1
|
Brenig A, Fischer JWA, Klose D, Jeschke G, van Bokhoven JA, Sushkevich VL. Redox and Kinetic Properties of Composition-Dependent Active Sites in Copper-Exchanged Chabazite for Direct Methane-to-Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202411662. [PMID: 39054903 DOI: 10.1002/anie.202411662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The CH4 oxidation performance of Cu-chabazite zeolites characterized by distinct Si/Al ratios and Cu loadings has been studied and the observed variations in reactivity have been correlated to the differences in the nature of the formed active centers. Plug flow reactor tests, in situ Fourier-transform infrared, and X-ray absorption spectroscopy demonstrate that a decrease in Cu loading shifts the reactivity/redox profile to higher temperatures and increases the CH3OH selectivity and Cu-efficiency. In situ electron paramagnetic resonance, Raman, ultraviolet-visible, Fourier-transform infrared, and photoluminescence spectroscopies reveal that this behavior is associated with the presence of monomeric Cu active sites, including bare Cu2+ and [CuOH]+ present at low Si/Al ratio and Cu loading. Formation of two distinct [Cu2(μ-O)]2+ moieties at higher Si/Al ratio or Cu loading forces these trends into the opposite direction. Operando electron paramagnetic resonance and ultraviolet-visible spectroscopy show that the apparent activation energy of monomeric Cu active species decreases with increasing Si/Al ratio, whereas the one of dimeric centers is unaffected.
Collapse
Affiliation(s)
- Andreas Brenig
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Jörg W A Fischer
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Daniel Klose
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| |
Collapse
|
2
|
An P, Gao C, Zhu X, Wang B, Xuan Y, Liang Y, Xia S, Si W, Wang D, Peng Y, Li J. Phosphorus-Water Interaction Drives Active Center Evolution into the Water-Adaptive Structure in the High-Humidity NH 3-SCR Reaction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16600-16610. [PMID: 39058552 DOI: 10.1021/acs.est.4c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The impact of water on catalyst activity remains inconclusive due to its dependence on the specific reaction environment. To maximize the exploitation of water's promoting effect, we employed ammonia selective catalytic reduction (NH3-SCR) as a probe reaction and proposed a phosphorus modification strategy for Cu-ZSM-5 catalysts. The objective of this approach was to construct water-adaptive microstructures through directional arrangement. To investigate the effect of phosphorus on the transformation of framework copper sites in humid environments, we conducted comprehensive characterizations and density functional theory calculation. Results reveal that water molecules cleave the oxygen bridges between phosphorus oxide and copper, leading to the formation of active isolated [Cu(OH)]+ groups and phosphate. The phosphate species weaken the interaction between exchanged Cu2+ groups and the zeolite framework, leading to the generation of highly migratory hydrated Cu2+ species. This work will potentially guide the rational design of water-adaptive catalysts for gas pollution abatement in a humid environment.
Collapse
Affiliation(s)
- Penghao An
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chuan Gao
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiao Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Bin Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yue Xuan
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yanjie Liang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Sunwen Xia
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wenzhe Si
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Göltl F, Bhandari S, Lebrón-Rodríguez EA, Gold JI, Hutton DJ, Zones SI, Hermans I, Dumesic JA, Mavrikakis M. Exploring the Impact of Active Site Structure on the Conversion of Methane to Methanol in Cu-Exchanged Zeolites. Angew Chem Int Ed Engl 2024; 63:e202403179. [PMID: 38574295 DOI: 10.1002/anie.202403179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/13/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
In the past, Cu-oxo or -hydroxy clusters hosted in zeolites have been suggested to enable the selective conversion of methane to methanol, but the impact of the active site's stoichiometry and structure on methanol production is still poorly understood. Herein, we apply theoretical modeling in conjunction with experiments to study the impact of these two factors on partial methane oxidation in the Cu-exchanged zeolite SSZ-13. Phase diagrams developed from first-principles suggest that Cu-hydroxy or Cu-oxo dimers are stabilized when O2 or N2O are used to activate the catalyst, respectively. We confirm these predictions experimentally and determine that in a stepwise conversion process, Cu-oxo dimers can convert twice as much methane to methanol compared to Cu-hydroxyl dimers. Our theoretical models rationalize how Cu-di-oxo dimers can convert up to two methane molecules to methanol, while Cu-di-hydroxyl dimers can convert only one methane molecule to methanol per catalytic cycle. These findings imply that in Cu clusters, at least one oxo group or two hydroxyl groups are needed to convert one methane molecule to methanol per cycle. This simple structure-activity relationship allows to intuitively understand the potential of small oxygenated or hydroxylated transition metal clusters to convert methane to methanol.
