1
|
Tao Y, Jiao G, Zhao X, Tan X, Qiao L, Sheng R, Wei D, Zhang T. Amino acid-crosslinked 4arm-PLGA Janus patch with anti-adhesive and anti-bacterial properties for hernia repair. Colloids Surf B Biointerfaces 2024; 243:114126. [PMID: 39106631 DOI: 10.1016/j.colsurfb.2024.114126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/09/2024]
Abstract
Presently, the non-biodegradable polypropylene (PP) patches frequently used for hernia repair can cause fibrous tissue growth and adhesions. This study created a Janus Patch with anti-adhesion and antimicrobial properties to improve hernia repair while promoting tissue repair. The biologically active 4arm-PLGA-BLPD was initially synthesized through the modification of 4arm-PLGA with lysine, followed by the fabrication of a Janus patch using a layer-by-layer electrostatic spinning technique. This patch consisted of three layers: a repair layer composed of 4arm-PLGA-BLPD/PCL fiber membrane, a mechanical layer of 4arm-PLGA/PCL fiber membrane, and an antimicrobial layer of EMO-4arm-PLGA/PCL fiber membrane loaded with Emodin (EMO). The results showed that Janus patch exhibited notable tensile strength and elongation at break, enabling it to offer enhanced mechanical reinforcement for abdominal wall defects. In addition, it slowly releases lysine for repair and inhibits bacterial growth with EMO. In vivo experiments demonstrated that the patch effectively induced neovascularization, reduced collagen ac-cumulation, and stabilized the expression of relevant proteins through the up-regulation of MMP1 and MMP9. This facilitated successful repair of the abdominal wall defect model and prevented adhesions. In summary, the Janus patch offers both practical application and theoretical insight for hernia repair.
Collapse
Affiliation(s)
- Yinghua Tao
- State Key Laboratory of Digital Medicine Engineering, Southeast University, Nanjing 210096, PR China; Institute of Medical Devices, Southeast University, Suzhou 215163, PR China
| | - Guanhua Jiao
- State Key Laboratory of Digital Medicine Engineering, Southeast University, Nanjing 210096, PR China; Institute of Medical Devices, Southeast University, Suzhou 215163, PR China
| | - Xiaocong Zhao
- State Key Laboratory of Digital Medicine Engineering, Southeast University, Nanjing 210096, PR China
| | - Xin Tan
- State Key Laboratory of Digital Medicine Engineering, Southeast University, Nanjing 210096, PR China
| | - Li Qiao
- State Key Laboratory of Digital Medicine Engineering, Southeast University, Nanjing 210096, PR China
| | - Renwang Sheng
- School of Medicine, Southeast University, Nanjing 210009, PR China
| | - Dandan Wei
- State Key Laboratory of Digital Medicine Engineering, Southeast University, Nanjing 210096, PR China; Institute of Medical Devices, Southeast University, Suzhou 215163, PR China
| | - Tianzhu Zhang
- State Key Laboratory of Digital Medicine Engineering, Southeast University, Nanjing 210096, PR China; Institute of Medical Devices, Southeast University, Suzhou 215163, PR China.
| |
Collapse
|
2
|
Wei D, Huang Y, Ren P, Liang M, Xu L, Yang L, Zhang T, Ji Z. Effect of Compressive Modulus of Porous PVA Hydrogel Coating on the Preventing Adhesion of Polypropylene Mesh. Macromol Biosci 2024; 24:e2400112. [PMID: 38850262 DOI: 10.1002/mabi.202400112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/10/2024] [Indexed: 06/10/2024]
Abstract
PP mesh is a widely used prosthetic material in hernia repair. However, visceral adhesion is one of the worst complications of this operation. Hence, an anti-adhesive PP mesh is developed by coating porous polyvinyl alcohol (PVA) hydrogel on PP surface via freezing-thawing process method. The compressive modulus of porous PVA hydrogel coating is first regulated by the addition of porogen sodium bicarbonate (NaHCO3) at various quality ratios with PVA. As expected, the porous hydrogel coating displayed modulus more closely resembling that of native abdominal wall tissue. In vitro tests demonstrate the modified PP mesh show superior coating stability, excellent hemocompatibility, and good cytocompatibility. In vivo experiments illustrate that PP mesh coated by the PVA4 hydrogel that mimicked the modulus of native abdominal wall could prevent adhesion effectively. Based on this, the rapamycin (RPM) is loaded into the porous PVA4 hydrogel coating to further improve anti-adhesive property of PP mesh. The Hematoxylin and eosin (H&E) and Masson trichrome (MT) staining results verified that the resulting mesh could alleviate the inflammation response and reduce the deposition of collagen around the implantation zone. The biomimetic mechanical property and anti-adhesive property of modified PP mesh make it a valuable candidate for application in hernioplasty.
Collapse
Affiliation(s)
- Dandan Wei
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Medical Devices (Suzhou), Southeast University, 3rd Floor, Building 1, Medpark, No.8 Jinfeng Road, Suzhou, 215163, China
| | - Yulin Huang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Pengfei Ren
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Min Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Liuxin Yang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianzhu Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Institute of Medical Devices (Suzhou), Southeast University, 3rd Floor, Building 1, Medpark, No.8 Jinfeng Road, Suzhou, 215163, China
| | - Zhenling Ji
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| |
Collapse
|
3
|
Chen J, An X, Xu L, Gao Y, Zhou M, Liu Z. Adhesive Nanoparticle-in-Microgel System with ROS Scavenging Capability and Hemostatic Activity for Postoperative Adhesion Prevention. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306598. [PMID: 38295133 DOI: 10.1002/smll.202306598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/07/2024] [Indexed: 02/02/2024]
Abstract
Postoperative adhesion is a noteworthy clinical complication in abdominal surgery due to the existing physical barriers are unsatisfactory and inefficient in preventing its occurrence. In this work, an elaborate nanoparticle-in-microgel system (nMGel) is presented for postoperative adhesion prevention. nMGel is facilely formed by crosslinking manganese dioxide (MnO2) nanoparticles-loaded gelatin microspheres with polydopamine using a modified emulsification-chemical crosslinking method, generating a nano-micron spherical hydrogel. After drying, powdery nMGel with sprayability can perfectly cover irregular wounds and maintains robust tissue adhesiveness even in a wet environment. Additionally, nMGel possesses prominent antioxidant and free radical scavenging activity, which protects cell viability and preserves cell biological functions in an oxidative microenvironment. Furthermore, nMGel displays superior hemostatic property as demonstrated in mouse tail amputation models and liver trauma models. Importantly, nMGel can be conveniently administrated in a mouse cecal defect model to prevent adhesion between the injured cecum and the peritoneum by reducing inflammation, oxidative stress, collagen synthesis, and angiogenesis. Thus, the bioactive nMGel offers a practical and efficient approach for ameliorating postsurgical adhesion.
