1
|
Laha S, Dhar D, Adak M, Bandopadhyay A, Das S, Chatterjee J, Chakraborty S. Electric field-mediated adhesive dynamics of cells inside bio-functionalised microchannels offers important cues for active control of cell-substrate adhesion. SOFT MATTER 2024; 20:2610-2623. [PMID: 38426537 DOI: 10.1039/d4sm00083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Adhesive dynamics of cells plays a critical role in determining different biophysical processes orchestrating health and disease in living systems. While the rolling of cells on functionalised substrates having similarity with biophysical pathways appears to be extensively discussed in the literature, the effect of an external stimulus in the form of an electric field on the same remains underemphasized. Here, we bring out the interplay of fluid shear and electric field on the rolling dynamics of adhesive cells in biofunctionalised micro-confinements. Our experimental results portray that an electric field, even restricted to low strengths within the physiologically relevant regimes, can significantly influence the cell adhesion dynamics. We quantify the electric field-mediated adhesive dynamics of the cells in terms of two key parameters, namely, the voltage-altered rolling velocity and the frequency of adhesion. The effect of the directionality of the electric field with respect to the flow direction is also analysed by studying cellular migration with electrical effects acting both along and against the flow. Our experiment, on one hand, demonstrates the importance of collagen functionalisation in the adhesive dynamics of cells through micro channels, while on the other hand, it reveals how the presence of an axial electric field can lead to significant alteration in the kinetic rate of bond breakage, thereby modifying the degree of cell-substrate adhesion and quantifying in terms of the adhesion frequency of the cells. Proceeding further forward, we offer a simple theoretical explanation towards deriving the kinetics of cellular bonding in the presence of an electric field, which corroborates favourably with our experimental outcome. These findings are likely to offer fundamental insights into the possibilities of local control of cellular adhesion via electric field mediated interactions, bearing critical implications in a wide variety of medical conditions ranging from wound healing to cancer metastasis.
Collapse
Affiliation(s)
- Sampad Laha
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
| | - Dhruba Dhar
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Mainak Adak
- National Institute of Technology, Tiruchirappalli, India
| | - Aditya Bandopadhyay
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
| | - Soumen Das
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Jyotirmoy Chatterjee
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Suman Chakraborty
- Department of Mechanical Engineering, Indian Institute of Technology, Kharagpur, India.
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
2
|
Hijazi KM, Dixon SJ, Armstrong JE, Rizkalla AS. Titanium Alloy Implants with Lattice Structures for Mandibular Reconstruction. MATERIALS (BASEL, SWITZERLAND) 2023; 17:140. [PMID: 38203994 PMCID: PMC10779528 DOI: 10.3390/ma17010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/30/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
In recent years, the field of mandibular reconstruction has made great strides in terms of hardware innovations and their clinical applications. There has been considerable interest in using computer-aided design, finite element modelling, and additive manufacturing techniques to build patient-specific surgical implants. Moreover, lattice implants can mimic mandibular bone's mechanical and structural properties. This article reviews current approaches for mandibular reconstruction, their applications, and their drawbacks. Then, we discuss the potential of mandibular devices with lattice structures, their development and applications, and the challenges for their use in clinical settings.
Collapse
Affiliation(s)
- Khaled M. Hijazi
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
| | - S. Jeffrey Dixon
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Jerrold E. Armstrong
- Division of Oral and Maxillofacial Surgery, Department of Otolaryngology Head and Neck Surgery, Henry Ford Hospital, Detroit, MI 48202, USA
| | - Amin S. Rizkalla
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 3K7, Canada
- Bone and Joint Institute, The University of Western Ontario, London, ON N6G 2V4, Canada
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Chemical and Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, ON N6A 5B9, Canada
| |
Collapse
|
3
|
Villapún VM, Man K, Carter L, Penchev P, Dimov S, Cox S. Laser texturing of additively manufactured implants: A tool to programme biological response. BIOMATERIALS ADVANCES 2023; 153:213574. [PMID: 37542913 DOI: 10.1016/j.bioadv.2023.213574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
The advent of additive manufacturing (AM) is rapidly shaping healthcare technologies pushing forward personalisation and enhanced implant functionalisation to improve clinical outcomes. AM techniques such as powder bed fusion (PBF) have been adopted despite the need to modify the as-built surface post manufacture. Medical device manufacturers have focused their efforts on refining various physical and chemical surface finishing approaches, however there is little consensus and some methods risk geometry alteration or contamination. This has led to a growing interest in laser texturing technologies to engineer the device surface. Herein, several bioinspired micro and nano textures were applied to laser PBF Ti-6Al-V4 substrates to alter physicochemical properties and in-turn we sought to understand what influences these alterations had on a human osteosarcoma cell line (MG63). Significant variations in roughness and time dependent contact angles were revealed between different patterns provide a tool to elicit desired biological responses. All surface treatments effectively enhanced early cell behaviour and in particular coverage was increased for the micro-textures. Influence of the patterns on cell differentiation was less consistent with alkaline phosphatase content increased only for the channel, grid and dual textures. While long term (21 days) mineralisation was found to be significantly enhanced in grids, dual, triangles and shark skin textures. Further regression analysis of all physicochemical and biological variables indicated that several properties should be used to strongly correlate cell behaviour, resulting in 82 % of the 21 day mineralisation dataset explained through a combination of roughness kurtosis and glycerol contact angle. Overall, this manuscript demonstrates the ability of laser texturing to offer tailored cell-surface interactions, which can be tuned to offer a tool to drive functional customisation of anatomically customised medical devices.