Collapse
Affiliation(s)
- Florian Göltl
- The University of Arizona, Department of Biosystems Engineering, 1177, E 4th St., 85719, Tucson, AZ, United States
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Saurabh Bhandari
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Edgard A Lebrón-Rodríguez
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Jake I Gold
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Daniel J Hutton
- The University of Arizona, Department of Biosystems Engineering, 1177, E 4th St., 85719, Tucson, AZ, United States
| | - Stacey I Zones
- Chevron Energy Technology Company, Richmond, CA 94804, United States
| | - Ive Hermans
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
- The University of Wisconsin - Madison, Department of Chemistry, 1101 University Avenue, 53706, Madison, WI, United States
| | - James A Dumesic
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| | - Manos Mavrikakis
- The University of Wisconsin - Madison, Department of Chemical and Biological Engineering, 1415 Engineering Drive, 53706, Madison, WI, United States
| |
Collapse
|
4
|
Wijerathne A, Sawyer A, Daya R, Paolucci C. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. JACS AU 2024; 4:197-215. [PMID: 38274255 PMCID: PMC10806779 DOI: 10.1021/jacsau.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
A key challenge for metal-exchanged zeolites is the determination of metal cation speciation and nuclearity under synthesis and reaction conditions. Copper-exchanged zeolites, which are widely used in automotive emissions control and potential catalysts for partial methane oxidation, have in particular evidenced a wide variety of Cu structures that are observed to change with exposure conditions, zeolite composition, and topology. Here, we develop predictive models for Cu cation speciation and nuclearity in CHA, MOR, BEA, AFX, and FER zeolite topologies using interatomic potentials, quantum chemical calculations, and Monte Carlo simulations to interrogate this vast configurational and compositional space. Model predictions are used to rationalize experimentally observed differences between Cu-zeolites in a wide-body of literature, including nuclearity populations, structural variations, and methanol per Cu yields. Our results show that both topological features and commonly observed Al-siting biases in MOR zeolites increase the population of binuclear Cu sites, explaining the small population of mononuclear Cu sites observed in these materials relative to other zeolites such as CHA and BEA. Finally, we used a machine learning classification model to determine the preference to form mononuclear or binuclear Cu sites at different Al configurations in 200 zeolites in the international zeolite database. Model results reveal several zeolite topologies at extreme ends of the mononuclear vs binuclear spectrum, highlighting synthetic options for realization of zeolites with strong Cu nuclearity preferences.
Collapse
Affiliation(s)
- Asanka Wijerathne
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Allison Sawyer
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rohil Daya
- Cummins
Inc, Columbus, Indiana 47201, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
5
|
Zhang H, Guo J, Cao Y. Continuous selective conversion of methane to methanol over a Cu-KFI zeolite catalyst using a water-O 2 mixture as the oxygen source. Chem Commun (Camb) 2023; 60:228-231. [PMID: 38051661 DOI: 10.1039/d3cc05379b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The continuous catalytic oxidation of methane to methanol on a Cu-KFI zeolite using water-O2 mixture as the oxidant is reported. A high methanol space-time yield of 880.3 mmol molCu-1 h-1 with 83% selectivity is achieved at 450 °C. Isotopic labelling experiments show that both H2O and O2 provide the oxygen source in this catalytic methane-to-methanol conversion reaction.
