1
|
Wang J, Zhang Y, Bai H, Deng H, Pan B, Li Y, Wang Y. Trilayer Polymer Electrolytes Enable Carbon-Efficient CO 2 to Multicarbon Product Conversion in Alkaline Electrolyzers. Angew Chem Int Ed Engl 2024; 63:e202404110. [PMID: 39031640 DOI: 10.1002/anie.202404110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is an appealing method for carbon utilization. Alkaline CO2 electrolyzers exhibit high CO2RR activity, low full-cell voltages, and cost-effectiveness. However, the issue of CO2 loss caused by (bi)carbonate formation leads to excessive energy consumption, rendering the process economically impractical. In this study, we propose a trilayer polymer electrolyte (TPE) comprising a perforated anion exchange membrane (PAEM) and a bipolar membrane (BPM) to facilitate alkaline CO2RR. This TPE enables the coexistence of high alkalinity near the catalyst surface and the H+ flux at the interface between the PAEM and the cation exchange layer (CEL) of the BPM, conditions favoring both CO2 reduction to multicarbon products and (bi)carbonate removal in KOH-fed membrane electrode assembly (MEA) reactors. As a result, we achieve a Faradaic efficiency (FE) of approximately 46 % for C2H4, corresponding to a C2+ FE of 64 % at 260 mA cm-2, with a CO2-to-C2H4 single-pass conversion (SPC) of approximately 32 % at 140 mA cm-2-nearly 1.3 times the limiting SPC in conventional AEM-MEA electrolyzers. Furthermore, coupling CO2 reduction with formaldehyde oxidation reaction (FOR) in the TPE-MEA electrolyzer reduces the full-cell voltage to 2.3 V at 100 mA cm-2 without compromising the C2H4 FE.
Collapse
Affiliation(s)
- Jundong Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuesheng Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Haoxiang Bai
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Huiying Deng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Yuhang Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Luo Q, Tapia J, Zhou L, Liu CH, Liaqat M, Duan H, Yang Z, Nieh MP, Emrick T, Bai P, He J. Fluorinated polymer zwitterions on gold nanoparticles: patterned catalyst surfaces guide interfacial transport and electrochemical CO 2 reduction. NANOSCALE 2024; 16:15558-15567. [PMID: 39101249 PMCID: PMC11340345 DOI: 10.1039/d4nr01484g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
We report the use of fluorinated polymer zwitterions to build hybrid systems for efficient CO2 electroreduction. The unique combination of hydrophilic phosphorylcholine and hydrophobic fluorinated moieties in these polymers creates a fractal structure with mixed branched cylinders on the surface of gold nanoparticles (AuNPs). In the presence of these polymers, the CO faradaic efficiency improves by 50-80% in the range of -0.7 V to -0.9 V. The fractal structures have a domain size of ∼3 nm, showing enhanced mass transfer kinetics of CO2 approaching the catalyst surfaces without limiting ion diffusion. The phase-separated hydrophilic and hydrophobic domains offer separated channeling to water and CO2, as confirmed by attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) and molecule dynamic (MD) simulations. H2O molecules permeate extensively into the polymer layer that adsorbs on zwitterions, forming continuous chains, while CO2 molecules strongly associate with the fluorinated tails of fluorinated polyzwitterions, with oxygen facing the positively charged amine groups. Overall, this coupling of zwitterion and fluorocarbon in a polymer material creates new opportunities for defining microenvironments of metallic nanocatalysts in hybrid structures.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Joseph Tapia
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Le Zhou
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Chung-Hao Liu
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Maham Liaqat
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
| | - Hanyi Duan
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhefei Yang
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Mu-Ping Nieh
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Todd Emrick
- Polymer Science and Engineering Department, Conte Center for Polymer Research University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Peng Bai
- Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA.