Collapse
Affiliation(s)
- Victor M Villapún
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| | - Kenny Man
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center, Utrecht GA 3508, the Netherlands
| | - Luke Carter
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Pavel Penchev
- Department of Mechanical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Stefan Dimov
- Department of Mechanical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom
| | - Sophie Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, United Kingdom.
| |
Collapse
|
4
|
Wan T, Wang YL, Zhang FS, Zhang XM, Zhang YC, Jiang HR, Zhang M, Zhang PX. The Porous Structure of Peripheral Nerve Guidance Conduits: Features, Fabrication, and Implications for Peripheral Nerve Regeneration. Int J Mol Sci 2023; 24:14132. [PMID: 37762437 PMCID: PMC10531895 DOI: 10.3390/ijms241814132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Porous structure is an important three-dimensional morphological feature of the peripheral nerve guidance conduit (NGC), which permits the infiltration of cells, nutrients, and molecular signals and the discharge of metabolic waste. Porous structures with precisely customized pore sizes, porosities, and connectivities are being used to construct fully permeable, semi-permeable, and asymmetric peripheral NGCs for the replacement of traditional nerve autografts in the treatment of long-segment peripheral nerve injury. In this review, the features of porous structures and the classification of NGCs based on these characteristics are discussed. Common methods for constructing 3D porous NGCs in current research are described, as well as the pore characteristics and the parameters used to tune the pores. The effects of the porous structure on the physical properties of NGCs, including biodegradation, mechanical performance, and permeability, were analyzed. Pore structure affects the biological behavior of Schwann cells, macrophages, fibroblasts, and vascular endothelial cells during peripheral nerve regeneration. The construction of ideal porous structures is a significant advancement in the regeneration of peripheral nerve tissue engineering materials. The purpose of this review is to generalize, summarize, and analyze methods for the preparation of porous NGCs and their biological functions in promoting peripheral nerve regeneration to guide the development of medical nerve repair materials.
Collapse
Affiliation(s)
- Teng Wan
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Lin Wang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Feng-Shi Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Xiao-Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Yi-Chong Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Hao-Ran Jiang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Meng Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| | - Pei-Xun Zhang
- Department of OrthopedSics and Trauma, Peking University People’s Hospital, Beijing 100044, China; (T.W.)
- Key Laboratory of Trauma and Neural Regeneration, Peking University, Beijing 100044, China
- National Centre for Trauma Medicine, Beijing 100044, China
| |
Collapse
|
5
|
Ødegaard KS, Westhrin M, Afif AB, Ma Q, Mela P, Standal T, Elverum CW, Torgersen J. The effects of surface treatments on electron beam melted Ti-6Al-4V disks on osteogenesis of human mesenchymal stromal cells. BIOMATERIALS ADVANCES 2023; 147:213327. [PMID: 36841111 DOI: 10.1016/j.bioadv.2023.213327] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Additive manufactured (AM) Titanium-6Aluminum-4Vanadium (Ti64) scaffolds display unique mechanical and biological properties for implant devices. The elastic modulus can be tailored by adjusting the porosity, further facilitating bone ingrowth. Although Ti64 implants are biocompatible, the effects of AM surfaces without porous structures, and how the topography and surface chemistry of the respective surfaces affect the osteogenesis of bone marrow-derived mesenchymal stromal cells (BMSCs) has not yet been revealed. In this paper, we cultured BMSCs on solid electron beam melted Ti64 disks subjected to three surface treatments: chemical etching (HF), atomic-layer deposition of TiO2 (TiO2), and polished (POL), or left untreated (AB). The biocompatibility and osteogenic properties of these surfaces were investigated, and the results were compared to cells cultured in regular tissue-culture polystyrene culturing wells (TCPS). The surfaces were hydrophobic, except for the polished surface which was hydrophilic. All surface treatments are biocompatible and allow for osteogenic differentiation, as revealed by viability assays and gene expression analysis. Scanning electron microscopy shows that cells adhere differently depending on the surface properties, with more filopodia on the rougher surfaces, AB and TiO2 disks, and more lamellipodia on the smoother surfaces, HF and POL disks. All groups stimulated with beta glycerophosphate, ascorbic acid, and dexamethasone, have elevated expression of genes related to matrix formation, where the cells cultured on the disks treated with TiO2, HF and POL have the overall highest expression. The AB group appears to be less favorable in regards to matrix formation. Considering the matrix mineralization, the rougher surfaces, AB and TiO2, are able to induce matrix mineralization, with an elevated gene expression of vitamin D receptors and calcium deposition of unstimulated cells. Finally, imaging at day 21 revealed an even amount of cells and matrix, covering most of the partially melted particles. Our results suggests that surface topography is more important to osteogenesis than the wettability of the surface. Overall, the present study contributes to the understanding of using surface modifications to AM Ti64 implant materials and reveals how they affect bone growth.