Collapse
Affiliation(s)
- Jianmei Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, P. R. China
| | - Li Xu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Ya Gao
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, P. R. China
| | - Mengqin Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
- Jiangsu Key Laboratory of Experimental & Translational Noncoding RNA Research, Medical College, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Zongguang Liu
- College of Physics Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225009, P. R. China
| |
Collapse
|
4
|
Zhao Y, Li X, Sun N, Mao Y, Ma T, Liu X, Cheng T, Shao X, Zhang H, Huang X, Li J, Huang N, Wang H. Injectable Double Crosslinked Hydrogel-Polypropylene Composite Mesh for Repairing Full-Thickness Abdominal Wall Defects. Adv Healthc Mater 2024; 13:e2304489. [PMID: 38433421 DOI: 10.1002/adhm.202304489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Abdominal wall defects are common clinical diseases, and mesh repair is the standard treatment method. The most commonly used polypropylene (PP) mesh in clinical practice has the advantages of good mechanical properties, stable performance, and effective tissue integration effect. However, direct contact between abdominal viscera and PP mesh can lead to severe abdominal adhesions. To prevent this, the development of a hydrogel-PP composite mesh with anti-adhesive properties may be an effective measure. Herein, biofunctional hydrogel loaded with rosmarinic acid is developed by modifying chitosan and Pluronic F127, which possesses suitable physical and chemical properties and commendable in vitro biocompatibility. In the repair of full-thickness abdominal wall defects in rats, hydrogels are injected onto the surface of PP mesh and applied to intraperitoneal repair. The results indicate that the use of hydrogel-PP composite mesh can alleviate abdominal adhesions resulting from traditional PP mesh implantation by decreasing local inflammatory response, reducing oxidative stress, and regulating the fibrinolytic system. Combined with the tissue integration ability of PP mesh, hydrogel-PP composite mesh has great potential for repairing full-thickness abdominal wall defects.
Collapse
Affiliation(s)
- Yixin Zhao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xiaopei Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ni Sun
- Department of Radiation Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210002, China
| | - Yan Mao
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Teng Ma
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Xiangping Liu
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Tao Cheng
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Xiangyu Shao
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Haifeng Zhang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xianggang Huang
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Junsheng Li
- School of Medicine, Southeast University, Nanjing, 210009, China
- Department of General Surgery, The Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | - Ningping Huang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Haibo Wang
- Breast Disease Center, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| |
Collapse
|
5
|
Di Y, Wang L, He W, Liu S, He Y, Liao J, Zhang R, Yin L, Xu Z, Li X. The utilization of chitosan/ Bletilla striata hydrogels to elevate anti-adhesion, anti-inflammatory and pro-angiogenesis properties of polypropylene mesh in abdominal wall repair. Regen Biomater 2024; 11:rbae044. [PMID: 38962115 PMCID: PMC11220408 DOI: 10.1093/rb/rbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 07/05/2024] Open
Abstract
Polypropylene (PP) mesh is commonly used in abdominal wall repair due to its ability to reduce the risk of organ damage, infections and other complications. However, the PP mesh often leads to adhesion formation and does not promote functional tissue repair. In this study, we synthesized one kind of aldehyde Bletilla striata polysaccharide (BSPA) modified chitosan (CS) hydrogel based on Schiff base reaction. The hydrogel exhibited a porous network structure, a highly hydrophilic surface and good biocompatibility. We wrapped the PP mesh inside the hydrogel and evaluated the performance of the resulting composites in a bilateral 1 × 1.5 cm abdominal wall defect model in rats. The results of gross observation, histological staining and immunohistochemical staining demonstrated the positive impact of the CS hydrogel on anti-adhesion and wound healing effects. Notably, the addition of BSPA to the CS hydrogel further improved the performance of the composites in vivo, promoting wound healing by enhancing collagen deposition and capillary rearrangement. This study suggested that the BSPA-modified CS hydrogel significantly promoted the anti-adhesion, anti-inflammatory and pro-angiogenesis properties of PP meshes during the healing process. Overall, this work offers a novel approach to the design of abdominal wall repair patches.
Collapse
Affiliation(s)
- Yuntao Di
- Department of Neurosurgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lu Wang
- Research Center for Biomedical Engineering, Medical Innovation & Research Division, Chinese PLA General Hospital, Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Beijing 100853, China
| | - Wei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Shuyan Liu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yuqi He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jie Liao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Ruihong Zhang
- Department of Neurosurgery, The Fourth Central Hospital of Baoding City, Baoding 072350, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| |
Collapse
|
6
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
7
|
Zhu Y, Zhang C, Liang Y, Shi J, Yu Q, Liu S, Yu D, Liu H. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci 2024; 12:1643-1661. [PMID: 38411223 DOI: 10.1039/d3bm02038j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Tissue adhesion is one of the most common postoperative complications, which is frequently accompanied by inflammation, pain, and even dyskinesia, significantly reducing the quality of life of patients. Thus, to prevent the formation of tissue adhesions, various strategies have been explored. Among these methods, placing anti-adhesion membranes over the injured site to separate the wound from surrounding tissues is a simple and prominently favored method. Recently, electrospun nanofibers have been the most frequently investigated antiadhesive membranes due to their tunable porous structure and high porosities. They not only can act as an essential barrier and functional carrier system but also allow for high permeability and nutrient transport, showing great potential for preventing tissue adhesion. Herein, we provide a short review of the most recent applications of electrospun nanofibrous antiadhesive membranes in tendons, the abdominal cavity, dural sac, pericardium, and meninges. Firstly, each section highlights the most representative examples and they are sorted based on the latest progress of related research. Moreover, the design principles, preparation strategies, overall performances, and existing problems are highlighted and evaluated. Finally, the current challenges and several future ways to develop electrospun nanofibrous antiadhesive membranes are proposed. The systematic discussion and proposed directions can shed light on ideas and guide the reasonable design of electrospun nanofibrous membranes, contributing to the development of exceptional tissue anti-adhesive materials in the foreseeable future.