Collapse
Affiliation(s)
- Hailong Zhang
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610064, PR China
| | - Jiaxiu Guo
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610064, PR China
| | - Yi Cao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, PR China
| |
Collapse
|
6
|
Im J, Cheong SH, Dang HT, Kim NK, Hwang S, Lee KB, Kim K, Lee H, Lee U. Economically viable co-production of methanol and sulfuric acid via direct methane oxidation. Commun Chem 2023; 6:282. [PMID: 38123721 PMCID: PMC10733281 DOI: 10.1038/s42004-023-01080-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
The direct oxidation of methane to methanol has been spotlighted research for decades, but has never been commercialized. This study introduces cost-effective process for co-producing methanol and sulfuric acid through a direct oxidation of methane. In the initial phase, methane oxidation forms methyl bisulfate (CH3OSO3H), then transformed into methyl trifluoroacetate (CF3CO2CH3) via esterification, and hydrolyzed into methanol. This approach eliminates the need for energy-intensive separation of methyl bisulfate from sulfuric acid by replacing the former with methyl trifluoroacetate. Through the superstructure optimization, our sequential process reduces the levelized cost of methanol to nearly two-fold reduction from the current market price. Importantly, this process demonstrates adaptability to smaller gas fields, assuring its economical operation across a broad range of gas fields. The broader application of this process could substantially mitigate global warming by utilizing methane, leading to a significantly more sustainable and economically beneficial methanol industry.
Collapse
Affiliation(s)
- Jaehyung Im
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok-Hyeon Cheong
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Huyen Tran Dang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Sungwon Hwang
- Department of Chemical Engineering, Inha University, Incheon, Republic of Korea
| | - Ki Bong Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Kyeongsu Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
| | - Hyunjoo Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
- Division of Energy & Environmental Technology, KIST School, University of Science and Technology, 02792, Seoul, Republic of Korea.
| | - Ung Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), 02792, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Artsiusheuski MA, Verel R, van Bokhoven JA, Sushkevich VL. Selective Oxidative Dehydrogenation of Ethane and Propane over Copper-Containing Mordenite: Insights into Reaction Mechanism and Product Protection. Angew Chem Int Ed Engl 2023; 62:e202309180. [PMID: 37699126 DOI: 10.1002/anie.202309180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Copper(II)-containing mordenite (CuMOR) is capable of activation of C-H bonds in C1 -C3 alkanes, albeit there are remarkable differences between the functionalization of ethane and propane compared to methane. The reaction of ethane and propane with CuMOR results in the formation of ethylene and propylene, while the reaction of methane predominantly yields methanol and dimethyl ether. By combining in situ FTIR and MAS NMR spectroscopies as well as time-resolved Cu K-edge X-ray absorption spectroscopy, the reaction mechanism was derived, which differs significantly for each alkane. The formation of ethylene and propylene proceeds via oxidative dehydrogenation of the corresponding alkanes with selectivity above 95 % for ethane and above 85 % for propane. The formation of stable π-complexes of olefins with CuI sites, formed upon reduction of CuII -oxo species, protects olefins from further oxidation and/or oligomerization. This is different from methane, the activation of which proceeds via oxidative hydroxylation leading to the formation of surface methoxy species bonded to the zeolite framework. Our findings constitute one of the major steps in the direct conversion of alkanes to important commodities and open a novel research direction aiming at the selective synthesis of olefins.
Collapse
Affiliation(s)
- Mikalai A Artsiusheuski
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - René Verel
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
| | - Jeroen A van Bokhoven
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232, Villigen PSI, Switzerland
| |
Collapse
|
8
|
Kvande K, Garetto B, Deplano G, Signorile M, Solemsli BG, Prodinger S, Olsbye U, Beato P, Bordiga S, Svelle S, Borfecchia E. Understanding C-H activation in light alkanes over Cu-MOR zeolites by coupling advanced spectroscopy and temperature-programmed reduction experiments. Chem Sci 2023; 14:9704-9723. [PMID: 37736625 PMCID: PMC10510758 DOI: 10.1039/d3sc01677c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023] Open
Abstract
The direct activation of methane to methanol (MTM) proceeds through a chemical-looping process over Cu-oxo sites in zeolites. Herein, we extend the overall understanding of oxidation reactions over metal-oxo sites and C-H activation reactions by pinpointing the evolution of Cu species during reduction. To do so, a set of temperature-programmed reduction experiments were performed with CH4, C2H6, and CO. With a temperature ramp, the Cu reduction could be accelerated to detect changes in Cu speciation that are normally not detected due to the slow CH4 adsorption/interaction during MTM (∼200 °C). To follow the Cu-speciation with the three reductants, X-ray absorption spectroscopy (XAS), UV-vis and FT-IR spectroscopy were applied. Multivariate curve resolution alternating least-square (MCR-ALS) analysis was used to resolve the time-dependent concentration profiles of pure Cu components in the X-ray absorption near edge structure (XANES) spectra. Within the large datasets, as many as six different CuII and CuI components were found. Close correlations were found between the XANES-derived CuII to CuI reduction, CH4 consumption, and CO2 production. A reducibility-activity relationship was also observed for the Cu-MOR zeolites. Extended X-ray absorption fine structure (EXAFS) spectra for the pure Cu components were furthermore obtained with MCR-ALS analysis. With wavelet transform (WT) analysis of the EXAFS spectra, we were able to resolve the atomic speciation at different radial distances from Cu (up to about 4 Å). These results indicate that all the CuII components consist of multimeric CuII-oxo sites, albeit with different Cu-Cu distances.