Collapse
Affiliation(s)
- Kristin S Ødegaard
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Marita Westhrin
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Abdulla Bin Afif
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Qianli Ma
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute for Biomedical Engineering, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching bei München, Germany
| | - Therese Standal
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christer W Elverum
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Torgersen
- Chair of Materials Science, Department of Materials Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstrasse 15, 85748 Garching bei München, Germany.
| |
Collapse
|
6
|
Alipour S, Nour S, Attari SM, Mohajeri M, Kianersi S, Taromian F, Khalkhali M, Aninwene GE, Tayebi L. A review on in vitro/ in vivo response of additively manufactured Ti-6Al-4V alloy. J Mater Chem B 2022; 10:9479-9534. [PMID: 36305245 DOI: 10.1039/d2tb01616h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Bone replacement using porous and solid metallic implants, such as Ti-alloy implants, is regarded as one of the most practical therapeutic approaches in biomedical engineering. The bone is a complex tissue with various mechanical properties based on the site of action. Patient-specific Ti-6Al-4V constructs may address the key needs in bone treatment for having customized implants that mimic the complex structure of the natural tissue and diminish the risk of implant failure. This review focuses on the most promising methods of fabricating such patient-specific Ti-6Al-4V implants using additive manufacturing (AM) with a specific emphasis on the popular subcategory, which is powder bed fusion (PBF). Characteristics of the ideal implant to promote optimized tissue-implant interactions, as well as physical, mechanical/chemical treatments and modifications will be discussed. Accordingly, such investigations will be classified into 3B-based approaches (Biofunctionality, Bioactivity, and Biostability), which mainly govern native body response and ultimately the success in implantation.
Collapse
Affiliation(s)
- Saeid Alipour
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | - Shirin Nour
- Tissue Engineering Group, Department of Biomedical Engineering, University of Melbourne, VIC 3010, Australia.,Polymer Science Group, Department of Chemical Engineering, University of Melbourne, VIC 3010, Australia
| | - Seyyed Morteza Attari
- Department of Material Science and Engineering, University of Connecticut, Storrs, Connecticut, USA
| | - Mohammad Mohajeri
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, TX, USA
| | - Sogol Kianersi
- CÚRAM, SFI Centre for Research in Medical Devices, Biomedical Sciences, University of Galway, Galway, Ireland
| | - Farzaneh Taromian
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mohammadparsa Khalkhali
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - George E Aninwene
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, California, USA.,Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, California, USA.,California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, California, USA
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, Wisconsin, USA.
| |
Collapse
|
7
|
Villapun Puzas VM, Carter LN, Schröder C, Colavita PE, Hoey DA, Webber MA, Addison O, Shepherd DET, Attallah MM, Grover LM, Cox SC. Surface Free Energy Dominates the Biological Interactions of Postprocessed Additively Manufactured Ti-6Al-4V. ACS Biomater Sci Eng 2022; 8:4311-4326. [PMID: 36127820 PMCID: PMC9554875 DOI: 10.1021/acsbiomaterials.2c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Additive manufacturing (AM) has emerged as a disruptive
technique
within healthcare because of its ability to provide personalized devices;
however, printed metal parts still present surface and microstructural
defects, which may compromise mechanical and biological interactions.
This has made physical and/or chemical postprocessing techniques essential
for metal AM devices, although limited fundamental knowledge is available
on how alterations in physicochemical properties influence AM biological
outcomes. For this purpose, herein, powder bed fusion Ti-6Al-4V samples
were postprocessed with three industrially relevant techniques: polishing,
passivation, and vibratory finishing. These surfaces were thoroughly
characterized in terms of roughness, chemistry, wettability, surface
free energy, and surface ζ-potential. A significant increase
in Staphylococcus epidermidis colonization
was observed on both polished and passivated samples, which was linked
to high surface free energy donor γ– values
in the acid–base, γAB component. Early osteoblast
attachment and proliferation (24 h) were not influenced by these properties,
although increased mineralization was observed for both these samples.
In contrast, osteoblast differentiation on stainless steel was driven
by a combination of roughness and chemistry. Collectively, this study
highlights that surface free energy is a key driver between AM surfaces
and cell interactions. In particular, while low acid–base components
resulted in a desired reduction in S. epidermidis colonization, this was followed by reduced mineralization. Thus,
while surface free energy can be used as a guide to AM device development,
optimization of bacterial and mammalian cell interactions should be
attained through a combination of different postprocessing techniques.
Collapse
Affiliation(s)
| | - Luke N Carter
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Christian Schröder
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN4, Ireland
| | - Paula E Colavita
- School of Chemistry, CRANN and AMBER Research Centres, Trinity College Dublin, College Green, Dublin 2 D02 PN4, Ireland
| | - David A Hoey
- Trinity Biomedical Sciences Institute, Trinity College, Trinity Centre for Biomedical Engineering, Dublin D02 R590, Ireland.,Department of Mechanical Manufacturing and Biomedical Engineering, School of Engineering, Trinity College, Dublin D02 DK07, Ireland
| | - Mark A Webber
- Quadram Institute Bioscience, Norwich Research Park, Colney NR4 7UQ, U.K.,Norwich Medical School, University of East Anglia, Norwich Research Park, Colney NR4 7TJ, U.K
| | - Owen Addison
- Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 9RT, U.K
| | | | - Moataz M Attallah
- School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Liam M Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Sophie C Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
8
|
Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility. Adv Healthc Mater 2022; 11:e2102087. [PMID: 35137550 PMCID: PMC9081257 DOI: 10.1002/adhm.202102087] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/17/2021] [Indexed: 12/14/2022]
Abstract
Porosity is an important material feature commonly employed in implants and tissue scaffolds. The presence of material voids permits the infiltration of cells, mechanical compliance, and outward diffusion of pharmaceutical agents. Various studies have confirmed that porosity indeed promotes favorable tissue responses, including minimal fibrous encapsulation during the foreign body reaction (FBR). However, increased biofilm formation and calcification is also described to arise due to biomaterial porosity. Additionally, the relevance of host responses like the FBR, infection, calcification, and thrombosis are dependent on tissue location and specific tissue microenvironment. In this review, the features of porous materials and the implications of porosity in the context of medical devices is discussed. Common methods to create porous materials are also discussed, as well as the parameters that are used to tune pore features. Responses toward porous biomaterials are also reviewed, including the various stages of the FBR, hemocompatibility, biofilm formation, and calcification. Finally, these host responses are considered in tissue specific locations including the subcutis, bone, cardiovascular system, brain, eye, and female reproductive tract. The effects of porosity across the various tissues of the body is highlighted and the need to consider the tissue context when engineering biomaterials is emphasized.
