1
|
Liu M, Wang Y, Wang C, Li P, Qiu J, Yang N, Sun M, Han L. A Microfluidic 3D-Tumor-Spheroid Model for the Evaluation of Targeted Therapies from Angiogenesis-Related Cytokines at the Single Spheroid Level. Adv Healthc Mater 2024:e2402321. [PMID: 39126126 DOI: 10.1002/adhm.202402321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 08/12/2024]
Abstract
Angiogenesis is a key player in drug resistance to targeted therapies for breast cancer. The average expression of angiogenesis-related cytokines is widely associated with the treatments of target therapies for a population of cells or spheroids, overlooking the distinct responses for individuals. In this work, a highly integrated microfluidic platform is developed for the generation of monodisperse multicellular tumor spheroids (MTSs), drug treatments, and the measurement of cytokines for individual MTSs in a single chip. The platform allows the correlation evaluation between cytokine secretion and drug treatment at the level of individual spheroids. For validation, quantities of six representative proangiogenic cytokines are tested against treatments with four model drugs at varying times and concentrations. By applying a linear regression model, significant correlations are established between cytokine secretion and the treated drug concentration for individual spheroids. The proposed platform provides a high-throughput method for the investigation of the molecular mechanism of the cytokine response to targeted therapies and paves the way for future drug screening using predictive regression models at the single-spheroid level.
Collapse
Affiliation(s)
- Mengqi Liu
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Yihe Wang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Chao Wang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Ping Li
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Jiaoyan Qiu
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Ningkai Yang
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Mingyuan Sun
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Tsingdao, 266237, China
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, P. R. China
| |
Collapse
|
2
|
Bartkova S, Zapotoczna M, Sanka I, Scheler O. A Guide to Biodetection in Droplets. Anal Chem 2024; 96:9745-9755. [PMID: 38842026 PMCID: PMC11190884 DOI: 10.1021/acs.analchem.3c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024]
Abstract
Droplet-based methods for optical biodetection enable unprecedented high-throughput experimental parameters. The methods, however, remain underused due to the accompanying multidisciplinary and complicated experimental workflows. Here, we provide a tutorial for droplet-based optical biodetection workflows with a focus on the key aspect of label selection. By discussing and guiding readers through recent state-of-the-art studies, we aim to make droplet-based approaches more accessible to the general scientific public.
Collapse
Affiliation(s)
- Simona Bartkova
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Marta Zapotoczna
- Faculty
of Biology, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Immanuel Sanka
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| | - Ott Scheler
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology (TalTech), Akadeemia tee 15, Tallinn 12618, Estonia
| |
Collapse
|
3
|
Alaoui Selsouli Y, Rho HS, Eischen-Loges M, Galván-Chacón VP, Stähli C, Viecelli Y, Döbelin N, Bohner M, Tahmasebi Birgani Z, Habibović P. Optimization of a tunable process for rapid production of calcium phosphate microparticles using a droplet-based microfluidic platform. Front Bioeng Biotechnol 2024; 12:1352184. [PMID: 38600949 PMCID: PMC11004461 DOI: 10.3389/fbioe.2024.1352184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Calcium phosphate (CaP) biomaterials are amongst the most widely used synthetic bone graft substitutes, owing to their chemical similarities to the mineral part of bone matrix and off-the-shelf availability. However, their ability to regenerate bone in critical-sized bone defects has remained inferior to the gold standard autologous bone. Hence, there is a need for methods that can be employed to efficiently produce CaPs with different properties, enabling the screening and consequent fine-tuning of the properties of CaPs towards effective bone regeneration. To this end, we propose the use of droplet microfluidics for rapid production of a variety of CaP microparticles. Particularly, this study aims to optimize the steps of a droplet microfluidic-based production process, including droplet generation, in-droplet CaP synthesis, purification and sintering, in order to obtain a library of CaP microparticles with fine-tuned properties. The results showed that size-controlled, monodisperse water-in-oil microdroplets containing calcium- and phosphate-rich solutions can be produced using a flow-focusing droplet-generator microfluidic chip. We optimized synthesis protocols based on in-droplet mineralization to obtain a range of CaP microparticles without and with inorganic additives. This was achieved by adjusting synthesis parameters, such as precursor concentration, pH value, and aging time, and applying heat treatment. In addition, our results indicated that the synthesis and fabrication parameters of CaPs in this method can alter the microstructure and the degradation behavior of CaPs. Overall, the results highlight the potential of the droplet microfluidic platform for engineering CaP microparticle biomaterials with fine-tuned properties.
