1
|
Rollier FA, Muravev V, Kosinov N, Wissink T, Anastasiadou D, Ligt B, Barthe L, Costa Figueiredo M, Hensen EJM. Cu-Ag interactions in bimetallic Cu-Ag catalysts enhance C 2+ product formation during electrochemical CO reduction. JOURNAL OF MATERIALS CHEMISTRY. A 2025; 13:2285-2300. [PMID: 39679096 PMCID: PMC11639664 DOI: 10.1039/d4ta04263h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/05/2024] [Indexed: 12/17/2024]
Abstract
The electroreduction of CO (CORR) is a promising alternative to the direct CO2 electroreduction reaction (CO2RR) to produce C2+ products. Cu-based electrocatalysts enable the formation of C-C bonds, leading to various C2+ hydrocarbon and oxygenate products. Herein, we investigated how the composition of bimetallic Cu-Ag catalysts impacted the nature of the Cu-Ag interactions and the product distribution of the CORR, aiming to improve the selectivity to C2+ products. Cu-Ag catalysts containing 1-50 mol% Ag were prepared by sol-gel synthesis. A Ag content of 10 mol% of Ag (Cu0.9Ag0.1) was optimum with respect to increasing the C2+ product selectivity and suppressing H2 evolution. Operando X-ray absorption spectroscopy and quasi-in situ X-ray photoelectron spectroscopy demonstrated the complete reduction of CuO to Cu during CORR. Electron microscopy (EM) and in situ wide-angle X-ray scattering (WAXS) revealed substantial restructuring during reduction. EM imaging showed the formation of Ag-Cu core-shell structures in Cu0.9Ag0.1, while separate Cu and Ag particles were predominant at higher Ag content. In situ WAXS revealed the formation of a Cu-Ag nanoalloy phase in the bimetallic Cu-Ag samples. The optimum Cu0.9Ag0.1 sample contained more Cu-Ag nanoalloys than samples with a higher Ag content. The Cu-Ag interfaces between the Ag-core and the Cu-shell in the bimetallic particles are thought to host the nanoalloys. The optimum CORR performance for Cu0.9Ag0.1 is likely due to the enhanced Cu-Ag interactions, as confirmed by a sample prepared with the same surface composition by galvanic exchange.
Collapse
Affiliation(s)
- Floriane A Rollier
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Valery Muravev
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Tim Wissink
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Dimitra Anastasiadou
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Bianca Ligt
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Laurent Barthe
- Synchrotron SOLEIL L'Orme des Merisiers, Départementale 128 91190 Saint-Aubin France
| | - Marta Costa Figueiredo
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
2
|
Zhang Z, Fang Q, Yang X, Zuo S, Cheng T, Yamauchi Y, Tang J. Additives-Modified Electrodeposition for Synthesis of Hydrophobic Cu/Cu 2O with Ag Single Atoms to Drive CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2411498. [PMID: 39797468 DOI: 10.1002/adma.202411498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/27/2024] [Indexed: 01/13/2025]
Abstract
Copper-based electrocatalysts are recognized as crucial catalysts for CO2 electroreduction into multi-carbon products. However, achieving copper-based electrocatalysts with adjustable valences via one-step facile synthesis remains a challenge. In this study, Cu/Cu2O heterostructure is constructed by adjusting the anion species of the Cu ions-containing electrolyte during electrodeposition synthesis. Then, Cu/Cu2O with tuned nanoarchitectures ranging from dendrites to polyhedrons is achieved by introducing transition metal ions as additives, leading to an adjustable interfacial microenvironment for CO2/H2O adsorption on the Cu/Cu2O electrodes. Additionally, the polyhedral Cu/Cu2O catalysts are used as templates for depositing Ag single atoms (AgSA), which are known as synergistic active sites for promoting *CO to *COH toward C2+ products. The prepared AgSA-Cu/Cu2O catalyst is evaluated in a flow cell and exhibited a FEC2+ of 90.2% and a partial current density (jc2+) of 426.6 mA cm-2 for CO2 electroreduction. As revealed by in situ Raman spectra and density functional theory calculations, the introduction of Ag single atoms slows down the reduction of Cu+ during CO2 electroreduction, especially at a high current density. This work provides a promising paradigm for diverse control of the compositions and hydrophobicity of Cu-based catalysts for selective CO2 electroreduction to C2+ products.
Collapse
Affiliation(s)
- Zining Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Qi Fang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xue Yang
- Sinopec Research Institute of Petroleum Processing Co. LTD, Beijing, 100083, China
| | - Shouwei Zuo
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Tao Cheng
- Sinopec Research Institute of Petroleum Processing Co. LTD, Beijing, 100083, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Jing Tang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
- Institute of Eco-Chongming, Shanghai, 202162, China
| |
Collapse
|
3
|
Sikdar N. Electrochemical CO 2 Reduction Reaction: Comprehensive Strategic Approaches to Catalyst Design for Selective Liquid Products Formation. Chemistry 2024; 30:e202402477. [PMID: 39115935 DOI: 10.1002/chem.202402477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
The escalating concern regarding the release of CO2 into the atmosphere poses a significant threat to the contemporary efforts in mitigating climate change. Amidst a multitude of strategies for curtailing CO2 emissions, the electrochemical CO2 reduction presents a promising avenue for transforming CO2 molecules into a diverse array of valuable gaseous and liquid products, such as CO, CH3OH, CH4, HCO2H, C2H4, C2H5OH, CH3CO2H, 1-C3H7OH and others. The mechanistic investigations of gaseous products (e. g. CO, CH4, C2H4, C2H6 and others) broadly covered in the literature. There is a noticeable gap in the literature when it comes to a comprehensive summary exclusively dedicated to coherent roadmap for the designing principles for a selective catalyst all possible liquid products (such as CH3OH, C2H5OH, 1-C3H7OH, 2-C3H7OH, 1-C4H9OH, as well as other C3-C4 products like methylglyoxal and 2,3-furandiol, in addition to HCO2H, AcOH, oxalic acid and others), selectively converted by CO2 reduction. This entails a meticulous analysis to justify these approaches and a thorough exploration of the correlation between materials and their electrocatalytic properties. Furthermore, these insightful discussions illuminate the future prospects for practical applications, a facet not exhaustively examined in prior reviews.
Collapse
Affiliation(s)
- Nivedita Sikdar
- Department of Chemistry, GITAM (Gandhi Institute of Technology and Management) School of Science Hyderabad, Telengana, 502329, India
| |
Collapse
|
4
|
Shi Q, Zhang B, Wu Z, Yang D, Wu H, Shi J, Jiang Z. Cascade Catalytic Systems for Converting CO 2 into C 2+ Products. CHEMSUSCHEM 2024:e202401916. [PMID: 39564785 DOI: 10.1002/cssc.202401916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The excessive emission and continuous accumulation of CO2 have precipitated serious social and environmental issues. However, CO2 can also serve as an abundant, inexpensive, and non-toxic renewable C1 carbon source for synthetic reactions. To achieve carbon neutrality and recycling, it is crucial to convert CO2 into value-added products through chemical pathways. Multi-carbon (C2+) products, compared to C1 products, offer a broader range of applications and higher economic returns. Despite this, converting CO2 into C2+ products is difficult due to its stability and the high energy required for C-C coupling. Cascade catalytic reactions offer a solution by coordinating active components, promoting intermediate transfers, and facilitating further transformations. This method lowers energy consumption. Recent advancements in cascade catalytic systems have allowed for significant progress in synthesizing C2+ products from CO2. This review highlights the features and advantages of cascade catalysis strategies, explores the synergistic effects among active sites, and examines the mechanisms within these systems. It also outlines future prospects for CO2 cascade catalytic synthesis, offering a framework for efficient CO2 utilization and the development of next-generation catalytic systems.
Collapse
Affiliation(s)
- Qiaochu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Boyu Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhenhua Wu
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Dong Yang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Hong Wu
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiafu Shi
- School of Environmental Science & Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhongyi Jiang
- School of Chemical Engineering & Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
5
|
Xu Y, Zhao Y, Kochubei A, Lee CY, Wagner P, Chen Z, Jiang Y, Yan W, Wallace GG, Wang C. Copper/Polyaniline Interfaces Confined CO 2 Electroreduction for Selective Hydrocarbon Production. CHEMSUSCHEM 2024; 17:e202400209. [PMID: 38688856 DOI: 10.1002/cssc.202400209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Polyaniline (PANI) provides an attractive organic platform for CO2 electrochemical reduction due to the ability to adsorb CO2 molecules and in providing means to interact with metal nanostructures. In this work, a novel PANI supported copper catalyst has been developed by coupling the interfacial polymerization of PANI and Cu. The hybrid catalyst demonstrates excellent activity towards production of hydrocarbon products including CH4 and C2H4, compared with the use of bare Cu. A Faradaic efficiency of 71.8 % and a current density of 16.9 mA/cm2 were achieved at -0.86 V vs. RHE, in contrast to only 22.2 % and 1.0 mA/cm2 from the counterpart Cu catalysts. The remarkably enhanced catalytic performance of the hybrid PANI/Cu catalyst can be attributed to the synergistic interaction between the PANI underlayer and copper. The PANI favours the adsorption and binding of CO2 molecules via its nitrogen sites to form *CO intermediates, while the Cu/PANI interfaces confine the diffusion or desorption of the *CO intermediates favouring their further hydrogenation or carbon-carbon coupling to form hydrocarbon products. This work provides insights into the formation of hydrocarbon products on PANI-modified Cu catalysts, which may guide the development of conducting polymer-metal catalysts for CO2 electroreduction.