Collapse
Affiliation(s)
- Jamie L Hernandez
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| | - Kim A Woodrow
- Department of Bioengineering, University of Washington, 3720 15th Ave NE, Seattle, WA, 98195, USA
| |
Collapse
|
9
|
Ghio E, Cerri E. Additive Manufacturing of AlSi10Mg and Ti6Al4V Lightweight Alloys via Laser Powder Bed Fusion: A Review of Heat Treatments Effects. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2047. [PMID: 35329496 PMCID: PMC8953129 DOI: 10.3390/ma15062047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/29/2022]
Abstract
Laser powder bed fusion (L-PBF) is an additive manufacturing technology that is gaining increasing interest in aerospace, automotive and biomedical applications due to the possibility of processing lightweight alloys such as AlSi10Mg and Ti6Al4V. Both these alloys have microstructures and mechanical properties that are strictly related to the type of heat treatment applied after the L-PBF process. The present review aimed to summarize the state of the art in terms of the microstructural morphology and consequent mechanical performance of these materials after different heat treatments. While optimization of the post-process heat treatment is key to obtaining excellent mechanical properties, the first requirement is to manufacture high quality and fully dense samples. Therefore, effects induced by the L-PBF process parameters and build platform temperatures were also summarized. In addition, effects induced by stress relief, annealing, solution, artificial and direct aging, hot isostatic pressing, and mixed heat treatments were reviewed for AlSi10Mg and Ti6AlV samples, highlighting variations in microstructure and corrosion resistance and consequent fracture mechanisms.
Collapse
Affiliation(s)
- Emanuele Ghio
- Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy;
| | | |
Collapse
|
10
|
Xiang S, Yuan Y, Zhang C, Chen J. Effects of Process Parameters on the Corrosion Resistance and Biocompatibility of Ti6Al4V Parts Fabricated by Selective Laser Melting. ACS OMEGA 2022; 7:5954-5961. [PMID: 35224356 PMCID: PMC8867574 DOI: 10.1021/acsomega.1c06246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 05/17/2023]
Abstract
Excellent biocompatibility and corrosion resistance of implants are essential for Ti6Al4V parts fabricated by selective laser melting (SLM) for biomedical applications. To achieve better corrosion resistance and biocompatibility of Ti6Al4V parts, the effects of SLM processing parameters on the corrosion resistance and the biocompatibility of Ti6Al4V parts are investigated by changing the scanning speeds and laser powers. The detailed influence mechanism of processing parameters on the properties of Ti6Al4V parts is studied from two aspects, including microstructure and defects. It is found that the corrosion resistance and biocompatibility of Ti6Al4V parts can be adjusted by changing the scanning speed and the laser power due to the constituent phase and the number and size of defect holes of Ti6Al4V parts. Compared with the laser power, the scanning speed has a stronger influence on the performance of the part, which can be used as "coarse tuning" based on the performance requirements. At the scanning speed of 1100 mm/s and the laser power of 280 W, Ti6Al4V parts with better corrosion resistance can be obtained. Ti6Al4V parts with better biocompatibility are fabricated at the scanning speed of 1200 mm/s and the laser power of 200 W.
Collapse
Affiliation(s)
- Shibo Xiang
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Yanping Yuan
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Chengyu Zhang
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| | - Jimin Chen
- Institute
of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
- Key
Laboratory of Trans-Scale Laser Manufacturing Technology, Beijing University of Technology, Ministry of Education, Beijing 100124, China
- Beijing
Engineering Research Center of 3D Printing for Digital Medical Health, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
11
|
Tilton M, Lewis GS, Hast MW, Fox E, Manogharan G. Additively manufactured patient-specific prosthesis for tumor reconstruction: Design, process, and properties. PLoS One 2021; 16:e0253786. [PMID: 34260623 PMCID: PMC8279401 DOI: 10.1371/journal.pone.0253786] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/12/2021] [Indexed: 01/20/2023] Open
Abstract
Design and processing capabilities of additive manufacturing (AM) to fabricate complex geometries continues to drive the adoption of AM for biomedical applications. In this study, a validated design methodology is presented to evaluate AM as an effective fabrication technique for reconstruction of large bone defects after tumor resection in pediatric oncology patients. Implanting off-the-shelf components in pediatric patients is especially challenging because most standard components are sized and shaped for more common adult cases. While currently reported efforts on AM implants are focused on maxillofacial, hip and knee reconstructions, there have been no reported studies on reconstruction of proximal humerus tumors. A case study of a 9-year-old diagnosed with proximal humerus osteosarcoma was used to develop a patient-specific AM prosthesis for the humerus following tumor resection. Commonly used body-centered cubic (BCC) structures were incorporated at the surgical neck and distal interface in order to increase the effective surface area, promote osseointegration, and reduce the implant weight. A patient-specific prosthesis was fabricated using electron beam melting method from biocompatible Ti-6Al-4V. Both computational and biomechanical tests were performed on the prosthesis to evaluate its biomechanical behavior under varying loading conditions. Morphological analysis of the construct using micro-computed tomography was used to compare the as-designed and as-built prosthesis. It was found that the patient-specific prosthesis could withstand physiologically-relevant loading conditions with minimal permanent deformation (82 μm after 105 cycles) at the medial aspect of the porous surgical neck. These outcomes support potential translation of the patient-specific AM prostheses to reconstruct large bone defects following tumor resection.
