1
|
Peng F, Wang Z, Qiu Z, Zhang W, Zhao Y, Li C, Shi B. Nanomedicine in cardiology: Precision drug delivery for enhanced patient outcomes. Life Sci 2024; 358:123199. [PMID: 39488265 DOI: 10.1016/j.lfs.2024.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Cardiovascular diseases as a primary driver of global morbidity and mortality. Despite the array of therapeutic avenues in clinical practice, predominantly pharmaceutical and surgical interventions, they often fall short of fully addressing the clinical exigencies of cardiovascular patients. In recent years, nanocarriers have shown great potential in the treatment and diagnose of cardiovascular diseases. They can enhance drug targeting and bioavailability while reducing side effects. Additionally, by improving imaging and detection technologies, they enhance early diagnosis and disease monitoring capabilities. These advancements in technology offer new solutions for precision medicine in cardiovascular diseases, advancing treatment efficacy and disease management. Crafted from biomaterials, metals, or their amalgamations, these nanocarriers approximate the dimensions of biologically active molecules like proteins and DNA. Cardiovascular nanomedicine, in its infancy, has only recently burgeoned. Yet, with continual refinement in nanocarrier architecture, drug delivery mechanisms, and therapeutic outcomes, the potential of nanomedical technologies in clinical contexts becomes increasingly evident. This review aims to consolidate the strides made in nanocarrier research concerning the treatment and diagnose of cardiovascular diseases.
Collapse
Affiliation(s)
- Fengli Peng
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zimu Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Zhimei Qiu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Wei Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yongchao Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Chaofu Li
- Department of cardiology, Chongqing University Central Hospital (Chongqing Emergency Medical Center), College of Bioengineering, Chongqing University, Chongqing, China.
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Liu J, Linsley CS, Su Y, Abd-Elaziem W, Pan S, Sokoluk M, Griebel A, Chen G, Zeng Y, Murali N, Bialo S, Jiang A, Wu BM, Zhu D, Li X. Nanoparticle-Enabled Zn-0.1Mg Alloy with Long-Term Stability, Refined Degradation, and Favorable Biocompatibility for Biodegradable Implant Devices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50125-50138. [PMID: 39284011 DOI: 10.1021/acsami.4c04714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Zinc-based alloys, specifically Zn-Mg, have garnered considerable attention as promising materials for biodegradable implants due to their favorable mechanical strength, appropriate corrosion rate, and biocompatibility. Nevertheless, the alloy's lack of mechanical stability and integrity, resulting from ductility loss induced by age hardening at room temperature, hampers its practical bioapplication. In this study, ceramic nanoparticles have been successfully incorporated into the Zn-Mg alloy system, leading to a significant improvement in long-term stability as well as mechanical strength and ductility. In addition, this study represents the first investigation of Zn-based nanocomposites both in vitro and in vivo to comprehend the influence of nanoparticles on the degradation behavior and biocompatibility of the Zn system. The findings indicate that the incorporation of WC nanoparticles effectively refines and stabilizes the degradation behavior of Zn-Mg without negatively impacting the cytocompatibility of the alloy. The subcutaneous implantation and femoral implantation further prove the benefits of nanoparticle incorporation and found no negative effects. Collectively, Zn-Mg-WC nanocomposites yield great potential for implant usage.
