1
|
Li Y, Lee Y, Fujikawa S, Shen J, Sasaki S, Matsuzaki M, Matsui N, Hosomi T, Yanagida T, Shiomi J. Ultra-Slippery Hydrophilic Surfaces by Hybrid Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63039-63048. [PMID: 39482946 DOI: 10.1021/acsami.4c15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Slippery solid surfaces with low droplet contact angle hysteresis (CAH) are crucial for applications in thermal management, energy harvesting, and environmental remediation. Traditionally, reducing CAH has been achieved by enhancing surface homogeneity. This work challenges this conventional approach by developing slippery yet hydrophilic surfaces through hybrid monolayers composed of hydrophilic polyethylene glycol (PEG)-silane and hydrophobic alkyl-silane molecules. These hybrid surfaces exhibited exceptionally low CAH (<2°), outperforming well-established homogeneous slippery surfaces. Molecular structural analyses suggested that the remarkable slipperiness is due to a unique spatially staggered molecular configuration, where longer PEG chains shield shorter alkyl chains, thus creating additional free volume while ensuring surface coverage. This was supported by the observation of decreased CAH with increasing temperature, highlighting the role of grafted chain mobility in enhancing slipperiness by self-smoothing and fluid-like behaviors. Furthermore, condensation experiments demonstrated the exceptional performance of the hydrophilic slippery surfaces in dew harvesting due to superior condensation nucleation, droplet coalescence, and self-sweeping efficiency. These findings offer a novel paradigm for designing advanced slippery surfaces and provide valuable insights into the molecular mechanisms governing dynamic wetting.
Collapse
Affiliation(s)
- Yuanzhe Li
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yaerim Lee
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shota Fujikawa
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Jiaxing Shen
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Shota Sasaki
- Nippon Paint Surf Chemicals Co., Ltd., Tokyo 140-8675, Japan
| | | | - Norizumi Matsui
- Nippon Paint Surf Chemicals Co., Ltd., Tokyo 140-8675, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Junichiro Shiomi
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
2
|
Huang TE, Lu Y, Wei Z, Li D, Li QY, Wang Z, Takahashi K, Orejon D, Zhang P. Ultrahigh Subcooling Dropwise Condensation Heat Transfer on Slippery Liquid-like Monolayer Grafted Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53285-53298. [PMID: 39295174 DOI: 10.1021/acsami.4c12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Rapid and continuous droplet shedding is crucial for many applications, including thermal management, water harvesting, and microfluidics, among others. Superhydrophobic surfaces, though effective, suffer from droplet pinning at high subcooling temperature (Tsub). Conversely, slippery liquid-like surfaces covalently bonded with flexible hydrophobic molecules show high stability and low droplet adhesion attributed to their dense and ultrasmooth water repellent polymer chains, enhancing dropwise condensation and rapid shedding. In this work, linear poly(dimethylsiloxane) chains of various viscosities are covalently bonded onto silicon substrates to form thin and smooth monolayer coated surfaces. The formation of the monolayer is characterized by cryogenic transmission electron microscopy. On these surfaces a very low contact angle hysteresis is reported within wide surface temperature ranges as well as continuous dropwise condensation at ultrahigh Tsub of 60 K. In particular, one of the highest condensation heat fluxes of 1392.60 kW·m-2 and a heat transfer coefficient of 23.21 kW·m-2·K-1 at ultrahigh Tsub of 60 K is reported. The experimental heat transfer performance is further compared to the theoretical heat transfer via the individual droplets with the droplet distribution elucidated via both macroscopic observations as well as environmental scanning electron microscopy. Finally, only a mild decrease in the heat transfer coefficient of 20.3% after 100 h of condensation test at Tsub of 60 K is reported. Slippery liquid-like surfaces promote droplet shedding and sustain dropwise condensation at high Tsub without flooding empowered by the lower frictional forces, addressing challenges in heat transfer performance and durability.
Collapse
Affiliation(s)
- Ting-En Huang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Yisheng Lu
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Zhaozhuo Wei
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| | - Dawei Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Qin-Yi Li
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Zhenying Wang
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Koji Takahashi
- Department of Aeronautics and Astronautics, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Daniel Orejon
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD Scotland, United Kingdom
| | - Peng Zhang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Wang G, Ma F, Zhu L, Zhu P, Tang L, Hu H, Liu L, Li S, Zeng Z, Wang L, Xue Q. Bioinspired Slippery Surfaces for Liquid Manipulation from Tiny Droplet to Bulk Fluid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311489. [PMID: 38696759 DOI: 10.1002/adma.202311489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/04/2024] [Indexed: 05/04/2024]
Abstract
Slippery surfaces, which originate in nature with special wettability, have attracted considerable attention in both fundamental research and practical applications in a variety of fields due to their unique characteristics of superlow liquid friction and adhesion. Although research on bioinspired slippery surfaces is still in its infancy, it is a rapidly growing and enormously promising field. Herein, a systematic review of recent progress in bioinspired slippery surfaces, beginning with a brief introduction of several typical creatures with slippery property in nature, is presented. Subsequently,this review gives a detailed discussion on the basic concepts of the wetting, friction, and drag from micro- and macro-aspects and focuses on the underlying slippery mechanism. Next, the state-of-the-art developments in three categories of slippery surfaces of air-trapped, liquid-infused, and liquid-like slippery surfaces, including materials, design principles, and preparation methods, are summarized and the emerging applications are highlighted. Finally, the current challenges and future prospects of various slippery surfaces are addressed.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Fuliang Ma
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lijing Zhu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Ping Zhu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Lei Tang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Hongyi Hu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Luqi Liu
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Shuangyang Li
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Zhixiang Zeng
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Liping Wang
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Qunji Xue
- Key Laboratory of Advanced Marine Materials, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
4
|
Cheng X, Zhao R, Wang S, Meng J. Liquid-Like Surfaces with Enhanced De-Wettability and Durability: From Structural Designs to Potential Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407315. [PMID: 39058238 DOI: 10.1002/adma.202407315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Indexed: 07/28/2024]
Abstract
Liquid-like surfaces (LLSs) with dynamic repellency toward various pollutants (e.g., bacteria, oil, and ice), have shown enormous potential in the fields of biology, environment, and energy. However, most of the reported LLSs cannot meet the demands for practical applications, particularly in terms of de-wettability and durability. To solve these problems, considerable progress has been made in enhancing the de-wettability and durability of LLSs in complex environments. Therefore, this review mainly focuses on the recent progress in LLSs, encompassing designed structures and repellent capabilities, as well as their diverse applications, offering greater insights for the targeted design of desired LLSs. First, a detailed overview of the development of LLSs from the perspective of their molecular structural evolution is provided. Then highlight recent approaches for enhancing the dynamic de-wettability and durability of LLSs by optimizing their structural designs, including linear, looped, crosslinked, and hybrid structures. Later, the diverse applications and unique advantages of recently developed LLSs, including repellency (e.g., liquid anti-adhesion/transportation/condensation, anti-icing/scaling/waxing, and biofouling repellency) are summarized. Finally, Perspectives on potential innovative advancements and the promotion of technology selection to advance this exciting field are offered.
