1
|
Zhang R, Rygelski BT, Kruse LE, Smith JD, Wang X, Allen BN, Kramer JS, Seim GF, Faulkner TJ, Kuang H, Kokkoli E, Schrum AG, Ulery BD. Adjuvant Delivery Method and Nanoparticle Charge Influence Peptide Amphiphile Micelle Vaccine Bioactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598369. [PMID: 38915689 PMCID: PMC11195052 DOI: 10.1101/2024.06.10.598369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Vaccines are an indispensable public health measure that have enabled the eradication, near elimination, and prevention of a variety of pathogens. As research continues and our understanding of immunization strategies develops, subunit vaccines have emerged as exciting alternatives to existing whole vaccine approaches. Unfortunately, subunit vaccines often possess weak antigenicity, requiring delivery devices and adjuvant supplementation to improve their utility. Peptide amphiphile micelles have recently been shown to function as both delivery devices and self-adjuvanting systems that can be readily associated with molecular adjuvants to further improve vaccine-mediated host immunity. While promising, many design rules associated with the plethora of underlying adjustable parameters in the generation of a peptide amphiphile micelle vaccine have yet to be uncovered. This work explores the impact micellar adjuvant complexation method and incorporated antigen type have on their ability to activate dendritic cells and induce antigen specific responses. Interestingly, electrostatic complexation of CpG to micelles resulted in improved in vitro dendritic cell activation over hydrophobic association and antigen|adjuvant co-localization influenced cell-mediated, but not antibody-mediated immune responses. These exciting results complement those previously published to build the framework of a micelle vaccine toolbox that can be leveraged for future disease specific formulations.
Collapse
|
2
|
Zareein A, Mahmoudi M, Jadhav SS, Wilmore J, Wu Y. Biomaterial engineering strategies for B cell immunity modulations. Biomater Sci 2024; 12:1981-2006. [PMID: 38456305 PMCID: PMC11019864 DOI: 10.1039/d3bm01841e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
B cell immunity has a penetrating effect on human health and diseases. Therapeutics aiming to modulate B cell immunity have achieved remarkable success in combating infections, autoimmunity, and malignancies. However, current treatments still face significant limitations in generating effective long-lasting therapeutic B cell responses for many conditions. As the understanding of B cell biology has deepened in recent years, clearer regulation networks for B cell differentiation and antibody production have emerged, presenting opportunities to overcome current difficulties and realize the full therapeutic potential of B cell immunity. Biomaterial platforms have been developed to leverage these emerging concepts to augment therapeutic humoral immunity by facilitating immunogenic reagent trafficking, regulating T cell responses, and modulating the immune microenvironment. Moreover, biomaterial engineering tools have also advanced our understanding of B cell biology, further expediting the development of novel therapeutics. In this review, we will introduce the general concept of B cell immunobiology and highlight key biomaterial engineering strategies in the areas including B cell targeted antigen delivery, sustained B cell antigen delivery, antigen engineering, T cell help optimization, and B cell suppression. We will also discuss our perspective on future biomaterial engineering opportunities to leverage humoral immunity for therapeutics.
Collapse
Affiliation(s)
- Ali Zareein
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Mina Mahmoudi
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
| | - Shruti Sunil Jadhav
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
| | - Joel Wilmore
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yaoying Wu
- Department of Biomedical Engineering, Syracuse University, Syracuse, NY, USA.
- The BioInspired Institute for Material and Living Systems, Syracuse University, Syracuse, NY, USA
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Li Y, Kim M, Pial TH, Lin Y, Cui H, Olvera de la Cruz M. Aggregation-Induced Asymmetric Charge States of Amino Acids in Supramolecular Nanofibers. J Phys Chem B 2023; 127:8176-8184. [PMID: 37721979 DOI: 10.1021/acs.jpcb.3c05598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrostatic interactions contribute critically to the kinetic pathways and thermodynamic outcomes of peptide self-assembly involving one or more than one charged amino acids. While it is well understood in protein folding that those amino acids with acidic/basic side chains could shift their pKas when placed in a hydrophobic microenvironment, to what extent aggregation of monomeric peptide units from the bulk solution could alter their charged status and how this change in pKa values would reciprocally impact their assembly outcomes. Here, we design and analyze two solution systems containing peptide amphiphiles with hydrocarbon chains of different lengths to determine the factor of deprotonation on assembly. Our results suggest that models of supramolecular nanofibers with uniformly distributed, fully charged amino acids are oversimplified. We demonstrate, with molecular dynamics simulations, and validate with experimental results that asymmetric, different protonation states of the peptides lead to distinct nanostructures after self-assembly. The results give estimates on the electrostatic interactions in peptide amphiphiles required for their self-assembly and shed light on modeling molecular assembly systems containing charged amino acids.