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
3
|
Yamaguchi S, Ebe H, Minegishi T, Sugiyama M. Introduction of a Conductive Layer into Flood-Resistant Gas Diffusion Electrodes with Polymer Substrate for an Efficient Electrochemical CO 2 Reduction with Copper Oxide. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17371-17376. [PMID: 38533998 DOI: 10.1021/acsami.3c14568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Conversion of atmospheric carbon dioxide (CO2) into valuable feedstocks is a crucial technology, and electrochemical reduction of CO2 is a promising approach that can provide a useful source of ethylene (C2H4). Gas diffusion electrodes (GDEs) placed at the interface of the CO2 gas and electrolyte can achieve high current density through a sufficient supply of dissolved CO2 to the reaction site, making them indispensable in industrial applications. However, conventional GDEs with carbon substrate have suffered from electrolyte flooding and consequent loss of efficiency, posing an obstacle for practical application. While flood-resistant GDEs with hydrophobic polymer substrate have been proposed recently, only conductive materials can be employed as electrocatalysts because of their insulative properties, despite the high activities of oxide materials such as copper oxide. Here, we introduce an aluminum conductive layer in GDE with polymer substrate to enable the use of electrically resistive catalysts. Cuprous oxide (Cu2O) with silver particles was tested as a model material and has shown prolonged stability (>17 h) with high C2H4 Faraday efficiency (>50%) while suppressing flooding. A thorough characterization revealed that the conductive layer makes Cu2O an efficient electrocatalyst, even on the polymer substrate, by providing sufficient electrons through its conduction path. This research significantly expands the scope of electrode design by enabling the incorporation of a wide range of nonelectrically conductive materials on GDEs with polymer substrate.
Collapse
Affiliation(s)
- Shingi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroji Ebe
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tsutomu Minegishi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Masakazu Sugiyama
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
4
|
Conte A, Baron M, Bonacchi S, Antonello S, Aliprandi A. Copper and silver nanowires for CO 2 electroreduction. NANOSCALE 2023; 15:3693-3703. [PMID: 36727608 PMCID: PMC9949578 DOI: 10.1039/d2nr06687d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/18/2023] [Indexed: 05/28/2023]
Abstract
Copper and silver nanowires have been extensively investigated as the next generation of transparent conductive electrodes (TCEs) due to their ability to form percolating networks. Recently, they have been exploited as electrocatalysts for CO2 reduction. In this review, we present the most recent advances in this field summarizing different strategies used for the synthesis and functionalization/activation of copper and silver nanowires, as well as, the state of the art of their electrochemical performance with particular emphasis on the effect of the nanowire morphology. Novel perspectives for the development of highly efficient, selective, and stable electrocatalysts for CO2 reduction arise from the translation of NW-based TCEs in this challenging field.
Collapse
Affiliation(s)
- Andrea Conte
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy.
| | - Marco Baron
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy.
| | - Sara Bonacchi
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy.
| | - Sabrina Antonello
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy.
| | - Alessandro Aliprandi
- University of Padova, Department of Chemistry, Via Marzolo 1, I-35131 Padova, Italy.
| |
Collapse
|
5
|
Guo A, Baumann AE, Rus ED, Stafford CM, Raciti D. Polymer-Regulated Electrochemical Reduction of CO 2 on Ag. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2023; 127:10.1021/acs.jpcc.3c03157. [PMID: 39380692 PMCID: PMC11459466 DOI: 10.1021/acs.jpcc.3c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The influence of polymer overlayers on the catalytic activity of Ag for electrochemical CO2 reduction to CO is explored. Polystyrene and poly(4-vinylpyridine) films of varying thicknesses are applied as catalysis-directing overlayers atop Ag electrodes. For polystyrene, substantial suppression of CO2 reduction activity is observed while the hydrogen evolution reaction (HER) increases. The addition of a nitrogen heteroatom into the phenyl groups of polystyrene (e.g., a pyridine ring) results in an increase in the conversion of CO2 to CO and suppression of HER. Block copolymer variants containing both phenyl and pyridyl functionalities exhibit similar activity for CO evolution but appear to suppress HER further than the polymer layer containing only pyridine groups. The size of the blocks for the copolymer influences the catalytic output of the Ag electrode, suggesting that the hierarchical structure that forms in the block copolymer layer plays a role in catalytic activity at the electrode surface. Analysis of the polymer overlayers suggests that polystyrene significantly inhibits all ion transport to the metal electrode, while poly(4-vinylpyridine) enables CO2 transport while modifying the electronics of the Ag active site. Therefore, the engineered application of polymer overlayers, especially those containing heteroatoms, enables new avenues of electrochemical CO2 reduction to be explored.