Collapse
Affiliation(s)
- Xiaopeng Cheng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
| | - Ran Zhao
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jingxin Meng
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province, 256606, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Chen TL, Huang CY, Lai YS, Chen YC, Yang YJ, Wang WL, Hsueh HY. Fabrication of Stable Liquid-like Wetting Buckled Surfaces as Bioinspired Antibiofouling Coatings by Using Silicon-Containing Block Copolymers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37212-37225. [PMID: 38965654 PMCID: PMC11261564 DOI: 10.1021/acsami.4c06172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Inspired by animals with a slippery epidermis, durable slippery antibiofouling coatings with liquid-like wetting buckled surfaces are successfully constructed in this study by combining dynamic-interfacial-release-induced buckling with self-assembled silicon-containing diblock copolymer (diBCP). The core diBCP material is polystyrene-block-poly(dimethylsiloxane) (PS-b-PDMS). Because silicon-containing polymers with intrinsic characters of low surface energy, they easily flow over and cover a surface after it has undergone controlled thermal treatment, generating a slippery wetting layer on which can eliminate polar interactions with biomolecules. Additionally, microbuckled patterns result in curved surfaces, which offer fewer points at which organisms can attach to the surface. Different from traditional slippery liquid-infused porous surfaces, the proposed liquid-like PDMS wetting layer, chemically bonded with PS, is stable and slippery but does not flow away. PS-b-PDMS diBCPs with various PDMS volume fractions are studied to compare the influence of PDMS segment length on antibiofouling performance. The surface characteristics of the diBCPs─ease of processing, transparency, and antibiofouling, anti-icing, and self-cleaning abilities─are examined under various conditions. Being able to fabricate ecofriendly silicon-based lubricant layers without needing to use fluorinated compounds and costly material precursors is an advantage in industrial practice.
Collapse
Affiliation(s)
- Ting-Lun Chen
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Ching-Yu Huang
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Shan Lai
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Chen Chen
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| | - Yi-Ju Yang
- Department
of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan 974301, Republic of China
| | - Wei-Lung Wang
- Department
of Biology, National Changhua University
of Education, Changhua, Taiwan 50007, Republic of China
| | - Han-Yu Hsueh
- Department
of Materials Science and Engineering, National
Chung Hsing University, Taichung, Taiwan 40227, Republic of China
- Innovation
and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, Taiwan 40227, Republic of China
| |
Collapse
|
6
|
Eder T, Mautner A, Xu Y, Reithofer MR, Bismarck A, Chin JM. Transparent PDMS Surfaces with Covalently Attached Lubricants for Enhanced Anti-adhesion Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10942-10952. [PMID: 38350021 PMCID: PMC10910447 DOI: 10.1021/acsami.3c17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/15/2024]
Abstract
Liquid-like surfaces featuring slippery, omniphobic, covalently attached liquids (SOCALs) reduce unwanted adhesion by providing a molecularly smooth and slippery surface arising from the high mobility of the liquid chains. Such SOCALs are commonly prepared on hard substrates, such as glass, wafers, or metal oxides, despite the importance of nonpolar elastomeric substrates, such as polydimethylsiloxane (PDMS) in anti-fouling or nonstick applications. Compared to polar elastomers, hydrophobic PDMS elastomer activation and covalent functionalization are significantly more challenging, as PDMS tends to display fast hydrophobic recovery upon activation as well as superficial cracking. Through the extraction of excess PDMS oligomers and fine-tuning of plasma activation parameters, homogeneously functionalized PDMS with fluorinated polysiloxane brushes could be obtained while at the same time reducing crack formation. Polymer brush mobility was increased through the addition of a smaller molecular silane linker to exhibit enhanced dewetting properties and reduced substrate swelling compared to functionalizations featuring hydrocarbon functionalities. Linear polymer brushes were verified by thermogravimetric analysis. The optical properties of PDMS remained unaffected by the activation in high-frequency plasma but were impacted by low-frequency plasma. Drastic decreases in solid adhesion of not just complex contaminants but even ice could be shown in horizontal push tests, demonstrating the potential of SOCAL-functionalized PDMS surfaces for improved nonstick applications.