Collapse
Affiliation(s)
- Karoline Kvande
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Beatrice Garetto
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Gabriele Deplano
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Matteo Signorile
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Bjørn Gading Solemsli
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Sebastian Prodinger
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Unni Olsbye
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Pablo Beato
- Topsoe A/S, Haldor Topsøes Allé 1 DK-2800 Kgs. Lyngby Denmark
| | - Silvia Bordiga
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| | - Stian Svelle
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin Via P. Giuria 7 Italy
| |
Collapse
|
9
|
Fischer JWA, Brenig A, Klose D, van Bokhoven JA, Sushkevich VL, Jeschke G. Methane Oxidation over Cu 2+ /[CuOH] + Pairs and Site-Specific Kinetics in Copper Mordenite Revealed by Operando Electron Paramagnetic Resonance and UV/Visible Spectroscopy. Angew Chem Int Ed Engl 2023; 62:e202303574. [PMID: 37292054 DOI: 10.1002/anie.202303574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/10/2023]
Abstract
Cu-exchanged mordenite (MOR) is a promising material for partial CH4 oxidation. The structural diversity of Cu species within MOR makes it difficult to identify the active Cu sites and to determine their redox and kinetic properties. In this study, the Cu speciation in Cu-MOR materials with different Cu loadings has been determined using operando electron paramagnetic resonance (EPR) and operando ultraviolet-visible (UV/Vis) spectroscopy as well as in situ photoluminescence (PL) and Fourier-transform infrared (FTIR) spectroscopy. A novel pathway for CH4 oxidation involving paired [CuOH]+ and bare Cu2+ species has been identified. The reduction of bare Cu2+ ions facilitated by adjacent [CuOH]+ demonstrates that the frequently reported assumption of redox-inert Cu2+ centers does not generally apply. The measured site-specific reaction kinetics show that dimeric Cu species exhibit a faster reaction rate and a higher apparent activation energy than monomeric Cu2+ active sites highlighting their difference in the CH4 oxidation potential.
Collapse
Affiliation(s)
| | - Andreas Brenig
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Daniel Klose
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| | - Jeroen Anton van Bokhoven
- Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Vitaly L Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen, Switzerland
| | - Gunnar Jeschke
- Institute for Molecular Physical Science, ETH Zurich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
| |
Collapse
|
10
|
Tao L, Khramenkova E, Lee I, Ikuno T, Khare R, Jentys A, Fulton JL, Kolganov AA, Pidko EA, Sanchez-Sanchez M, Lercher JA. Speciation and Reactivity Control of Cu-Oxo Clusters via Extraframework Al in Mordenite for Methane Oxidation. J Am Chem Soc 2023; 145:17710-17719. [PMID: 37545395 DOI: 10.1021/jacs.3c04328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The stoichiometric conversion of methane to methanol by Cu-exchanged zeolites can be brought to highest yields by the presence of extraframework Al and high CH4 chemical potentials. Combining theory and experiments, the differences in chemical reactivity of monometallic Cu-oxo and bimetallic Cu-Al-oxo nanoclusters stabilized in zeolite mordenite (MOR) are investigated. Cu-L3 edge X-ray absorption near-edge structure (XANES), infrared (IR), and ultraviolet-visible (UV-vis) spectroscopies, in combination with CH4 oxidation activity tests, support the presence of two types of active clusters in MOR and allow quantification of the relative proportions of each type in dependence of the Cu concentration. Ab initio molecular dynamics (MD) calculations and thermodynamic analyses indicate that the superior performance of materials enriched in Cu-Al-oxo clusters is related to the activity of two μ-oxo bridges in the cluster. Replacing H2O with ethanol in the product extraction step led to the formation of ethyl methyl ether, expanding this way the applicability of these materials for the activation and functionalization of CH4. We show that competition between different ion-exchanged metal-oxo structures during the synthesis of Cu-exchanged zeolites determines the formation of active species, and this provides guidelines for the synthesis of highly active materials for CH4 activation and functionalization.