Collapse
Affiliation(s)
- Y Li
- Department of Chemical and Biomolecular Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M Kim
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - T H Pial
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
| | - Y Lin
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - H Cui
- Department of Chemical and Biomolecular Engineering and Institute for NanoBiotechnology, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - M Olvera de la Cruz
- Department of Chemical and Biomolecular Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Center of Computation and Theory of Soft Materials, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Deigin V, Premyslova M, Ksenofontova O, Yatskin O, Volpina O. Evaluation of Neuroprotective and Adjuvant Activities of Diketopiperazine‐Based Peptidomimetics. ChemistrySelect 2023. [DOI: 10.1002/slct.202204076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Vladislav Deigin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho- Maklaya St., 16/10 Moscow 117997 Russia
- Immunotech Developments Inc. 2395 Speakman Drive, Suite 2025 Mississauga Ontario L5 K 1B3 Canada
| | - Marina Premyslova
- Immunotech Developments Inc. 2395 Speakman Drive, Suite 2025 Mississauga Ontario L5 K 1B3 Canada
| | - Olga Ksenofontova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho- Maklaya St., 16/10 Moscow 117997 Russia
| | - Oleg Yatskin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho- Maklaya St., 16/10 Moscow 117997 Russia
| | - Olga Volpina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho- Maklaya St., 16/10 Moscow 117997 Russia
| |
Collapse
|
5
|
Trac N, Oh HS, Jones LI, Caliliw R, Ohtake S, Shuch B, Chung EJ. CD70-Targeted Micelles Enhance HIF2α siRNA Delivery and Inhibit Oncogenic Functions in Patient-Derived Clear Cell Renal Carcinoma Cells. Molecules 2022; 27:molecules27238457. [PMID: 36500549 PMCID: PMC9738223 DOI: 10.3390/molecules27238457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The majority of clear cell renal cell carcinomas (ccRCCs) are characterized by mutations in the Von Hippel−Lindau (VHL) tumor suppressor gene, which leads to the stabilization and accumulation of the HIF2α transcription factor that upregulates key oncogenic pathways that promote glucose metabolism, cell cycle progression, angiogenesis, and cell migration. Although FDA-approved HIF2α inhibitors for treating VHL disease-related ccRCC are available, these therapies are associated with significant toxicities such as anemia and hypoxia. To improve ccRCC-specific drug delivery, peptide amphiphile micelles (PAMs) were synthesized incorporating peptides targeted to the CD70 marker expressed by ccRCs and anti-HIF2α siRNA, and the ability of HIF2α-CD27 PAMs to modulate HIF2α and its downstream targets was evaluated in human ccRCC patient-derived cells. Cell cultures were derived from eight human ccRCC tumors and the baseline mRNA expression of HIF2A and CD70, as well as the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 were first determined. As expected, each gene was overexpressed by at least 63% of all samples compared to normal kidney proximal tubule cells. Upon incubation with HIF2α-CD27 PAMs, a 50% increase in ccRCC-binding was observed upon incorporation of a CD70-targeting peptide into the PAMs, and gel shift assays demonstrated the rapid release of siRNA (>80% in 1 h) under intracellular glutathione concentrations, which contributed to ~70% gene knockdown of HIF2α and its downstream genes. Further studies demonstrated that knockdown of the HIF2α target genes SLC2A1, CCND1, VEGFA, CXCR4, and CXCL12 led to inhibition of their oncogenic functions of glucose transport, cell proliferation, angiogenic factor release, and cell migration by 50−80%. Herein, the development of a nanotherapeutic strategy for ccRCC-specific siRNA delivery and its potential to interfere with key oncogenic pathways is presented.
Collapse
Affiliation(s)
- Noah Trac
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hyun Seok Oh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Leila Izzy Jones
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Randy Caliliw
- Institute of Urologic Oncology, University of California, Los Angeles, CA 90095, USA
| | - Shinji Ohtake
- Institute of Urologic Oncology, University of California, Los Angeles, CA 90095, USA
| | - Brian Shuch
- Institute of Urologic Oncology, University of California, Los Angeles, CA 90095, USA
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
- Division of Nephrology and Hypertension, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Department of Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
6
|
Deigin V, Koroev D, Volpina O. Peptide ILE-GLU-TRP (Stemokin) Potential Adjuvant Stimulating a Balanced Immune Response. Int J Pept Res Ther 2022; 28:156. [PMID: 36313476 PMCID: PMC9589648 DOI: 10.1007/s10989-022-10461-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 12/03/2022]
Abstract
Vaccines are widely used worldwide to prevent and protect from various infections. A variety of modern approaches to developing prophylactic and therapeutic vaccines is growing. In almost all cases, adjuvants are necessary to obtain an effective immune response.This work investigated the possibility of using the pharmaceutical peptide drug Stemokin as an adjuvant stimulating a balanced Th1/Th2 response.A study was conducted to compare the activity of Stemokin versus the approved adjuvant Alhydrogel in a murine vaccination model with the approved VAXIGRIP® vaccine.The first proof-of-concept experimental study shows that the peptide Ile-Glu-Trp has the adjuvant vaccine properties and anti-HA IgG2a enhancing response, revealing a Th1- favoring balanced Th1/Th2 immunomodulation.
Collapse
|
7
|
Fowler WC. Intrinsic Fluorescence in Peptide Amphiphile Micelles with Protein-Inspired Phosphate Sensing. Biomacromolecules 2022; 23:4804-4813. [PMID: 36223894 PMCID: PMC9667461 DOI: 10.1021/acs.biomac.2c00960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Although peptide amphiphile micelles (PAMs) have been
widely studied
since they were developed in the late 1990s, to the author’s
knowledge, there have been no reports that PAMs intrinsically fluoresce
without a fluorescent tag, according to the aggregation-induced emission
(AIE) effect. This unexpected fluorescence behavior adds noteworthy
value to both the peptide amphiphile and AIE communities. For PAMs,
intrinsic fluorescence becomes another highly useful feature to add
to this well-studied material platform that features precise synthetic
control, tunable self-assembly, and straightforward functionalization,
with clear potential applications in bioinspired materials for bioimaging
and fluorescent sensing. For AIE, it is extremely rare and highly
desirable for one platform to exhibit precise tunability on multiple
length scales in aqeuous solutions, positioning PAMs as uniquely well-suited
for systematic AIE mechanistic study and sequence-specific functionalization
for bioinspired AIE applications. In this work, the author proposes
that AIE occurs across intermolecular emissive pathways created by
the closely packed peptide amide bonds in the micelle corona upon
self-assembly, with maximum excitation and emission wavelengths of
355 and 430 nm, respectively. Of the three PAMs evaluated here, the
PAM with tightly packed random coil peptide conformation and maximum
peptide length had the largest quantum yield, indicating that tuning
molecular design can further optimize the intrinsic emissive properties
of PAMs. To probe the sensing capabilities of AIE PAMs, a PAM was
designed to incorporate a protein-derived phosphate-binding sequence.