Collapse
Affiliation(s)
- Tanja Eder
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
| | - Andreas Mautner
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln, Donau, Austria
| | - Yufeng Xu
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Michael R. Reithofer
- Institute
of Inorganic Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Alexander Bismarck
- Institute
of Materials Chemistry and Research, University
of Vienna, Währinger
Straße 42, 1090 Vienna, Austria
- Department
of Chemical Engineering, Imperial College
London, South Kensington
Campus, London SW7 2AZ, U.K.
| | - Jia Min Chin
- Department
of Functional Materials and Catalysis, University
of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
7
|
Shen J, Ou J, Lei S, Hu Y, Wang F, Fang X, Li C, Li W, Amirfazli A. Innovative Solid Slippery Coating: Uniting Mechanical Durability, Optical Transparency, Anti-Icing, and Anti-Graffiti Traits. Polymers (Basel) 2023; 15:3983. [PMID: 37836031 PMCID: PMC10574912 DOI: 10.3390/polym15193983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Slippery coatings, such as the slippery liquid-infused porous surface (SLIPS), have gained significant attention for their potential applications in anti-icing and anti-fouling. However, they lack durability when subjected to mechanical impact. In this study, we have developed a robust slippery coating by blending polyurethane acrylate (PUA) with methyltriethoxysilane (MTES) and perfluoropolyether (PFPE) in the solvent of butyl acetate. The resulting mixture is homogeneous and allows for uniform coating on various substrates using a drop coating process followed by drying at 160 °C for 3 h. The cured coating exhibits excellent water repellency (contact angle of ~108° and sliding angle of ~8°), high transparency (average visible transmittance of ~90%), exceptional adherence to the substrate (5B rating according to ASTMD 3359), and remarkable hardness (4H on the pencil hardness scale). Moreover, the coating is quite flexible and can be folded without affecting its wettability. The robustness of the coating is evident in its ability to maintain a sliding angle below 25° even when subjected to abrasion, water jetting, high temperature, and UV irradiation. Due to its excellent nonwetting properties, the coating can be employed in anti-icing, anti-graffiti, and anti-sticking applications. It effectively reduces ice adhesion on aluminum substrates from approximately 217 kPa to 12 kPa. Even after 20 cycles of icing and de-icing, there is only a slight increase in ice adhesion, stabilizing at 40 kPa. The coating can resist graffiti for up to 400 cycles of writing with an oily marker pen and erasing with a tissue. Additionally, the coating allows for easy removal of 3M tape thereon without leaving any residue.
Collapse
Affiliation(s)
- Jiayi Shen
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Junfei Ou
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Sheng Lei
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Yating Hu
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Fajun Wang
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Xinzuo Fang
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Changquan Li
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Wen Li
- School of Materials Engineering, Jiangsu University of Technology, Changzhou 213001, China; (J.S.); (S.L.); (Y.H.); (F.W.); (X.F.); (C.L.); (W.L.)
| | - Alidad Amirfazli
- Department of Mechanical Engineering, York University, Toronto, ON M3J 1P3, Canada;
| |
Collapse
|
8
|
He Z, Mu L, Wang N, Su J, Wang Z, Luo M, Zhang C, Li G, Lan X. Design, fabrication, and applications of bioinspired slippery surfaces. Adv Colloid Interface Sci 2023; 318:102948. [PMID: 37331090 DOI: 10.1016/j.cis.2023.102948] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Bioinspired slippery surfaces (BSSs) have attracted considerable attention owing to their antifouling, drag reduction, and self-cleaning properties. Accordingly, various technical terms have been proposed for describing BSSs based on specific surface characteristics. However, the terminology can often be confusing, with similar-sounding terms having different meanings. Additionally, some terms fail to fully or accurately describe BSS characteristics, such as the surface wettability of lubricants (hydrophilic or hydrophobic), surface wettability anisotropy (anisotropic or isotropic), and substrate morphology (porous or smooth). Therefore, a timely and thorough review is required to clarify and distinguish the various terms used in BSS literature. This review initially categorizes BSSs into four types: slippery solid surfaces (SSSs), slippery liquid-infused surfaces (SLISs), slippery liquid-like surfaces (SLLSs), and slippery liquid-solid surfaces (SLSSs). Because SLISs have been the primary research focus in this field, we thoroughly review their design and fabrication principles, which can also be applied to the other three types of BSS. Furthermore, we discuss the existing BSS fabrication methods, smart BSS systems, antifouling applications, limitations of BSS, and future research directions. By providing comprehensive and accurate definitions of various BSS types, this review aims to assist researchers in conveying their results more clearly and gaining a better understanding of the literature.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Su
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Zhuo Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Chunle Zhang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
9
|
Xia J, Zhong S, Hu X, Koh K, Chen H. Perspectives and trends in advanced optical and electrochemical biosensors based on engineered peptides. Mikrochim Acta 2023; 190:327. [PMID: 37495747 DOI: 10.1007/s00604-023-05907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/07/2023] [Indexed: 07/28/2023]
Abstract
With the advancement of life medicine, in vitro diagnostics (IVD) technology has become an auxiliary tool for early diagnosis of diseases. However, biosensors for IVD now face some disadvantages such as poor targeting, significant antifouling properties, low density of recognized molecules, and poor stability. In recent years, peptides have been demonstrated to have various functions in unnatural biological systems, such as targeting properties, antifouling properties, and self-assembly properties, which indicates that peptides can be engineered. These properties of peptides, combined with their good biocompatibility, can be well applied to the design of biosensors to solve the problems mentioned above. This review provides an overview of the properties of engineered functional peptides and their applications in enhancing biosensor performance, mainly in the field of optics and electrochemistry.