Collapse
Affiliation(s)
- Yanting Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Chenwei Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Ying Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jianyuan Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qiuhao Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, PR China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
8
|
Kaveti R, Lee JH, Youn JK, Jang TM, Han WB, Yang SM, Shin JW, Ko GJ, Kim DJ, Han S, Kang H, Bandodkar AJ, Kim HY, Hwang SW. Soft, Long-Lived, Bioresorbable Electronic Surgical Mesh with Wireless Pressure Monitor and On-Demand Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307391. [PMID: 37770105 DOI: 10.1002/adma.202307391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Current research in the area of surgical mesh implants is somewhat limited to traditional designs and synthesis of various mesh materials, whereas meshes with multiple functions may be an effective approach to address long-standing challenges including postoperative complications. Herein, a bioresorbable electronic surgical mesh is presented that offers high mechanical strength over extended timeframes, wireless post-operative pressure monitoring, and on-demand drug delivery for the restoration of tissue structure and function. The study of materials and mesh layouts provides a wide range of tunability of mechanical and biochemical properties. Dissolvable dielectric composite with porous structure in a pyramidal shape enhances sensitivity of a wireless capacitive pressure sensor, and resistive microheaters integrated with inductive coils provide thermo-responsive drug delivery system for an antibacterial agent. In vivo evaluations demonstrate reliable, long-lived operation, and effective treatment for abdominal hernia defects, by clear evidence of suppressed complications such as adhesion formation and infections.
Collapse
Affiliation(s)
- Rajaram Kaveti
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- SK Hynix Co., Ltd., 2091, Gyeongchung-daero, Bubal-eup, Incheon, Gyeonggi-do, 17336, Republic of Korea
| | - Joong Kee Youn
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188, Pangyoyeok-Ro, Bundang-Gu, Seongnam-si, Gyeonggi-do, 13524, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, 27606, USA
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, NC, 27606, USA
| | - Hyun-Young Kim
- Department of Pediatric Surgery, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
9
|
Wang X, Liu C, Li X, Shen T, Lian J, Shi J, Jiang Z, Qiu G, Wang Y, Meng E, Wei G. A novel electrospun polylactic acid silkworm fibroin mesh for abdominal wall hernia repair. Mater Today Bio 2024; 24:100915. [PMID: 38188648 PMCID: PMC10767193 DOI: 10.1016/j.mtbio.2023.100915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Objective Abdominal wall hernias are common abdominal diseases, and effective hernia repair is challenging. In clinical practice, synthetic meshes are widely applied for repairing abdominal wall hernias. However, postoperative complications, such as inflammation and adhesion, are prevalent. Although biological meshes can solve this problem to a certain extent, they face the problems of heterogeneity, rapid degradation rate, ordinary mechanical properties, and high-cost. Here, a novel electrospinning mesh composed of polylactic acid and silk fibroin (PLA-SF) for repairing abdominal wall hernias was manufactured with good physical properties, biocompatibility and low production cost. Materials and methods FTIR and EDS were used to demonstrate that the PLA-SF mesh was successfully synthesized. The physicochemical properties of PLA-SF were detected by swelling experiments and in vitro degradation experiments. The water contact angle reflected the hydrophilicity, and the stress‒strain curve reflected the mechanical properties. A rat abdominal wall hernia model was established to observe degradation, adhesion, and inflammation in vivo. In vitro cell mesh culture experiments were used to detect cytocompatibility and search for affected biochemical pathways. Results The PLA-SF mesh was successfully synthesized and did not swell or degrade over time in vitro. It had a high hydrophilicity and strength. The PLA-SF mesh significantly reduced abdominal inflammation and inhibited adhesion formation in rat models. The in vitro degradation rate of the PLA-SF mesh was slower than that of tissue remodeling. Coculture experiments suggested that the PLA-SF mesh reduced the expression of inflammatory factors secreted by fibroblasts and promoted fibroblast proliferation through the TGF-β1/Smad pathway. Conclusion The PLA-SF mesh had excellent physicochemical properties and biocompatibility, promoted hernia repair of the rat abdominal wall, and reduced postoperative inflammation and adhesion. It is a promising mesh and has potential for clinical application.
Collapse
Affiliation(s)
- Xingjie Wang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Changjun Liu
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Xuqi Li
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Tianli Shen
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jie Lian
- Department of Pathology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jing Shi
- Department of Respiratory and Endocrinology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Zhengdong Jiang
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Guanglin Qiu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yuanbo Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Er Meng
- School of Life and Health Sciences, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, China
| | - Guangbing Wei
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
10
|
Liu J, Wu W, Zhu Q, Zhu H. Hydrogel-Based Therapeutics for Pancreatic Ductal Adenocarcinoma Treatment. Pharmaceutics 2023; 15:2421. [PMID: 37896181 PMCID: PMC10610350 DOI: 10.3390/pharmaceutics15102421] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), one of the deadliest malignancies worldwide, is characteristic of the tumor microenvironments (TME) comprising numerous fibroblasts and immunosuppressive cells. Conventional therapies for PDAC are often restricted by limited drug delivery efficiency, immunosuppressive TME, and adverse effects. Thus, effective and safe therapeutics are urgently required for PDAC treatment. In recent years, hydrogels, with their excellent biocompatibility, high drug load capacity, and sustainable release profiles, have been developed as effective drug-delivery systems, offering potential therapeutic options for PDAC. This review summarizes the distinctive features of the immunosuppressive TME of PDAC and discusses the application of hydrogel-based therapies in PDAC, with a focus on how these hydrogels remodel the TME and deliver different types of cargoes in a controlled manner. Furthermore, we also discuss potential drug candidates and the challenges and prospects for hydrogel-based therapeutics for PDAC. By providing a comprehensive overview of hydrogel-based therapeutics for PDAC treatment, this review seeks to serve as a reference for researchers and clinicians involved in developing therapeutic strategies targeting the PDAC microenvironment.