Collapse
Affiliation(s)
- Maryam Tilton
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gregory S. Lewis
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Michael W. Hast
- Biedermann Lab for Orthopaedic Research, Department of Orthopaedic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edward Fox
- Department of Orthopaedics and Rehabilitation, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Guha Manogharan
- Department of Mechanical Engineering, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
12
|
Abstract
Implant-associated infections (IAIs) are among the most intractable and costly complications in implant surgery. They can lead to surgery failure, a high economic burden, and a decrease in patient quality of life. This manuscript is devoted to introducing current antimicrobial strategies for additively manufactured (AM) titanium (Ti) implants and fostering a better understanding in order to pave the way for potential modern high-throughput technologies. Most bactericidal strategies rely on implant structure design and surface modification. By means of rational structural design, the performance of AM Ti implants can be improved by maintaining a favorable balance between the mechanical, osteogenic, and antibacterial properties. This subject becomes even more important when working with complex geometries; therefore, it is necessary to select appropriate surface modification techniques, including both topological and chemical modification. Antibacterial active metal and antibiotic coatings are among the most commonly used chemical modifications in AM Ti implants. These surface modifications can successfully inhibit bacterial adhesion and biofilm formation, and bacterial apoptosis, leading to improved antibacterial properties. As a result of certain issues such as drug resistance and cytotoxicity, the development of novel and alternative antimicrobial strategies is urgently required. In this regard, the present review paper provides insights into the enhancement of bactericidal properties in AM Ti implants.
Collapse
|
13
|
Biofilm viability checker: An open-source tool for automated biofilm viability analysis from confocal microscopy images. NPJ Biofilms Microbiomes 2021; 7:44. [PMID: 33990612 PMCID: PMC8121819 DOI: 10.1038/s41522-021-00214-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Quantifying biofilm formation on surfaces is challenging because traditional microbiological methods, such as total colony-forming units (CFUs), often rely on manual counting. These are laborious, resource intensive techniques, more susceptible to human error. Confocal laser scanning microscopy (CLSM) is a high-resolution technique that allows 3D visualisation of biofilm architecture. In combination with a live/dead stain, it can be used to quantify biofilm viability on both transparent and opaque surfaces. However, there is little consensus on the appropriate methodology to apply in confocal micrograph processing. In this study, we report the development of an image analysis approach to repeatably quantify biofilm viability and surface coverage. We also demonstrate its use for a range of bacterial species and translational applications. This protocol has been created with ease of use and accessibility in mind, to enable researchers who do not specialise in computational techniques to be confident in applying these methods to analyse biofilm micrographs. Furthermore, the simplicity of the method enables the user to adapt it for their bespoke needs. Validation experiments demonstrate the automated analysis is robust and accurate across a range of bacterial species and an improvement on traditional microbiological analysis. Furthermore, application to translational case studies show the automated method is a reliable measurement of biomass and cell viability. This approach will ensure image analysis is an accessible option for those in the microbiology and biomaterials field, improve current detection approaches and ultimately support the development of novel strategies for preventing biofilm formation by ensuring comparability across studies.
Collapse
|
14
|
Ginestra P, Ferraro RM, Zohar-Hauber K, Abeni A, Giliani S, Ceretti E. Selective Laser Melting and Electron Beam Melting of Ti6Al4V for Orthopedic Applications: A Comparative Study on the Applied Building Direction. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5584. [PMID: 33297551 PMCID: PMC7729448 DOI: 10.3390/ma13235584] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022]
Abstract
The 3D printing process offers several advantages to the medical industry by producing complex and bespoke devices that accurately reproduce customized patient geometries. Despite the recent developments that strongly enhanced the dominance of additive manufacturing (AM) techniques over conventional methods, processes need to be continually optimized and controlled to obtain implants that can fulfill all the requirements of the surgical procedure and the anatomical district of interest. The best outcomes of an implant derive from optimal compromise and balance between a good interaction with the surrounding tissue through cell attachment and reduced inflammatory response mainly caused by a weak interface with the native tissue or bacteria colonization of the implant surface. For these reasons, the chemical, morphological, and mechanical properties of a device need to be designed in order to assure the best performances considering the in vivo environment components. In particular, complex 3D geometries can be produced with high dimensional accuracy but inadequate surface properties due to the layer manufacturing process that always entails the use of post-processing techniques to improve the surface quality, increasing the lead times of the whole process despite the reduction of the supply chain. The goal of this work was to provide a comparison between Ti6Al4V samples fabricated by selective laser melting (SLM) and electron beam melting (EBM) with different building directions in relation to the building plate. The results highlighted the influence of the process technique on osteoblast attachment and mineralization compared with the building orientation that showed a limited effect in promoting a proper osseointegration over a long-term period.