Collapse
Affiliation(s)
- Junjie Xia
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Suyun Zhong
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Kwangnak Koh
- Institute of General Education, Pusan National University, Busan, 609-735, Republic of Korea
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
10
|
Sun J, Wang K, Hao R, Zhang Z, Feng Z, Shi Z, Yuan W, Jing Z, Zhang L. Disregarded Free Chains Affect Bacterial Adhesion on Cross-Linked Polydimethylsiloxane Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466242 DOI: 10.1021/acsami.3c05477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The surface properties exhibited by chemically cross-linked polydimethylsiloxanes (CPDMS) such as morphology, stiffness, and wettability have garnered great interest in the study of bacteria-material interactions. Nevertheless, the hidden factor of uncross-linked free PDMS chains that dissociate in CPDMS has often been overlooked when studying the biofilm formation on these polymeric elastomer surfaces. Here, we undertake a comparative characterization of the effects of free chains in CPDMS on bacterial adhesion to both flat and textured Sharklet CPDMS surfaces. Surprisingly, compared to unextracted surfaces, removing free chains from flat and textured CPDMS through solvent extraction results in a tremendous increase in bacterial colony-forming units for both Gram-negative and Gram-positive bacteria up to 2-3 orders in the initial adhesion stage of 2 h. These findings demonstrate that the solvent extraction of free chains from CPDMS is essential in studying the interactions between bacteria and silicone elastomer materials when focusing on a single variable.
Collapse
Affiliation(s)
- Jining Sun
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| | - Kunwen Wang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ruonan Hao
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiyuan Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Feng
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenqiang Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Zhanyu Jing
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Lei Zhang
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Cao Y, Chen X, Matarasso A, Wang Z, Song Y, Wu G, Zhang X, Sun H, Wang X, Bruchas MR, Li Y, Zhang Y. Covalently Attached Slippery Surface Coatings to Reduce Protein Adsorptions on Poly(dimethylsiloxane) Planar Surfaces and 3D Microfluidic Channels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10.1021/acsami.2c20834. [PMID: 36763047 PMCID: PMC10412728 DOI: 10.1021/acsami.2c20834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Silicone elastomers, such as poly(dimethylsiloxane) (PDMS), have a broad range of applications in basic biomedical research and clinical medicine, ranging from the preparation of microfluidic devices for organs-on-chips and ventriculoperitoneal shunts for the treatment of hydrocephalus to implantable neural probes for neuropharmacology. Despite the importance, the protein adsorptions on silicone elastomers in these application environments represent a significant challenge. Surface coatings with slippery lubricants, inspired by the Nepenthes pitcher plants, have recently received much attention for reducing protein adsorptions. Nevertheless, the depletion of the physically infused lubricants limits their broad applications. In this study, we report a covalently attached slippery surface coating to reduce protein adsorptions on PDMS surfaces. As demonstrations, we show that the adsorption of serum proteins, human fibrinogen and albumin, can be significantly reduced by the slippery surface coating in both planar PDMS surfaces and 3D microfluidic channels. The preparation of slippery surface coatings relies on the acid-catalyzed polycondensation reaction of dimethyldimethoxysilane, which utilizes a low-cost and scalable dip-coating method. Furthermore, cell metabolic activity and viability studies demonstrate the biocompatibility of the surface coating. These results suggest the potential applications of slippery surface coatings to reduce protein adsorptions for implantable medical devices, organs-on-chips, and many others.
Collapse
Affiliation(s)
- Yue Cao
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Avi Matarasso
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Zizheng Wang
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yang Song
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Guangfu Wu
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xueju Wang
- Department of Materials Science and Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Yi Zhang
- Department of Biomedical Engineering and the Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
12
|
Abstract
Liquid-repellent surfaces, especially smooth solid surfaces with covalently grafted flexible polymer brushes or alkyl monolayers, are the focus of an expanding research area. Surface-tethered flexible species are highly mobile at room temperature, giving solid surfaces a unique liquid-like quality and unprecedented dynamical repellency towards various liquids regardless of their surface tension. Omniphobic liquid-like surfaces (LLSs) are a promising alternative to air-mediated superhydrophobic or superoleophobic surfaces and lubricant-mediated slippery surfaces, avoiding fabrication complexity and air/lubricant loss issues. More importantly, the liquid-like molecular layer controls many important interface properties, such as slip, friction and adhesion, which may enable novel functions and applications that are inaccessible with conventional solid coatings. In this Review, we introduce LLSs and their inherent dynamic omniphobic mechanisms. Particular emphasis is given to the fundamental principles of surface design and the consequences of the liquid-like nature for task-specific applications. We also provide an overview of the key challenges and opportunities for omniphobic LLSs.