Collapse
Affiliation(s)
- Yeqing Xu
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Yong Zhao
- CSIRO Energy, 10 Murray Dwyer Circuit, 2304, Mayfield West, NSW, Australia
| | - Alena Kochubei
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Chong-Yong Lee
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Pawel Wagner
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Zhiqi Chen
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Yijiao Jiang
- School of Engineering, Macquarie University, 2109, Sydney, NSW, Australia
| | - Wei Yan
- Department of Environmental Science & Engineering, State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| | - Caiyun Wang
- Intelligent Polymer Research Institute, AIIM Facility, Faculty of Engineering and Information Science, University of Wollongong, 2500, North Wollongong, NSW, Australia
| |
Collapse
|
6
|
Fu J, Zhang H, Du H, Liu X, Lyu ZH, Jiang Z, Chen F, Ding L, Tang T, Zhu W, Su D, Ling C, Wang J, Hu JS. Unveiling the Interfacial Species Synergy in Promoting CO 2 Tandem Electrocatalysis in Near-Neutral Electrolyte. J Am Chem Soc 2024; 146:23625-23632. [PMID: 39120638 DOI: 10.1021/jacs.4c08844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The interfacial species-built local environments on Cu surfaces impact the CO2 electroreduction process significantly in producing value-added multicarbon (C2+) products. However, intricate interfacial dynamics leads to a challenge in understanding how these species affect the process. Herein, with ab initio molecular dynamics (AIMD) and finite element method (FEM) simulations, we reveal that the highly concentrated interfacial species, including the *CO, hydroxide, and K+, could synergistically promote the C-C coupling on the one-dimensional (1D) porous hollow structure regulated interfacial environment. The Cu-Ag tandem catalyst was then synthesized with the as-designed structure, exhibiting a high C2+ Faradaic efficiency of 76.0% with a partial current density of 380.0 mA cm-2 in near-neutral electrolytes. Furthermore, in situ Raman spectra validate that the 1D porous structure regulates the concentration of interfacial CO intermediates and ions to increase *CO coverage, local pH value, and ionic field, promoting the CO2-to-C2+ activity. These results provide insights into the design of practical ECR electrocatalysts by regulating interfacial species-induced local environments.
Collapse
Affiliation(s)
- Jiaju Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haona Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Huitong Du
- State Key Laboratory of Pollution Control and Resource Reuse, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiaozhi Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen-Hua Lyu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fanrong Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liang Ding
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tang Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Dong Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chongyi Ling
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Jin-Song Hu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ma D, Zhi C, Zhang Y, Chen J, Zhang Y, Shi JW. A Review on the Influence of Crystal Facets on the Product Selectivity of CO 2RR over Cu Metal Catalysts. ACS NANO 2024; 18:21714-21746. [PMID: 39126711 DOI: 10.1021/acsnano.4c05326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The electrocatalytic carbon dioxide reduction reaction (ECRR) is promising in converting environmentally harmful CO2 into useful chemicals, but the large-scale application of this technology is seriously limited by its low efficiency and selectivity. Cu-based electrocatalysts displayed attractive ability in converting CO2 to multiple products, and the product selectivity can be manipulated through various approaches. Among them, exposing specific crystal facets through crystal facet engineering has been proven to be highly effective in obtaining specific products and has attracted numerous researchers. However, to our knowledge, few reports have systematically summarized the relationship between the crystal facet control of Cu catalysts and the catalytic products. This review begins by outlining the general mechanism of CO2 electrocatalytic reduction on Cu-based catalysts, and then summarizes the preferences of low-index and high-index Cu facets regarding product selectivity and delves into the synergistic effects between facets (including different Cu facets and interactions between Cu and non-Cu facets) and their impact on CO2 reduction reaction (CO2RR). In addition, the study of the recently developed Cu single-atom catalysts in ECRR was also introduced. Finally, we provide an outlook on the development of high-performance Cu-based catalysts for applications in CO2RR. The purpose of this review is to provide a clear vein and meaningful guidance for the following studies over the crystal facet control of Cu-based electrocatalysts.
Collapse
Affiliation(s)
- Dandan Ma
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanqi Zhi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yimeng Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiantao Chen
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yi Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Wen Shi
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Wang Z, Li Y, Ma Z, Wang D, Ren X. Strategies for overcoming challenges in selective electrochemical CO 2 conversion to ethanol. iScience 2024; 27:110437. [PMID: 39114499 PMCID: PMC11304069 DOI: 10.1016/j.isci.2024.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
The electrochemical conversion of carbon dioxide (CO2) to valuable chemicals is gaining significant attention as a pragmatic solution for achieving carbon neutrality and storing renewable energy in a usable form. Recent research increasingly focuses on designing electrocatalysts that specifically convert CO2 into ethanol, a desirable product due to its high-energy density, ease of storage, and portability. However, achieving high-efficiency ethanol production remains a challenge compared to ethylene (a competing product with a similar electron configuration). Existing electrocatalytic systems often suffer from limitations such as low energy efficiency, poor stability, and inadequate selectivity toward ethanol. Inspired by recent progress in the field, this review explores fundamental principles and material advancements in CO2 electroreduction, emphasizing strategies for ethanol production over ethylene. We discuss electrocatalyst design, reaction mechanisms, challenges, and future research directions. These advancements aim to bridge the gap between current research and industrialized applications of this technology.
Collapse
Affiliation(s)
- Zihong Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Yecheng Li
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Zhihao Ma
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Dazhuang Wang
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| | - Xiaodi Ren
- School of Chemistry and Materials Science, University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
9
|
Ai Y, Zhang K, Li J, Du X, Wang Y, Wu L, Zhang Z. Customizing pyridinic nitrogen coordination in Ni-N-C for electrocatalytic CO 2reduction towards CO. NANOTECHNOLOGY 2024; 35:395403. [PMID: 38959865 DOI: 10.1088/1361-6528/ad5e8b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
Nickel anchored N-doped carbon electrocatalysts (Ni-N-C) are rapidly developed for the electrochemical reduction reaction of carbon dioxide (CO2RR). However, the high-performanced Ni-N-C analogues design for CO2RR remains bewilderment, for the reason lacking of definite guidance for its structure-activity relationship. Herein, the correlation between the proportion of nitrogen species derived from various nitrogen sources and the CO2RR activity of Ni-N-C is investigated. The x-ray photoelectron spectroscopy (XPS) spectrum combined with the CO2RR performance results show that pyridinic-N content has a positive correlation with CO2RR activity. Moreover, density functional theory (DFT) demonstrates that pyridinic-N coordinated Ni-N4sites offers optimized free energy and favorable selectivity towards CO2RR compared with pyrrolic-N. Accordingly, Ni-Na-C with highest pyridinic-N content (ammonia as nitrogen source) performs superior CO2RR activity, with the maximum carbon monoxide faradaic efficiency (FECO) of 99.8% at -0.88 V vs. RHE and the FECOsurpassing 95% within potential ranging of -0.88 to -1.38 V vs. RHE. The building of this parameter for CO2RR activity of Ni-N-C give instructive forecast for low-cost and highly active CO2RR electrocatalysts.
Collapse
Affiliation(s)
- Ying Ai
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Kai Zhang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Jingde Li
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Xiaohang Du
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Yanji Wang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Lanlan Wu
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
| | - Zisheng Zhang
- Hebei Provincial Key Laboratory of Green Chemical Technology and High Efficient Energy Saving, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa ON K1N 6N5, Canada
| |
Collapse
|
10
|
Plaza-Mayoral E, Okatenko V, Dalby KN, Falsig H, Chorkendorff I, Sebastián-Pascual P, Escudero-Escribano M. Composition effects of electrodeposited Cu-Ag nanostructured electrocatalysts for CO 2 reduction. iScience 2024; 27:109933. [PMID: 38812548 PMCID: PMC11134916 DOI: 10.1016/j.isci.2024.109933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 05/05/2024] [Indexed: 05/31/2024] Open
Abstract
The electrochemical carbon dioxide reduction (CO2RR) on Cu-based catalysts is a promising strategy to store renewable electricity and produce valuable C2+ chemicals. We investigate the CO2RR on Cu-Ag nanostructures that have been electrodeposited in a green choline chloride and urea deep eutectic solvent (DES). We determine the electrochemically active surface area (ECSA) using lead underpotential deposition (UPD) to investigate the CO2RR intrinsic activity and selectivity. We show that the addition of Ag on electrodeposited Cu primarily suppresses the production of hydrogen and methane. While the production of carbon monoxide slightly increases, the partial current of the total C2+ products does not considerably increase. Despite that the production rate of C2+ is similar on Cu and Cu-Ag, the addition of Ag enhances the formation of alcohols and oxygenates over ethylene. We highlight the potential of metal electrodeposition from DES as a sustainable strategy to develop bimetallic Cu-based nanocatalysts for CO2RR.