It detected phosphate down to 1 ppm through AIE-enhanced second-order
aggregation, demonstrating that AIE in PAMs leverages tunable biomimicry
to perform protein-inspired sensing.
Collapse
Affiliation(s)
- Whitney C Fowler
- Department of Engineering, Harvey Mudd College, Claremont, California 91711, United States
| |
Collapse
|
8
|
Feng C, Li Y, Ferdows BE, Patel DN, Ouyang J, Tang Z, Kong N, Chen E, Tao W. Emerging vaccine nanotechnology: From defense against infection to sniping cancer. Acta Pharm Sin B 2022; 12:2206-2223. [PMID: 35013704 PMCID: PMC8730377 DOI: 10.1016/j.apsb.2021.12.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
Looking retrospectively at the development of humanity, vaccination is an unprecedented medical landmark that saves lives by harnessing the human immune system. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, vaccination is still the most effective defense modality. The successful clinical application of the lipid nanoparticle-based Pfizer/BioNTech and Moderna mRNA COVID-19 vaccines highlights promising future of nanotechnology in vaccine development. Compared with conventional vaccines, nanovaccines are supposed to have advantages in lymph node accumulation, antigen assembly, and antigen presentation; they also have, unique pathogen biomimicry properties because of well-organized combination of multiple immune factors. Beyond infectious diseases, vaccine nanotechnology also exhibits considerable potential for cancer treatment. The ultimate goal of cancer vaccines is to fully mobilize the potency of the immune system as a living therapeutic to recognize tumor antigens and eliminate tumor cells, and nanotechnologies have the requisite properties to realize this goal. In this review, we summarize the recent advances in vaccine nanotechnology from infectious disease prevention to cancer immunotherapy and highlight the different types of materials, mechanisms, administration methods, as well as future perspectives.
Collapse
Affiliation(s)
- Chan Feng
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Pharmacy, the Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhongmin Tang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Enguo Chen
- Department of Respiratory Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
- Cancer Center, Zhejiang University, Hangzhou 310058, China
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Corresponding authors. Fax: +001 857 307 2337 (Wei Tao).
| |
Collapse
|
9
|
Koirala P, Bashiri S, Toth I, Skwarczynski M. Current Prospects in Peptide-Based Subunit Nanovaccines. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:309-338. [PMID: 34918253 DOI: 10.1007/978-1-0716-1892-9_16] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Vaccination renders protection against pathogens via stimulation of the body's natural immune responses. Classical vaccines that utilize whole organisms or proteins have several disadvantages, such as induction of undesired immune responses, poor stability, and manufacturing difficulties. The use of minimal immunogenic pathogen components as vaccine antigens, i.e., peptides, can greatly reduce these shortcomings. However, subunit antigens require a specific delivery system and immune adjuvant to increase their efficacy. Recently, nanotechnology has been extensively utilized to address this issue. Nanotechnology-based formulation of peptide vaccines can boost immunogenicity and efficiently induce cellular and humoral immune responses. This chapter outlines the recent developments and advances of nano-sized delivery platforms for peptide antigens, including nanoparticles composed of polymers, peptides, lipids, and inorganic materials.
Collapse
Affiliation(s)
- Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sahra Bashiri
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia. .,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia. .,School of Pharmacy, The University of Queensland, St Lucia, QLD, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
10
|
O'Neill CL, Shrimali PC, Clapacs ZE, Files MA, Rudra JS. Peptide-based supramolecular vaccine systems. Acta Biomater 2021; 133:153-167. [PMID: 34010691 PMCID: PMC8497425 DOI: 10.1016/j.actbio.2021.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/01/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Currently approved replication-competent and inactivated vaccines are limited by excessive reactogenicity and poor safety profiles, while subunit vaccines are often insufficiently immunogenic without co-administering exogenous adjuvants. Self-assembling peptide-, peptidomimetic-, and protein-based biomaterials offer a means to overcome these challenges through their inherent modularity, multivalency, and biocompatibility. As these scaffolds are biologically derived and present antigenic arrays reminiscent of natural viruses, they are prone to immune recognition and are uniquely capable of functioning as self-adjuvanting vaccine delivery vehicles that improve humoral and cellular responses. Beyond this intrinsic immunological advantage, the wide range of available amino acids allows for facile de novo design or straightforward modifications to existing sequences. This has permitted the development of vaccines and immunotherapies tailored to specific disease models, as well as generalizable platforms that have been successfully applied to prevent or treat numerous infectious and non-infectious diseases. In this review, we briefly introduce the immune system, discuss the structural determinants of coiled coils, β-sheets, peptide amphiphiles, and protein subunit nanoparticles, and highlight the utility of these materials using notable examples of their innate and adaptive immunomodulatory capacity. STATEMENT OF SIGNIFICANCE: Subunit vaccines have recently gained considerable attention due to their favorable safety profiles relative to traditional whole-cell vaccines; however, their reduced efficacy requires co-administration of reactogenic adjuvants to boost immune responses. This has led to collaborative efforts between engineers and immunologists to develop nanomaterial-based vaccination platforms that can elicit protection without deleterious side effects. Self-assembling peptidic biomaterials are a particularly attractive approach to this problem, as their structure and function can be controlled through primary sequence design and their capacity for multivalent presentation of antigens grants them intrinsic self-adjuvanticity. This review introduces the various architectures adopted by self-assembling peptides and discusses their application as modulators of innate and adaptive immunity.
