWO. Trial registration ChiCTR2100050711. Registered 3 September 2021. Retrospectively registered.
Collapse
|
10
|
Peters EB, Karver MR, Sun K, Gillis DC, Biswas S, Clemons TD, He W, Tsihlis ND, Stupp SI, Kibbe MR. Self-Assembled Peptide Amphiphile Nanofibers for Controlled Therapeutic Delivery to the Atherosclerotic Niche. ADVANCED THERAPEUTICS 2021; 4:2100103. [PMID: 34926792 PMCID: PMC8680456 DOI: 10.1002/adtp.202100103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Atherosclerotic plaque remains the leading contributor to cardiovascular disease and requires invasive surgical procedures for its removal. Nanomedicine offers a minimally invasive approach to alleviate plaque burden by targeted therapeutic delivery. However, nanocarriers are limited without the ability to sense and respond to the diseased microenvironment. In this study, targeted self-assembled peptide amphiphile (PA) nanofibers were developed that cleave in response to biochemical cues expressed in atherosclerotic lesions-reactive oxygen species (ROS) and intracellular glutathione-to deliver a liver X receptor agonist (LXR) to enhance macrophage cholesterol efflux. The PAs released LXR in response to physiological levels of ROS and reducing agents and could be co-assembled with plaque-targeting PAs to form nanofibers. The resulting LXR PA nanofibers promoted cholesterol efflux from macrophages in vitro as well as LXR alone and with lower cytotoxicity. Further, the ApoA1-LXR PA nanofibers targeted plaque within an atherosclerotic mouse model in vivo and activated ATP-binding cassette A1 (ABCA1) expression as well as LXR alone with reduced liver toxicity. Taken together, these results demonstrate the potential of self-assembled PA nanofibers for controlled therapeutic delivery to the atherosclerotic niche.
Collapse
Affiliation(s)
- Erica B. Peters
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark R. Karver
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Kui Sun
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David C. Gillis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Suvendu Biswas
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
| | - Tristan D. Clemons
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Wenhan He
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nick D. Tsihlis
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science & Engineering and Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Melina R. Kibbe
- Department of Surgery, Division of Vascular Surgery and Center for Nanotechnology in Drug Delivery, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Ahmed T, Wang CK. Black Garlic and Its Bioactive Compounds on Human Health Diseases: A Review. Molecules 2021; 26:5028. [PMID: 34443625 PMCID: PMC8401630 DOI: 10.3390/molecules26165028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
Black garlic (BG) is a form of aged garlic obtained from raw garlic (Allium sativum) via Millard reaction under high temperature (60-90 °C) and humidity (70-90%) for a period of time. Several studies reported higher contents of water-soluble antioxidants compounds (S-allyl cysteine, S-allyl-mercapto cysteine), 5-hydroxymethylfurfural, organosulfur compounds, polyphenol, volatile compounds, and products of other Millard reactions compared to fresh garlic after the thermal processing. Recent studies have demonstrated that BG and its bioactive compounds possess a wide range of biological activities and pharmacological properties that preserve and show better efficacy in preventing different types of diseases. Most of these benefits can be attributed to its anti-oxidation, anti-inflammation, anti-obesity, hepatoprotection, hypolipidemia, anti-cancer, anti-allergy, immunomodulation, nephroprotection, cardiovascular protection, and neuroprotection. Substantial studies have been conducted on BG and its components against different common human diseases in the last few decades. Still, a lot of research is ongoing to find out the therapeutic effects of BG. Thus, in this review, we summarized the pre-clinical and clinical studies of BG and its bioactive compounds on human health along with diverse bioactivity, a related mode of action, and also future challenges.
Collapse
Affiliation(s)
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
12
|
Mu D, Wang W, Li J, Lv P, Liu R, Tan Y, Zhong C, Qi Y, Sun X, Liu Y, Shen S, Li Y, Xu B, Zhang B. Ultrasmall Fe(III)-Tannic Acid Nanoparticles To Prevent Progression of Atherosclerotic Plaques. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33915-33925. [PMID: 34279905 DOI: 10.1021/acsami.1c09480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Macrophage accumulation is central to the pathogenesis of atherosclerotic plaques. Reducing macrophages in plaques is an appealing approach to attenuate the development of atherosclerosis. Chemodynamic therapy, specifically inhibiting hydrogen peroxide (H2O2)-rich cells in slightly acidic microenvironment, has emerged as a new method in tumor treatment. Herein, we manufactured ultrasmall dopamine-modified hyaluronic acid (HD)-stabilized Fe(III)-tannic acid nanoparticles (HFTNPs). HFTNPs can specifically accumulate in inflammatory macrophages in atherosclerotic plaques, provide brighter magnetic resonance images, promote reactive oxygen species (ROS) generation, and induce the death of inflammatory macrophages without damaging normal cells and tissues. In conclusion, HFTNPs have a tremendous potential as safe and effective diagnostic and therapeutic reagents for atherosclerosis.