Collapse
Affiliation(s)
- Jinlu Liu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Wenbi Wu
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| | - Hong Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; (J.L.); (Q.Z.)
| |
Collapse
|
11
|
Najm A, Niculescu AG, Rădulescu M, Gaspar BS, Grumezescu AM, Beuran M. Novel Material Optimization Strategies for Developing Upgraded Abdominal Meshes. Int J Mol Sci 2023; 24:14298. [PMID: 37762601 PMCID: PMC10531784 DOI: 10.3390/ijms241814298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Over 20 million hernias are operated on globally per year, with most interventions requiring mesh reinforcement. A wide range of such medical devices are currently available on the market, most fabricated from synthetic polymers. Yet, searching for an ideal mesh is an ongoing process, with continuous efforts directed toward developing upgraded implants by modifying existing products or creating innovative systems from scratch. In this regard, this review presents the most frequently employed polymers for mesh fabrication, outlining the market available products and their relevant characteristics, further focusing on the state-of-the-art mesh approaches. Specifically, we mainly discuss recent studies concerning coating application, nanomaterials addition, stem cell seeding, and 3D printing of custom mesh designs.
Collapse
Affiliation(s)
- Alfred Najm
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Marius Rădulescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Bogdan Severus Gaspar
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania;
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mircea Beuran
- Department of Surgery, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (A.N.); (B.S.G.); (M.B.)
- Emergency Hospital Floreasca Bucharest, 014461 Bucharest, Romania
| |
Collapse
|
12
|
Saiding Q, Chen Y, Wang J, Pereira CL, Sarmento B, Cui W, Chen X. Abdominal wall hernia repair: from prosthetic meshes to smart materials. Mater Today Bio 2023; 21:100691. [PMID: 37455815 PMCID: PMC10339210 DOI: 10.1016/j.mtbio.2023.100691] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/15/2023] [Accepted: 06/03/2023] [Indexed: 07/18/2023] Open
Abstract
Hernia reconstruction is one of the most frequently practiced surgical procedures worldwide. Plastic surgery plays a pivotal role in reestablishing desired abdominal wall structure and function without the drawbacks traditionally associated with general surgery as excessive tension, postoperative pain, poor repair outcomes, and frequent recurrence. Surgical meshes have been the preferential choice for abdominal wall hernia repair to achieve the physical integrity and equivalent components of musculofascial layers. Despite the relevant progress in recent years, there are still unsolved challenges in surgical mesh design and complication settlement. This review provides a systemic summary of the hernia surgical mesh development deeply related to abdominal wall hernia pathology and classification. Commercial meshes, the first-generation prosthetic materials, and the most commonly used repair materials in the clinic are described in detail, addressing constrain side effects and rational strategies to establish characteristics of ideal hernia repair meshes. The engineered prosthetics are defined as a transit to the biomimetic smart hernia repair scaffolds with specific advantages and disadvantages, including hydrogel scaffolds, electrospinning membranes, and three-dimensional patches. Lastly, this review critically outlines the future research direction for successful hernia repair solutions by combing state-of-the-art techniques and materials.
Collapse
Affiliation(s)
- Qimanguli Saiding
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Yiyao Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Catarina Leite Pereira
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Bruno Sarmento
- I3S – Instituto de Investigação e Inovação Em Saúde and INEB – Instituto de Engenharia Biomédica, Universidade Do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- IUCS – Instituto Universitário de Ciências da Saúde, CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China
| | - Xinliang Chen
- Shanghai Key Laboratory of Embryo Original Diseases, The International Peace Maternal and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, 910 Hengshan Road, Shanghai, 200030, PR China
| |
Collapse
|
13
|
Lang P, Liu T, Huang S, Zhou Z, Zhang M, Lin Y, He Q, Yao Y, Liu Z, Zhang L. Degradable Temperature-Sensitive Hydrogel Loaded with Heparin Effectively Prevents Post-Operative Tissue Adhesions. ACS Biomater Sci Eng 2023. [PMID: 37179492 DOI: 10.1021/acsbiomaterials.3c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tissue adhesions could occur following surgeries, and severe tissue adhesions can lead to serious complications. Medical hydrogels could be applied at surgical sites as a physical barrier to prevent tissue adhesion. For practical reasons, spreadable, degradable, and self-healable gels are highly demanded. To meet these requirements, we applied carboxymethyl chitosan (CMCS) to poloxamer-based hydrogels to generate low Poloxamer338 (P338) content gels displaying low viscosity at refrigerator temperature and improved mechanical strength at body temperature. Heparin, an effective adhesion inhibitor, was also added to construct P338/CMCS-heparin composite hydrogel (PCHgel). PCHgel presents as a flowable liquid below 20 °C and could rapidly transform into gel when spread on the surface of damaged tissue due to temperature change. The introduction of CMCS enabled hydrogels to form a stable self-healable barrier at injured positions and slowly release heparin during the wound healing period before being degraded after ∼14 days. Ultimately, PCHgel significantly reduced tissue adhesion in model rats and displayed higher efficiency than P338/CMCS gel without heparin. Its adhesion suppression mechanism was verified, and it also displayed good biosafety. Therefore, PCHgel showed good clinical transformation potential with high efficacy, good safety, and ease of use.
Collapse
Affiliation(s)
- Puxin Lang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Tiantian Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Shiqi Huang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Zhaojie Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Mengxing Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
| | - Yunzhu Lin
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610000, China
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610000, P. R. China
| | - Qin He
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610000, China
- West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610000, P. R. China
| | - Yuqin Yao
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610000, China
| | - Zhenmi Liu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610000, China
- Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610000, China
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan 610000, China
| |
Collapse
|
14
|
Yang X, Huang J, Chen C, Zhou L, Ren H, Sun D. Biomimetic Design of Double-Sided Functionalized Silver Nanoparticle/Bacterial Cellulose/Hydroxyapatite Hydrogel Mesh for Temporary Cranioplasty. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10506-10519. [PMID: 36800308 DOI: 10.1021/acsami.2c22771] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A structurally stable and antibacterial biomaterial used for temporary cranioplasty with guided bone regeneration (GBR) effects is an urgent clinical requirement. Herein, we reported the design of a biomimetic Ag/bacterial cellulose/hydroxyapatite (Ag/BC@HAp) hydrogel mesh with a double-sided functionalized structure, in which one layer was dense and covered with Ag nanoparticles and the other layer was porous and anchored with hydroxyapatite (HAp) via mineralization for different durations. Such a double-sided functionalized design endowed the hydrogel with distinguished antibacterial activities for inhibiting potential infections and GBR effects that could prevent endothelial cells and fibroblasts from migrating to a defected area and meanwhile show biocompatibility to MC3T3-E1 preosteoblasts. Furthermore, it was found from in vivo experimental results that the Ag/BC@HAp hydrogel with 7-day mineralization achieved optimal GBR effects by improving barrier functions toward these undesired cells. Moreover, this BC-based hydrogel mesh showed an extremely low swelling ratio and strong mechanical strength, which facilitated the protection of soft brain tissues without gaining the risk of intracranial pressure increase. In a word, this study offers a new approach to double-sided functionalized hydrogels and provides effective and safe biomaterials used for temporary cranioplasty with antibacterial abilities and GBR effects.