Collapse
Affiliation(s)
- Conor L O'Neill
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Paresh C Shrimali
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Zoe E Clapacs
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - Megan A Files
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77555, United States.
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, United States.
| |
Collapse
|
11
|
Votaw NL, Collier L, Curvino EJ, Wu Y, Fries CN, Ojeda MT, Collier JH. Randomized peptide assemblies for enhancing immune responses to nanomaterials. Biomaterials 2021; 273:120825. [PMID: 33901731 DOI: 10.1016/j.biomaterials.2021.120825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/26/2021] [Accepted: 04/10/2021] [Indexed: 12/16/2022]
Abstract
Biomaterials capable of inducing immune responses with minimal associated inflammation are of interest in applications ranging from tissue repair to vaccines. Here we report the design of self-assembling randomized polypeptide nanomaterials inspired by glatiramoids, an immunomodulatory class of linear random copolymers. We hypothesized that peptide self-assemblies bearing similar randomized polypeptides would similarly raise responses skewed toward Type 2 immunity and TH2 T-cell responses, additionally strengthening responses to co-assembled peptide epitopes in the absence of adjuvant. We developed a method for synthesizing self-assembling peptides terminated with libraries of randomized polypeptides (termed KEYA) with good batch-to-batch reproducibility. These peptides formed regular nanofibers and raised strong antibody responses without adjuvants. KEYA modifications dramatically improved uptake of peptide nanofibers in vitro by antigen presenting cells, and served as strong B-cell and T-cell epitopes in vivo, enhancing immune responses against epitopes relevant to influenza and chronic inflammation while inducing a KEYA-specific Type 2/TH2/IL-4 phenotype. KEYA modifications also increased IL-4 production by T cells, extended the residence time of nanofibers, induced no measurable swelling in footpad injections, and decreased overall T cell expansion compared to unmodified nanofibers, further suggesting a TH2 T-cell response with minimal inflammation. Collectively, this work introduces a biomaterial capable of raising strong Type 2/TH2/IL-4 immune responses, with potential applications ranging from vaccination to tissue repair.
Collapse
Affiliation(s)
- Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Lauren Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Elizabeth J Curvino
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Chelsea N Fries
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Madison T Ojeda
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
12
|
Fries CN, Curvino EJ, Chen JL, Permar SR, Fouda GG, Collier JH. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. NATURE NANOTECHNOLOGY 2021; 16:1-14. [PMID: 32807876 DOI: 10.1038/s41565-020-0739-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 06/23/2020] [Indexed: 05/18/2023]
Abstract
Despite the overwhelming success of vaccines in preventing infectious diseases, there remain numerous globally devastating diseases without fully protective vaccines, particularly human immunodeficiency virus (HIV), malaria and tuberculosis. Nanotechnology approaches are being developed both to design new vaccines against these diseases as well as to facilitate their global implementation. The reasons why a given pathogen may present difficulties for vaccine design are unique and tied to the co-evolutionary history of the pathogen and humans, but there are common challenges that nanotechnology is beginning to help address. In each case, a successful vaccine will need to raise immune responses that differ from the immune responses raised by normal infection. Nanomaterials, with their defined compositions, commonly modular construction, and length scales allowing the engagement of key immune pathways, collectively facilitate the iterative design process necessary to identify such protective immune responses and achieve them reliably. Nanomaterials also provide strategies for engineering the trafficking and delivery of vaccine components to key immune cells and lymphoid tissues, and they can be highly multivalent, improving their engagement with the immune system. This Review will discuss these aspects along with recent nanomaterial advances towards vaccines against infectious disease, with a particular emphasis on HIV/AIDS, malaria and tuberculosis.
Collapse
Affiliation(s)
- Chelsea N Fries
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Jui-Lin Chen
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Sallie R Permar
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Genevieve G Fouda
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
- Department of Pediatrics, Duke University Medical Center, Durham, NC, USA.
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
A dual-adjuvanting strategy for peptide-based subunit vaccines against group A Streptococcus: Lipidation and polyelectrolyte complexes. Bioorg Med Chem 2020; 28:115823. [DOI: 10.1016/j.bmc.2020.115823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
|
14
|
Li Y, Lock LL, Mills J, Ou BS, Morrow M, Stern D, Wang H, Anderson CF, Xu X, Ghose S, Li ZJ, Cui H. Selective Capture and Recovery of Monoclonal Antibodies by Self-Assembling Supramolecular Polymers of High Affinity for Protein Binding. NANO LETTERS 2020; 20:6957-6965. [PMID: 32852220 DOI: 10.1021/acs.nanolett.0c01297] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The separation and purification of therapeutic proteins from their biological resources pose a great limitation for industrial manufacturing of biologics in an efficient and cost-effective manner. We report here a supramolecular polymeric system that can undergo multiple reversible processes for efficient capture, precipitation, and recovery of monoclonal antibodies (mAbs). These supramolecular polymers, namely immunofibers (IFs), are formed by coassembly of a mAb-binding peptide amphiphile with a rationally designed filler molecule of varying stoichiometric ratios. Under the optimized conditions, IFs can specifically capture mAbs with a precipitation yield greater than 99%, leading to an overall mAb recovery yield of 94%. We also demonstrated the feasibility of capturing and recovering two mAbs from clarified cell culture harvest. These results showcase the promising potential of peptide-based supramolecular polymers as reversible affinity precipitants for mAb purification.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Jason Mills
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Ben S Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Marina Morrow
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Han Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, Massachusetts 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
15
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
16
|
Tsoras AN, Champion JA. Protein and Peptide Biomaterials for Engineered Subunit Vaccines and Immunotherapeutic Applications. Annu Rev Chem Biomol Eng 2020; 10:337-359. [PMID: 31173518 DOI: 10.1146/annurev-chembioeng-060718-030347] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although vaccines have been the primary defense against widespread infectious disease for decades, there is a critical need for improvement to combat complex and variable diseases. More control and specificity over the immune response can be achieved by using only subunit components in vaccines. However, these often lack sufficient immunogenicity to fully protect, and conjugation or carrier materials are required. A variety of protein and peptide biomaterials have improved effectiveness and delivery of subunit vaccines for infectious, cancer, and autoimmune diseases. They are biodegradable and have control over both material structure and immune function. Many of these materials are built from naturally occurring self-assembling proteins, which have been engineered for incorporation of vaccine components. In contrast, others are de novo designs of structures with immune function. In this review, protein biomaterial design, engineering, and immune functionality as vaccines or immunotherapies are discussed.