Collapse
Affiliation(s)
- Liwei Chen
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shilin Huang
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China
| | - Robin H A Ras
- Department of Applied Physics, Aalto University School of Science, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
| | - Xuelin Tian
- School of Materials Science and Engineering, Key Laboratory for Polymer Composite & Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-sen University, Guangzhou, P. R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, P. R. China.
| |
Collapse
|
13
|
Macdonald B, Zhang C, Chen Z, Tuteja A. Polysiloxane-Based Liquid-like Layers for Reducing Polymer and Wax Fouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:274-284. [PMID: 36583570 DOI: 10.1021/acs.langmuir.2c02489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface fouling occurs when undesired matter adheres and accumulates on a surface, resulting in a decrease or loss of functionality. Polymer and wax fouling can cause costly blockages to crude oil pipelines, clog jet fuel injectors, foul chemical reaction vessels, and significantly decrease the efficiency of heat exchangers. Fouling occurs in many forms but can be segmented based on adherent size, modulus, and chemical functionality. Depending on the foulant, surface design strategies can vary greatly. Few strategies exist to prevent the buildup of wax and polymers on surfaces. In this report, we investigate the potential of highly disordered, siloxane liquid-like layers as a strategy for reducing wax and polymer deposition. In our tests, it was found that the liquid-like layers developed here were able to reduce postadsorption roughness for polymer and wax by as much as 35- and 47-fold, respectively, when compared to the control. SFG was utilized to investigate the molecular-level interfacial properties for each of the modified surfaces to help understand the antifouling mechanism. The data showed that the likely higher grafting density and a large degree of random conformational freedom at the liquid-surface interface make the developed siloxane-covered surfaces energetically unfavorable for polymer and wax accretion.
Collapse
Affiliation(s)
- Brian Macdonald
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Chengcheng Zhang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Anish Tuteja
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
14
|
Jiao S, Ma D, Cheng Z, Meng J. Super-Slippery Poly(Dimethylsiloxane) Brush Surfaces: From Fabrication to Practical Application. Chempluschem 2023; 88:e202200379. [PMID: 36650726 DOI: 10.1002/cplu.202200379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Superwetting surfaces with special slippery performances have been the focus of practical applications and basic research for decades. Compared to superhydrophobic/superoleophobic and slippery liquid-infused porous surfaces (SLIPS), liquid-like covalently attached poly(dimethylsiloxane) (PDMS) brush surfaces have no trouble in constructing the micro/nanostructure and the loss of infused lubricant, meanwhile, it can also provide lots of new advantages, such as smooth, transparent, pressure- and temperature-resistant, and low contact angle hysteresis (CAH) to diverse liquids. This paper focuses on the relationship between the wetting performance and practical functional application of PDMS brush surfaces. Recent progress of the preparation of PDMS brush surfaces and their super-slippery performances, with a special focus on diverse functional applications were summarized. Finally, perspectives on future research directions are also discussed.
Collapse
Affiliation(s)
- Shouzheng Jiao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Deping Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Zhongjun Cheng
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China
| | - Junhui Meng
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
15
|
Pulugu P, Arya N, Kumar P, Srivastava A. Polystyrene-Based Slippery Surfaces Enable the Generation and Easy Retrieval of Tumor Spheroids. ACS APPLIED BIO MATERIALS 2022; 5:5582-5594. [PMID: 36445173 DOI: 10.1021/acsabm.2c00620] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicellular tumor spheroids are the most well-characterized organotypic models for cancer research. Generally, scaffold-based and scaffold-free techniques are widely used for culturing spheroids. In scaffold-free techniques, the hanging drop (HD) method is a more versatile technique, but the retrieval of three-dimensional (3D) cell spheroids in the hanging drop method is usually labor-intensive. We developed oil-coated polystyrene nanofiber-based reusable slippery surfaces for the generation and easy retrieval of 3D spheroids. The developed slippery surfaces facilitated the rolling and gliding of the cell medium drops as well as holding the hydrophilic drops for more than 72 h by the virtue of surface tension as in the hanging drop method. In this study, polystyrene nanofibers were developed by the facile technique of electrospinning and the morphological evaluation was performed by scanning electron microscopy (SEM) and cryo-FESEM. We modeled the retrieval process of 3D spheroids with the ingredients of 3D spheroid generation, such as water, cell culture media, collagen, and hyaluronic acid solution, demonstrating the faster and easy retrieval of 3D spheroids within a few seconds. We created MCF-7 spheroids as a proof of concept with a developed slippery surface. 3D spheroids were characterized for their size, homogeneity, reactive oxygen species, proliferative marker (Ki-67), and hypoxic inducing factor 1ά (HIF-1ά). These 3D tumor spheroids were further tested for evaluating the cellular toxicity of the doxorubicin drug. Hence, the proposed slippery surfaces demonstrated the potential alternative of culturing 3D tumor spheroids with an easy retrieval process with intact 3D spheroids.
Collapse
Affiliation(s)
- Priyanka Pulugu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neha Arya
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Prasoon Kumar
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Akshay Srivastava
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Palaj, Opposite Air Force Station, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
16
|
Zheng W, Huang J, Zang X, Xu X, Cai W, Lin Z, Lai Y. Judicious Design and Rapid Manufacturing of a Flexible, Mechanically Resistant Liquid-Like Coating with Strong Bonding and Antifouling Abilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204581. [PMID: 36018280 DOI: 10.1002/adma.202204581] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Fluorine-free liquid-repellent coatings have been highly demanded for a variety of applications. However, rapid formation of coatings possessing outstanding oil repellency and strong bonding ability as well as good mechanical strength (e.g., bendability, impact resistance, and scratch resistance) remains a grand challenge. Herein, a robust strategy to rapidly create fluorine-free oil-repellent coatings in only 30 s via rational design of a semi-interpenetrating polymer network structure is reported. The resulting coating manifests strong bonding capability both in air and underwater. More importantly, it not only provides unprecedented oil repellency, even to high-viscosity crude oil, but also achieves both excellent bendability and hardness. This simple yet effective design strategy opens up a new avenue to manufacture multifunctional materials and devices with desirable features and structural complexities for applications in sustainable antifouling, drag reduction, nondestructive transportation, liquid collection, and biomedicine, among other areas.