Collapse
Affiliation(s)
- Ally Guo
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Avery E Baumann
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Eric D Rus
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher M Stafford
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - David Raciti
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
6
|
Liu Q, Zhang XG, Du ZY, Zou CJ, Chen HY, Zhao Y, Dong JC, Fang PP, Li JF. Converting CO2 to ethanol on Ag nanowires with high selectivity investigated by operando Raman spectroscopy. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Chen J, Liu X, Xi S, Zhang T, Liu Z, Chen J, Shen L, Kawi S, Wang L. Functionalized Ag with Thiol Ligand to Promote Effective CO 2 Electroreduction. ACS NANO 2022; 16:13982-13991. [PMID: 36094893 DOI: 10.1021/acsnano.2c03512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is challenging while critical to develop efficient catalysts that can achieve both high current density and high energy efficiency for electrocatalytic CO2 reduction (CO2R). Herein, we report a strategy of tailoring the surface electronic structure of an Ag catalyst via thiol ligand modification to improve its intrinsic activity, selectivity, and further energy efficiency toward CO2R. Specifically, interconnected Ag nanoparticles with residual thiol ligands on the surface were prepared through electrochemical activation of a thiol-ligand-based Ag complex. When it was used as a catalyst for CO2R, the thiol-ligand modified Ag exhibited high CO selectivity (>90%) throughout a wide electrode-potential range; furthermore, high cathodic energy efficiencies of >90% and >70% were obtained for CO formation at high current densities of 150 and 750 mA cm-2, respectively, outperforming the state-of-the-art Ag-based electrocatalysts for CO2 to CO conversion. The first-principle calculations on the reaction energetics suggest that the binding energies of the key intermediate -*COOH on Ag are optimized by the adsorbed thiol ligand, thus favoring CO formation while suppressing the competing H2 evolution. Our findings provide a rational design strategy for CO2 reduction electrocatalyst by electronic modulation through surface-adsorbed ligands.
Collapse
Affiliation(s)
- Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Xiaoqing Liu
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, A*STAR, Singapore 627833
| | - Tianyu Zhang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Lei Shen
- Department of Mechanical Engineering, National University of Singapore, Singapore 117575
| | - Sibudjing Kawi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, Singapore 117585
| |
Collapse
|
8
|
Kong Y, Liu M, Hu H, Hou Y, Vesztergom S, Gálvez-Vázquez MDJ, Zelocualtecatl Montiel I, Kolivoška V, Broekmann P. Cracks as Efficient Tools to Mitigate Flooding in Gas Diffusion Electrodes Used for the Electrochemical Reduction of Carbon Dioxide. SMALL METHODS 2022; 6:e2200369. [PMID: 35810472 DOI: 10.1002/smtd.202200369] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The advantage of employing gas diffusion electrodes (GDEs) in carbon dioxide reduction electrolyzers is that they allow CO2 to reach the catalyst in gaseous state, enabling current densities that are orders of magnitude larger than what is achievable in standard H-type cells. The gain in the reaction rate comes, however, at the cost of stability issues related to flooding that occurs when excess electrolyte permeates the micropores of the GDE, effectively blocking the access of CO2 to the catalyst. For electrolyzers operated with alkaline electrolytes, flooding leaves clear traces within the GDE in the form of precipitated potassium (hydrogen)carbonates. By analyzing the amount and distribution of precipitates, and by quantifying potassium salts transported through the GDE during operation (electrolyte perspiration), important information can be gained with regard to the extent and means of flooding. In this work, a novel combination of energy dispersive X-ray and inductively coupled plasma mass spectrometry based methods is employed to study flooding-related phenomena in GDEs differing in the abundance of cracks in the microporous layer. It is concluded that cracks play an important role in the electrolyte management of CO2 electrolyzers, and that electrolyte perspiration through cracks is paramount in avoiding flooding-related performance drops.