Collapse
Affiliation(s)
- Jingke Liu
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- ZanoMed Inc, Los Angeles, California 90731, United States
| | - Chase S Linsley
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
| | - Yingchao Su
- Department of Biomedical Engineering, the State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Walaa Abd-Elaziem
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- Department of Mechanical Design and Production Engineering, Faculty of Engineering, Zagazig University, Zagazig 44519, Egypt
| | - Shuaihang Pan
- Department of Mechanical and Aerospace Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Maximilian Sokoluk
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- ZanoMed Inc, Los Angeles, California 90731, United States
| | - Adam Griebel
- Fort Wayne Metals, Fort Wayne, Indiana 46809, United States
| | - Guancheng Chen
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Narayanan Murali
- Department of Material Science and Engineering, University of California, Los Angeles, California 90024, United States
| | - Sarah Bialo
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
| | - Andrew Jiang
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, California 90024, United States
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90024, United States
- Department of Orthopedic Surgery, University of California, Los Angeles, California 90024, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, the State University of New York at Stony Brook, Stony Brook, New York 11794, United States
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90024, United States
- Department of Material Science and Engineering, University of California, Los Angeles, California 90024, United States
| |
Collapse
|
3
|
Rao J, Gao H, Sun J, Yu R, Zhao D, Ding Y. A Critical Review of Biodegradable Zinc Alloys toward Clinical Applications. ACS Biomater Sci Eng 2024; 10:5454-5473. [PMID: 39082869 DOI: 10.1021/acsbiomaterials.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Biodegradable zinc (Zn) alloys stand out as promising contenders for biomedical applications due to their favorable mechanical properties and appropriate degradation rates, offering the potential to mitigate the risks and expenses associated with secondary surgeries. While current research predominantly centers on the in vitro examination of Zn alloys, notable disparities often emerge between in vivo and in vitro findings. Consequently, conducting in vivo investigations on Zn alloys holds paramount significance in advancing their clinical application. Different element compositions and processing methods decide the mechanical properties and biological performance of Zn alloys, thus affecting their suitability for specific medical applications. This paper presents a comprehensive overview of recent strides in the development of biodegradable Zn alloys, with a focus on key aspects such as mechanical properties, toxicity, animal experiments, biological properties, and molecular mechanisms. By summarizing these advancements, the paper aims to broaden the scope of research directions and enhance the understanding of the clinical applications of biodegradable Zn alloys.
Collapse
Affiliation(s)
- Jiahui Rao
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hairui Gao
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jiwei Sun
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Danlei Zhao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
4
|
Zeng Y, Murali N, See CW, Liu J, Chi Y, Zhu D, Linsley CS, Wu BM, Li X. Effect of TiC Nanoparticles on a Zn-Al-Cu System for Biodegradable Cardiovascular Stent Applications. ACS Biomater Sci Eng 2024; 10:3438-3453. [PMID: 38564666 DOI: 10.1021/acsbiomaterials.3c01714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.
Collapse
Affiliation(s)
- Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Narayanan Murali
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Carmine Wang See
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Jingke Liu
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Yitian Chi
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Donghui Zhu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York 11794, United States
| | - Chase S Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| | - Benjamin M Wu
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, California 90095, United States
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, California 90095, United States
- The ADA Forsyth Institute, Cambridge, Massachusetts 02140, United States
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Chen S, Du T, Zhang H, Qi J, Zhang Y, Mu Y, Qiao A. Methods for improving the properties of zinc for the application of biodegradable vascular stents. BIOMATERIALS ADVANCES 2024; 156:213693. [PMID: 37992478 DOI: 10.1016/j.bioadv.2023.213693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023]
Abstract
Biodegradable stents can support vessels for an extended period, maintain vascular patency, and progressively degrade once vascular remodeling is completed, thereby reducing the constraints of traditional metal stents. An ideal degradable stent must have good mechanical properties, degradation behavior, and biocompatibility. Zinc has become a new type of biodegradable metal after magnesium and iron, owing to its suitable degradation rate and good biocompatibility. However, zinc's poor strength and ductility make it unsuitable as a vascular stent material. Therefore, this paper reviewed the primary methods for improving the overall properties of zinc. By discussing the mechanical properties, degradation behavior, and biocompatibility of various improvement strategies, we found that alloying is the most common, simple, and effective method to improve mechanical properties. Deformation processing can further improve the mechanical properties by changing the microstructures of zinc alloys. Surface modification is an important means to improve the biological activity, blood compatibility and corrosion resistance of zinc alloys. Meanwhile, structural design can not only improve the mechanical properties of the vascular stents, but also endow the stents with special properties such as negative Poisson 's ratio. Manufacturing zinc alloys with excellent degradation properties, improved mechanical properties and strong biocompatibility and exploring their mechanism of interaction with the human body remain areas for future research.