Collapse
Affiliation(s)
- Weiwei Zheng
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jianying Huang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Xuerui Zang
- College of Pipeline and Civil Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xuanfei Xu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Weilong Cai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| | - Zhiqun Lin
- Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350116, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, P. R. China
| |
Collapse
|
17
|
Wang W, Li J, Wang P, Ou J, Zhang D. Fabrication of polydimethylsiloxane-attached solid slippery surface with high underwater transparency towards the antifouling of optical window for marine instruments. J Colloid Interface Sci 2022; 623:832-844. [DOI: 10.1016/j.jcis.2022.05.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
18
|
Tenjimbayashi M, Manabe K. A review on control of droplet motion based on wettability modulation: principles, design strategies, recent progress, and applications. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:473-497. [PMID: 36105915 PMCID: PMC9467603 DOI: 10.1080/14686996.2022.2116293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/09/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The transport of liquid droplets plays an essential role in various applications. Modulating the wettability of the material surface is crucial in transporting droplets without external energy, adhesion loss, or intense controllability requirements. Although several studies have investigated droplet manipulation, its design principles have not been categorized considering the mechanical perspective. This review categorizes liquid droplet transport strategies based on wettability modulation into those involving (i) application of driving force to a droplet on non-sticking surfaces, (ii) formation of gradient surface chemistry/structure, and (iii) formation of anisotropic surface chemistry/structure. Accordingly, reported biological and artificial examples, cutting-edge applications, and future perspectives are summarized.
Collapse
Affiliation(s)
- Mizuki Tenjimbayashi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Kengo Manabe
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Preparation and Hydrophobicity of Bionic Structures Based on Composite Infiltration Model. MATERIALS 2022; 15:ma15124202. [PMID: 35744257 PMCID: PMC9228329 DOI: 10.3390/ma15124202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023]
Abstract
The wettability, surface energy, structure, and morphology of a material’s surface will affect the interaction process between the material and the organism. Moreover, these factors are not independent of each other, but will affect each other, which together determine the biological surface of the material. Although two classic theories of surface wettability control have been established, including the Wenzel model and the Cassie–Baxter model, the mechanism of the microstructure parameters on the surface wettability has not been considered. This paper established a two-dimensional mathematical model of the composite wetting pattern based on microstructure parameters, revealed the mechanism of the microstructure parameters on the surface wettability, and then used ultra-precision cutting and molding composite preparation methods to quickly and efficiently prepare bionic structures, and the hydrophobic character of the microstructure was characterized by the contact angle meter, which provides theoretical support and preparation technology for the modification of the hydrophobic character of the material.
Collapse
|
20
|
Chiera S, Koch VM, Bleyer G, Walter T, Bittner C, Bachmann J, Vogel N. From Sticky to Slippery: Self-Functionalizing Lubricants for In Situ Fabrication of Liquid-Infused Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16735-16745. [PMID: 35353481 DOI: 10.1021/acsami.2c02390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Liquid-infused surfaces offer a versatile approach to create self-cleaning coatings. In such coatings, a thin film of a fluid lubricant homogeneously coats the substrate and thus prevents direct contact with a second, contaminating liquid. For stable repellency, the interfacial energies need to be controlled to ensure that the lubricant is not replaced by the contaminating liquid. Here, we introduce the concept of self-functionalizing lubricants. Functional molecular species that chemically match the lubricant but possess selective anchor groups are dissolved in the lubricant and self-adhere to the surface, forming the required surface chemistry in situ from within the applied lubricant layer. To add flexibility to the self-functionalizing concept, the substrate is first primed with a thin polydopamine base layer, which can be deposited to nearly any substrate material from aqueous solutions and retains reactivity toward electron-donating groups such as amines. The temporal progression of the in situ functionalization is investigated by ellipsometry and quartz crystal microbalance and correlated to macroscopic changes in contact angle and contact angle hysteresis. The flexibility of the approach is underlined by creating repellent coatings with various substrate/lubricant combinations. The prepared liquid-infused surfaces significantly reduce cement adhesion and provide easy-to-clean systems under real-world conditions on shoe soles.
Collapse
Affiliation(s)
- Salvatore Chiera
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Vanessa M Koch
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Gudrun Bleyer
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Teresa Walter
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Carina Bittner
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| | - Julien Bachmann
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany
- Interdisciplinary Center for Functional Particle Systems, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen 91058, Germany
| |
Collapse
|
21
|
MacLachlan R, Vahedi F, Imani SM, Ashkar AA, Didar TF, Soleymani L. Pathogen-Repellent Plastic Warp with Built-In Hierarchical Structuring Prevents the Contamination of Surfaces with Coronaviruses. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11068-11077. [PMID: 35225604 PMCID: PMC8903211 DOI: 10.1021/acsami.1c21476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Amidst the COVID-19 pandemic, it is evident that viral spread is mediated through several different transmission pathways. Reduction of these transmission pathways is urgently needed to control the spread of viruses between infected and susceptible individuals. Herein, we report the use of pathogen-repellent plastic wraps (RepelWrap) with engineered surface structures at multiple length scales (nanoscale to microscale) as a means of reducing the indirect contact transmission of viruses through fomites. To quantify viral repellency, we developed a touch-based viral quantification assay to mimic the interaction of a contaminated human touch with a surface through the modification of traditional viral quantification methods (viral plaque and TCID50 assays). These studies demonstrate that RepelWrap reduced contamination with an enveloped DNA virus as well as the human coronavirus 229E (HuCoV-229E) by more than 4 log 10 (>99.99%) compared to a standard commercially available polyethylene plastic wrap. In addition, RepelWrap maintained its repellent properties after repeated 300 touches and did not show an accumulation in viral titer after multiple contacts with contaminated surfaces, while increases were seen on other commonly used surfaces. These findings show the potential use of repellent surfaces in reducing viral contamination on surfaces, which could, in turn, reduce the surface-based spread and transmission.