Collapse
Affiliation(s)
- Xiaoli Yang
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Jinjian Huang
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Chuntao Chen
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Lu Zhou
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| | - Huajian Ren
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China
| | - Dongping Sun
- Institute of Chemicobiology and Functional Materials, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210046, Jiangsu Province, China
| |
Collapse
|
15
|
Wei D, Huang Y, Liang M, Ren P, Tao Y, Xu L, Zhang T, Ji Z, Zhang Q. Polypropylene composite hernia mesh with anti-adhesion layer composed of PVA hydrogel and liposomes drug delivery system. Colloids Surf B Biointerfaces 2023; 223:113159. [PMID: 36736174 DOI: 10.1016/j.colsurfb.2023.113159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Polypropylene (PP) mesh has been widely used in hernia repair as prosthesis material owing to its excellent balanced biocompatibility and mechanical properties. However, abdominal adhesion between the visceral and PP mesh is still a major problem. Therefore, anti-adhesive PP mesh was designed with poly(vinyl alcohol) (PVA) hydrogel and liposomes drug delivery system. First, PVA hydrogel coating was formed on the surface of PP mesh with freezing-thawing processing cycles (FTP). Subsequently, the lyophilized PVA10-c-PP was immersed in rapamycin (RPM)-loaded liposome solution until swelling equilibrated to obtain the anti-adhesion mesh RPM@LPS/PVA10-c-PP. It was demonstrated that the hydrogel coating can stably fix on the surface of PP mesh even after immersed in PBS solution at 37 °C or 40 °C for up to 30 days. In vitro cell tests revealed the excellent cytocompatibility and the potential to inhibit cell adhesion of the modified PP mesh. Moreover, the anti-adhesive effects of the RPM@LPS/PVA10-c-PP mesh was evaluated through in vivo experiments. The RPM@LPS/PVA10-c-PP mesh exhibited less adhesion than original PP mesh throughout the duration of implantation. At 30 days, the adhesion score of RPM@LPS/PVA10-c-PP mesh was 1.37 ± 0.75, however the original PP was 3 ± 0.71. Furthermore, the results of H&E and Masson trichrome staining proved that the RPM@LPS/PVA10-c-PP mesh showed slighter inflammation response and significant looser fibrous tissue surrounded the PP filaments as compared to the native PP. The current findings manifested that this type of RPM@LPS/PVA10-c-PP might be a potential candidate for anti-adhesion treatment. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Dandan Wei
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yulin Huang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Min Liang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yinghua Tao
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Li Xu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhenling Ji
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Qianli Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
16
|
Maksoud FJ, Velázquez de la Paz MF, Hann AJ, Thanarak J, Reilly GC, Claeyssens F, Green NH, Zhang YS. Porous biomaterials for tissue engineering: a review. J Mater Chem B 2022; 10:8111-8165. [PMID: 36205119 DOI: 10.1039/d1tb02628c] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The field of biomaterials has grown rapidly over the past decades. Within this field, porous biomaterials have played a remarkable role in: (i) enabling the manufacture of complex three-dimensional structures; (ii) recreating mechanical properties close to those of the host tissues; (iii) facilitating interconnected structures for the transport of macromolecules and cells; and (iv) behaving as biocompatible inserts, tailored to either interact or not with the host body. This review outlines a brief history of the development of biomaterials, before discussing current materials proposed for use as porous biomaterials and exploring the state-of-the-art in their manufacture. The wide clinical applications of these materials are extensively discussed, drawing on specific examples of how the porous features of such biomaterials impact their behaviours, as well as the advantages and challenges faced, for each class of the materials.
Collapse
Affiliation(s)
- Fouad Junior Maksoud
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| | - María Fernanda Velázquez de la Paz
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Alice J Hann
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Jeerawan Thanarak
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK.
| | - Gwendolen C Reilly
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Nicola H Green
- Department of Materials Science and Engineering, Kroto Research Building, North Campus, Broad Lane, University of Sheffield, Sheffield, S3 7HQ, UK. .,INSIGNEO Institute for in silico Medicine, University of Sheffield, S3 7HQ, UK
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA.
| |
Collapse
|
17
|
Gao J, Wen J, Hu D, Liu K, Zhang Y, Zhao X, Wang K. Bottlebrush inspired injectable hydrogel for rapid prevention of postoperative and recurrent adhesion. Bioact Mater 2022; 16:27-46. [PMID: 35386330 PMCID: PMC8958549 DOI: 10.1016/j.bioactmat.2022.02.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 02/10/2022] [Indexed: 12/28/2022] Open
Abstract
Postsurgical adhesion is a common clinic disease induced by surgical trauma, accompanying serious subsequent complications. Current non-surgical approaches of drugs treatment and biomaterial barrier administration only show limited prevention effects and couldn't effectively promote peritoneum repair. Herein, inspired by bottlebrush, a novel self-fused, antifouling, and injectable hydrogel is fabricated by the free-radical polymerization in aqueous solution between the methacrylate hyaluronic acid (HA-GMA) and N-(2-hydroxypropyl) methacrylamide (HPMA) monomer without any chemical crosslinkers, termed as H-HPMA hydrogel. The H-HPMA hydrogel can be tuned to perform excellent self-fused properties and suitable abdominal metabolism time. Intriguingly, the introduction of the ultra-hydrophilic HPMA chains to the H-HPMA hydrogel affords an unprecedented antifouling capability. The HPMA chains establish a dense hydrated layer that rapidly prevents the postsurgical adhesions and recurrent adhesions after adhesiolysis in vivo. The H-HPMA hydrogel can repair the peritoneal wound of the rat model within 5 days. Furthermore, an underlying mechanism study reveals that the H-HPMA hydrogel significantly regulated the mesothelial-to-mesenchymal transition (MMT) process dominated by the TGF-β-Smad2/3 signal pathway. Thus, we developed a simple, effective, and available approach to rapidly promote peritoneum regeneration and prevent peritoneal adhesion and adhesion recurrence after adhesiolysis, offering novel design ideas for developing biomaterials to prevent peritoneal adhesion.