Collapse
Affiliation(s)
- Shiliang Chen
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Tianming Du
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Hanbing Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jing Qi
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yanping Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang, China
| | - Aike Qiao
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| |
Collapse
|
6
|
Liang M, Li F, Wang Y, Chen H, Tian J, Zhao Z, Schneider KH, Li G. Woven Vascular Stent-Grafts with Surface Modification of Silk Fibroin-Based Paclitaxel/Metformin Microspheres. Bioengineering (Basel) 2023; 10:bioengineering10040399. [PMID: 37106586 PMCID: PMC10136065 DOI: 10.3390/bioengineering10040399] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
In-stent restenosis caused by tumor ingrowth increases the risk of secondary surgery for patients with abdominal aortic aneurysms (AAA) because conventional vascular stent grafts suffer from mechanical fatigue, thrombosis, and endothelial hyperplasia. For that, we report a woven vascular stent-graft with robust mechanical properties, biocompatibility, and drug delivery functions to inhibit thrombosis and the growth of AAA. Paclitaxel (PTX)/metformin (MET)-loaded silk fibroin (SF) microspheres were self-assembly synthesized by emulsification-precipitation technology and layer-by-layer coated on the surface of a woven stent via electrostatic bonding. The woven vascular stent-graft before and after coating drug-loaded membranes were characterized and analyzed systematically. The results show that small-sized drug-loaded microspheres increased the specific surface area and promoted the dissolution/release of drugs. The stent-grafts with drug-loaded membranes exhibited a slow drug-release profile more for than 70 h and low water permeability at 158.33 ± 17.56 mL/cm2·min. The combination of PTX and MET inhibited the growth of human umbilical vein endothelial cells. Therefore, it was possible to generate dual-drug-loaded woven vascular stent-grafts to achieve the more effective treatment of AAA.
Collapse
Affiliation(s)
- Mengdi Liang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Fang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Yongfeng Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Hao Chen
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Jingjing Tian
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| | - Zeyu Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, 11 Yukchoi Rd, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Karl H Schneider
- Center for Biomedical Research and Translational Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Gang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
- Jiangsu Advanced Textile Engineering Technology Center, Nantong 226007, China
| |
Collapse
|
7
|
Wang M, Yang L, Zhu X, Yang L, Song Z. Influence of Enzymes on the In Vitro Degradation Behavior of Pure Zn in Simulated Gastric and Intestinal Fluids. ACS OMEGA 2023; 8:1331-1342. [PMID: 36643457 PMCID: PMC9835524 DOI: 10.1021/acsomega.2c06752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 05/26/2023]
Abstract
Zinc (Zn) alloys are being developed as the degradable biomaterial. However, the corrosion mechanism of Zn in the gastrointestinal environment is seldom investigated and needs to be addressed. In this study, the impacts of enzymes on the degradation of pure Zn via electrochemical measurements and immersion were investigated. Pepsin and pancreatin affected the degradation of pure Zn. In contrast with the solutions without enzymes, the degradation rates declined with the addition of enzymes in solutions. However, localized corrosion was observed because the adsorption of pepsin was not a perfect barrier to prevent corrosion. The adsorbed pancreatin protected the samples from corrosion mainly at the initial stage of immersion. With immersion in the simulated intestinal fluid, adsorption and desorption of pancreatin occurred simultaneously on the sample surface. These findings allow the development of Zn alloy-implanted devices for the digestive tract as well as the understanding of the Zn corrosion mechanism in the gastrointestinal environment.