Collapse
Affiliation(s)
- Paola Ginestra
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (A.A.); (E.C.)
| | - Rosalba Monica Ferraro
- Institute of Molecular Medicine “Angelo Nocivelli”, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (R.M.F.); (S.G.)
| | - Keren Zohar-Hauber
- Metallurgical and Powders Technologies Lab, Institute of Metals, Technion City, Haifa 320003, Israel;
| | - Andrea Abeni
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (A.A.); (E.C.)
| | - Silvia Giliani
- Institute of Molecular Medicine “Angelo Nocivelli”, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (R.M.F.); (S.G.)
| | - Elisabetta Ceretti
- Department of Mechanical and Industrial Engineering, University of Brescia, via Branze 38, 25123 Brescia, Italy; (A.A.); (E.C.)
| |
Collapse
|
15
|
Cooke ME, Ramirez-GarciaLuna JL, Rangel-Berridi K, Park H, Nazhat SN, Weber MH, Henderson JE, Rosenzweig DH. 3D Printed Polyurethane Scaffolds for the Repair of Bone Defects. Front Bioeng Biotechnol 2020; 8:557215. [PMID: 33195122 PMCID: PMC7644785 DOI: 10.3389/fbioe.2020.557215] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023] Open
Abstract
Critical-size bone defects are those that will not heal without intervention and can arise secondary to trauma, infection, and surgical resection of tumors. Treatment options are currently limited to filling the defect with autologous bone, of which there is not always an abundant supply, or ceramic pastes that only allow for limited osteo-inductive and -conductive capacity. In this study we investigate the repair of bone defects using a 3D printed LayFomm scaffold. LayFomm is a polymer blend of polyvinyl alcohol (PVA) and polyurethane (PU). It can be printed using the most common method of 3D printing, fused deposition modeling, before being washed in water-based solutions to remove the PVA. This leaves a more compliant, micro-porous PU elastomer. In vitro analysis of dental pulp stem cells seeded onto macro-porous scaffolds showed their ability to adhere, proliferate and form mineralized matrix on the scaffold in the presence of osteogenic media. Subcutaneous implantation of LayFomm in a rat model showed the formation of a vascularized fibrous capsule, but without a chronic inflammatory response. Implantation into a mandibular defect showed significantly increased mineralized tissue production when compared to a currently approved bone putty. While their mechanical properties are insufficient for use in load-bearing defects, these findings are promising for the use of polyurethane scaffolds in craniofacial bone regeneration.
Collapse
Affiliation(s)
- Megan E. Cooke
- Biofabrication Laboratory, Research Institute of McGill University Health Centres, McGill University, Montreal, QC, Canada
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Jose L. Ramirez-GarciaLuna
- Department of Surgery, McGill University, Montreal, QC, Canada
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute McGill University Health Centres, McGill University, Montreal, QC, Canada
| | - Karla Rangel-Berridi
- Department of Surgery, McGill University, Montreal, QC, Canada
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute McGill University Health Centres, McGill University, Montreal, QC, Canada
| | - Hyeree Park
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, QC, Canada
| | - Michael H. Weber
- Biofabrication Laboratory, Research Institute of McGill University Health Centres, McGill University, Montreal, QC, Canada
- Department of Surgery, McGill University, Montreal, QC, Canada
| | - Janet E. Henderson
- Department of Surgery, McGill University, Montreal, QC, Canada
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute McGill University Health Centres, McGill University, Montreal, QC, Canada
| | - Derek H. Rosenzweig
- Biofabrication Laboratory, Research Institute of McGill University Health Centres, McGill University, Montreal, QC, Canada
- Bone Engineering Labs, Injury, Repair & Recovery Program, Research Institute McGill University Health Centres, McGill University, Montreal, QC, Canada
| |
Collapse
|
16
|
Jamshidi P, Aristizabal M, Kong W, Villapun V, Cox SC, Grover LM, Attallah MM. Selective Laser Melting of Ti-6Al-4V: The Impact of Post-processing on the Tensile, Fatigue and Biological Properties for Medical Implant Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2813. [PMID: 32580477 PMCID: PMC7345457 DOI: 10.3390/ma13122813] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/10/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
One of the main challenges in additive manufacturing (AM) of medical implants for the treatment of bone tissue defects is to optimise the mechanical and biological performance. The use of post-processing can be a necessity to improve the physical properties of customised AM processed implants. In this study, Ti-6Al-4V coupons were manufactured using selective laser melting (SLM) in two build orientations (vertical and horizontal) and subsequently post-processed using combinations of hot isostatic pressing (HIP), sandblasting (SB), polishing (PL) and chemical etching (CE). The effect of the different post-manufacturing strategies on the tensile and fatigue performance of the SLMed parts was investigated and rationalised by observing the surface topography. Vertically built samples showed higher yield strength (YS) and ultimate tensile strength (UTS) than the horizontal samples, increasing from 760.9 ± 22.3 MPa and 961.3 ± 50.2 MPa in the horizontal condition to 820.09 ± 16.5 MPa and 1006.7 ± 6.3 MPa in the vertical condition, respectively. After the HIP treatment, the ductility was substantially improved in both orientations; by 2.1 and 2.9 folds in the vertical and horizontal orientations, respectively. The vertically built samples demonstrated a superior ductility of 22% following HIP and polishing. Furthermore, chemical etching was found to be the most effective surface post-processing treatment to improve the fatigue performance after HIP, achieving the highest run-out strength of 450 MPa. Most importantly, chemical etching after HIP enhanced the cellular affinity of the surface, in addition to its good fatigue performance, making it a promising post-processing approach for bone implants where tissue integration is needed.