Collapse
Affiliation(s)
- Alexandra N Tsoras
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| | - Julie A Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-2000, USA;
| |
Collapse
|
17
|
Skwarczynski M, Zhao G, Boer JC, Ozberk V, Azuar A, Cruz JG, Giddam AK, Khalil ZG, Pandey M, Shibu MA, Hussein WM, Nevagi RJ, Batzloff MR, Wells JW, Capon RJ, Plebanski M, Good MF, Toth I. Poly(amino acids) as a potent self-adjuvanting delivery system for peptide-based nanovaccines. SCIENCE ADVANCES 2020; 6:eaax2285. [PMID: 32064333 PMCID: PMC6989150 DOI: 10.1126/sciadv.aax2285] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 11/21/2019] [Indexed: 05/05/2023]
Abstract
To be optimally effective, peptide-based vaccines need to be administered with adjuvants. Many currently available adjuvants are toxic, not biodegradable; they invariably invoke adverse reactions, including allergic responses and excessive inflammation. A nontoxic, biodegradable, biocompatible, self-adjuvanting vaccine delivery system is urgently needed. Herein, we report a potent vaccine delivery system fulfilling the above requirements. A peptide antigen was coupled with poly-hydrophobic amino acid sequences serving as self-adjuvanting moieties using solid-phase synthesis, to produce fully defined single molecular entities. Under aqueous conditions, these molecules self-assembled into distinct nanoparticles and chain-like aggregates. Following subcutaneous immunization in mice, these particles successfully induced opsonic epitope-specific antibodies without the need of external adjuvant. Mice immunized with entities bearing 15 leucine residues were able to clear bacterial load from target organs without triggering the release of soluble inflammatory mediators. Thus, we have developed a well-defined and effective self-adjuvanting delivery system for peptide antigens.
Collapse
Affiliation(s)
- Mariusz Skwarczynski
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Guangzu Zhao
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Jennifer C. Boer
- School of Health and Biomedical Sciences, RMIT University, Victoria 3083, Australia
| | - Victoria Ozberk
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Armira Azuar
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Jazmina Gonzalez Cruz
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | | | - Zeinab G. Khalil
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Manisha Pandey
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Mohini A. Shibu
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Waleed M. Hussein
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Reshma J. Nevagi
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
| | - Michael R. Batzloff
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - James W. Wells
- The University of Queensland, Diamantina Institute, Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Robert J. Capon
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Victoria 3083, Australia
| | - Michael F. Good
- Griffith University, Institute for Glycomics, Gold Coast, QLD 4222, Australia
| | - Istvan Toth
- The University of Queensland, School of Chemistry & Molecular Biosciences, Lucia, QLD 4072, Australia
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD 4072, Australia
- The University of Queensland, School of Pharmacy, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
18
|
Chakroun RW, Wang F, Lin R, Wang Y, Su H, Pompa D, Cui H. Fine-Tuning the Linear Release Rate of Paclitaxel-Bearing Supramolecular Filament Hydrogels through Molecular Engineering. ACS NANO 2019; 13:7780-7790. [PMID: 31117370 DOI: 10.1021/acsnano.9b01689] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One key design feature in the development of any local drug delivery system is the controlled release of therapeutic agents over a certain period of time. In this context, we report the characteristic feature of a supramolecular filament hydrogel system that enables a linear and sustainable drug release over the period of several months. Through covalent linkage with a short peptide sequence, we are able to convert an anticancer drug, paclitaxel (PTX), to a class of prodrug hydrogelators with varying critical gelation concentrations. These self-assembling PTX prodrugs associate into filamentous nanostructures in aqueous conditions and consequently percolate into a supramolecular filament network in the presence of appropriate counterions. The intriguing linear drug release profile is rooted in the supramolecular nature of the self-assembling filaments which maintain a constant monomer concentration at the gelation conditions. We found that molecular engineering of the prodrug design, such as varying the number of oppositely charged amino acids or through the incorporation of hydrophobic segments, allows for the fine-tuning of the PTX linear release rate. In cell studies, these PTX prodrugs can exert effective cytotoxicity against glioblastoma cell lines and also primary brain cancer cells derived from patients and show enhanced tumor penetration in a cancer spheroid model. We believe this drug-bearing hydrogel platform offers an exciting opportunity for the local treatment of human diseases.