Collapse
Affiliation(s)
- Lei Tao
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Elena Khramenkova
- Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Insu Lee
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Takaaki Ikuno
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Rachit Khare
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Andreas Jentys
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
| | - John L Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| | - Alexander A Kolganov
- Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering (ISE), Department of Chemical Engineering, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Maricruz Sanchez-Sanchez
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Getreidemarkt 9/166, 1060 Vienna, Austria
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748 Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Jin J, Li W, Zhang L, Zhu L, Wang L, Zhou Z. Cu xO y nanoparticles and Cu-OH motif decorated ZSM-5 for selective methane oxidation to methyl oxygenates. J Colloid Interface Sci 2023; 645:964-973. [PMID: 37182328 DOI: 10.1016/j.jcis.2023.04.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/16/2023]
Abstract
Copper decorated zeolites are promising candidates for the partial oxidation of methane to generate methanol with elevated energy density, nevertheless, the modulation and possible synergism between multiple Cu active sites still need to be delved in depth. Here, ZSM-5 catalysts with modulated Cu motifs were proposed using copper oxysalts as precursors through a calcination process. By modifying the contents of copper oxysalts precursors, the Cu active sites varied, and a unique M shaped trend of CH3OH productivity emerged. Attributed to the synergetic effects of CuxOy nanoparticles (adsorbing CH4 and generating *OCH3 species) and Cu-OH motif (binding CH4 and forming Si···CH3), a maximum CH3OH yield of 15975.73 μmol/gcat/h (with CH3OOH yield of 2155.59 μmol/gcat/h) and methyl oxygenates selectivity up to 72.79 % could be achieved. This work paved an efficient, low cost, and succinct way for the manufacture of catalysts with tunable active sites and high performance over methane to methanol conversion.
Collapse
Affiliation(s)
- Jingting Jin
- Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Wenzhi Li
- Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, PR China; Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230031, PR China.
| | - Lulu Zhang
- National & Local Joint Engineering Research Center of Precision Coal Mining, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Leyu Zhu
- Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Liqun Wang
- Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, PR China
| | - Zheng Zhou
- Laboratory of Clean Low-Carbon Energy, University of Science and Technology of China, Hefei 230023, PR China
| |
Collapse
|
12
|
Methane Oxidation over the Zeolites-Based Catalysts. Catalysts 2023. [DOI: 10.3390/catal13030604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Zeolites have ordered pore structures, good spatial constraints, and superior hydrothermal stability. In addition, the active metal elements inside and outside the zeolite framework provide the porous material with adjustable acid–base property and good redox performance. Thus, zeolites-based catalysts are more and more widely used in chemical industries. Combining the advantages of zeolites and active metal components, the zeolites-based materials are used to catalyze the oxidation of methane to produce various products, such as carbon dioxide, methanol, formaldehyde, formic acid, acetic acid, and etc. This multifunction, high selectivity, and good activity are the key factors that enable the zeolites-based catalysts to be used for methane activation and conversion. In this review article, we briefly introduce and discuss the effect of zeolite materials on the activation of C–H bonds in methane and the reaction mechanisms of complete methane oxidation and selective methane oxidation. Pd/zeolite is used for the complete oxidation of methane to carbon dioxide and water, and Fe- and Cu-zeolite catalysts are used for the partial oxidation of methane to methanol, formaldehyde, formic acid, and etc. The prospects and challenges of zeolite-based catalysts in the future research work and practical applications are also envisioned. We hope that the outcome of this review can stimulate more researchers to develop more effective zeolite-based catalysts for the complete or selective oxidation of methane.