Collapse
Affiliation(s)
- Roderick MacLachlan
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Fatemeh Vahedi
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Sara M. Imani
- School
of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Ali A. Ashkar
- Department
of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- McMaster
Immunology Research Center, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| | - Tohid F. Didar
- School
of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- Department
of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S4L7, Canada
- Michael G.
DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| | - Leyla Soleymani
- Department
of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- School
of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
- Michael G.
DeGroote Institute of Infectious Disease Research, McMaster University, 1280 Main Street West, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
22
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
23
|
Lubricin as a tool for controlling adhesion in vivo and ex vivo. Biointerphases 2021; 16:020802. [PMID: 33736436 DOI: 10.1116/6.0000779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to prevent or minimize the accumulation of unwanted biological materials on implantable medical devices is important in maintaining the long-term function of implants. To address this issue, there has been a focus on materials, both biological and synthetic, that have the potential to prevent device fouling. In this review, we introduce a glycoprotein called lubricin and report on its emergence as an effective antifouling coating material. We outline the versatility of lubricin coatings on different surfaces, describe the physical properties of its monolayer structures, and highlight its antifouling properties in improving implant compatibility as well as its use in treatment of ocular diseases and arthritis. This review further describes synthetic polymers mimicking the lubricin structure and function. We also discuss the potential future use of lubricin and its synthetic mimetics as antiadhesive biomaterials for therapeutic applications.
Collapse
|
24
|
Peppou-Chapman S, Neto C. Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3025-3037. [PMID: 33683128 DOI: 10.1021/acs.langmuir.0c02858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lubricant-infused surfaces (LIS) have emerged as an innovative way to combat several modern challenges such as biofouling, ice formation, and surface drag. The favorable properties of LIS are dependent on the presence and distribution of a lubricant layer coating the underlying substrate. Unfortunately, this layer is not indefinitely stable and depletes due to external forces. Here, we study how an air/water interface depletes the lubricant from LIS as a function of lubricant wettability on the substrate by varying the chemistry of both the lubricant and the substrate. The lubricants were chosen to represent some of those most commonly used in the literature (silicone oil, perfluoropolyethers, and mineral oil). We use an optical Wilhelmy plate tensiometer to measure the contact angle of the air/water interface on the LIS in situ as the sample is driven through the air/water interface and contact angle hysteresis as a qualitative measure of lubricant depletion. This data is augmented with ex situ quantitative mapping of lubricant thickness using atomic force microscopy (AFM) meniscus force measurements. We find that a thick layer of excess lubricant is always removed in just one dip, regardless of wettability, and that lubricants that do not spread fully on the substrate deplete faster due to their dewetting into droplets. We also find that lubricants that spread onto the air/water interface are more susceptible to depletion. Finally, we investigate the effect of repeated immersions on the properties of liquidlike poly(dimethylsiloxane) (PDMS) chains tethered to glass and find that dynamic contact angles on these surfaces remain constant over several dips and therefore their low hysteresis is unlikely due to unbound polymer.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry, The University of Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Chiara Neto
- School of Chemistry, The University of Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
25
|
Yang C, Huang X, Li X, Yang C, Zhang T, Wu Q, liu D, Lin H, Chen W, Hu N, Xie X. Wearable and Implantable Intraocular Pressure Biosensors: Recent Progress and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002971. [PMID: 33747725 PMCID: PMC7967055 DOI: 10.1002/advs.202002971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/24/2020] [Indexed: 05/09/2023]
Abstract
Biosensors worn on or implanted in eyes have been garnering substantial attention since being proven to be an effective means to acquire critical biomarkers for monitoring the states of ophthalmic disease, diabetes. Among these disorders, glaucoma, the second leading cause of blindness globally, usually results in irreversible blindness. Continuous intraocular pressure (IOP) monitoring is considered as an effective measure, which provides a comprehensive view of IOP changes that is beyond reach for the "snapshots" measurements by clinical tonometry. However, to satisfy the applications in ophthalmology, the development of IOP sensors are required to be prepared with biocompatible, miniature, transparent, wireless and battery-free features, which are still challenging with many current fabrication processes. In this work, the recent advances in this field are reviewed by categorizing these devices into wearable and implantable IOP sensors. The materials and structures exploited for engineering these IOP devices are presented. Additionally, their working principle, performance, and the potential risk that materials and device architectures may pose to ocular tissue are discussed. This review should be valuable for preferable structure design, device fabrication, performance optimization, and reducing potential risk of these devices. It is significant for the development of future practical IOP sensors.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Qianni Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Dong liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Haotian Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Weirong Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| |
Collapse
|
26
|
Yang C, Yang C, Li X, Zhang A, He G, Wu Q, Liu X, Huang S, Huang X, Cui G, Hu N, Xie X, Hang T. Liquid-like Polymer Coating as a Promising Candidate for Reducing Electrode Contamination and Noise in Complex Biofluids. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4450-4462. [PMID: 33443399 DOI: 10.1021/acsami.0c18419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biosensors that can automatically and continuously track fluctuations in biomarker levels over time are essential for real-time sensing in biomedical and environmental applications. Although many electrochemical sensors have been developed to quickly and sensitively monitor biomarkers, their sensing stability in complex biofluids is disturbed by unavoidable nonspecific adhesion of proteins or bacteria. Recently, various substrate surface modification techniques have been developed to resist biofouling, yet functionalization of electrodes in sensors to be anti-biofouling is rarely achieved. Here, we report an integrated three-electrode system (ITES) modified with a "liquid-like" polydimethylsiloxane (PDMS) brush that can continuously and stably monitor reactive oxygen species (ROS) in complex fluids. Based on the slippery "liquid-like" coating, the modified ITES surface could prevent the adhesion of various liquids as well as the adhesion of proteins and bacteria. The "liquid-like" coating does not significantly affect the sensitivity of the electrode in detecting ROS, while the sensing performance could remain stable and free of bacterial attack even after 3 days of incubation with bacteria. In addition, the PDMS brush-modified ITES (PMITES) could continuously record ROS levels in bacterial-rich fluids with excellent stability over 24 h due to the reduced bacterial contamination on the electrode surface. This technique offers new opportunities for continuous and real-time monitoring of biomarkers that will facilitate the development of advanced sensors for biomedical and environmental applications.