Collapse
Affiliation(s)
- Elena Plaza-Mayoral
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, CH-1950 Sion, Switzerland
| | - Kim N. Dalby
- Topsoe A/S, Haldor Topsøe Allé 1, DK-2800 Kgs, Lyngby, Denmark
| | - Hanne Falsig
- Topsoe A/S, Haldor Topsøe Allé 1, DK-2800 Kgs, Lyngby, Denmark
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark, Fysikvej, DK-2800 Lyngby, Denmark
| | - Paula Sebastián-Pascual
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - María Escudero-Escribano
- Center for High Entropy Alloy Catalysis, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, UAB, 08193 Bellaterra, Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Hu Y, Zhu J, Wang X, Zheng X, Zhang X, Wu C, Zhang J, Fu C, Sheng T, Wu Z. Mo 4+-Doped CuS Nanosheet-Assembled Hollow Spheres for CO 2 Electroreduction to Ethanol in a Flow Cell. Inorg Chem 2024; 63:9983-9991. [PMID: 38757519 DOI: 10.1021/acs.inorgchem.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) to ethanol has been widely researched for potential commercial application. However, it still faces limited selectivity at a large current density. Herein, Mo4+-doped CuS nanosheet-assembled hollow spheres are constructed to address this issue. Mo4+ ion doping modifies the local electronic environments and diversifies the binding sites of CuS, which increases the coverage of linear *COL and produces bridge *COB for subsequent *COL-*COH coupling toward ethanol production. The optimal Mo9.0%-CuS can electrocatalyze CO2 to ethanol with a faradaic efficiency of 67.5% and a partial current density of 186.5 mA cm-2 at -0.6 V in a flow cell. This work clarifies that doping high valence transition metal ions into Cu-based sulfides can regulate the coverage and configuration of related intermediates for ethanol production during the CO2RR in a flow cell.
Collapse
Affiliation(s)
- Yan Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jiahui Zhu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xiangyu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xinyue Zheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xingyue Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Chunhua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jingqi Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Cong Fu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Tian Sheng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Zhengcui Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
12
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
13
|
Kang Y, João SM, Lin R, Liu K, Zhu L, Fu J, Cheong WCM, Lee S, Frank K, Nickel B, Liu M, Lischner J, Cortés E. Effect of crystal facets in plasmonic catalysis. Nat Commun 2024; 15:3923. [PMID: 38724494 PMCID: PMC11519563 DOI: 10.1038/s41467-024-47994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 04/17/2024] [Indexed: 10/30/2024] Open
Abstract
While the role of crystal facets is well known in traditional heterogeneous catalysis, this effect has not yet been thoroughly studied in plasmon-assisted catalysis, where attention has primarily focused on plasmon-derived mechanisms. Here, we investigate plasmon-assisted electrocatalytic CO2 reduction using different shapes of plasmonic Au nanoparticles - nanocube (NC), rhombic dodecahedron (RD), and octahedron (OC) - exposing {100}, {110}, and {111} facets, respectively. Upon plasmon excitation, Au OCs doubled CO Faradaic efficiency (FECO) and tripled CO partial current density (jCO) compared to a dark condition, with NCs also improving under illumination. In contrast, Au RDs maintained consistent performance irrespective of light exposure, suggesting minimal influence of light on the reaction. Temperature experiments ruled out heat as the main factor to explain such differences. Atomistic simulations and electromagnetic modeling revealed higher hot carrier abundance and electric field enhancement on Au OCs and NCs than RDs. These effects now dominate the reaction landscape over the crystal facets, thus shifting the reaction sites when comparing dark and plasmon-activated processes. Plasmon-assisted H2 evolution reaction experiments also support these findings. The dominance of low-coordinated sites over facets in plasmonic catalysis suggests key insights for designing efficient photocatalysts for energy conversion and carbon neutralization.
Collapse
Affiliation(s)
- Yicui Kang
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Simão M João
- Departments of Materials and Physics and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, UK
| | - Rui Lin
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany.
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, 410083, Changsha, China
| | - Li Zhu
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, 410083, Changsha, China
| | - Weng-Chon Max Cheong
- Macao Institute of Materials Science and Engineering (MIMSE), Faculty of Innovation Engineering (FIE), University of Science and Technology, Macau, SAR 999078, P. R. China
| | - Seunghoon Lee
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany
- Department of Chemistry, Dong-A University, Busan, 49315, South Korea
- Department of Chemical Engineering (BK21 FOUR Graduate Program), Dong-A University, Busan, 49315, South Korea
| | - Kilian Frank
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Bert Nickel
- Faculty of Physics and Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, Geschwister-Scholl-Platz 1, 80539, München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics and Electronics, Central South University, 410083, Changsha, China
| | - Johannes Lischner
- Departments of Materials and Physics and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London, UK.
| | - Emiliano Cortés
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany.
| |
Collapse
|
14
|
Toleukhanova S, Shen TH, Chang C, Swathilakshmi S, Bottinelli Montandon T, Tileli V. Graphene Electrode for Studying CO 2 Electroreduction Nanocatalysts under Realistic Conditions in Microcells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311133. [PMID: 38217533 DOI: 10.1002/adma.202311133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/28/2023] [Indexed: 01/15/2024]
Abstract
The ability to resolve the dynamic evolution of electrocatalytically induced processes with electrochemical liquid-phase electron microscopy (EM) is limited by the microcell configuration. Herein, a free-standing tri-layer graphene is integrated as a membrane and electrode material into the electrochemical chip and its suitability as a substrate electrode at the high cathodic potentials required for CO2 electroreduction (CO2ER) is evaluated. The three-layer stacked graphene is transferred onto an in-house fabricated single-working electrode chip for use with bulk-like reference and counter electrodes to facilitate evaluation of its effectiveness. Electrochemical measurements show that the graphene working electrode exhibits a wider inert cathodic potential range than the conventional glassy carbon electrode while achieving good charge transfer properties for nanocatalytic redox reactions. Operando scanning electron microscopy studies clearly demonstrate the improvement in spatial resolution but reveal a synergistic effect of the electron beam and the applied potential that limits the stability time window of the graphene-based electrochemical chip. By optimizing the operating conditions, in situ monitoring of Cu nanocube degradation is achieved at the CO2ER potential of -1.1 V versus RHE. Thus, this improved microcell configuration allows EM observation of catalytic processes at potentials relevant to real systems.
Collapse
Affiliation(s)
- Saltanat Toleukhanova
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Tzu-Hsien Shen
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | - Chen Chang
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| | | | | | - Vasiliki Tileli
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
| |
Collapse
|
15
|
Chen C, Jin H, Wang P, Sun X, Jaroniec M, Zheng Y, Qiao SZ. Local reaction environment in electrocatalysis. Chem Soc Rev 2024; 53:2022-2055. [PMID: 38204405 DOI: 10.1039/d3cs00669g] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Beyond conventional electrocatalyst engineering, recent studies have unveiled the effectiveness of manipulating the local reaction environment in enhancing the performance of electrocatalytic reactions. The general principles and strategies of local environmental engineering for different electrocatalytic processes have been extensively investigated. This review provides a critical appraisal of the recent advancements in local reaction environment engineering, aiming to comprehensively assess this emerging field. It presents the interactions among surface structure, ions distribution and local electric field in relation to the local reaction environment. Useful protocols such as the interfacial reactant concentration, mass transport rate, adsorption/desorption behaviors, and binding energy are in-depth discussed toward modifying the local reaction environment. Meanwhile, electrode physical structures and reaction cell configurations are viable optimization methods in engineering local reaction environments. In combination with operando investigation techniques, we conclude that rational modifications of the local reaction environment can significantly enhance various electrocatalytic processes by optimizing the thermodynamic and kinetic properties of the reaction interface. We also outline future research directions to attain a comprehensive understanding and effective modulation of the local reaction environment.
Collapse
Affiliation(s)
- Chaojie Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huanyu Jin
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Pengtang Wang
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaogang Sun
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry & Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, OH 44242, USA
| | - Yao Zheng
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
16
|
Hua Y, Zhu C, Zhang L, Dong F. Designing Surface and Interface Structures of Copper-Based Catalysts for Enhanced Electrochemical Reduction of CO 2 to Alcohols. MATERIALS (BASEL, SWITZERLAND) 2024; 17:600. [PMID: 38592003 PMCID: PMC10856707 DOI: 10.3390/ma17030600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 04/10/2024]
Abstract
Electrochemical CO2 reduction (ECR) has emerged as a promising solution to address both the greenhouse effect caused by CO2 emissions and the energy shortage resulting from the depletion of nonrenewable fossil fuels. The production of multicarbon (C2+) products via ECR, especially high-energy-density alcohols, is highly desirable for industrial applications. Copper (Cu) is the only metal that produces alcohols with appreciable efficiency and kinetic viability in aqueous solutions. However, poor product selectivity is the main technical problem for applying the ECR technology in alcohol production. Extensive research has resulted in the rational design of electrocatalyst architectures using various strategies. This design significantly affects the adsorption energetics of intermediates and the reaction pathways for alcohol production. In this review, we focus on the design of effective catalysts for ECR to alcohols, discussing fundamental principles, innovative strategies, and mechanism understanding. Furthermore, the challenges and prospects in utilizing Cu-based materials for alcohol production via ECR are discussed.
Collapse
Affiliation(s)
- Yanbo Hua
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University Shanghai, Shanghai 200438, China
| | - Chenyuan Zhu
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
| | - Liming Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University Shanghai, Shanghai 200438, China
| | - Fan Dong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313001, China
- Research Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
17
|
Liu M, Wang Q, Luo T, Herran M, Cao X, Liao W, Zhu L, Li H, Stefancu A, Lu YR, Chan TS, Pensa E, Ma C, Zhang S, Xiao R, Cortés E. Potential Alignment in Tandem Catalysts Enhances CO 2-to-C 2H 4 Conversion Efficiencies. J Am Chem Soc 2024; 146:468-475. [PMID: 38150583 PMCID: PMC10785799 DOI: 10.1021/jacs.3c09632] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
The in-tandem catalyst holds great promise for addressing the limitation of low *CO coverage on Cu-based materials for selective C2H4 generation during CO2 electroreduction. However, the potential mismatch between the CO-formation catalyst and the favorable C-C coupling Cu catalyst represents a bottleneck in these types of electrocatalysts, resulting in low tandem efficiencies. In this study, we propose a robust solution to this problem by introducing a wide-CO generation-potential window nickel single atom catalyst (Ni SAC) supported on a Cu catalyst. The selection of Ni SAC was based on theoretical calculations, and its excellent performance was further confirmed by using in situ IR spectroscopy. The facilitated carbon dimerization in our tandem catalyst led to a ∼370 mA/cm2 partial current density of C2H4, corresponding to a faradic efficiency of ∼62%. This performance remained stable and consistent for at least ∼14 h at a high current density of 500 mA/cm2 in a flow-cell reactor, outperforming most tandem catalysts reported so far.