Collapse
|
13
|
Artsiusheuski MA, van Bokhoven JA, Sushkevich VL. Structure of Selective and Nonselective Dicopper (II) Sites in CuMFI for Methane Oxidation to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mikalai A. Artsiusheuski
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093Zurich, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232Villigen PSI, Switzerland
- Institute for Chemistry and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093Zurich, Switzerland
| | - Vitaly L. Sushkevich
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institut, 5232Villigen PSI, Switzerland
| |
Collapse
|
14
|
Álvarez M, Marín P, Ordóñez S. Upgrading of methane emissions via chemical looping over copper-zeolites: Experiments and modelling. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
16
|
Gallego M, Corma A, Boronat M. Sub-nanometer Copper Clusters as Alternative Catalysts for the Selective Oxidation of Methane to Methanol with Molecular O 2. J Phys Chem A 2022; 126:4941-4951. [PMID: 35861145 PMCID: PMC10388348 DOI: 10.1021/acs.jpca.2c02895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The partial oxidation of methane to methanol with molecular O2 at mild reaction conditions is a challenging process, which is efficiently catalyzed in nature by enzymes. As an alternative to the extensively studied Cu-exchanged zeolites, small copper clusters composed by just a few atoms appear as potential specific catalysts for this transformation. Following previous work in our group that established that the reactivity of oxygen atoms adsorbed on copper clusters is closely linked to cluster size and morphology, we explore by means of DFT calculations the ability of bidimensional (2D) and three-dimensional (3D) Cu5 and Cu7 clusters to oxidize partially methane to methanol. A highly selective Eley-Rideal pathway involving homolytic C-H bond dissociation and a non-adsorbed radical-like methyl intermediate is favored when bicoordinated oxygen atoms, preferentially stabilized at the edges of 2D clusters, are available. Cluster morphology arises as a key parameter determining the nature and reactivity of adsorbed oxygen atoms, opening the possibility to design efficient catalysts for partial methane oxidation based on copper clusters.
Collapse
Affiliation(s)
- Mario Gallego
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| | - Mercedes Boronat
- Instituto de Tecnología Química (UPV-CSIC), Universitat Politècnica de València - Consejo Superior de Investigaciones Científicas, Avda. de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
17
|
Fang Z, Huang M, Liu B, Chen J, Jiang F, Xu Y, Liu X. Insights into Fe species structure‐performance relationship for direct methane conversion toward oxygenates over Fe‐MOR catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhihao Fang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Mengyuan Huang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Bing Liu
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Jie Chen
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Feng Jiang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Yuebing Xu
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Xiaohao Liu
- Jiangnan University School of Chemical and Material Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| |
Collapse
|
18
|
Abstract
Methane is an abundant resource and its direct conversion into value-added chemicals has been an attractive subject for its efficient utilization. This method can be more efficient than the present energy-intensive indirect conversion of methane via syngas, a mixture of CO and H2. Among the various approaches for direct methane conversion, the selective oxidation of methane into methane oxygenates (e.g., methanol and formaldehyde) is particularly promising because it can proceed at low temperatures. Nevertheless, due to low product yields this method is challenging. Compared with the liquid-phase partial oxidation of methane, which frequently demands for strong oxidizing agents in protic solvents, gas-phase selective methane oxidation has some merits, such as the possibility of using oxygen as an oxidant and the ease of scale-up owing to the use of heterogeneous catalysts. Herein, we summarize recent advances in the gas-phase partial oxidation of methane into methane oxygenates, focusing mainly on its conversion into formaldehyde and methanol.
Collapse
|
19
|
Prodinger S, Kvande K, Arstad B, Borfecchia E, Beato P, Svelle S. Synthesis–Structure–Activity Relationship in Cu-MOR for Partial Methane Oxidation: Al Siting via Inorganic Structure-Directing Agents. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Sebastian Prodinger
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, 1033 Blindern, 0315 Oslo, Norway
| | - Karoline Kvande
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, 1033 Blindern, 0315 Oslo, Norway
| | | | - Elisa Borfecchia
- Department of Chemistry, NIS Center and INSTM Reference Center, University of Turin, 10125 Turin, Italy
| | - Pablo Beato
- Haldor Topsøe A/S, Haldor Topsøes Allé 1, 2800 Kongens Lyngby, Denmark
| | - Stian Svelle
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo, 1033 Blindern, 0315 Oslo, Norway
| |
Collapse
|