Collapse
Affiliation(s)
- Ying Kong
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| | - Menglong Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| | - Huifang Hu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Yuhui Hou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| | - Soma Vesztergom
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- Department of Physical Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary
| | | | - Iván Zelocualtecatl Montiel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, 18223, Prague, Czech Republic
| | - Peter Broekmann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012, Bern, Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Bern, 3012, Bern, Switzerland
| |
Collapse
|
9
|
Kong Y, Hu H, Liu M, Hou Y, Kolivoška V, Vesztergom S, Broekmann P. Visualisation and quantification of flooding phenomena in gas diffusion electrodes used for electrochemical CO2 reduction: A combined EDX/ICP–MS approach. J Catal 2022. [DOI: 10.1016/j.jcat.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ma H, Liu Z, Liu Z. The formation mechanism of fibrous metal oxalate prepared by ammonia coordination method. RSC Adv 2022; 12:15251-15260. [PMID: 35693248 PMCID: PMC9118199 DOI: 10.1039/d2ra00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/29/2022] [Indexed: 11/21/2022] Open
Abstract
Anisotropic microstructures normally lead to different or better optical, electrical and magnetic properties for functional materials. We recently found some metal oxalates (nickel, cobalt, iron, silver, etc.) prepared in aqueous solutions will form fibrous morphology in the presence of ammonia (ammonia coordination method). Metals or metal oxides obtained by heating the fibrous metal oxalates in inert or oxidizing atmospheres can also inherit the high-aspect-ratio morphology. Ammonia coordination method is a simple and economical way to synthesize fibrous metal oxalates, metals, and metal oxides. In this work, fibrous nickel oxalate with a formula of Ni(NH3)1.7C2O4·2.2H2O and its corresponding single crystal were synthesized to investigate the morphology transitions, structure transitions, and formation mechanism of fibrous particles. Ammonia molecules gradually coordinating with nickel atoms, which caused the increase of surface energy and atomic stacking rate of (020) crystal plane, was the fundamental reason for the oriented growth of nickel oxalate. Our results demonstrate a feasible method to synthesize high-aspect-ratio metallic materials and show the important influences of coordination ligand ammonia on the crystal growth stage of metallic materials which may provide references for synthesizing metallic materials with extraordinary microstructures and better properties by simple ammonia coordination method. Ammonia coordination method was proposed to synthesize fibrous metal oxalates and its mechanism was studied.![]()
Collapse
Affiliation(s)
- Huan Ma
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, PR China
| | - Zhiyong Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, PR China
| | - Zhihong Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan, 410083, PR China
| |
Collapse
|
11
|
CuZnAl-Oxide Nanopyramidal Mesoporous Materials for the Electrocatalytic CO 2 Reduction to Syngas: Tuning of H 2/CO Ratio. NANOMATERIALS 2021; 11:nano11113052. [PMID: 34835816 PMCID: PMC8618478 DOI: 10.3390/nano11113052] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/30/2021] [Accepted: 11/06/2021] [Indexed: 11/17/2022]
Abstract
Inspired by the knowledge of the thermocatalytic CO2 reduction process, novel nanocrystalline CuZnAl-oxide based catalysts with pyramidal mesoporous structures are here proposed for the CO2 electrochemical reduction under ambient conditions. The XPS analyses revealed that the co-presence of ZnO and Al2O3 into the Cu-based catalyst stabilize the CuO crystalline structure and introduce basic sites on the ternary as-synthesized catalyst. In contrast, the as-prepared CuZn- and Cu-based materials contain a higher amount of superficial Cu0 and Cu1+ species. The CuZnAl-catalyst exhibited enhanced catalytic performance for the CO and H2 production, reaching a Faradaic efficiency (FE) towards syngas of almost 95% at −0.89 V vs. RHE and a remarkable current density of up to 90 mA cm−2 for the CO2 reduction at −2.4 V vs. RHE. The physico-chemical characterizations confirmed that the pyramidal mesoporous structure of this material, which is constituted by a high pore volume and small CuO crystals, plays a fundamental role in its low diffusional mass-transfer resistance. The CO-productivity on the CuZnAl-catalyst increased at more negative applied potentials, leading to the production of syngas with a tunable H2/CO ratio (from 2 to 7), depending on the applied potential. These results pave the way to substitute state-of-the-art noble metals (e.g., Ag, Au) with this abundant and cost-effective catalyst to produce syngas. Moreover, the post-reaction analyses demonstrated the stabilization of Cu2O species, avoiding its complete reduction to Cu0 under the CO2 electroreduction conditions.
Collapse
|