Collapse
Affiliation(s)
- Rami W Chakroun
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Yin Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Hao Su
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
| | - Danielle Pompa
- Department of Biomedical Engineering , University of Utah , 201 Presidents Circle , Salt Lake City , Utah 84112 , United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBiotechnology , The Johns Hopkins University , 3400 North Charles Street , Baltimore , Maryland 21218 , United States
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center , Johns Hopkins University School of Medicine , Baltimore , Maryland 21205 , United States
- Center for Nanomedicine, The Wilmer Eye Institute , Johns Hopkins University School of Medicine , 400 North Broadway , Baltimore , Maryland 21231 , United States
| |
Collapse
|
19
|
Azuar A, Jin W, Mukaida S, Hussein WM, Toth I, Skwarczynski M. Recent Advances in the Development of Peptide Vaccines and Their Delivery Systems Against Group A Streptococcus. Vaccines (Basel) 2019; 7:E58. [PMID: 31266253 PMCID: PMC6789462 DOI: 10.3390/vaccines7030058] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023] Open
Abstract
Group A Streptococcus (GAS) infection can cause a variety of diseases in humans, ranging from common sore throats and skin infections, to more invasive diseases and life-threatening post-infectious diseases, such as rheumatic fever and rheumatic heart disease. Although research has been ongoing since 1923, vaccines against GAS are still not available to the public. Traditional approaches taken to develop vaccines for GAS failed due to poor efficacy and safety. Fortunately, headway has been made and modern subunit vaccines that administer minimal bacterial components provide an opportunity to finally overcome previous hurdles in GAS vaccine development. This review details the major antigens and strategies used for GAS vaccine development. The combination of antigen selection, peptide epitope modification and delivery systems have resulted in the discovery of promising peptide vaccines against GAS; these are currently in preclinical and clinical studies.
Collapse
Affiliation(s)
- Armira Azuar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Wanli Jin
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Saori Mukaida
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan, Cairo 11795, Egypt
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, Woolloongabba, The University of Queensland, QLD 4072, Australia
- Institute of Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
20
|
Smith JD, Cardwell LN, Porciani D, Nguyen JA, Zhang R, Gallazzi F, Tata RR, Burke DH, Daniels MA, Ulery BD. Aptamer-displaying peptide amphiphile micelles as a cell-targeted delivery vehicle of peptide cargoes. Phys Biol 2018; 15:065006. [PMID: 30124431 DOI: 10.1088/1478-3975/aadb68] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Peptide amphiphile micelles (PAMs) are attractive vehicles for the delivery of a variety of therapeutic and prophylactic peptides. However, a key limitation of PAMs is their lack of preferential targeting ability. In this paper, we describe our design of a PAM system that incorporates a DNA oligonucleotide amphiphile (antitail amphiphile-AA) to form A/PAMs. A cell-targeting DNA aptamer with a 3' extension sequence (tail) complementary to the AA is annealed to the surface to form aptamer-displaying PAMs (Aptamer~A/PAMs). Aptamer~A/PAMs are small, anionic, stable nanoparticles capable of delivering a large mass percentage peptide amphiphile (PA) compared to targeting DNA components. Aptamer~A/PAMs are stable for over 4 h in the presence of biological fluids. Additionally, the aptamer retains its cell-targeting properties when annealed to the A/PAM, thus leading to enhanced delivery to a specifically-targeted B-cell leukemia cell line. This exciting modular technology can be readily used with a library of different targeting aptamers and PAs, capable of improving the bioavailability and potency of the peptide cargo.
Collapse
Affiliation(s)
- Josiah D Smith
- Department of Biomedical, Biological and Chemical Engineering, University of Missouri, Columbia, MO, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhang R, Kramer JS, Smith JD, Allen BN, Leeper CN, Li X, Morton LD, Gallazzi F, Ulery BD. Vaccine Adjuvant Incorporation Strategy Dictates Peptide Amphiphile Micelle Immunostimulatory Capacity. AAPS JOURNAL 2018; 20:73. [DOI: 10.1208/s12248-018-0233-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
22
|
Zhang R, Smith JD, Allen BN, Kramer JS, Schauflinger M, Ulery BD. Peptide Amphiphile Micelle Vaccine Size and Charge Influence the Host Antibody Response. ACS Biomater Sci Eng 2018; 4:2463-2472. [PMID: 33435110 DOI: 10.1021/acsbiomaterials.8b00511] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vaccines are one of the best health care advances ever developed, having led to the eradication of smallpox and near eradication of polio and diphtheria. While tremendously successful, traditional vaccines (i.e., whole-killed or live-attenuated) have been associated with some undesirable side effects, including everything from mild injection site inflammation to the autoimmune disease Guillain-Barré syndrome. This has led recent research to focus on developing subunit vaccines (i.e., protein, peptide, or DNA vaccines) since they are inherently safer because they deliver only the bioactive components necessary (i.e., antigens) to produce a protective immune response against the pathogen of interest. However, a major challenge in developing subunit vaccines is overcoming numerous biological barriers to effectively deliver the antigen to the secondary lymphoid organs where adaptive immune responses are orchestrated. Peptide amphiphile micelles are a class of biomaterials that have been shown to possess potent self-adjuvanting vaccine properties, but their optimization capacity and underlying immunostimulatory mechanism are not well understood. The present work investigated the influence of micelle size and charge on the materials' bioactivity, including lymph node accumulation, cell uptake ability, and immunogenicity. The results generated provide considerable insight into how micelles exert their biological effects, yielding a micellar toolbox that can be exploited to either enhance or diminish host immune responses. This exciting development makes peptide amphiphile micelles an attractive candidate for both immune activation and suppression applications.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Josiah D Smith