Collapse
Affiliation(s)
- Min Liu
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Qiyou Wang
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Tao Luo
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Matias Herran
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Xueying Cao
- College
of Materials Science and Engineering, Linyi
University, Linyi 276000, Shandong, China
| | - Wanru Liao
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Li Zhu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Hongmei Li
- Hunan
Joint International Research Center for Carbon Dioxide Resource Utilization,
State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, Changsha 410083, Hunan, China
| | - Andrei Stefancu
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Ying-Rui Lu
- National
Synchrotron Radiation Research Center, 30092 Hsinchu, Taiwan
| | - Ting-Shan Chan
- National
Synchrotron Radiation Research Center, 30092 Hsinchu, Taiwan
| | - Evangelina Pensa
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| | - Chao Ma
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Shiguo Zhang
- College of
Materials Science and Engineering, Hunan
University, Changsha 410082, China
| | - Ruiyang Xiao
- Institute
of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Emiliano Cortés
- Nanoinstitute
Munich, Faculty of Physics, Ludwig-Maximilians-Universität
München, 80539 München, Germany
| |
Collapse
|
18
|
Zi X, Zhou Y, Zhu L, Chen Q, Tan Y, Wang X, Sayed M, Pensa E, Geioushy RA, Liu K, Fu J, Cortés E, Liu M. Breaking K + Concentration Limit on Cu Nanoneedles for Acidic Electrocatalytic CO 2 Reduction to Multi-Carbon Products. Angew Chem Int Ed Engl 2023; 62:e202309351. [PMID: 37639659 DOI: 10.1002/anie.202309351] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/14/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023]
Abstract
Electrocatalytic CO2 reduction reaction (CO2 RR) to multi-carbon products (C2+ ) in acidic electrolyte is one of the most advanced routes for tackling our current climate and energy crisis. However, the competing hydrogen evolution reaction (HER) and the poor selectivity towards the valuable C2+ products are the major obstacles for the upscaling of these technologies. High local potassium ions (K+ ) concentration at the cathode's surface can inhibit proton-diffusion and accelerate the desirable carbon-carbon (C-C) coupling process. However, the solubility limit of potassium salts in bulk solution constrains the maximum achievable K+ concentration at the reaction sites and thus the overall acidic CO2 RR performance of most electrocatalysts. In this work, we demonstrate that Cu nanoneedles induce ultrahigh local K+ concentrations (4.22 M) - thus breaking the K+ solubility limit (3.5 M) - which enables a highly efficient CO2 RR in 3 M KCl at pH=1. As a result, a Faradaic efficiency of 90.69±2.15 % for C2+ (FEC2+ ) can be achieved at 1400 mA.cm-2 , simultaneous with a single pass carbon efficiency (SPCE) of 25.49±0.82 % at a CO2 flow rate of 7 sccm.
Collapse
Affiliation(s)
- Xin Zi
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yajiao Zhou
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Li Zhu
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Qin Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yao Tan
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Xiqing Wang
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Mahmoud Sayed
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Evangelina Pensa
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Ramadan A Geioushy
- Central Metallurgical Research and Development Institute, CMRDI P.O. Box: 87, Helwan, 11421, Cairo, Egypt
| | - Kang Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Junwei Fu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Emiliano Cortés
- Nanoinstitut München, Fakultät für Physik, Ludwig-Maximilians-Universität München, 80539, München, Germany
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, School of Physics, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
19
|
Liu J, Yu K, Qiao Z, Zhu Q, Zhang H, Jiang J. Integration of Cobalt Phthalocyanine, Acetylene Black and Cu 2 O Nanocubes for Efficient Electroreduction of CO 2 to C 2 H 4. CHEMSUSCHEM 2023; 16:e202300601. [PMID: 37488969 DOI: 10.1002/cssc.202300601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Suppressing side reactions and simultaneously enriching key intermediates during CO2 reduction reaction (CO2 RR) has been a challenge. Here, we propose a tandem catalyst (Cu2 O NCs-C-Copc) consisting of acetylene black, cobalt phthalocyanine (Copc) and cuprous oxide nanocubes (Cu2 O NCs) for efficient CO2 -to-ethylene conversion. Density-functional theory (DFT) calculation combined with experimental verification demonstrated that Copc can provide abundant CO to nearby copper sites while acetylene black successfully reduces the formation energies of key intermediates, leading to enhanced C2 H4 selectivity. X-ray photoelectron spectroscopy (XPS) and potentiostatic tests indicated that the catalytic stability of Cu2 O NCs-C-Copc was significantly enhanced compared with Cu2 O NCs. Finally, the industrial application prospect of the catalyst was evaluated using gas diffusion electrolyzers. TheF E C 2 H 4 ${{\rm { F}}{{\rm { E}}}_{{{\rm { C}}}_{{\rm { 2}}}{{\rm { H}}}_{{\rm { 4}}}}}$ of Cu2 O NCs-C-Copc can reach to 58.4 % at -1.1 V vs. RHE in 0.1 M KHCO3 and 70.3 % at -0.76 V vs. RHE in 1.0 M KOH. This study sheds new light on the design and development of highly efficient CO2 RR tandem catalytic systems.
Collapse
Affiliation(s)
- Jilin Liu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Kai Yu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Zhiyuan Qiao
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Qianlong Zhu
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Hong Zhang
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| | - Jie Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, P.R. China
- School of Environment, School of Marine Science and Technology (Weihai), Harbin Institute of Technology Harbin, Heilongjiang, 150090, P.R. China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P.R. China
| |
Collapse
|
20
|
Yan T, Chen X, Kumari L, Lin J, Li M, Fan Q, Chi H, Meyer TJ, Zhang S, Ma X. Multiscale CO 2 Electrocatalysis to C 2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem Rev 2023; 123:10530-10583. [PMID: 37589482 DOI: 10.1021/acs.chemrev.2c00514] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Electrosynthesis of value-added chemicals, directly from CO2, could foster achievement of carbon neutral through an alternative electrical approach to the energy-intensive thermochemical industry for carbon utilization. Progress in this area, based on electrogeneration of multicarbon products through CO2 electroreduction, however, lags far behind that for C1 products. Reaction routes are complicated and kinetics are slow with scale up to the high levels required for commercialization, posing significant problems. In this review, we identify and summarize state-of-art progress in multicarbon synthesis with a multiscale perspective and discuss current hurdles to be resolved for multicarbon generation from CO2 reduction including atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes, and macroscale electrolyzers with guidelines for future research. The review ends with a cross-scale perspective that links discrepancies between different approaches with extensions to performance and stability issues that arise from extensions to an industrial environment.
Collapse
Affiliation(s)
- Tianxiang Yan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyi Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Lata Kumari
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianlong Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Minglu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qun Fan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Haoyuan Chi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Thomas J Meyer
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sheng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Centre of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
21
|
Ling N, Zhang J, Wang M, Wang Z, Mi Z, Bin Dolmanan S, Zhang M, Wang B, Ru Leow W, Zhang J, Lum Y. Acidic Media Impedes Tandem Catalysis Reaction Pathways in Electrochemical CO 2 Reduction. Angew Chem Int Ed Engl 2023; 62:e202308782. [PMID: 37522609 DOI: 10.1002/anie.202308782] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Indexed: 08/01/2023]
Abstract
Electrochemical CO2 reduction (CO2 R) in acidic media with Cu-based catalysts tends to suffer from lowered selectivity towards multicarbon products. This could in principle be mitigated using tandem catalysis, whereby the *CO coverage on Cu is increased by introducing a CO generating catalyst (e.g. Ag) in close proximity. Although this has seen significant success in neutral/alkaline media, here we report that such a strategy becomes impeded in acidic electrolyte. This was investigated through the co-reduction of 13 CO2 /12 CO mixtures using a series of Cu and CuAg catalysts. These experiments provide strong evidence for the occurrence of tandem catalysis in neutral media and its curtailment under acidic conditions. Density functional theory simulations suggest that the presence of H3 O+ weakens the *CO binding energy of Cu, preventing effective utilization of tandem-supplied CO. Our findings also provide other unanticipated insights into the tandem catalysis reaction pathway and important design considerations for effective CO2 R in acidic media.
Collapse
Affiliation(s)
- Ning Ling
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
| | - Jiguang Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Meng Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Zhen Wang
- Department of Physics and Astronomy, University of California, Irvine, Irvine, CA, 92697, USA
| | - Ziyu Mi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Republic of Singapore
| | - Surani Bin Dolmanan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Mingsheng Zhang
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| | - Bingqing Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, 627833, Republic of Singapore
| | - Jia Zhang
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Republic of Singapore
| | - Yanwei Lum
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Republic of Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Republic of Singapore
| |
Collapse
|
22
|
Hu J, Zhou M, Li K, Yao A, Wang Y, Zhu Q, Zhou Y, Huang L, Pei Y, Du Y, Jin S, Zhu M. Evolution of Electrocatalytic CO 2 Reduction Activity Induced by Charge Segregation in Atomically Precise AuAg Nanoclusters Based on Icosahedral M 13 Unit 3D Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301357. [PMID: 37127865 DOI: 10.1002/smll.202301357] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2 RR) is investigated by using a range of clusters (Au8 Ag55 , Au8 Ag57 , Au12 Ag60 ) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8 Ag55 exhibits the best CO2 RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8 Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.