Collapse
Affiliation(s)
- Manli Wang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
- University
of Chinese Academy of Sciences, Beijing100049, China
| | - Lingbo Yang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Xinglong Zhu
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Lijing Yang
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| | - Zhenlun Song
- Key
Laboratory of Marine Materials and Related Technologies, Zhejiang
Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering,
Chinese Academy of Sciences, Ningbo315201, China
| |
Collapse
|
8
|
Zeng Y, Guan Z, Linsley CS, Pan S, Liu J, Wu BM, Li X. Experimental study on novel biodegradable Zn-Fe-Si alloys. J Biomed Mater Res B Appl Biomater 2022; 110:2266-2275. [PMID: 35522226 PMCID: PMC9378461 DOI: 10.1002/jbm.b.35075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
Bioabsorbable metals are increasingly attracting attention for their potential use as materials for degradable implant devices. Zinc (Zn) alloys have shown great promises due to their good biocompatibility and favorable degradation rate. However, it has been difficult to maintain an appropriate balance among strength, ductility, biocompatibility, and corrosion rate for Zn alloys historically. In this study, the microstructure, chemical composition, mechanical properties, biocompatibility, and corrosion rate of a new ternary zinc-iron-silicon (Zn-Fe-Si) alloy system was studied as a novel material for potential biodegradable implant applications. The results demonstrated that the in situ formed Fe-Si intermetallic phases enhanced the mechanical strength of the material while maintaining a favorable ductility. With Fe-Si reinforcements, the microhardness of the Zn alloys was enhanced by up to 43%. The tensile strength was increased by up to 76% while elongation to failure remained above 30%. Indirect cytotoxicity testing showed the Zn-Fe-Si system had good biocompatibility. Immersion testing revealed the corrosion rate of Zn-Fe-Si system was not statistically different from pure Zn. To understand the underlying phase formation mechanism, the reaction process in this ternary system during the processing was also studied via phase evolution and Gibbs free energy analysis. The results suggest the Zn-Fe-Si ternary system is a promising new material for bioabsorbable metallic medical devices.
Collapse
Affiliation(s)
- Yuxin Zeng
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Zeyi Guan
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Chase S. Linsley
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Shuaihang Pan
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Jingke Liu
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M. Wu
- Department of Bioengineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, CA 90095, USA
- Department of Orthopedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Xiaochun Li
- Department of Mechanical and Aerospace Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Liu Y, Du T, Qiao A, Mu Y, Yang H. Zinc-Based Biodegradable Materials for Orthopaedic Internal Fixation. J Funct Biomater 2022; 13:jfb13040164. [PMID: 36278633 PMCID: PMC9589944 DOI: 10.3390/jfb13040164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Traditional inert materials used in internal fixation have caused many complications and generally require removal with secondary surgeries. Biodegradable materials, such as magnesium (Mg)-, iron (Fe)- and zinc (Zn)-based alloys, open up a new pathway to address those issues. During the last decades, Mg-based alloys have attracted much attention by researchers. However, the issues with an over-fast degradation rate and release of hydrogen still need to be overcome. Zn alloys have comparable mechanical properties with traditional metal materials, e.g., titanium (Ti), and have a moderate degradation rate, potentially serving as a good candidate for internal fixation materials, especially at load-bearing sites of the skeleton. Emerging Zn-based alloys and composites have been developed in recent years and in vitro and in vivo studies have been performed to explore their biodegradability, mechanical property, and biocompatibility in order to move towards the ultimate goal of clinical application in fracture fixation. This article seeks to offer a review of related research progress on Zn-based biodegradable materials, which may provide a useful reference for future studies on Zn-based biodegradable materials targeting applications in orthopedic internal fixation.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Tianming Du
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Aike Qiao
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yongliang Mu
- School of Metallurgy, Northeastern University, Shenyang 110819, China
| | - Haisheng Yang
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Correspondence: ; Tel.: +86-(010)-6739-6657
| |
Collapse
|