Collapse
Affiliation(s)
- Jushan Gao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jinpeng Wen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Datao Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kailai Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuchen Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xinxin Zhao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ke Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
18
|
Zhang Z, Zhu L, Hu W, Dai J, Ren P, Shao X, Xiong B, Zhang T, Ji Z. Polypropylene mesh combined with electrospun poly (L-lactic acid) membrane in situ releasing sirolimus and its anti-adhesion efficiency in rat hernia repair. Colloids Surf B Biointerfaces 2022; 218:112772. [PMID: 35985128 DOI: 10.1016/j.colsurfb.2022.112772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/23/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022]
Abstract
This study developed, a novel polypropylene (PP) mesh combined with poly (L-lactic acid) (PLA) electrospun nanofibers loaded sirolimus (SRL). The PP mesh was combined with PLA/SRL (1/0, 1/0.01, 1/0.02; mass ratios) composed electrospun membrane characterized by FTIR spectroscopy, XPS and SEM, and evaluated for cytocompatibility in vitro. In an in vivo study, a total of 84 Sprague-Dawley rats were employed to evaluate the efficacy of the novel composite PP mesh anti-adhesion, mechanical properties and inflammation. As a results, the PLA/SRL membrane could compound with PP mesh stably and load SRL. Although tensile testing showed that the mechanical properties of composite mesh decreased in vivo, the integration strength between the tissue and mesh was still able to counteract intra-abdominal pressure. Compared with the native PP mesh group, the novel PP mesh group showed a lower score for abdominal adhesion and inflammation. More importantly, the novel PP mesh completely integrated with the abdominal wall and had sufficient mechanical strength to repair abdominal wall defects.
Collapse
Affiliation(s)
- Zhigang Zhang
- Department of General Surgery, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing 210009, China; Medical School of Southeast University, Dingjiaqiao 87, Nanjing 210009, China
| | - Long Zhu
- Medical School of Southeast University, Dingjiaqiao 87, Nanjing 210009, China
| | - Wanjun Hu
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Department of light industry and materials science, Chengdu Textile College, Chengdu 611731, China.
| | - Jidong Dai
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Pengfei Ren
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiangyu Shao
- Department of General Surgery, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing 210009, China
| | - Bo Xiong
- Department of General Surgery, Affiliated Zhong Da Hospital (Li Shui branch), Southeast University, China
| | - Tianzhu Zhang
- State Key Lab of Bioelectronics, National Demonstration Center for Experimental Biomedical Engineering Education, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Zhenling Ji
- Department of General Surgery, Affiliated ZhongDa Hospital, Southeast University, Dingjiaqiao 87, Nanjing 210009, China; Department of General Surgery, Affiliated Zhong Da Hospital (Li Shui branch), Southeast University, China.
| |
Collapse
|
19
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Affiliation(s)
- Youbing Mu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Qian Sun
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Bowen Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| | - Xiaobo Wan
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan, P. R. China
| |
Collapse
|
21
|
Xu D, Fang M, Wang Q, Qiao Y, Li Y, Wang L. Latest Trends on the Attenuation of Systemic Foreign Body Response and Infectious Complications of Synthetic Hernia Meshes. ACS APPLIED BIO MATERIALS 2022; 5:1-19. [PMID: 35014826 DOI: 10.1021/acsabm.1c00841] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Throughout the past few years, hernia incidence has remained at a high level worldwide, with more than 20 million people requiring hernia surgery each year. Synthetic hernia meshes play an important role, providing a microenvironment that attracts and harbors host cells and acting as a permanent roadmap for intact abdominal wall reconstruction. Nevertheless, it is still inevitable to cause not-so-trivial complications, especially chronic pain and adhesion. In long-term studies, it was found that the complications are mainly caused by excessive fibrosis from the foreign body reaction (FBR) and infection resulting from bacterial colonization. For a thorough understanding of their complex mechanism and providing a richer background for mesh development, herein, we discuss different clinical mesh products and explore the interactions between their structure and complications. We further explored progress in reducing mesh complications to provide varied strategies that are informative and instructive for mesh modification in different research directions. We hope that this work will spur hernia mesh designers to step up their efforts to develop more practical and accessible meshes by improving the physical structure and chemical properties of meshes to combat the increasing risk of adhesions, infections, and inflammatory reactions. We conclude that further work is needed to solve this pressing problem, especially in the analysis and functionalization of mesh materials, provided of course that the initial performance of the mesh is guaranteed.
Collapse
Affiliation(s)
- Danyao Xu
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Meiqi Fang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Qian Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yansha Qiao
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Yan Li
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| | - Lu Wang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.,Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology, Donghua University, Shanghai 201620, China
| |
Collapse
|
22
|
Zhao Y, Song S, Ren X, Zhang J, Lin Q, Zhao Y. Supramolecular Adhesive Hydrogels for Tissue Engineering Applications. Chem Rev 2022; 122:5604-5640. [PMID: 35023737 DOI: 10.1021/acs.chemrev.1c00815] [Citation(s) in RCA: 188] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising and revolutionary strategy to treat patients who suffer the loss or failure of an organ or tissue, with the aim to restore the dysfunctional tissues and enhance life expectancy. Supramolecular adhesive hydrogels are emerging as appealing materials for tissue engineering applications owing to their favorable attributes such as tailorable structure, inherent flexibility, excellent biocompatibility, near-physiological environment, dynamic mechanical strength, and particularly attractive self-adhesiveness. In this review, the key design principles and various supramolecular strategies to construct adhesive hydrogels are comprehensively summarized. Thereafter, the recent research progress regarding their tissue engineering applications, including primarily dermal tissue repair, muscle tissue repair, bone tissue repair, neural tissue repair, vascular tissue repair, oral tissue repair, corneal tissue repair, cardiac tissue repair, fetal membrane repair, hepatic tissue repair, and gastric tissue repair, is systematically highlighted. Finally, the scientific challenges and the remaining opportunities are underlined to show a full picture of the supramolecular adhesive hydrogels. This review is expected to offer comparative views and critical insights to inspire more advanced studies on supramolecular adhesive hydrogels and pave the way for different fields even beyond tissue engineering applications.