Collapse
Affiliation(s)
- Jiashen Hu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manman Zhou
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Aimin Yao
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yan Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Qingtao Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yanting Zhou
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Liu Huang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Shan Jin
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
23
|
Yu F, Liu X, Liao L, Xia G, Wang H. Multilayer-Cavity Tandem Catalyst for Profiling Sequentially Coupling of Intermediate CO in Electrocatalytic Reduction Reaction of CO 2 to Multi-Carbon Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301558. [PMID: 37118852 DOI: 10.1002/smll.202301558] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Electrochemical CO2 reduction reaction (CO2 RR) is an effective approach to address CO2 emission, promote recycling, and synthesize high-value multi-carbon (C2+ ) chemicals for storing renewable electricity in the long-term. The construction of multilayer-bound nanoreactors to achieve management of intermediate CO is a promising strategy for tandem to C2+ products. In this study, a series of Ag@Cu2 O nanoreactors consisting of an Ag-yolk and a multilayer confined Cu shell is designed to profile electrocatalytic CO2 RR reactions. The optimized Ag@Cu2 O-2 nanoreactor exhibits a 74% Faradaic efficiency during the C2+ pathway and remains stable for over 10 h at a bias current density of 100 mA cm-2 . Using the finite element method, this model determines that the certain volume of cavity in the Ag@Cu2 O nanoreactors facilitates on-site CO retention and that multilayers of Cu species favor CO capture. Density functional theory calculations illustrate that the biased generation of ethanol products may arise from the (100)/(111) interface of the Cu layer. In-depth explorations in multilayer-bound nanoreactors provide structural and interfacial guidance for sequential coupling of CO2 RR intermediates for efficient C2+ generation.
Collapse
Affiliation(s)
- Fuqing Yu
- Key laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Xian Liu
- Key laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
| | - Luliang Liao
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Guomin Xia
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| | - Hongming Wang
- Key laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, China
- Institute for Advanced Study, Nanchang University, Nanchang, 330031, China
| |
Collapse
|
24
|
Xia W, Xie Y, Jia S, Han S, Qi R, Chen T, Xing X, Yao T, Zhou D, Dong X, Zhai J, Li J, He J, Jiang D, Yamauchi Y, He M, Wu H, Han B. Adjacent Copper Single Atoms Promote C-C Coupling in Electrochemical CO 2 Reduction for the Efficient Conversion of Ethanol. J Am Chem Soc 2023; 145:17253-17264. [PMID: 37498730 DOI: 10.1021/jacs.3c04612] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) using renewable electricity is one of the most promising strategies for reaching the goal of carbon neutrality. Multicarbonous (C2+) products have broad applications, and ethanol is a valuable chemical and fuel. Many Cu-based catalysts have been reported to be efficient for the electrocatalytic CO2RR to C2+ products, but they generally offer limited selectivity and current density toward ethanol. Herein, we proposed a silica-mediated hydrogen-bonded organic framework (HOF)-templated approach to preparing ultrahigh-density Cu single-atom catalysts (SACs) on thin-walled N-doped carbon nanotubes (TWN). The content of Cu in the catalysts prepared by this method could be up to 13.35 wt %. It was found that the catalysts showed outstanding performance for the electrochemical CO2RR to ethanol, and the Faradaic efficiency (FE) of ethanol increased with the increase in Cu-N3 site density. The FE of ethanol over the catalysts with 13.35 wt % Cu could reach ∼81.9% with a partial current density of 35.6 mA cm-2 using an H-type cell, which is the best result for electrochemical CO2RR to ethanol to date. In addition, the catalyst could be stably used for more than 25 h. Experimental and density functional theory (DFT) studies revealed that the adjacent Cu-N3 active sites (one Cu atom coordinates with three N) were the active sites for the reaction, and their high density was crucial for the high FE of ethanol because the adjacent Cu-N3 sites with a short distance could promote the C-C coupling synergistically.
Collapse
Affiliation(s)
- Wei Xia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yijun Xie
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuaiqiang Jia
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shitao Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics Sciences, School of Physics and Electronic Science, East China Normal University, Shanghai 200062, China
| | - Tao Chen
- Research Center for Biomedical Optics and Molecular Imaging, Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing Municipality 100049, China
| | - Ting Yao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Dawei Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Xue Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jianxin Zhai
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jingjing Li
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Jianping He
- College of Materials Science and Technology, Jiangsu Key Laboratory of Electrochemical Energy-Storage Technologies, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Dong Jiang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai 202162, China
| |
Collapse
|
25
|
Goksu A, Li H, Liu J, Duyar MS. Nanoreactor Engineering Can Unlock New Possibilities for CO 2 Tandem Catalytic Conversion to C-C Coupled Products. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300004. [PMID: 37287598 PMCID: PMC10242537 DOI: 10.1002/gch2.202300004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Climate change is becoming increasingly more pronounced every day while the amount of greenhouse gases in the atmosphere continues to rise. CO2 reduction to valuable chemicals is an approach that has gathered substantial attention as a means to recycle these gases. Herein, some of the tandem catalysis approaches that can be used to achieve the transformation of CO2 to C-C coupled products are explored, focusing especially on tandem catalytic schemes where there is a big opportunity to improve performance by designing effective catalytic nanoreactors. Recent reviews have highlighted the technical challenges and opportunities for advancing tandem catalysis, especially highlighting the need for elucidating structure-activity relationships and mechanisms of reaction through theoretical and in situ/operando characterization techniques. In this review, the focus is on nanoreactor synthesis strategies as a critical research direction, and discusses these in the context of two main tandem pathways (CO-mediated pathway and Methanol-mediated pathway) to C-C coupled products.
Collapse
Affiliation(s)
- Ali Goksu
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| | - Haitao Li
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Jian Liu
- State Key Laboratory of CatalysisDalian Institute of Chemical PhysicsChinese Academy of Sciences457 Zhongshan RoadDalian116023China
| | - Melis S. Duyar
- School of Chemistry and Chemical EngineeringUniversity of SurreyGuildfordGU2 7XHUnited Kingdom
| |
Collapse
|
26
|
Gianolio D, Higham MD, Quesne MG, Aramini M, Xu R, Large AI, Held G, Velasco-Vélez JJ, Haevecker M, Knop-Gericke A, Genovese C, Ampelli C, Schuster ME, Perathoner S, Centi G, Catlow CRA, Arrigo R. Interfacial Chemistry in the Electrocatalytic Hydrogenation of CO 2 over C-Supported Cu-Based Systems. ACS Catal 2023; 13:5876-5895. [PMID: 37180964 PMCID: PMC10167656 DOI: 10.1021/acscatal.3c01288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 03/31/2023] [Indexed: 05/16/2023]
Abstract
Operando soft and hard X-ray spectroscopic techniques were used in combination with plane-wave density functional theory (DFT) simulations to rationalize the enhanced activities of Zn-containing Cu nanostructured electrocatalysts in the electrocatalytic CO2 hydrogenation reaction. We show that at a potential for CO2 hydrogenation, Zn is alloyed with Cu in the bulk of the nanoparticles with no metallic Zn segregated; at the interface, low reducible Cu(I)-O species are consumed. Additional spectroscopic features are observed, which are identified as various surface Cu(I) ligated species; these respond to the potential, revealing characteristic interfacial dynamics. Similar behavior was observed for the Fe-Cu system in its active state, confirming the general validity of this mechanism; however, the performance of this system deteriorates after successive applied cathodic potentials, as the hydrogen evolution reaction then becomes the main reaction pathway. In contrast to an active system, Cu(I)-O is now consumed at cathodic potentials and not reversibly reformed when the voltage is allowed to equilibrate at the open-circuit voltage; rather, only the oxidation to Cu(II) is observed. We show that the Cu-Zn system represents the optimal active ensembles with stabilized Cu(I)-O; DFT simulations rationalize this observation by indicating that Cu-Zn-O neighboring atoms are able to activate CO2, whereas Cu-Cu sites provide the supply of H atoms for the hydrogenation reaction. Our results demonstrate an electronic effect exerted by the heterometal, which depends on its intimate distribution within the Cu phase and confirms the general validity of these mechanistic insights for future electrocatalyst design strategies.
Collapse
Affiliation(s)
- Diego Gianolio
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Michael D. Higham
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Matthew G. Quesne
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
| | - Matteo Aramini
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Ruoyu Xu
- Department
of Chemical Engineering, University College
London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Alex I. Large
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Georg Held
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Juan-Jesús Velasco-Vélez
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Michael Haevecker
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Axel Knop-Gericke
- Max-Planck-Institut
für Chemische Energiekonversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Chiara Genovese
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Claudio Ampelli
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | | | - Siglinda Perathoner
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - Gabriele Centi
- Department
of ChiBioFarAm, ERIC aisbl and CASPE/INSTM, University of Messina, V. le F.Stagno D’ Alcontres 31, 98166 Messina, Italy
| | - C. Richard A. Catlow
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, Wales CF10 3AT, U.K.
- UK Catalysis
Hub, Research Complex at Harwell, Rutherford
Appleton Laboratory, R92, Harwell, Oxfordshire OX11 0FA, U.K.