Collapse
Affiliation(s)
- Chengduan Yang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Cheng Yang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiangling Li
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
- School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou 510080, China
| | - Aihua Zhang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Gen He
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qianni Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xingxing Liu
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Shuang Huang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xinshuo Huang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Guofeng Cui
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou 510080, China
| | - Tian Hang
- The First Affiliated Hospital of Sun Yat-Sen University; State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
27
|
Liquid-like polymer-based self-cleaning coating for effective prevention of liquid foods contaminations. J Colloid Interface Sci 2021; 589:327-335. [PMID: 33476889 DOI: 10.1016/j.jcis.2021.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 11/22/2022]
Abstract
Liquid food containers commonly suffer from inevitable contamination and even biofilm formation due to the adhesion of food residuals or saliva, which requires detergents to clean. Although previously reported superhydrophobic and omniphobic coatings can resist the adhesion of liquids, the requirements of specific nanostructures or infused lubricants limit their applications in food containers. Here, by grafting smooth glass containers with "liquid like" polydimethylsiloxane brushes, we developed a unique approach for preparing a slippery coating that could exhibit highly robust repellency to various liquid foods. The coating was highly transparent and did not induce a significant alteration of the smooth surface. The "liquid like" coating could effectively prevent the adhesion of various liquid foods and inhibit the formation of bacterial biofilms, without the use of detergents for cleaning. Moreover, this coating could resist mechanical damage from friction, and displayed high biocompatibility with biological cells. The slipperiness, smoothness, robustness and biocompatibility of the "liquid like" coating was highly beneficial to practical applications as self-cleaning glass container, which has been challenging to achieve by conventional superhydrophobic or omniphobic coatings. Our study introduced a versatile strategy to functionalize biocompatible surfaces for food containers which reduced the contamination of residues and the use of detergents, and may be beneficial to human and environmental health.
Collapse
|
28
|
Fang Y, Liang J, Bai X, Yong J, Huo J, Yang Q, Hou X, Chen F. Magnetically Controllable Isotropic/Anisotropic Slippery Surface for Flexible Droplet Manipulation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15403-15409. [PMID: 33290077 DOI: 10.1021/acs.langmuir.0c03008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Controllable wetting surfaces play a significant role in numerous applications such as smart liquid manipulation, lab-on-a-chip, drug delivery, liquid robot, and so on. A novel type of magnetically controllable isotropic/anisotropic slippery surface was prepared by femtosecond laser ablation. The slippery liquid-infused porous surface (SLIPS) can be switched between an isotropic smooth state and an anisotropic groove state by the magnetic field. The relationship between the sliding property of the SLIPS and the magnetic flux density, water droplet volume, microgroove width, and microgroove height are systematically studied. Passively flexible movement on the isotropic SLIPS and actively directional movement on the anisotropic SLIPS of water droplets were realized. This work provides a fresh understanding of the controllable isotropic/anisotropic SLIPS and reveals great potential in versatile applications which are related to magnetically controllable smart liquid manipulation.
Collapse
Affiliation(s)
- Yao Fang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Liang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xue Bai
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jiale Yong
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jinglan Huo
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Qing Yang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
29
|
Melde BJ, Malanoski AP, Moore MH, Johnson BJ. Covalently attached liquids as protective coatings. POLYM INT 2020. [DOI: 10.1002/pi.6098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Brian J Melde
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| | - Anthony P Malanoski
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| | - Martin H Moore
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| | - Brandy J Johnson
- Center for Bio/Molecular Science & Engineering US Naval Research Laboratory Washington DC USA
| |
Collapse
|
30
|
Peppou-Chapman S, Hong JK, Waterhouse A, Neto C. Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chem Soc Rev 2020; 49:3688-3715. [DOI: 10.1039/d0cs00036a] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We review the rational choice, the analysis, the depletion and the properties imparted by the liquid layer in liquid-infused surfaces – a new class of low-adhesion surface.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Jun Ki Hong
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| | - Anna Waterhouse
- The University of Sydney Nano Institute
- The University of Sydney
- Australia
- Central Clinical School
- Faculty of Medicine and Health
| | - Chiara Neto
- School of Chemistry
- The University of Sydney
- Australia
- The University of Sydney Nano Institute
- The University of Sydney
| |
Collapse
|