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Brittany N Allen
- Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Jake S Kramer
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Martin Schauflinger
- Electron Microscopy Core Facilities, University of Missouri, Columbia, Missouri 65211, United States
| | - Bret D Ulery
- Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States.,Department of Bioengineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
23
|
Zhang R, Morton LD, Smith JD, Gallazzi F, White TA, Ulery BD. Instructive Design of Triblock Peptide Amphiphiles for Structurally Complex Micelle Fabrication. ACS Biomater Sci Eng 2018; 4:2330-2339. [DOI: 10.1021/acsbiomaterials.8b00300] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Li Y, Lock LL, Wang Y, Ou SH, Stern D, Schön A, Freire E, Xu X, Ghose S, Li ZJ, Cui H. Bioinspired supramolecular engineering of self-assembling immunofibers for high affinity binding of immunoglobulin G. Biomaterials 2018; 178:448-457. [PMID: 29706234 DOI: 10.1016/j.biomaterials.2018.04.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 01/14/2023]
Abstract
Many one-dimensional (1D) nanostructures are constructed by self-assembly of peptides or peptide conjugates containing a short β-sheet sequence as the core building motif essential for the intermolecular hydrogen bonding that promotes directional, anisotropic growth of the resultant assemblies. While this molecular engineering strategy has led to the successful production of a plethora of bioactive filamentous β-sheet assemblies for interfacing with biomolecules and cells, concerns associated with effective presentation of α-helical epitopes and their function preservation have yet to be resolved. In this context, we report on the direct conjugation of the protein A mimicking peptide Z33, a motif containing two α-helices, to linear hydrocarbons to create self-assembling immuno-amphiphiles (IAs). Our results suggest that the resulting amphiphilic peptides can, despite lacking the essential β-sheet segment, effectively associate under physiological conditions into supramolecular immunofibers (IFs) while preserving their native α-helical conformation. Isothermal titration calorimetry (ITC) measurements confirmed that these self-assembling immunofibers can bind to the human immunoglobulin G class 1 (IgG1) with high specificity at pH 7.4, but with significantly weakened binding at pH 2.8. We further demonstrated the accessibility of Z33 ligand in the immunofibers using transmission electron microscopy (TEM) and confocal imaging. We believe these results shed important light into the supramolecular engineering of α-helical peptides into filamentous assemblies that may possess an important potential for antibody isolation.
Collapse
Affiliation(s)
- Yi Li
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Lye Lin Lock
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Yuzhu Wang
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Shih-Hao Ou
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - David Stern
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Arne Schön
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Ernesto Freire
- Department of Biology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States.
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb, Devens, MA 01434, United States
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, United States; Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| |
Collapse
|
25
|
Hainline KM, Fries CN, Collier JH. Progress Toward the Clinical Translation of Bioinspired Peptide and Protein Assemblies. Adv Healthc Mater 2018; 7:1700930. [PMID: 29115746 PMCID: PMC5858183 DOI: 10.1002/adhm.201700930] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/11/2017] [Indexed: 12/16/2022]
Abstract
Supramolecular materials composed of proteins and peptides have been receiving considerable attention toward a range of diseases and conditions from vaccines to drug delivery. Owing to the relative newness of this class of materials, the bulk of work to date has been preclinical. However, examples of approved treatments particularly in vaccines, dentistry, and hemostasis demonstrate the translational potential of supramolecular polypeptides. Critical milestones in the clinical development of this class of materials and currently approved supramolecular polypeptide therapies are described in this study. Additional examples of not-yet-approved materials that are steadily advancing toward clinical use are also featured. Spherical assemblies such as virus-like particles, designed protein nanoparticles, and spherical peptide amphiphiles are highlighted, followed by fiber-forming systems such as fibrillizing peptides, fiber-forming peptide-amphiphiles, and filamentous bacteriophages.
Collapse
Affiliation(s)
- Kelly M. Hainline
- Biomedical Engineering DepartmentDuke University101 Science Drive, Campus Box 90281DurhamNC27705USA
| | - Chelsea N. Fries
- Biomedical Engineering DepartmentDuke University101 Science Drive, Campus Box 90281DurhamNC27705USA
| | - Joel H. Collier
- Biomedical Engineering DepartmentDuke University101 Science Drive, Campus Box 90281DurhamNC27705USA
| |
Collapse
|
26
|
Abstract
Peptide subunit vaccines enable the specific activation of an immune response without the shortcomings of killed or attenuated pathogens. However, peptide subunit vaccines tend to be less immunogenic than those based on whole organisms. To improve peptide immunogenicity, biomaterials-based platforms have been developed. One such platform, the peptide amphiphile micelle platform, has displayed a unique ability to dramatically improve observed immune responses. Here we describe the design, synthesis, characterization, and application of peptide amphiphile micelles to elicit a robust immune response.