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Rosa Arrigo
- Diamond
Light Source Ltd., Harwell
Science & Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
- School
of Science, Engineering and Environment, University of Salford, Cockcroft Building, Salford, Greater Manchester M5 4WT, U.K.
| |
Collapse
|
27
|
Calle-Vallejo F. The ABC of Generalized Coordination Numbers and Their Use as a Descriptor in Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2207644. [PMID: 37102632 PMCID: PMC10369287 DOI: 10.1002/advs.202207644] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/08/2023] [Indexed: 06/19/2023]
Abstract
The quest for enhanced electrocatalysts can be boosted by descriptor-based analyses. Because adsorption energies are the most common descriptors, electrocatalyst design is largely based on brute-force routines that comb materials databases until an energetic criterion is verified. In this review, it is shown that an alternative is provided by generalized coordination numbers (denoted by CN ¯ $\overline {{\rm{CN}}} $ or GCN), an inexpensive geometric descriptor for strained and unstrained transition metals and some alloys. CN ¯ $\overline {{\rm{CN}}} $ captures trends in adsorption energies on both extended surfaces and nanoparticles and is used to elaborate structure-sensitive electrocatalytic activity plots and selectivity maps. Importantly, CN ¯ $\overline {{\rm{CN}}} $ outlines the geometric configuration of the active sites, thereby enabling an atom-by-atom design, which is not possible using energetic descriptors. Specific examples for various adsorbates (e.g., *OH, *OOH, *CO, and *H), metals (e.g., Pt and Cu), and electrocatalytic reactions (e.g., O2 reduction, H2 evolution, CO oxidation, and reduction) are presented, and comparisons are made against other descriptors.
Collapse
Affiliation(s)
- Federico Calle-Vallejo
- Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Advanced Materials and Polymers: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, 20018, Av. Tolosa 72, San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao, 48009, Spain
| |
Collapse
|
28
|
Luo Y, Ma Z, Xia X, Zhong J, Wu P, Huang Y. TM 2 -B 2 Quadruple Active Sites Supported on a Defective C 3 N Monolayer as Catalyst for the Electrochemical CO 2 Reduction: A Theoretical Perspective. CHEMSUSCHEM 2023; 16:e202202209. [PMID: 36571161 DOI: 10.1002/cssc.202202209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Developing high-performance electrocatalysts for the CO2 reduction reaction (CO2 RR) holds great potential to mitigate the depletion of fossil feedstocks and abate the emission of CO2 . In this contribution, using density functional theory calculations, we systematically investigated the CO2 RR performance catalyzed by TM2 -B2 (TM=Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) supported on a defective C3 N monolayer (V-C3 N). Through the screening in terms of stability of catalyst, activity towards CO2 adsorption, and selectivity against hydrogen evolution reaction, Mn2 -, Fe2 -, Co2 -, and Ni2 -B2 @V-C3 N were demonstrated to be a highly promising CO2 RR electrocatalyst. Due to quadruple active sites, these candidates can adsorb two or three CO2 molecules. Strikingly, different products, distributing from C1 to C2+ , can be generated. The high activity originates from the synergistic effect of TM and B atoms, in which they serve as adsorption sites for the C- and O-species, respectively. The high selectivity towards C2+ products at the Fe2 -, and Ni2 -B2 sites stems from moderate C adsorption strength but relatively weak O adsorption strength, in which a universal descriptor, that is, 0.6 ΔEC -0.4 ΔEO =-1.77 eV (ΔEC /ΔEO is the adsorption energy of C/O), was proposed. This work would offer a novel perspective for the design of high active electrocatalysts towards CO2 RR and for the synthesis of C2+ compounds.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Zengying Ma
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Xueqian Xia
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Key Laboratory of Molecule-Based Materials, Anhui Provincial Engineering Laboratory of New-Energy Vehicle Battery Energy-Storage Materials, Anhui Carbon Neutrality Engineering Center, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Junwen Zhong
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Peng Wu
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| | - Yucheng Huang
- College of Chemistry and Material Science, Anhui Normal University, Wuhu, 241000 (P. R. of, China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Normal University, Wuhu, 241000 (P. R. of, China
| |
Collapse
|
29
|
Kastlunger G, Heenen HH, Govindarajan N. Combining First-Principles Kinetics and Experimental Data to Establish Guidelines for Product Selectivity in Electrochemical CO 2 Reduction. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
30
|
Posada-Pérez S, Vidal-López A, Solà M, Poater A. 2D carbon nitride as a support with single Cu, Ag, and Au atoms for carbon dioxide reduction reaction. Phys Chem Chem Phys 2023; 25:8574-8582. [PMID: 36883855 PMCID: PMC10277901 DOI: 10.1039/d3cp00392b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023]
Abstract
The electrochemical conversion of CO2 into value-added chemicals is an important approach to recycling CO2. In this work, we have combined the most efficient metal catalysts for this reaction, namely Cu, Ag, and Au, as single-atom particles dispersed on a two-dimensional carbon nitride support, with the aim of exploring their performance in the CO2 reduction reaction. Here, we report density functional theory computations showing the effect of single metal-atom particles on the support. We found that bare carbon nitride needed a high overpotential to overcome the energy barrier for the first proton-electron transfer, while the second transfer was exergonic. The deposition of single metal atoms enhances the catalytic activity of the system as the first proton-electron transfer is favored in terms of energy, although strong binding energies were found for CO adsorption on Cu and Au single atoms. Our theoretical interpretations are consistent with the experimental evidence that the competitive H2 generation is favored due to the strong CO binding energies. Our computational study paves the road to finding suitable metals that catalyze the first proton-electron transfer in the carbon dioxide reduction reaction and produce reaction intermediates with moderate binding energies, promoting a spillover to the carbon nitride support and thereby serving as bifunctional electrocatalysts.
Collapse
Affiliation(s)
- Sergio Posada-Pérez
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Anna Vidal-López
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Catalonia, Spain
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, C/Maria Aurèlia Capmany 69, 17003, Girona, Catalonia, Spain.
| |
Collapse
|
31
|
Okatenko V, Loiudice A, Newton MA, Stoian DC, Blokhina A, Chen AN, Rossi K, Buonsanti R. Alloying as a Strategy to Boost the Stability of Copper Nanocatalysts during the Electrochemical CO 2 Reduction Reaction. J Am Chem Soc 2023; 145:5370-5383. [PMID: 36847799 DOI: 10.1021/jacs.2c13437] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Copper nanocatalysts are among the most promising candidates to drive the electrochemical CO2 reduction reaction (CO2RR). However, the stability of such catalysts during operation is sub-optimal, and improving this aspect of catalyst behavior remains a challenge. Here, we synthesize well-defined and tunable CuGa nanoparticles (NPs) and demonstrate that alloying Cu with Ga considerably improves the stability of the nanocatalysts. In particular, we discover that CuGa NPs containing 17 at. % Ga preserve most of their CO2RR activity for at least 20 h while Cu NPs of the same size reconstruct and lose their CO2RR activity within 2 h. Various characterization techniques, including X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy, suggest that the addition of Ga suppresses Cu oxidation at open-circuit potential (ocp) and induces significant electronic interactions between Ga and Cu. Thus, we explain the observed stabilization of the Cu by Ga as a result of the higher oxophilicity and lower electronegativity of Ga, which reduce the propensity of Cu to oxidize at ocp and enhance the bond strength in the alloyed nanocatalysts. In addition to addressing one of the major challenges in CO2RR, this study proposes a strategy to generate NPs that are stable under a reducing reaction environment.
Collapse
Affiliation(s)
- Valery Okatenko
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Mark A Newton
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Dragos C Stoian
- Swiss-Norwegian Beamlines, European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anastasia Blokhina
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Alexander N Chen
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Kevin Rossi
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy Research, Institute of Chemical Sciences and Engineering, Ecole Politechnique Fédérale de Lausanne, Sion CH-1950, Switzerland
| |
Collapse
|
32
|
Chen J, Wang D, Yang X, Cui W, Sang X, Zhao Z, Wang L, Li Z, Yang B, Lei L, Zheng J, Dai L, Hou Y. Accelerated Transfer and Spillover of Carbon Monoxide through Tandem Catalysis for Kinetics-boosted Ethylene Electrosynthesis. Angew Chem Int Ed Engl 2023; 62:e202215406. [PMID: 36593654 DOI: 10.1002/anie.202215406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO2 ER) to produce multicarbon (C2+ ) feedstocks (e.g., C2 H4 ). However, the high energy barriers for CO2 activation on the Cu surface is a challenge for a high catalytic efficiency and product selectivity. Herein, we developed an in situ *CO generation and spillover strategy by engineering single Ni atoms on a pyridinic N-enriched carbon support with a sodalite (SOD) topology (Ni-SOD/NC) that acted as a donor to feed adjacent Cu nanoparticles (NPs) with *CO intermediate. As a result, a high C2 H4 selectivity of 62.5 % and an industrial-level current density of 160 mA cm-2 at a low potential of -0.72 V were achieved. Our studies revealed that the isolated NiN3 active sites with adjacent pyridinic N species facilitated the *CO desorption and the massive *CO intermediate released from Ni-SOD/NC then overflowed to Cu NPs surface to enrich the *CO coverage for improving the selectivity of CO2 ER to C2 H4 .