Collapse
Affiliation(s)
- Y. Alaoui Selsouli
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - H. S. Rho
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - M. Eischen-Loges
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - V. P. Galván-Chacón
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - C. Stähli
- RMS Foundation, Bettlach, Switzerland
| | | | | | - M. Bohner
- RMS Foundation, Bettlach, Switzerland
| | - Z. Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| | - P. Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
4
|
Trinh TND, Do HDK, Nam NN, Dan TT, Trinh KTL, Lee NY. Droplet-Based Microfluidics: Applications in Pharmaceuticals. Pharmaceuticals (Basel) 2023; 16:937. [PMID: 37513850 PMCID: PMC10385691 DOI: 10.3390/ph16070937] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/19/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Droplet-based microfluidics offer great opportunities for applications in various fields, such as diagnostics, food sciences, and drug discovery. A droplet provides an isolated environment for performing a single reaction within a microscale-volume sample, allowing for a fast reaction with a high sensitivity, high throughput, and low risk of cross-contamination. Owing to several remarkable features, droplet-based microfluidic techniques have been intensively studied. In this review, we discuss the impact of droplet microfluidics, particularly focusing on drug screening and development. In addition, we surveyed various methods of device fabrication and droplet generation/manipulation. We further highlight some promising studies covering drug synthesis and delivery that were updated within the last 5 years. This review provides researchers with a quick guide that includes the most up-to-date and relevant information on the latest scientific findings on the development of droplet-based microfluidics in the pharmaceutical field.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Thach Thi Dan
- Department of Materials Science, School of Applied Chemistry, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
5
|
Fröhlich E. The Variety of 3D Breast Cancer Models for the Study of Tumor Physiology and Drug Screening. Int J Mol Sci 2023; 24:ijms24087116. [PMID: 37108283 PMCID: PMC10139112 DOI: 10.3390/ijms24087116] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/01/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer is the most common cancer in women and responsible for multiple deaths worldwide. 3D cancer models enable a better representation of tumor physiology than the conventional 2D cultures. This review summarizes the important components of physiologically relevant 3D models and describes the spectrum of 3D breast cancer models, e.g., spheroids, organoids, breast cancer on a chip and bioprinted tissues. The generation of spheroids is relatively standardized and easy to perform. Microfluidic systems allow control over the environment and the inclusion of sensors and can be combined with spheroids or bioprinted models. The strength of bioprinting relies on the spatial control of the cells and the modulation of the extracellular matrix. Except for the predominant use of breast cancer cell lines, the models differ in stromal cell composition, matrices and fluid flow. Organoids are most appropriate for personalized treatment, but all technologies can mimic most aspects of breast cancer physiology. Fetal bovine serum as a culture supplement and Matrigel as a scaffold limit the reproducibility and standardization of the listed 3D models. The integration of adipocytes is needed because they possess an important role in breast cancer.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, 8010 Graz, Austria
- Research Center Pharmaceutical Engineering GmbH, 8010 Graz, Austria
| |
Collapse
|
6
|
Wu Y, Zhao Y, Zhou Y, Islam K, Liu Y. Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15152-15161. [PMID: 36920885 PMCID: PMC10249002 DOI: 10.1021/acsami.2c23305] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 03/07/2023] [Indexed: 06/11/2023]
Abstract
High-fidelity in vitro tumor models are important for preclinical drug discovery processes. Currently, the most commonly used model for in vitro drug testing remains the two-dimensional (2D) cell monolayer. However, the natural in vivo tumor microenvironment (TME) consists of extracellular matrix (ECM), supporting stromal cells and vasculature. They not only participate in the progression of tumors but also hinder drug delivery and effectiveness on tumor cells. Here, we report an integrated engineering system to generate vessel-supported tumors for preclinical drug screening. First, gelatin-methacryloyl (GelMA) hydrogel was selected to mimic tumor extracellular matrix (ECM). HCT-116 tumor cells were encapsulated into individual micro-GelMA beads with microfluidic droplet technique to mimic tumor-ECM interactions in vitro. Then, normal human lung fibroblasts were mingled with tumor cells to imitate the tumor-stromal interaction. The tumor cells and fibroblasts reconstituted in the individual GelMA microbead and formed a biomimetic heterotypic tumor model with a core-shell structure. Next, the cell-laden beads were consociated into a functional on-chip vessel network platform to restore the tumor-tumor microenvironment (TME) interaction. Afterward, the anticancer drug paclitaxel was tested on the individual and vessel-supported tumor models. It was demonstrated that the blood vessel-associated TME conferred significant additional drug resistance in the drug screening experiment. The reported system is expected to enable the large-scale fabrication of vessel-supported heterotypic tumor models of various cellular compositions. It is believed to be promising for the large-scale fabrication of biomimetic in vitro tumor models and may be valuable for improving the efficiency of preclinical drug discovery processes.
Collapse
Affiliation(s)
- Yue Wu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuwen Zhao
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yuyuan Zhou
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Khayrul Islam
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Yaling Liu
- Department
of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
7
|
Marín-Payá JC, Clara-Trujillo S, Cordón L, Gallego Ferrer G, Sempere A, Gómez Ribelles JL. Protein-Functionalized Microgel for Multiple Myeloma Cells’ 3D Culture. Biomedicines 2022; 10:biomedicines10112797. [PMID: 36359316 PMCID: PMC9687145 DOI: 10.3390/biomedicines10112797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma is a hematologic neoplasm caused by an uncontrolled clonal proliferation of neoplastic plasma cells (nPCs) in the bone marrow. The development and survival of this disease is tightly related to the bone marrow environment. Proliferation and viability of nPCs depend on their interaction with the stromal cells and the extracellular matrix components, which also influences the appearance of drug resistance. Recapitulating these interactions in an in vitro culture requires 3D environments that incorporate the biomolecules of interest. In this work, we studied the proliferation and viability of three multiple myeloma cell lines in a microgel consisting of biostable microspheres with fibronectin (FN) on their surfaces. We also showed that the interaction of the RPMI8226 cell line with FN induced cell arrest in the G0/G1 cell cycle phase. RPMI8226 cells developed a significant resistance to dexamethasone, which was reduced when they were treated with dexamethasone and bortezomib in combination.
Collapse
Affiliation(s)
- Juan Carlos Marín-Payá
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Sandra Clara-Trujillo
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
| | - Lourdes Cordón
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46026 Valencia, Spain
| | - Gloria Gallego Ferrer
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
| | - Amparo Sempere
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 20029 Madrid, Spain
- Haematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain
| | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022 Valencia, Spain
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Valencia, Spain
- Correspondence:
| |
Collapse
|