Collapse
Affiliation(s)
- Dan Mu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Wenshen Wang
- National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Jianhui Li
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Pin Lv
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Renyuan Liu
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Ying Tan
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Chongxia Zhong
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yu Qi
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Xuan Sun
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yihai Liu
- Department of Cardiology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Song Shen
- Department of Cardiology, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Yuyu Li
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Biao Xu
- Department of Cardiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bing Zhang
- Department of Radiology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- Institute of Brain Science, Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
13
|
Calatayud DG, Jardiel T, Bernardo MS, Mirabello V, Ge H, Arrowsmith RL, Cortezon-Tamarit F, Alcaraz L, Isasi J, Arévalo P, Caballero AC, Pascu SI, Peiteado M. Hybrid Hierarchical Heterostructures of Nanoceramic Phosphors as Imaging Agents for Multiplexing and Living Cancer Cells Translocation. ACS APPLIED BIO MATERIALS 2021; 4:4105-4118. [PMID: 34056563 PMCID: PMC8155200 DOI: 10.1021/acsabm.0c01417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/19/2021] [Indexed: 11/30/2022]
Abstract
![]()
Existing fluorescent
labels used in life sciences are based on
organic compounds with limited lifetime or on quantum dots which are
either expensive or toxic and have low kinetic stability in biological
environments. To address these challenges, luminescent nanomaterials
have been conceived as hierarchical, core–shell structures
with spherical morphology and highly controlled dimensions. These
tailor-made nanophosphors incorporate Ln:YVO4 nanoparticles
(Ln = Eu(III) and Er(III)) as 50 nm cores and display intense and
narrow emission maxima centered at ∼565 nm. These cores can
be encapsulated in silica shells with highly controlled dimensions
as well as functionalized with chitosan or PEG5000 to reduce nonspecific
interactions with biomolecules in living cells. Confocal fluorescence
microscopy in living prostate cancer cells confirmed the potential
of these platforms to overcome the disadvantages of commercial fluorophores
and their feasibility as labels for multiplexing, biosensing, and
imaging in life science assays.
Collapse
Affiliation(s)
- David G Calatayud
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Teresa Jardiel
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Mara S Bernardo
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Vincenzo Mirabello
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Haobo Ge
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Rory L Arrowsmith
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | | | - Lorena Alcaraz
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Josefa Isasi
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Pablo Arévalo
- Department of Inorganic Chemistry I, Universidad Complutense de Madrid, Madrid28040, Spain
| | - Amador C Caballero
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| | - Sofia I Pascu
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Marco Peiteado
- Department of Electroceramics, Instituto de Ceramica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
14
|
Chen J, Zhang X, Millican R, Sherwood J, Martin S, Jo H, Yoon YS, Brott BC, Jun HW. Recent advances in nanomaterials for therapy and diagnosis for atherosclerosis. Adv Drug Deliv Rev 2021; 170:142-199. [PMID: 33428994 PMCID: PMC7981266 DOI: 10.1016/j.addr.2021.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 12/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease driven by lipid accumulation in arteries, leading to narrowing and thrombosis. It affects the heart, brain, and peripheral vessels and is the leading cause of mortality in the United States. Researchers have strived to design nanomaterials of various functions, ranging from non-invasive imaging contrast agents, targeted therapeutic delivery systems to multifunctional nanoagents able to target, diagnose, and treat atherosclerosis. Therefore, this review aims to summarize recent progress (2017-now) in the development of nanomaterials and their applications to improve atherosclerosis diagnosis and therapy during the preclinical and clinical stages of the disease.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xixi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | | - Sean Martin
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea; Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Brigitta C Brott
- Division of Cardiovascular Disease, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|