Collapse
Affiliation(s)
- Jiayi Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Dashuai Wang
- Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Xiaoxuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wenjun Cui
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiahan Sang
- Nanostructure Research Center, Wuhan University of Technology, Wuhan, 430070, China
| | - Zilin Zhao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Liguang Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China
| | - Jinyang Zheng
- Donghai Laboratory, Zhoushan, China.,Institute of Process Equipment, Zhejiang University, Hangzhou, China
| | - Liming Dai
- Australian Carbon Materials Centre(A-CMC), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China.,Institute of Zhejiang University - Quzhou, Quzhou, 324000, China.,Donghai Laboratory, Zhoushan, China.,School of Biological and Chemical Engineering, NingboTech University, 1 South Qianhu Road, Ningbo, Zhejiang 315100, China
| |
Collapse
|
33
|
Recent Progress in Surface-Defect Engineering Strategies for Electrocatalysts toward Electrochemical CO2 Reduction: A Review. Catalysts 2023. [DOI: 10.3390/catal13020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Climate change, caused by greenhouse gas emissions, is one of the biggest threats to the world. As per the IEA report of 2021, global CO2 emissions amounted to around 31.5 Gt, which increased the atmospheric concentration of CO2 up to 412.5 ppm. Thus, there is an imperative demand for the development of new technologies to convert CO2 into value-added feedstock products such as alcohols, hydrocarbons, carbon monoxide, chemicals, and clean fuels. The intrinsic properties of the catalytic materials are the main factors influencing the efficiency of electrochemical CO2 reduction (CO2-RR) reactions. Additionally, the electroreduction of CO2 is mainly affected by poor selectivity and large overpotential requirements. However, these issues can be overcome by modifying heterogeneous electrocatalysts to control their morphology, size, crystal facets, grain boundaries, and surface defects/vacancies. This article reviews the recent progress in electrochemical CO2 reduction reactions accomplished by surface-defective electrocatalysts and identifies significant research gaps for designing highly efficient electrocatalytic materials.
Collapse
|
34
|
Zhu Q, Hu Y, Chen H, Meng C, Shang Y, Hao C, Wei S, Wang Z, Lu X, Liu S. Graphdiyne supported Ag-Cu tandem catalytic scheme for electrocatalytic reduction of CO 2 to C 2+ products. NANOSCALE 2023; 15:2106-2113. [PMID: 36648138 DOI: 10.1039/d2nr05399c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) to added-value C2+ products is a worthy way to effectively reduce CO2 levels in the atmosphere. Cu nanomaterials have been proposed as efficient CO2RR catalysts for producing C2+ products; however, the difficulties in controlling their efficiency and selectivity hinder their applications. Herein, we propose a simple routine to construct a graphdiyne (GDY) supported Ag-Cu nanocluster as a C2+ product-selective electrocatalyst and optimize the composition by electrochemical performance screening. The synthesized Ag-Cu nanoclusters are uniformly distributed on the surface of GDY with particle sizes constricted to 3.7 nm due to the strong diyne-Cu interaction. Compared to Cu/GDY, Ag-Cu/GDY tandem schemes exhibited superior CO2RR to C2+ performance with a Faraday efficiency (FE) of up to 55.1% and a current density of 48.6 mA cm-2 which remain stable for more than 33 hours. Theoretical calculations show that the adsorption energy of CO is much higher on Cu (-1.066 eV) than on Ag (-0.615 eV), thus promoting the drift of *CO from Ag to Cu. Moreover, the calculations indicate that the key C-C coupling reaction of *CO with *COH is more favored on Ag-Cu/GDY than on the original Cu/GDY which contributes to the formation of C2+ products. Our findings shed light on a new strategy of combining a GDY support with a tandem catalytic scheme for developing new CO2RR catalysts with superior selectivity and activity for C2+ products.
Collapse
Affiliation(s)
- Qiuying Zhu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Yuying Hu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Hongyu Chen
- College of Science, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China
| | - Chen Meng
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Yizhu Shang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Chengcheng Hao
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Shuxian Wei
- College of Science, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China
| | - Zhaojie Wang
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| | - Siyuan Liu
- School of Materials Science and Engineering, China University of Petroleum, No. 66 Changjiang West road, Huangdao District, Qingdao, Shandong 266580, P. R. China.
| |
Collapse
|
35
|
Wang M, Loiudice A, Okatenko V, Sharp ID, Buonsanti R. The spatial distribution of cobalt phthalocyanine and copper nanocubes controls the selectivity towards C 2 products in tandem electrocatalytic CO 2 reduction. Chem Sci 2023; 14:1097-1104. [PMID: 36756336 PMCID: PMC9891351 DOI: 10.1039/d2sc06359j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The coupling of CO-generating molecular catalysts with copper electrodes in tandem schemes is a promising strategy to boost the formation of multi-carbon products in the electrocatalytic reduction of CO2. While the spatial distribution of the two components is important, this aspect remains underexplored for molecular-based tandem systems. Herein, we address this knowledge gap by studying tandem catalysts comprising Co-phthalocyanine (CoPc) and Cu nanocubes (Cucub). In particular, we identify the importance of the relative spatial distribution of the two components on the performance of the tandem catalyst by preparing CoPc-Cucub/C, wherein the CoPc and Cucub share an interface, and CoPc-C/Cucub, wherein the CoPc is loaded first on carbon black (C) before mixing with the Cucub. The electrocatalytic measurements of these two catalysts show that the faradaic efficiency towards C2 products almost doubles for the CoPc-Cucub/C, whereas it decreases by half for the CoPc-C/Cucub, compared to the Cucub/C. Our results highlight the importance of a direct contact between the CO-generating molecular catalyst and the Cu to promote C-C coupling, which hints at a surface transport mechanism of the CO intermediate between the two components of the tandem catalyst instead of a transfer via CO diffusion in the electrolyte followed by re-adsorption.
Collapse
Affiliation(s)
- Min Wang
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Anna Loiudice
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Valery Okatenko
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Ian D. Sharp
- Walter Schottky Institute and Physics Department, Technische Universität MünchenAm Coulombwall 485748 GarchingGermany
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
36
|
Zha J, Meng X, Fan W, You Q, Xia N, Gu W, Zhao Y, Hu L, Li J, Deng H, Wang H, Yan N, Wu Z. Surface Site-Specific Replacement for Catalysis Selectivity Switching. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3985-3992. [PMID: 36622953 DOI: 10.1021/acsami.2c18553] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface atom replacement in materials without other composition/structure changes is challenging but is important for fundamental scientific research and for practical applications. In particular, for nanoparticles including nanoclusters, surface metal site-specific replacement with atomic precision has not yet been achieved. In this study, we for the first time achieved surface site-specific antigalvanic replacement with the remaining composition/structure and surface replacement-dependent selectivity in the electrocatalytic reduction of CO2. Density functional theory (DFT) calculations describe the catalysis selectivity switch induced by replacing Ag with Cu and explain why Cu replacement facilitates C2 production. Also, CO2 electroreduction to C2 on well-defined metal nanoclusters is first reported in this study.
Collapse
Affiliation(s)
- Jun Zha
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Xiangfu Meng
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- University of Science and Technology of China, Hefei 230026, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Lin Hu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Jin Li
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University,Beijing 100084, PR China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, PR China
| | - Hui Wang
- University of Science and Technology of China, Hefei 230026, PR China
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, PR China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| |
Collapse
|
37
|
Koolen CD, Luo W, Züttel A. From Single Crystal to Single Atom Catalysts: Structural Factors Influencing the Performance of Metal Catalysts for CO 2 Electroreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Cedric David Koolen
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science & Technology, Dübendorf 8600, Switzerland
| | - Wen Luo
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Andreas Züttel
- Laboratory of Materials for Renewable Energy (LMER), Institute of Chemical Sciences and Engineering (ISIC), Basic Science Faculty (SB), École Polytechnique Fédérale de Lausanne (EPFL) Valais/Wallis, Energypolis, Sion 1951, Switzerland
- Empa Materials Science & Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
38
|
Cui Y, Yang C, Lin H, Rui S, Yao D, Liao Y, Zhang C, Fang Y, Wang X, Zhong Z, Song Y, Wang G, Zhuang L, Li Z. Amorphous N xC Coating Promotes Electrochemical CO 2 Deep Reduction to Hydrocarbons over Ag Nanocatalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yanjia Cui
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Caili Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Huanhao Lin
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Suyan Rui
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Defu Yao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yuting Liao
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Chenchen Zhang
- Department of Chemistry Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Guangdong 515063, China
| | - Yiwen Fang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xiaoming Wang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ziyi Zhong
- Department of Chemistry Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Yibing Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Gongwei Wang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
| | - Lin Zhuang
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Zhen Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| |
Collapse
|
39
|
Liu Q, Zhang XG, Du ZY, Zou CJ, Chen HY, Zhao Y, Dong JC, Fang PP, Li JF. Converting CO2 to ethanol on Ag nanowires with high selectivity investigated by operando Raman spectroscopy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Ni Z, Wang P, Quan F, Guo R, Liu C, Liu X, Mu W, Lei X, Li Q. Design strategy of a Cu-based catalyst for optimizing the performance in the electrochemical CO 2 reduction reaction to multicarbon alcohols. NANOSCALE 2022; 14:16376-16393. [PMID: 36305266 DOI: 10.1039/d2nr04826d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The electrochemical CO2 reduction reaction (ECRR) is a promising method to reduce excessive CO2 emissions and achieve a sustainable carbon cycle. Due to the high reaction kinetics and efficiency, copper-based catalysts have shown great application potential for preparing multicarbon (C2+) products. C2+ alcohols have high economic value and use-value, playing an essential role in modern industry. Therefore, we summarize the latest research progress of the ECRR to synthesize C2+ alcohols on Cu-based catalysts and discuss the state-of-the-art catalyst design strategies to improve CO2 reduction performance. Moreover, we analyzed in detail the specific reaction pathways for the conversion of CO2 to C2+ alcohols based on DFT calculations. Finally, we propose the problems and possible solutions for synthesizing C2+ alcohols with copper-based catalysts. We hope that this review can provide ideas for devising ECRR catalysts for C2+ alcohols.