Collapse
Affiliation(s)
- Yue Zhao
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371.,State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Shanliang Song
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiangzhong Ren
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Junmin Zhang
- Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
23
|
Xu L, Tang S, Yang H, Liang M, Ren P, Wei D, He J, Kong W, Liu P, Zhang T. Sustained delivery of gemcitabine via in situ injectable mussel-inspired hydrogel for local therapy of pancreatic cancer. J Mater Chem B 2022; 10:6338-6350. [DOI: 10.1039/d1tb02858h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The issue on pervasively enhanced drug resistance of pancreatic cancer is fundamental to better understanding of gemcitabine-based chemotherapy. Currently available treatment plans containing injectable therapeutics are mainly engineered to improve...
Collapse
|
24
|
Liu Z, Wei N, Tang R. Functionalized Strategies and Mechanisms of the Emerging Mesh for Abdominal Wall Repair and Regeneration. ACS Biomater Sci Eng 2021; 7:2064-2082. [PMID: 33856203 DOI: 10.1021/acsbiomaterials.1c00118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Meshes have been the overwhelmingly popular choice for the repair of abdominal wall defects to retrieve the bodily integrity of musculofascial layer. Broadly, they are classified into synthetic, biological and composite mesh based on their mechanical and biocompatible features. With the development of anatomical repair techniques and the increasing requirements of constructive remodeling, however, none of these options satisfactorily manages the conditional repair. In both preclinical and clinical studies, materials/agents equipped with distinct functions have been characterized and applied to improve mesh-aided repair, with the importance of mesh functionalization being highlighted. However, limited information exists on systemic comparisons of the underlying mechanisms with respect to functionalized strategies, which are fundamental throughout repair and regeneration. Herein, we address this topic and summarize the current literature by subdividing common functions of the mesh into biomechanics-matched, macrophage-mediated, integration-enhanced, anti-infective and antiadhesive characteristics for a comprehensive overview. In particular, we elaborate their effects separately with respect to host response and integration and discuss their respective advances, challenges and future directions toward a clinical alternative. From the vastly different approaches, we provide insight into the mechanisms involved and offer suggestions for personalized modifications of these emerging meshes.
Collapse
Affiliation(s)
- Zhengni Liu
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Nina Wei
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| | - Rui Tang
- Department of Hernia and Abdominal Wall Surgery, Shanghai East Hospital, TongJi University, 150 Ji Mo Road, Shanghai 200120, PR China
| |
Collapse
|
25
|
Zhang E, Yang J, Wang K, Song B, Zhu H, Han X, Shi Y, Yang C, Zeng Z, Cao Z. Biodegradable Zwitterionic Cream Gel for Effective Prevention of Postoperative Adhesion. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2009431. [PMID: 33708034 PMCID: PMC7942753 DOI: 10.1002/adfm.202009431] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 06/12/2023]
Abstract
Postoperative peritoneal adhesions were frequent complications for almost any types of abdominal and pelvic surgery. This led to numerous medical problems and huge financial burden to the patients. Current anti-adhesion strategies focused mostly on physical barriers including films and hydrogels. However, they can only alleviate or reduce adhesions to certain level and their applying processes were far from ideal. This work reported the development of a biodegradable zwitterionic cream gel presenting a series of characters for an idea anti-adhesion material, including unique injectable yet malleable and self-supporting properties, which enabled an instant topical application, no curing, waiting or suturing, no hemostasis requirement, protein/cell resistance and biodegradability. The cream gel showed a major advancement in anti-adhesion efficacy by completely and reliably preventing a primary and a more severe recurrent adhesion in rat models.
Collapse
Affiliation(s)
- Ershuai Zhang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Jianhai Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Ke Wang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Boyi Song
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Hui Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Xiangfei Han
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Yuanjie Shi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Chengbiao Yang
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Zhipeng Zeng
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| | - Zhiqiang Cao
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, 48202, USA
| |
Collapse
|
26
|
Zhao J, Huang C, Zhu J, Zhu J, Yuan R, Zhu Z. Efficacy and safety of Seprafilm for preventing intestinal obstruction after gastrointestinal neoplasms surgery: a systematic review and meta-analysis. Acta Chir Belg 2021; 121:1-15. [PMID: 33459577 DOI: 10.1080/00015458.2020.1871286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE It was controversial that hyaluronate-carboxy-methylcellulose-based membrane (Seprafilm) could prevent intestinal obstruction after gastrointestinal neoplasms operation. This study aimed to evaluate the efficacy and safety of Seprafilm in preventing postoperative intestinal obstruction of gastrointestinal neoplasms patients. METHODS A systematic research of multiple databases was performed to identify relevant studies, and the studies satisfying the inclusion criteria were included. Risk ratio (RR), weighted mean difference (WMD), and 95% confidence intervals were calculated using RevMan 5.3. RESULTS 2937 patients from 10 studies who were enrolled in this meta-analysis were divided into the Seprafilm group (n = 1334) and the control group (n = 1603). The Seprafilm group had lower incidence of intestinal obstruction (RR, 0.52; 95% CI, 0.38-0.70; p < .0001), reoperation rates due to intestinal obstruction (RR, 0.48; 95% CI, 0.28 - 0.80; p = .005), incidence of overall complications (RR, 0.77; 95% CI, 0.61-0.97; p = .03) and higher serum creatinine on postoperative day 5 (WMD, 0.15; 95% CI, 0.05-0.25; p = .003). There were no differences regarding time to intestinal obstruction after operation, aspartate aminotransferase, alanine aminotransferase, blood urea nitrogen, white blood cell count results on day 5 and 7, serum creatinine on day 7, hospital stay, and incidence of intra-abdominal infection, wound infection, anastomotic leakage between the 2 groups. CONCLUSIONS This meta-analysis provided valuable evidence-based support for the efficacy and safety of Seprafilm in preventing postoperative intestinal obstruction of gastrointestinal neoplasms patients. However, more multicenter randomized controlled trials from different countries are needed.