Collapse
Affiliation(s)
- Parastoo Jamshidi
- School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT, UK; (P.J.); (W.K.)
| | - Miren Aristizabal
- Ceit, Manuel Lardizabal 15, 20018 Donostia/San Sebastián, Spain;
- Tecnun School of Engineering, Universidad de Navarra, Manuel Lardizabal 13, 20018 Donostia/San Sebastián, Spain
| | - Weihuan Kong
- School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT, UK; (P.J.); (W.K.)
| | - Victor Villapun
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK; (V.V.); (S.C.C.); (L.M.G.)
| | - Sophie C. Cox
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK; (V.V.); (S.C.C.); (L.M.G.)
| | - Liam M. Grover
- School of Chemical Engineering, University of Birmingham, Edgbaston B15 2TT, UK; (V.V.); (S.C.C.); (L.M.G.)
| | - Moataz M. Attallah
- School of Materials and Metallurgy, University of Birmingham, Edgbaston B15 2TT, UK; (P.J.); (W.K.)
| |
Collapse
|
17
|
Post Processing of 3D Printed Metal Scaffolds: a Preliminary Study of Antimicrobial Efficiency. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.promfg.2020.04.126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Majumdar T, Bazin T, Massahud Carvalho Ribeiro E, Frith JE, Birbilis N. Understanding the effects of PBF process parameter interplay on Ti-6Al-4V surface properties. PLoS One 2019; 14:e0221198. [PMID: 31465449 PMCID: PMC6715245 DOI: 10.1371/journal.pone.0221198] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 08/02/2019] [Indexed: 11/19/2022] Open
Abstract
Ti-6Al-4V is commonly used in orthopaedic implants, and fabrication techniques such as Powder Bed Fusion (PBF) are becoming increasingly popular for the net-shape production of such implants, as PBF allows for complex customisation and minimal material wastage. Present research into PBF fabricated Ti-6Al-4V focuses on new design strategies (e.g. designing pores, struts or lattices) or mechanical property optimisation through process parameter control-however, it is pertinent to examine the effects of altering PBF process parameters on properties relating to bioactivity. Herein, changes in Ti-6Al-4V microstructure, mechanical properties and surface characteristics were examined as a result of varying PBF process parameters, with a view to understanding how to tune Ti-6Al-4V bio-activity during the fabrication stage itself. The interplay between various PBF laser scan speeds and laser powers influenced Ti-6Al-4V hardness, porosity, roughness and corrosion resistance, in a manner not clearly described by the commonly used volumetric energy density (VED) design variable. Key findings indicate that the relationships between PBF process parameters and ultimate Ti-6Al-4V properties are not straightforward as expected, and that wide ranges of porosity (0.03 ± 0.01% to 32.59 ± 2.72%) and corrosion resistance can be achieved through relatively minor changes in process parameters used-indicating volumetric energy density is a poor predictor of PBF Ti-6Al-4V properties. While variations in electrochemical behaviour with respect to the process parameters used in the PBF fabrication of Ti-6Al-4V have previously been reported, this study presents data regarding important surface characteristics over a large process window, reflecting the full capabilities of current PBF machinery.
Collapse
Affiliation(s)
- Trina Majumdar
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Monash Institute of Medical Engineering (MIME), Monash University, Clayton, Victoria, Australia
| | - Tiphaine Bazin
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Ecole Nationale Supérieure de Chimie de Rennes, Rennes, France
| | - Emily Massahud Carvalho Ribeiro
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Brazil
| | - Jessica Ellen Frith
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Monash Institute of Medical Engineering (MIME), Monash University, Clayton, Victoria, Australia
| | - Nick Birbilis
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Monash Institute of Medical Engineering (MIME), Monash University, Clayton, Victoria, Australia
| |
Collapse
|
19
|
Weißmann V, Drescher P, Seitz H, Hansmann H, Bader R, Seyfarth A, Klinder A, Jonitz-Heincke A. Effects of Build Orientation on Surface Morphology and Bone Cell Activity of Additively Manufactured Ti6Al4V Specimens. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E915. [PMID: 29844256 PMCID: PMC6024895 DOI: 10.3390/ma11060915] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 12/30/2022]
Abstract
Additive manufacturing of lightweight or functional structures by selective laser beam (SLM) or electron beam melting (EBM) is widespread, especially in the field of medical applications. SLM and EBM processes were applied to prepare Ti6Al4V test specimens with different surface orientations (0°, 45° and 90°). Roughness measurements of the surfaces were conducted and cell behavior on these surfaces was analyzed. Hence, human osteoblasts were seeded on test specimens to determine cell viability (metabolic activity, live-dead staining) and gene expression of collagen type 1 (Col1A1), matrix metalloprotease (MMP) 1 and its natural inhibitor, TIMP1, after 3 and 7 days. The surface orientation of specimens during the manufacturing process significantly influenced the roughness. Surface roughness showed significant impact on cellular viability, whereas differences between the time points day 3 and 7 were not found. Collagen type 1 mRNA synthesis rates in human osteoblasts were enhanced with increasing roughness. Both manufacturing techniques further influenced the induction of bone formation process in the cell culture. Moreover, the relationship between osteoblastic collagen type 1 mRNA synthesis rates and specimen orientation during the building process could be characterized by functional formulas. These findings are useful in the designing of biomedical applications and medical devices.