Collapse
Affiliation(s)
- John C Barrett
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Zhang R, Leeper CN, Wang X, White TA, Ulery BD. Immunomodulatory vasoactive intestinal peptide amphiphile micelles. Biomater Sci 2018; 6:1717-1722. [DOI: 10.1039/c8bm00466h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two different vasoactive intestinal peptide (VIP) amphiphiles have been formulated which readily form micelles of varying shapes. Interestingly, VIP micelle structure has been found to directly correlate to anti-inflammatory behavior providing evidence that these biomaterials can serve as a promising new therapeutic modality.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
| | | | - Xiaofei Wang
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
| | - Tommi A. White
- Department of Biochemistry
- University of Missouri
- Columbia
- USA
| | - Bret D. Ulery
- Department of Chemical Engineering
- University of Missouri
- Columbia
- USA
- Department of Bioengineering
| |
Collapse
|
28
|
Poon C, Sarkar M, Chung EJ. Synthesis of Monocyte-targeting Peptide Amphiphile Micelles for Imaging of Atherosclerosis. J Vis Exp 2017. [PMID: 29286384 DOI: 10.3791/56625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerosis is a major contributor to cardiovascular disease, the leading cause of death worldwide, which claims 17.3 million lives annually. Atherosclerosis is also the leading cause of sudden death and myocardial infarction, instigated by unstable plaques that rupture and occlude the blood vessel without warning. Current imaging modalities cannot differentiate between stable and unstable plaques that rupture. Peptide amphiphiles micelles (PAMs) can overcome this drawback as they can be modified with a variety of targeting moieties that bind specifically to diseased tissue. Monocytes have been shown to be early markers of atherosclerosis, while large accumulation of monocytes is associated with plaques prone to rupture. Hence, nanoparticles that can target monocytes can be used to discriminate different stages of atherosclerosis. To that end, here, we describe a protocol for the preparation of monocyte-targeting PAMs (monocyte chemoattractant protein-1 (MCP-1) PAMs). MCP-1 PAMs are self-assembled through synthesis under mild conditions to form nanoparticles of 15 nm in diameter with near neutral surface charge. In vitro, PAMs were found to be biocompatible and had a high binding affinity for monocytes. The methods described herein show promise for a wide range of applications in atherosclerosis as well as other inflammatory diseases.
Collapse
Affiliation(s)
- Christopher Poon
- Department of Biomedical Engineering, University of Southern California
| | - Manjima Sarkar
- Department of Biomedical Engineering, University of Southern California
| | - Eun Ji Chung
- Department of Biomedical Engineering, University of Southern California;
| |
Collapse
|
29
|
Wu Y, Norberg PK, Reap EA, Congdon KL, Fries CN, Kelly SH, Sampson JH, Conticello VP, Collier JH. A Supramolecular Vaccine Platform Based on α-Helical Peptide Nanofibers. ACS Biomater Sci Eng 2017; 3:3128-3132. [PMID: 30740520 DOI: 10.1021/acsbiomaterials.7b00561] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A supramolecular peptide vaccine system was designed in which epitope-bearing peptides self-assemble into elongated nanofibers composed almost entirely of alpha-helical structure. The nanofibers were readily internalized by antigen presenting cells and produced robust antibody, CD4+ T-cell, and CD8+ T-cell responses without supplemental adjuvants in mice. Epitopes studied included a cancer B-cell epitope from the epidermal growth factor receptor class III variant (EGFRvIII), the universal CD4+ T-cell epitope PADRE, and the model CD8+ T-cell epitope SIINFEKL, each of which could be incorporated into supramolecular multi-epitope nanofibers in a modular fashion.
Collapse
Affiliation(s)
- Yaoying Wu
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, United States
| | - Pamela K Norberg
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Elizabeth A Reap
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kendra L Congdon
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Chelsea N Fries
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, United States
| | - Sean H Kelly
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, United States
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Vincent P Conticello
- Department of Chemistry, Emory University, Atlanta, Georgia, 30322, United States
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, 27708, United States
| |
Collapse
|
30
|
Su H, Wang Y, Anderson CF, Koo JM, Wang H, Cui H. Recent progress in exploiting small molecule peptides as supramolecular hydrogelators. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1998-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
31
|
Sinthuvanich C, Nagy-Smith KJ, Walsh STR, Schneider JP. Triggered Formation of Anionic Hydrogels from Self-Assembling Acidic Peptide Amphiphiles. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01056] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chomdao Sinthuvanich
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Katelyn J. Nagy-Smith
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Scott T. R. Walsh
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Joel P. Schneider
- Chemical Biology Laboratory,
National Cancer Institute, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
32
|
Kelly SH, Shores LS, Votaw NL, Collier JH. Biomaterial strategies for generating therapeutic immune responses. Adv Drug Deliv Rev 2017; 114:3-18. [PMID: 28455189 PMCID: PMC5606982 DOI: 10.1016/j.addr.2017.04.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 01/04/2023]
Abstract
Biomaterials employed to raise therapeutic immune responses have become a complex and active field. Historically, vaccines have been developed primarily to fight infectious diseases, but recent years have seen the development of immunologically active biomaterials towards an expanding list of non-infectious diseases and conditions including inflammation, autoimmunity, wounds, cancer, and others. This review structures its discussion of these approaches around a progression from single-target strategies to those that engage increasingly complex and multifactorial immune responses. First, the targeting of specific individual cytokines is discussed, both in terms of delivering the cytokines or blocking agents, and in terms of active immunotherapies that raise neutralizing immune responses against such single cytokine targets. Next, non-biological complex drugs such as randomized polyamino acid copolymers are discussed in terms of their ability to raise multiple different therapeutic immune responses, particularly in the context of autoimmunity. Last, biologically derived matrices and materials are discussed in terms of their ability to raise complex immune responses in the context of tissue repair. Collectively, these examples reflect the tremendous diversity of existing approaches and the breadth of opportunities that remain for generating therapeutic immune responses using biomaterials.
Collapse
Affiliation(s)
- Sean H Kelly
- Duke University, Department of Biomedical Engineering, United States
| | - Lucas S Shores
- Duke University, Department of Biomedical Engineering, United States
| | - Nicole L Votaw
- Duke University, Department of Biomedical Engineering, United States
| | - Joel H Collier
- Duke University, Department of Biomedical Engineering, United States.
| |
Collapse
|
33
|
Keselowsky BG, Collier JH. Editorial: Special Issue on Biomaterials for Immunoengineering. ACS Biomater Sci Eng 2017; 3:106-107. [PMID: 33450789 DOI: 10.1021/acsbiomaterials.7b00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|