Collapse
Affiliation(s)
- Jiefeng Zhao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jisheng Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jinfeng Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rongfa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhengming Zhu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
27
|
Chandel AKS, Shimizu A, Hasegawa K, Ito T. Advancement of Biomaterial-Based Postoperative Adhesion Barriers. Macromol Biosci 2021; 21:e2000395. [PMID: 33463888 DOI: 10.1002/mabi.202000395] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/28/2020] [Indexed: 01/16/2023]
Abstract
Postoperative peritoneal adhesion (PPA) is a prevalent incidence that generally happens during the healing process of traumatized tissues. It causes multiple severe complications such as intestinal obstruction, chronic abdominal pain, and female infertility. To prevent PPA, several antiadhesion materials and drug delivery systems composed of biomaterials are used clinically, and clinical antiadhesive is one of the important applications nowadays. In addition to several commercially available materials, like film, spray, injectable hydrogel, powder, or solution type have been energetically studied based on natural and synthetic biomaterials such as alginate, hyaluronan, cellulose, starch, chondroitin sulfate, polyethylene glycol, polylactic acid, etc. Moreover, many kinds of animal adhesion models, such as cecum abrasion models and unitary horn models, are developed to evaluate new materials' efficacy. A new animal adhesion model based on hepatectomy and conventional animal adhesion models is recently developed and a new adhesion barrier by this new model is also developed. In summary, many kinds of materials and animal models are studied; thus, it is quite important to overview this field's current progress. Here, PPA is reviewed in terms of the species of biomaterials and animal models and several problems to be solved to develop better antiadhesion materials in the future are discussed.
Collapse
Affiliation(s)
- Arvind K Singh Chandel
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Shimizu
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
28
|
Hirai S, Phanthong P, Okubo H, Yao S. Enhancement of the Surface Properties on Polypropylene Film Using Side-Chain Crystalline Block Copolymers. Polymers (Basel) 2020; 12:E2736. [PMID: 33218102 PMCID: PMC7698896 DOI: 10.3390/polym12112736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022] Open
Abstract
The consumption of polypropylene (PP) has significantly increased over that of other materials because of its light weight, easy molding, and high mechanical strength. However, the applications of PP are limited, owing to the lack of surface properties, especially with respect to adhesive properties and hydrophilicity. In this study, we developed a surface modification method for enhancing the adhesive properties and hydrophilicity on the PP surface using a side-chain crystalline block copolymer (SCCBC). This method was simple and involved the dipping of a PP film in a diluted SCCBC solution. The optimized modification conditions for enhancing the adhesive properties of PP were investigated. The results revealed that the adhesion strength of PP modified with the SCCBC of behenyl acrylate and 2-(tert-butylamino)ethyl methacrylate was enhanced to 2.00 N/mm (T-peel test) and 1.05 N/mm2 (tensile shear test). In addition, the hydrophilicity of PP modified with the SCCBC of behenyl acrylate and di(ethylene glycol)ethyl ether acrylate was enhanced to a water contact angle of 69 ± 4°. Surface analysis was also performed to elucidate a plausible mechanism for PP modification by the SCCBCs. This surface modification method is facile and enhances desirable properties for the wide application of PP.
Collapse
Affiliation(s)
- Sho Hirai
- Research Institute for the Creation of Functional and Structural Materials, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan; (P.P.); (H.O.); (S.Y.)
| | | | | | | |
Collapse
|
29
|
Peritoneal adhesions: Occurrence, prevention and experimental models. Acta Biomater 2020; 116:84-104. [PMID: 32871282 DOI: 10.1016/j.actbio.2020.08.036] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
Peritoneal adhesions (PA) are a postoperative syndrome with high incidence rate, which can cause chronic abdominal pain, intestinal obstruction, and female infertility. Previous studies have identified that PA are caused by a disordered feedback of blood coagulation, inflammation, and fibrinolysis. Monocytes, macrophages, fibroblasts, and mesothelial cells are involved in this process, and secreted signaling molecules, such as tumor necrosis factor alpha (TNF-α), interleukin-10 (IL-10), tissue plasminogen activator (tPA), and type 1 plasminogen activator inhibitor (PAI-1), play a key role in PA development. There have been many attempts to prevent PA formation by anti-PA drugs, barriers, and other therapeutic methods, but their effectiveness has not been widely accepted. Treatment by biomaterial-based barriers is believed to be the most promising method to prevent PA formation in recent years. In this review, the pathogenesis, treatment approaches, and animal models of PA are summarized and discussed to understand the challenges faced in the biomaterial-based anti-PA treatments.
Collapse
|
30
|
Park H, Baek S, Kang H, Lee D. Biomaterials to Prevent Post-Operative Adhesion. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3056. [PMID: 32650529 PMCID: PMC7412384 DOI: 10.3390/ma13143056] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Surgery is performed to treat various diseases. During the process, the surgical site is healed through self-healing after surgery. Post-operative or tissue adhesion caused by unnecessary contact with the surgical site occurs during the normal healing process. In addition, it has been frequently found in patients who have undergone surgery, and severe adhesion can cause chronic pain and various complications. Therefore, anti-adhesion barriers have been developed using multiple biomaterials to prevent post-operative adhesion. Typically, anti-adhesion barriers are manufactured and sold in numerous forms, such as gels, solutions, and films, but there are no products that can completely prevent post-operative adhesion. These products are generally applied over the surgical site to physically block adhesion to other sites (organs). Many studies have recently been conducted to increase the anti-adhesion effects through various strategies. This article reviews recent research trends in anti-adhesion barriers.
Collapse
Affiliation(s)
- Heekyung Park
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea; (H.P.); (S.B.)
| | - Seungho Baek
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea; (H.P.); (S.B.)
| | - Hyun Kang
- Department of Anesthesiology and Pain Medicine, Chung-Ang University College of Medicine and Graduate School of Medicine, Seoul 06973, Korea
| | - Donghyun Lee
- Department of Biomedical Engineering, School of Integrative Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 06974, Korea; (H.P.); (S.B.)
| |
Collapse
|
31
|
Abstract
Shear-thinning hydrogels that utilize thiol-Michael chain-extension and free radical polymerization have a tunable stretchability.
Collapse
Affiliation(s)
- Dylan Karis
- Department of Chemistry
- University of Washington
- Seattle
- USA
| | | |
Collapse
|