Collapse
Affiliation(s)
- Volker Weißmann
- Faculty of Engineering, University of Applied Science, Technology, Business and Design, Philipp-Müller-Str. 14, 23966 Wismar, Germany.
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Philipp Drescher
- Fluid Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany.
| | - Hermann Seitz
- Fluid Technology and Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, 18059 Rostock, Germany.
| | - Harald Hansmann
- Institute for Polymer Technologies e.V., Alter Holzhafen 19, 23966 Wismar, Germany.
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Anika Seyfarth
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Annett Klinder
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| | - Anika Jonitz-Heincke
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopedics, Rostock University Medical Centre, Doberaner Strasse 142, Rostock 18057, Germany.
| |
Collapse
|
20
|
Matouskova L, Ackermann M, Horakova J, Capek L, Henys P, Safka J. How does the surface treatment change the cytocompatibility of implants made by selective laser melting? Expert Rev Med Devices 2018; 15:313-321. [PMID: 29561177 DOI: 10.1080/17434440.2018.1456335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The study investigates the potential for producing medical components via Selective Laser Melting technology (SLM). The material tested consisted of the biocompatible titanium alloy Ti6Al4V. The research involved the testing of laboratory specimens produced using SLM technology both in vitro and for surface roughness. The aim of the research was to clarify whether SLM technology affects the cytocompatibility of implants and, thus, whether SLM implants provide suitable candidates for medical use following zero or minimum post-fabrication treatment. Areas covered: The specimens were tested with an osteoblast cell line and, subsequently, two post-treatment processes were compared: non-treated (as-fabricated) and glass-blasted. Interactions with MG-63 cells were evaluated by means of metabolic MTT assay and microscope techniques (scanning electron microscopy, fluorescence microscopy). Surface roughness was observed on both the non-treated and glass-blasted SLM specimens. Expert Commentary: The research concluded that the glass-blasting of SLM Ti6Al4V significantly reduces surface roughness. The arithmetic mean roughness Ra was calculated at 3.4 µm for the glass-blasted and 13.3 µm for the non-treated surfaces. However, the results of in vitro testing revealed that the non-treated surface was better suited to cell growth.
Collapse
Affiliation(s)
- Lucie Matouskova
- a Department of Technologies and Structures , Technical University of Liberec , Liberec , Czech Republic
| | - Michal Ackermann
- b The Institute for Nanomaterials, Advanced Technology and Innovation , Technical University of Liberec , Liberec , Czech Republic
| | - Jana Horakova
- c Department of Nonwovens and Nanofibrous Materials , Technical University of Liberec , Liberec , Czech Republic
| | - Lukas Capek
- a Department of Technologies and Structures , Technical University of Liberec , Liberec , Czech Republic
| | - Petr Henys
- a Department of Technologies and Structures , Technical University of Liberec , Liberec , Czech Republic
| | - Jiri Safka
- b The Institute for Nanomaterials, Advanced Technology and Innovation , Technical University of Liberec , Liberec , Czech Republic
| |
Collapse
|
21
|
Jewkes R, Burton HE, Espino DM. Towards Additive Manufacture of Functional, Spline-Based Morphometric Models of Healthy and Diseased Coronary Arteries: In Vitro Proof-of-Concept Using a Porcine Template. J Funct Biomater 2018; 9:E15. [PMID: 29393899 PMCID: PMC5872101 DOI: 10.3390/jfb9010015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
The aim of this study is to assess the additive manufacture of morphometric models of healthy and diseased coronary arteries. Using a dissected porcine coronary artery, a model was developed with the use of computer aided engineering, with splines used to design arteries in health and disease. The model was altered to demonstrate four cases of stenosis displaying varying severity, based on published morphometric data available. Both an Objet Eden 250 printer and a Solidscape 3Z Pro printer were used in this analysis. A wax printed model was set into a flexible thermoplastic and was valuable for experimental testing with helical flow patterns observed in healthy models, dominating the distal LAD (left anterior descending) and left circumflex arteries. Recirculation zones were detected in all models, but were visibly larger in the stenosed cases. Resin models provide useful analytical tools for understanding the spatial relationships of blood vessels, and could be applied to preoperative planning techniques, but were not suitable for physical testing. In conclusion, it is feasible to develop blood vessel models enabling experimental work; further, through additive manufacture of bio-compatible materials, there is the possibility of manufacturing customized replacement arteries.
Collapse
Affiliation(s)
- Rachel Jewkes
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
| | - Hanna E Burton
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
| | - Daniel M Espino
- Department of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|