Collapse
Affiliation(s)
- Zhiyuan Ni
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Peng Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Fan Quan
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Rui Guo
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Chunming Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Xuanwen Liu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
| | - Wenning Mu
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Xuefei Lei
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China.
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
| | - Qingjun Li
- Xusai Environmental Technology of Hebei Co., Ltd., Qinhuangdao, 066000, China
| |
Collapse
|
41
|
Wang M, Nikolaou V, Loiudice A, Sharp ID, Llobet A, Buonsanti R. Tandem electrocatalytic CO 2 reduction with Fe-porphyrins and Cu nanocubes enhances ethylene production. Chem Sci 2022; 13:12673-12680. [PMID: 36519057 PMCID: PMC9645407 DOI: 10.1039/d2sc04794b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/18/2022] [Indexed: 08/23/2024] Open
Abstract
Copper-based tandem schemes have emerged as promising strategies to promote the formation of multi-carbon products in the electrocatalytic CO2 reduction reaction. In such approaches, the CO-generating component of the tandem catalyst increases the local concentration of CO and thereby enhances the intrinsic carbon-carbon (C-C) coupling on copper. However, the optimal characteristics of the CO-generating catalyst for maximizing the C2 production are currently unknown. In this work, we developed tunable tandem catalysts comprising iron porphyrin (Fe-Por), as the CO-generating component, and Cu nanocubes (Cucub) to understand how the turnover frequency for CO (TOFCO) of the molecular catalysts impacts the C-C coupling on the Cu surface. First, we tuned the TOFCO of the Fe-Por by varying the number of orbitals involved in the π-system. Then, we coupled these molecular catalysts with the Cucub and assessed the current densities and faradaic efficiencies. We discovered that all of the designed Fe-Por boost ethylene production. The most efficient Cucub/Fe-Por tandem catalyst was the one including the Fe-Por with the highest TOFCO and exhibited a nearly 22-fold increase in the ethylene selectivity and 100 mV positive shift of the onset potential with respect to the pristine Cucub. These results reveal that coupling the TOFCO tunability of molecular catalysts with copper nanocatalysts opens up new possibilities towards the development of Cu-based catalysts with enhanced selectivity for multi-carbon product generation at low overpotential.
Collapse
Affiliation(s)
- Min Wang
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Vasilis Nikolaou
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) 43007 Tarragona Spain
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
- Walter Schottky Institute and Physics Department, Technische Universität München Am Coulombwall 4 85748 Garching Germany
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technische Universität München Am Coulombwall 4 85748 Garching Germany
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) 43007 Tarragona Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
42
|
Fundamental aspects in CO2 electroreduction reaction and solutions from in situ vibrational spectroscopies. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
43
|
Mandal SC, Das A, Roy D, Das S, Nair AS, Pathak B. Developments of the heterogeneous and homogeneous CO2 hydrogenation to value-added C2+-based hydrocarbons and oxygenated products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
44
|
Cortés E, Wendisch FJ, Sortino L, Mancini A, Ezendam S, Saris S, de S. Menezes L, Tittl A, Ren H, Maier SA. Optical Metasurfaces for Energy Conversion. Chem Rev 2022; 122:15082-15176. [PMID: 35728004 PMCID: PMC9562288 DOI: 10.1021/acs.chemrev.2c00078] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nanostructured surfaces with designed optical functionalities, such as metasurfaces, allow efficient harvesting of light at the nanoscale, enhancing light-matter interactions for a wide variety of material combinations. Exploiting light-driven matter excitations in these artificial materials opens up a new dimension in the conversion and management of energy at the nanoscale. In this review, we outline the impact, opportunities, applications, and challenges of optical metasurfaces in converting the energy of incoming photons into frequency-shifted photons, phonons, and energetic charge carriers. A myriad of opportunities await for the utilization of the converted energy. Here we cover the most pertinent aspects from a fundamental nanoscopic viewpoint all the way to applications.
Collapse
Affiliation(s)
- Emiliano Cortés
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Fedja J. Wendisch
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Luca Sortino
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Andrea Mancini
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Simone Ezendam
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Seryio Saris
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Leonardo de S. Menezes
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- Departamento
de Física, Universidade Federal de
Pernambuco, 50670-901 Recife, Pernambuco, Brazil
| | - Andreas Tittl
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
| | - Haoran Ren
- MQ Photonics
Research Centre, Department of Physics and Astronomy, Macquarie University, Macquarie
Park, New South Wales 2109, Australia
| | - Stefan A. Maier
- Chair
in Hybrid Nanosystems, Nano Institute Munich, Faculty of Physics, Ludwig-Maximilians-University Munich, Königinstraße 10, 80539 Munich, Germany
- School
of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia
- Department
of Phyiscs, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
45
|
Chen C, Yu S, Yang Y, Louisia S, Roh I, Jin J, Chen S, Chen PC, Shan Y, Yang P. Exploration of the bio-analogous asymmetric C–C coupling mechanism in tandem CO2 electroreduction. Nat Catal 2022. [DOI: 10.1038/s41929-022-00844-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
46
|
Jiao L, Guo L. Tandem Catalysts Based on Bimetallic Single Atoms Embedded in 2D CCFs for Efficient Nitrogen Reduction Reaction. Catal Letters 2022. [DOI: 10.1007/s10562-022-04112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Lu H, Wang G, Zhou Y, Wotango AS, Wu J, Meng Q, Li P. Concentration Optimization of Localized Cu 0 and Cu + on Cu-Based Electrodes for Improving Electrochemical Generation of Ethanol from Carbon Dioxide. Int J Mol Sci 2022; 23:ijms23169373. [PMID: 36012626 PMCID: PMC9409204 DOI: 10.3390/ijms23169373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/16/2022] Open
Abstract
Copper-based electrodes can catalyze electroreduction of CO2 to two-carbon products. However, obtaining a specific product with high efficiency depends on the oxidation state of Cu for the Cu-based materials. In this study, Cu-based electrodes were prepared on fluorinated tin oxide (FTO) using the one-step electrodeposition method. These electrodes were used as efficient electrocatalysts for CO2 reduction to ethanol. The concentration ratio of Cu0 and Cu+ on the electrodes was precisely modulated by adding monoethanolamine (MEA). The results of spectroscopic characterization showed that the concentration ratio of localized Cu+ and Cu0 (Cu+/Cu0) on the Cu-based electrodes was controlled from 1.24/1 to 1.54/1 by regulating the amount of MEA. It was found that the electrode exhibited the best electrochemical efficiency and ethanol production in the CO2 reduction reaction at the optimal concentration ratio Cu+/Cu0 of 1.42/1. The maximum faradaic efficiencies of ethanol and C2 were 48% and 77%, respectively, at the potential of -0.6 V vs. a reversible hydrogen electrode (RHE). Furthermore, the optimal concentration ratio of Cu+/Cu0 achieved the balance between Cu+ and Cu0 with the most favorable free energy for the formation of *CO intermediate. The stable existence of the *CO intermediate significantly contributed to the formation of the C-C bond for ethanol production.
Collapse
Affiliation(s)
- Hong Lu
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Guan Wang
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yong Zhou
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Aselefech Sorsa Wotango
- Center of Excellence in Sustainable Energy, Department of Industrial Chemistry, Addis Ababa Science and Technology University, Amist Kilo, Addis Ababa 16417, Ethiopia
| | - Jiahao Wu
- School of Physical and Mathematical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Qi Meng
- School of Physical and Mathematical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Ping Li
- School of Flexible Electronics (SoFE) & Institution of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- Correspondence: ; Tel.:+86-18260086256
| |
Collapse
|
48
|
Chen J, Xu W, Li X, Sun L, Zhong Z, Zhang Z, Tang Y. Near infrared optically responsive Ag-Cu bimetallic 2D nanocrystals with controllable spatial structures. J Colloid Interface Sci 2022; 628:660-669. [PMID: 36027776 DOI: 10.1016/j.jcis.2022.08.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
The optical properties of cost-effective Ag-Cu bimetallic nanocrystals, with synergistically enhanced catalytic and biological activities, are limited within ultraviolet-visible region due to lack of morphology control. In order to overcome this constraint, two-dimensional (2D) Ag-Cu bimetallic heterostructures were designed and synthesized by a seed-mediated colloidal growth method. The conformal Cu domain was epitaxially deposited on Ag nanoplates with different spatial configuration under retention of their 2D shape. Both of the 2D Ag-Cu core@shell and Janus structures display tunable localized surface plasmon resonance from visible to near infrared regions. The results of catalytic reduction of 4-nitrophenol show that the 2D Ag-Cu core@shell structure has better synergistic catalytic performance than Janus structure and Ag plates. In addition to surface-related synergistically enhanced bactericidal performance, their antibacterial effect can also be significantly enhanced by near infrared light irradiation. These results indicate that 2D Ag-Cu heterostructures can benefit from both synergistically improved surface activity and great optical responsive characteristics.
Collapse
Affiliation(s)
- Jie Chen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Wenhao Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xingjin Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Libo Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zihan Zhong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Zitao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Yun Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Collaborative Innovation Center of Chemistry for Energy Materials, Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China.
| |
Collapse
|
49
|
Crystal facet-dependent electrocatalytic performance of metallic Cu in CO2 reduction reactions. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Cao B, Li FZ, Gu J. Designing Cu-Based Tandem Catalysts for CO 2 Electroreduction Based on Mass Transport of CO Intermediate. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Bo Cao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Fu-Zhi Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Jun Gu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|